WO2013036426A1 - System and method for exchanging heat - Google Patents

System and method for exchanging heat Download PDF

Info

Publication number
WO2013036426A1
WO2013036426A1 PCT/US2012/053032 US2012053032W WO2013036426A1 WO 2013036426 A1 WO2013036426 A1 WO 2013036426A1 US 2012053032 W US2012053032 W US 2012053032W WO 2013036426 A1 WO2013036426 A1 WO 2013036426A1
Authority
WO
WIPO (PCT)
Prior art keywords
envelope
volumes
envelopes
volume
adjacent
Prior art date
Application number
PCT/US2012/053032
Other languages
French (fr)
Inventor
Victor KENT
Mykhaylo SINKEVYCH
Alexander Belokon
Vladimir BESCHASTNYKH
Original Assignee
Thermo-Pur Technologies, LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermo-Pur Technologies, LLC filed Critical Thermo-Pur Technologies, LLC
Publication of WO2013036426A1 publication Critical patent/WO2013036426A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05358Assemblies of conduits connected side by side or with individual headers, e.g. section type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles

Definitions

  • the present invention generally involves a system and method for exchanging heat.
  • the system and method will enable an ambient fluid to simultaneously exchange heat with multiple system fluids flowing through a single heat exchanger.
  • heat exchangers for transferring heat between fluid systems.
  • a heat exchanger of some type is included in almost every power generation device, ventilation, and water system used in the developed world, and virtually every automobile, truck, boat, aircraft, or other machine having a combustion engine, a pneumatic system, a hydraulic system, or other heat generating component includes at least one heat exchanger.
  • multiple heat exchangers may be used to exchange heat with multiple fluids, including air and gases.
  • an engine compartment of an automobile may include one heat exchanger to cool radiator fluid, a second heat exchanger to cool transmission fluid, and a third heat exchanger to cool refrigerant associated with an air conditioner.
  • turbo diesel engine vehicles may include heat exchangers to cool and/or heat exhaust gases for better gas mileage or generation of electric power with a separate heat exchanger for an intercooler, exhaust gas recirculator, and/or turbo- electric generator.
  • Larger vehicles may include additional heat exchangers to cool other hydraulic fluids, compressed air, or auxiliary systems.
  • Each separate heat exchanger requires a separate footprint that occupies the finite available space in the engine compartment, increases manufacturing and maintenance costs, and adds to the overall weight of the vehicle.
  • many heat exchangers have a generally accepted best location identified where this cooling and/or heating should take place based on the general design considerations and/or velocity of the air flow for heat exchange.
  • One embodiment of the present invention is a system for exchanging heat.
  • the system includes a plurality of adjacent envelopes, wherein each envelope defines a plurality of volumes.
  • a connection between adjacent envelopes provides fluid communication between the volumes in adjacent envelopes, and a fluid passage outside of the envelopes and defined by adjacent envelopes extends across a dimension of the system.
  • Another embodiment of the present invention is a system for exchanging heat that includes a plurality of envelopes arranged in layers, wherein each envelope defines a plurality of volumes. A channel between adjacent envelopes provides fluid communication across a dimension of the system.
  • the present invention may also include a method for exchanging heat that includes flowing a plurality of secondary fluids through a plurality of volumes in adjacent envelopes, wherein each secondary fluid flows through a separate volume in each envelope.
  • the method further includes flowing a primary fluid through a plurality of channels outside of the adjacent envelopes and defined by the adjacent envelopes.
  • FIG. 1 is a perspective view of a system according to one embodiment of the present invention.
  • FIG. 2 is an exploded view of an exemplary envelope shown in Fig. 1 ;
  • FIG. 3 is a perspective view of a single envelope according to an alternate embodiment of the present invention.
  • Fig. 4 is a partial perspective view of multiple envelopes stacked according to an alternate embodiment.
  • Various embodiments of the present invention provide a system and method that allows an ambient fluid to simultaneously exchange heat with multiple system fluids flowing through a single heat exchanger.
  • the systems and methods described herein may transfer heat to or from the ambient fluid.
  • each system fluid flows through a dedicated volume or chamber inside the heat exchanger, and each dedicated volume or chamber has a surface exposed to the ambient fluid to exchange heat with the ambient fluid.
  • Fig. 1 provides a perspective view of a system 10 according to one embodiment of the present invention.
  • the system 10 generally includes a plurality of envelopes 12 stacked on top of one another or arranged in layers to form a heat exchanger core 14.
