JP2010169206A - Non leak shockless solenoid proportional control valve - Google Patents

Non leak shockless solenoid proportional control valve Download PDF

Info

Publication number
JP2010169206A
JP2010169206A JP2009013021A JP2009013021A JP2010169206A JP 2010169206 A JP2010169206 A JP 2010169206A JP 2009013021 A JP2009013021 A JP 2009013021A JP 2009013021 A JP2009013021 A JP 2009013021A JP 2010169206 A JP2010169206 A JP 2010169206A
Authority
JP
Japan
Prior art keywords
plunger
leak
truncated conical
shockless
fixed shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009013021A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hiranuma
和之 平沼
Masashi Narita
正志 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Sinter Co Ltd
Original Assignee
Fine Sinter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fine Sinter Co Ltd filed Critical Fine Sinter Co Ltd
Priority to JP2009013021A priority Critical patent/JP2010169206A/en
Publication of JP2010169206A publication Critical patent/JP2010169206A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a hydraulic circuit which prevents the variation of shock relaxing performance due to a change of working fluid temperature, reduce machining costs and acquire proportional control and non-leak state at valve closing of a solenoid valve. <P>SOLUTION: A non-leak shockless solenoid proportional control valve is equipped with a projection 7g formed on an end surface of a plunger 7 and provided with a truncated conical sealing surface 7h and a truncated conical seat surface 1d formed in an inlet of a flow outlet 2 of a flow-in chamber 1 and liquid-tightly fitted with the truncated conical sealing surface 7h so as to be separable therefrom. A base part of the truncated conical sealing surface 7h is exposed from the truncated conical seat surface 1d to the inside of the inflow chamber 1c in a fitted state with the truncated conical seat surface 1d. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、ノンリーク型のショックレス電磁弁に関し、特には、比例制御を可能にしたショックレス電磁弁に関するものである。   The present invention relates to a non-leak type shockless solenoid valve, and more particularly to a shockless solenoid valve that enables proportional control.

従来のノンリーク型のショックレス電磁弁としては、非特許文献1に記載しているSVシリーズが知られており、この電磁弁は、図5に断面を示すように、浅い円形の凹部1aが形成されるとともにその凹部1aの中央部に裁頭円錐状の突出部1bが形成され、その突出部1bの中央に流出口2、その突出部1bの側方に流入口3が設けられた本体1を具えるとともに、その凹部1aに液密に螺着固定されて凹部1a内に流入室1cを画成する蓋部材としての円盤状の基部4と、その基部4の中央部の貫通孔に一端部を液密に固定されたスリーブ5と、そのスリーブ5の他端部に液密に固定された固定軸6と、スリーブ5内に僅かな隙間をあけて摺動自在に嵌挿されたプランジャ7と、そのプランジャ7と固定軸6との間に介挿されてそのプランジャ7を流入室1cへ向けて常時附勢するスプリング8とを有するプランジャアッセンブリ9を具え、さらに、そのスリーブ5および固定軸6に挿通された、磁束を集めるフラックスプレート10および、コイル11を巻かれたボビン12と、それらフラックスプレート10とボビン12とに被せられてボルト14で固定軸6に締着固定されたハウジング13とを具えるものである。   As a conventional non-leak type shockless solenoid valve, the SV series described in Non-Patent Document 1 is known, and this solenoid valve is formed with a shallow circular recess 1a as shown in a cross section in FIG. The main body 1 is provided with a truncated conical protrusion 1b formed at the center of the recess 1a, an outlet 2 at the center of the protrusion 1b, and an inlet 3 at the side of the protrusion 1b. And a disc-shaped base 4 as a lid member that is fixed in a liquid-tight manner to the recess 1a and defines an inflow chamber 1c in the recess 1a, and one end of a through hole in the center of the base 4 A sleeve 5 liquid-tightly fixed, a fixed shaft 6 liquid-tightly fixed to the other end of the sleeve 5, and a plunger slidably inserted into the sleeve 5 with a slight gap therebetween 7 and the plunger 7 and the fixed shaft 6 are inserted between the A plunger assembly 9 having a spring 8 that constantly biases the nanger 7 toward the inflow chamber 1c is provided. Further, a flux plate 10 that collects magnetic flux inserted through the sleeve 5 and the fixed shaft 6 and a coil 11 are wound. And a housing 13 which is covered with the flux plate 10 and the bobbin 12 and is fastened and fixed to the fixed shaft 6 with bolts 14.