  • Each envelope 12 defines a plurality of volumes or cavities, and each volume or cavity includes an inlet and an outlet.
  • each envelope 12 defines five separate volumes 16, 18, 20, 22, 24.
  • Each volume has an associated inlet and outlet, indicated by the arrows in Fig. 1, to provide five separate pathways for five separate system fluids to flow into and through the heat exchanger core 14.
  • the layers of envelopes 12 define a fluid passage or channel 26 outside of and between adjacent envelopes 12.
  • the multiple fluid passages or channels 26 extend across a dimension of the system 10.
  • a flow of ambient fluid 28 such as air or water, may flow through the fluid passages or channels 26 and around the layers of envelopes 12 to exchange heat with the system fluids flowing through the envelopes 12.
  • Fig. 2 provides an exploded view of an exemplary envelope 12 shown in Fig. 1.
  • each envelope 12 generally includes a first section 30 joined to a second section 32 to define each volume in the envelope 12.
  • one or more weld beads, braze joints, or other impermeable barriers between the first and second sections 30, 32 may provide a seal 34 that defines each volume in each envelope 12.
  • adjacent volumes in each envelope 12 e.g., volumes 18, 20, and 22
  • adjacent volumes in each envelope 12 may be arranged perpendicular to the flow of ambient fluid 28 through the fluid passages or channels 26.
  • the first and/or second sections 30, 32 may include a corrugated surface 36 and/or turbulators to disrupt the laminar fluid flow inside the envelopes 12 and/or through the fluid passages 26.
  • first and second sections 30, 32 may have a thickness of approximately .05-0.3 millimeters, and the corrugations or turbulators (if present) may have a height of approximately 2.5-10 millimeters. Alternately, the height of the corrugations or turbulators may be approximately 1 ⁇ 2 of the total thickness of an individual envelope 12.
  • the height of the corrugations or turbulators may be less than 1 ⁇ 2 of the total thickness of an individual envelope 12 to produce larger fluid passages or channels 26 between adjacent envelopes 12.
  • Each heat exchanger core 14 may include 100-500 layers of envelopes 12, or more or fewer layers of envelopes 12 if desired.
  • Fig. 3 provides a perspective view of an exemplary envelope 12 according to an alternate embodiment of the present invention.
  • the envelope 12 includes two distinct volumes 16, 18, and one volume (i.e., volume 16) substantially surrounds the second volume (i.e., volume 18).
  • This particular arrangement may be used, for example, to regulate the exit temperatures of the system fluids flowing through the first and second volumes 16, 18.
  • Fig. 4 provides a partial perspective view of multiple envelopes 12 stacked together according to an alternate embodiment.
  • a flange 40, lip, or other suitable structure coincident with the respective inlets and outlets for each volume may provide a connection between adjacent envelopes 12 that provides fluid communication between the volumes in adjacent envelopes 12.
  • the adjacent and connected inlets and outlets may thus define a supply header 42 and an exhaust header 44, respectively, for each volume.
  • Each system fluid may thus flow into a separate supply header 42, through the associated volume, and out the associated exhaust header 44.
  • one or more of the corrugated surfaces 36 may be formed from substantially circular corrugations, and in some applications a weld seam placed at the troughs of corrugations, to increase the pressure capability of the associated volume.
  • separate fluids having various system pressures may flow through the various volumes, and the flow of ambient fluid 28 through the fluid passages or channels 26 outside of and between the adjacent envelopes 12 exchanges heat with the system fluids flowing through the envelopes 12.
  • the various embodiments shown in Figs. 1-4 may also provide a method for exchanging heat that includes flowing multiple secondary fluids through multiple volumes in adjacent envelopes 12, wherein each secondary fluid flows through a separate volume in each envelope 12.
  • the method may further include flowing a primary fluid, such as ambient air or water, through multiple fluid passages or channels 26 outside of the adjacent envelopes 12 and defined by the adjacent envelopes 12.
  • the method may include flowing the secondary fluids through the volumes parallel to and/or perpendicular to flow through the fluid passages or channels 26.
  • the method may include flowing a first secondary fluid through a first volume, wherein the first volume is surrounded by a second volume containing a second secondary fluid.
  • the various systems and methods described herein thus enable heat transfer to or from the ambient fluid to multiple secondary or system fluids in a single heat exchanger core 14.
  • the single heat exchanger core 14 may replace multiple heat exchangers to reduce the footprint and/or weight of the multiple heat exchangers, change the location of the heat exchangers, and/or reduce manufacturing, assembly, and maintenance costs associated with the multiple heat exchangers.

Abstract

A system for exchanging heat includes a plurality of adjacent envelopes, wherein each envelope defines a plurality of volumes. A connection between adjacent envelopes provides fluid communication between the volumes in adjacent envelopes, and a fluid passage outside of the envelopes and defined by adjacent envelopes extends across a dimension of the system. A method for exchanging heat includes flowing a plurality of secondary fluids through a plurality of volumes in adjacent envelopes, wherein each secondary fluid flows through a separate volume in each envelope. The method further includes flowing a primary fluid through a plurality of channels outside of the adjacent envelopes and defined by the adjacent envelopes.

Description

SYSTEM AND METHOD FOR EXCHANGING HEAT
FIELD OF THE INVENTION
[0001] The present invention generally involves a system and method for exchanging heat. In particular embodiments, the system and method will enable an ambient fluid to simultaneously exchange heat with multiple system fluids flowing through a single heat exchanger.
BACKGROUND OF THE INVENTION
[0002] Many types of heat exchangers exist for transferring heat between fluid systems. For example, a heat exchanger of some type is included in almost every power generation device, ventilation, and water system used in the developed world, and virtually every automobile, truck, boat, aircraft, or other machine having a combustion engine, a pneumatic system, a hydraulic system, or other heat generating component includes at least one heat exchanger. In some applications, multiple heat exchangers may be used to exchange heat with multiple fluids, including air and gases. For example, an engine compartment of an automobile may include one heat exchanger to cool radiator fluid, a second heat exchanger to cool transmission fluid, and a third heat exchanger to cool refrigerant associated with an air conditioner. As another example, turbo diesel engine vehicles may include heat exchangers to cool and/or heat exhaust gases for better gas mileage or generation of electric power with a separate heat exchanger for an intercooler, exhaust gas recirculator, and/or turbo- electric generator. Larger vehicles may include additional heat exchangers to cool other hydraulic fluids, compressed air, or auxiliary systems. Each separate heat exchanger requires a separate footprint that occupies the finite available space in the engine compartment, increases manufacturing and maintenance costs, and adds to the overall weight of the vehicle. In addition, many heat exchangers have a generally accepted best location identified where this cooling and/or heating should take place based on the general design considerations and/or velocity of the air flow for heat exchange.
[0003] Various attempts have been made to reduce the costs associated with multiple heat exchangers by developing a single heat exchanger capable of exchanging heat with multiple fluids. For example, U.S. Patents 5,462,113 and 5,964,114 describe multi-fluid heat exchangers that include a series of stacked plates. The stacked plates are arranged and sealed to produce multiple fluid passages inside the stacked assembly, and a different fluid may be supplied through each fluid passage to exchange heat with the other fluids flowing inside the stacked assembly. Although suitable for exchanging heat between the multiple fluids, these stacked assemblies do not allow or severely limit the surface area of the heat exchanger that is exposed to ambient fluids, such as air or water. As a result, these multi-fluid heat exchangers are unable to take full advantage of the relatively unlimited ambient heat removal that is generally available. Therefore, an improved heat exchanger that can more effectively utilize ambient fluids to remove heat from multiple system fluids would be useful.
BRIEF DESCRIPTION OF THE INVENTION
[0004] Aspects and advantages of the invention are circuit forth below in the following description, or may be obvious from the description, or may be learned through practice of the invention.
[0005] One embodiment of the present invention is a system for exchanging heat. The system includes a plurality of adjacent envelopes, wherein each envelope defines a plurality of volumes. A connection between adjacent envelopes provides fluid communication between the volumes in adjacent envelopes, and a fluid passage outside of the envelopes and defined by adjacent envelopes extends across a dimension of the system.
[0006] Another embodiment of the present invention is a system for exchanging heat that includes a plurality of envelopes arranged in layers, wherein each envelope defines a plurality of volumes. A channel between adjacent envelopes provides fluid communication across a dimension of the system.
[0007] The present invention may also include a method for exchanging heat that includes flowing a plurality of secondary fluids through a plurality of volumes in adjacent envelopes, wherein each secondary fluid flows through a separate volume in each envelope. The method further includes flowing a primary fluid through a plurality of channels outside of the adjacent envelopes and defined by the adjacent envelopes.
[0008] Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the specification.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
[0010] Fig. 1 is a perspective view of a system according to one embodiment of the present invention;
[0011 ] Fig. 2 is an exploded view of an exemplary envelope shown in Fig. 1 ;
[0012] Fig. 3 is a perspective view of a single envelope according to an alternate embodiment of the present invention; and
[0013] Fig. 4 is a partial perspective view of multiple envelopes stacked according to an alternate embodiment.
DETAILED DESCRIPTION OF THE INVENTION
[0014] Reference will now be made in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention.
[0015] Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present invention without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
[0016] Various embodiments of the present invention provide a system and method that allows an ambient fluid to simultaneously exchange heat with multiple system fluids flowing through a single heat exchanger. The systems and methods described herein may transfer heat to or from the ambient fluid. In particular embodiments, each system fluid flows through a dedicated volume or chamber inside the heat exchanger, and each dedicated volume or chamber has a surface exposed to the ambient fluid to exchange heat with the ambient fluid. Although particular embodiments of the present invention may be described in the context of an automobile, truck, or other vehicle, one of ordinary skill in the art will readily appreciate that the present invention is not limited to any particular application and may be suitably adapted for use in any application requiring the transfer of heat between fluids.
[0017] Fig. 1 provides a perspective view of a system 10 according to one embodiment of the present invention. As shown, the system 10 generally includes a plurality of envelopes 12 stacked on top of one another or arranged in layers to form a heat exchanger core 14. Each envelope 12 defines a plurality of volumes or cavities, and each volume or cavity includes an inlet and an outlet. For example, in the specific embodiment shown in Fig. 1, each envelope 12 defines five separate volumes 16, 18, 20, 22, 24. Each volume has an associated inlet and outlet, indicated by the arrows in Fig. 1, to provide five separate pathways for five separate system fluids to flow into and through the heat exchanger core 14.
[0018] As shown in Fig. 1, the layers of envelopes 12 define a fluid passage or channel 26 outside of and between adjacent envelopes 12. The multiple fluid passages or channels 26 extend across a dimension of the system 10. In this manner, a flow of ambient fluid 28, such as air or water, may flow through the fluid passages or channels 26 and around the layers of envelopes 12 to exchange heat with the system fluids flowing through the envelopes 12.
[0019] Fig. 2 provides an exploded view of an exemplary envelope 12 shown in Fig. 1. As shown, each envelope 12 generally includes a first section 30 joined to a second section 32 to define each volume in the envelope 12. For example, one or more weld beads, braze joints, or other impermeable barriers between the first and second sections 30, 32 may provide a seal 34 that defines each volume in each envelope 12. As shown in Fig. 2, adjacent volumes in each envelope 12 (e.g., volumes 18, 20, and 22) may be arranged parallel to the flow of ambient fluid 28 through the fluid passages or channels 26. Alternately, or in addition, adjacent volumes in each envelope 12 (e.g., volumes 16 and 18 or 22 and 24) may be arranged perpendicular to the flow of ambient fluid 28 through the fluid passages or channels 26. As further shown in Figs. 1 and 2, the first and/or second sections 30, 32 may include a corrugated surface 36 and/or turbulators to disrupt the laminar fluid flow inside the envelopes 12 and/or through the fluid passages 26.
[0020] The particular materials, dimensions, shapes, and number of envelopes 12, corrugations, and turbulators will vary according to the particular application. For example, aluminum, copper, stainless steel, nickel, titanium, and other conductive metals, alloys, and superalloys provide suitable materials for the first and second sections 30, 32. The first and second sections 30, 32 may have a thickness of approximately .05-0.3 millimeters, and the corrugations or turbulators (if present) may have a height of approximately 2.5-10 millimeters. Alternately, the height of the corrugations or turbulators may be approximately ½ of the total thickness of an individual envelope 12. In still further embodiments, the height of the corrugations or turbulators may be less than ½ of the total thickness of an individual envelope 12 to produce larger fluid passages or channels 26 between adjacent envelopes 12. Each heat exchanger core 14 may include 100-500 layers of envelopes 12, or more or fewer layers of envelopes 12 if desired. One of ordinary skill in the art will readily appreciate that the particular materials, dimensions, shapes, and number of envelopes 12, corrugations, and turbulators are not limitations of the present invention unless specifically recited in the claims.
[0021] Fig. 3 provides a perspective view of an exemplary envelope 12 according to an alternate embodiment of the present invention. In this particular embodiment, the envelope 12 includes two distinct volumes 16, 18, and one volume (i.e., volume 16) substantially surrounds the second volume (i.e., volume 18). This particular arrangement may be used, for example, to regulate the exit temperatures of the system fluids flowing through the first and second volumes 16, 18.
[0022] Fig. 4 provides a partial perspective view of multiple envelopes 12 stacked together according to an alternate embodiment. As shown, a flange 40, lip, or other suitable structure coincident with the respective inlets and outlets for each volume may provide a connection between adjacent envelopes 12 that provides fluid communication between the volumes in adjacent envelopes 12. The adjacent and connected inlets and outlets may thus define a supply header 42 and an exhaust header 44, respectively, for each volume. Each system fluid may thus flow into a separate supply header 42, through the associated volume, and out the associated exhaust header 44. In the particular embodiment shown in Fig. 4, one or more of the corrugated surfaces 36 may be formed from substantially circular corrugations, and in some applications a weld seam placed at the troughs of corrugations, to increase the pressure capability of the associated volume. As a result, separate fluids having various system pressures may flow through the various volumes, and the flow of ambient fluid 28 through the fluid passages or channels 26 outside of and between the adjacent envelopes 12 exchanges heat with the system fluids flowing through the envelopes 12.
[0023] The various embodiments shown in Figs. 1-4 may also provide a method for exchanging heat that includes flowing multiple secondary fluids through multiple volumes in adjacent envelopes 12, wherein each secondary fluid flows through a separate volume in each envelope 12. The method may further include flowing a primary fluid, such as ambient air or water, through multiple fluid passages or channels 26 outside of the adjacent envelopes 12 and defined by the adjacent envelopes 12. In particular embodiments, the method may include flowing the secondary fluids through the volumes parallel to and/or perpendicular to flow through the fluid passages or channels 26. In other particular embodiments, the method may include flowing a first secondary fluid through a first volume, wherein the first volume is surrounded by a second volume containing a second secondary fluid.
[0024] The various systems and methods described herein thus enable heat transfer to or from the ambient fluid to multiple secondary or system fluids in a single heat exchanger core 14. As a result, the single heat exchanger core 14 may replace multiple heat exchangers to reduce the footprint and/or weight of the multiple heat exchangers, change the location of the heat exchangers, and/or reduce manufacturing, assembly, and maintenance costs associated with the multiple heat exchangers.
[0025] This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims

WHAT IS CLAIMED IS:
1. A system for exchanging heat, comprising:
a. a plurality of adjacent envelopes, wherein each envelope defines a plurality of volumes;
b. a connection between adjacent envelopes that provides fluid communication between the volumes in adjacent envelopes; and
c. a fluid passage outside of the envelopes and defined by adjacent envelopes, wherein the fluid passage extends across a dimension of the system.
2. The system as in claim 1 , wherein each envelope includes a first section joined to a second section to define each volume in each envelope.
3. The system as in claim 1, wherein adjacent volumes in each envelope are arranged parallel to flow through the fluid passage.
4. The system as in claim 1, wherein adjacent volumes in each envelope are arranged perpendicular to flow through the fluid passage.
5. The system as in claim 1, wherein a first volume in each envelope is substantially surrounded by a second volume in each envelope.
6. The system as in claim 1, wherein each envelope includes a corrugated surface.
7. The system as in claim 1, wherein the plurality of adjacent envelopes defines a supply header and an exhaust header for each volume.
8. A system for exchanging heat, comprising;
a. a plurality of envelopes arranged in layers, wherein each envelope defines a plurality of volumes; and
b. a channel between adjacent envelopes, wherein the channel provides fluid communication across a dimension of the system.
9. The system as in claim 8, further comprising a connection between adjacent envelopes that provides fluid communication between the volumes in adjacent envelopes.
10. The system as in claim 8, wherein each envelope includes a first section joined to a second section and a seal between the first and second sections defines each volume in each envelope.
11. The system as in claim 8, wherein the plurality of volumes in each envelope is arranged parallel to flow through the plurality of channels.
12. The system as in claim 8, wherein the plurality of volumes in each envelope is arranged perpendicular to flow through the plurality of channels.
13. The system as in claim 8, wherein a first volume in each envelope is substantially surrounded by a second volume in each envelope.
14. The system as in claim 8, wherein each envelope includes a turbulator.
15. The system as in claim 8, wherein the plurality of envelopes defines a supply header and an exhaust header for each volume.
16. A method for exchanging heat, comprising:
a. flowing a plurality of secondary fluids through a plurality of volumes in adjacent envelopes, wherein each secondary fluid flows through a separate volume in each envelope; and
b. flowing a primary fluid through a plurality of channels outside of the adjacent envelopes and defined by the adjacent envelopes.
17. The method as in claim 16, further comprising flowing the plurality of secondary fluids through the plurality of volumes, wherein the plurality of volumes in each envelope is arranged parallel to flow through the channels.
18. The method as in claim 16, further comprising flowing the plurality of secondary fluids through the plurality of volumes, wherein the plurality of volumes in each envelope is arranged perpendicular to flow through the channels.
19. The method as in claim 16, further comprising flowing a first secondary fluid through a first volume, wherein the first volume is surrounded by a second volume containing a second secondary fluid.
PCT/US2012/053032 2011-09-08 2012-08-30 System and method for exchanging heat WO2013036426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/227,790 2011-09-08
US13/227,790 US20130062039A1 (en) 2011-09-08 2011-09-08 System and method for exchanging heat

Publications (1)

Publication Number Publication Date
WO2013036426A1 true WO2013036426A1 (en) 2013-03-14

Family

ID=47828776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/053032 WO2013036426A1 (en) 2011-09-08 2012-08-30 System and method for exchanging heat

Country Status (2)

Country Link
US (1) US20130062039A1 (en)
WO (1) WO2013036426A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012027688A1 (en) * 2010-08-26 2012-03-01 Modine Manufacturing Company Waste heat recovery system and method of operating the same
US8869398B2 (en) 2011-09-08 2014-10-28 Thermo-Pur Technologies, LLC System and method for manufacturing a heat exchanger
MX2017005311A (en) 2014-10-21 2018-03-01 Bright Energy Storage Tech Llp Concrete and tube hot thermal exchange and energy store (txes) including temperature gradient control techniques.
US11199365B2 (en) * 2014-11-03 2021-12-14 Hamilton Sundstrand Corporation Heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964280A (en) * 1996-07-16 1999-10-12 Modine Manufacturing Company Multiple fluid path plate heat exchanger
US6016864A (en) * 1996-04-19 2000-01-25 Heatcraft Inc. Heat exchanger with relatively flat fluid conduits
US6247528B1 (en) * 1997-06-25 2001-06-19 Alfa Laval Ab Plate heat exchanger
US6401804B1 (en) * 1999-01-14 2002-06-11 Denso Corporation Heat exchanger only using plural plates

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002201A (en) * 1974-05-24 1977-01-11 Borg-Warner Corporation Multiple fluid stacked plate heat exchanger
US4011905A (en) * 1975-12-18 1977-03-15 Borg-Warner Corporation Heat exchangers with integral surge tanks
US5462113A (en) * 1994-06-20 1995-10-31 Flatplate, Inc. Three-circuit stacked plate heat exchanger
SE504799C2 (en) * 1995-08-23 1997-04-28 Swep International Ab Triple circuit heat exchanger
SE504868C2 (en) * 1995-10-23 1997-05-20 Swep International Ab Plate heat exchanger with end plate with pressed pattern
JP3719453B2 (en) * 1995-12-20 2005-11-24 株式会社デンソー Refrigerant evaporator
JP4122578B2 (en) * 1997-07-17 2008-07-23 株式会社デンソー Heat exchanger
DE10021481A1 (en) * 2000-05-03 2001-11-08 Modine Mfg Co Plate heat exchanger
JP3637314B2 (en) * 2002-01-10 2005-04-13 三菱重工業株式会社 Stacked evaporator
US6516486B1 (en) * 2002-01-25 2003-02-11 Delphi Technologies, Inc. Multi-tank evaporator for improved performance and reduced airside temperature spreads
US6948559B2 (en) * 2003-02-19 2005-09-27 Modine Manufacturing Company Three-fluid evaporative heat exchanger
DE602004004114T3 (en) * 2004-08-28 2014-07-24 Swep International Ab Plate heat exchanger
SE528847C2 (en) * 2005-01-28 2007-02-27 Alfa Laval Corp Ab Gasket assembly for plate heat exchanger
KR100645734B1 (en) * 2005-12-14 2006-11-15 주식회사 경동나비엔 Heat exchanger of condensing boiler for heating and hot-water supply
JP4816517B2 (en) * 2006-09-28 2011-11-16 パナソニック株式会社 Heat exchange element
US7703505B2 (en) * 2006-11-24 2010-04-27 Dana Canada Corporation Multifluid two-dimensional heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016864A (en) * 1996-04-19 2000-01-25 Heatcraft Inc. Heat exchanger with relatively flat fluid conduits
US5964280A (en) * 1996-07-16 1999-10-12 Modine Manufacturing Company Multiple fluid path plate heat exchanger
US6247528B1 (en) * 1997-06-25 2001-06-19 Alfa Laval Ab Plate heat exchanger
US6401804B1 (en) * 1999-01-14 2002-06-11 Denso Corporation Heat exchanger only using plural plates

Also Published As

Publication number Publication date
US20130062039A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP4775287B2 (en) Heat exchanger
US8069912B2 (en) Heat exchanger with conduit surrounded by metal foam
JP2015534030A (en) Heat exchanger
WO2008125309A3 (en) Heat exchanger
EP3026386B1 (en) Plate heat exchanger and method of manufacture
US7293604B2 (en) Heat exchanger
US20070000652A1 (en) Heat exchanger with dimpled tube surfaces
US20140338873A1 (en) Stacked-Plate Heat Exchanger Including A Collector
JP2012093079A (en) Heat exchanger with integrated temperature manipulation element
US20130062039A1 (en) System and method for exchanging heat
ATE514912T1 (en) THERMAL ENERGY MANAGEMENT SYSTEM GENERATED BY A MOTOR VEHICLE HEAT ENGINE
US20180045469A1 (en) Heat exchanger device
CN104541121A (en) Heat exchanger, particularly motor vehicle engine charge air cooler
EP3141860A1 (en) Plate heat exchanger and method for producing same
KR20170131249A (en) Manifold integrated intercooler with structural core
JPS62293086A (en) Laminated type heat exchanger
US9260191B2 (en) Heat exhanger apparatus including heat transfer surfaces
CN107966057A (en) A kind of plate heat exchanger and its application method
KR20130065174A (en) Heat exchanger for vehicle
JP2018169058A (en) Heat exchanger
US8869398B2 (en) System and method for manufacturing a heat exchanger
JP6481275B2 (en) Corrugated fin heat exchanger
CN114963817A (en) Heat exchanger and air conditioner with same
US20100126704A1 (en) Heat Exchanger with Direct Flow Path Modules
EP2146173B1 (en) Plastic heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830153

Country of ref document: EP

Kind code of ref document: A1