ここで、上記電磁弁の一部を図6に拡大して模式的に示すように、プランジャ7の先端部7aには流出口2内に入り込む円錐状の突起7bが設けられており、また固定軸6の基端部6aとプランジャ7の後端部7cとの間には流入室1cからスリーブ5とプランジャ7との隙間を通って、粘性を持つ作動油が入りこんでいる。この構成により、コイル11への通電によってプランジャ7を磁力で流出口2から後退させ、またコイル11への通電の遮断によってプランジャ7をスプリング8で流出口2へ向けて進出させると、プランジャ7の進退移動に伴って円錐状の突起7bが流出口2を徐々に開閉するのと併せて、固定軸6の基端部6aとプランジャ7の後端部7cとの間に入った作動油がスリーブ5とプランジャ7との隙間を通って流入室1cに出入りすることで、この電磁弁の開閉のショックを緩和する。そしてプランジャ7は進出限位置では、流入口3から加わる作動油の油圧の、プランジャ7の先端部7aの流入室1c側受圧面と後端部7cの固定軸6側受圧面との面積差による差圧で、流出口2の周囲の突出部1bの平坦な先端面に突起7bの周囲の平坦な下端面を液密に押し付けられて流出口2を完全に閉止しているので、上記電磁弁は閉弁時には、作動油の漏れが生じないノンリーク状態となる。   Here, as schematically shown in an enlarged view of a part of the solenoid valve in FIG. 6, the tip 7 a of the plunger 7 is provided with a conical protrusion 7 b that enters the outlet 2, and is fixed. Between the base end portion 6 a of the shaft 6 and the rear end portion 7 c of the plunger 7, viscous working oil enters from the inflow chamber 1 c through the gap between the sleeve 5 and the plunger 7. With this configuration, when the plunger 7 is retracted from the outlet 2 by a magnetic force by energizing the coil 11, and the plunger 7 is advanced toward the outlet 2 by the spring 8 by interrupting the energization of the coil 11, As the conical protrusion 7b gradually opens and closes the outlet 2 with the forward and backward movement, the hydraulic oil that has entered between the base end portion 6a of the fixed shaft 6 and the rear end portion 7c of the plunger 7 becomes the sleeve. By entering and exiting the inflow chamber 1c through the gap between the plunger 5 and the plunger 7, the shock of opening and closing of the electromagnetic valve is mitigated. When the plunger 7 is in the advanced limit position, the hydraulic pressure of the hydraulic oil applied from the inflow port 3 depends on the area difference between the pressure receiving surface on the inflow chamber 1c side of the front end 7a of the plunger 7 and the pressure receiving surface on the fixed shaft 6 side of the rear end 7c. Since the flat lower end surface around the protrusion 7b is liquid-tightly pressed against the flat tip surface of the protrusion 1b around the outlet 2 by the differential pressure, the outlet 2 is completely closed. When the valve is closed, it enters a non-leak state in which hydraulic fluid does not leak.

また、従来のショックレス電磁弁としては、例えばスプールタイプのものも一般に知られており、この電磁弁は、コイルの磁力で進退移動するプランジャで本体に対しスプールを摺動させてそのスプールの外周面で弁の開閉を行っている。   In addition, as a conventional shockless solenoid valve, for example, a spool type is generally known. This solenoid valve is a plunger that moves forward and backward by the magnetic force of a coil, and slides the spool against the main body to thereby move the outer periphery of the spool. The valve is opened and closed on the surface.

株式会社ファインシンター2005年1月発行のカタログNo.KC−0501「TSM油圧機器シリーズ」中第11〜14頁Fine Sinter Co., Ltd. Catalog No. published in January 2005 Pages 11-14 of KC-0501 "TSM Hydraulic Equipment Series"

ところで上記前者の従来のノンリークショックレス電磁弁は、ショック緩和性能を得るのに円錐状の突起7bだけでなく作動油の粘性にも依存しているため、作動油の油温が変化するとプランジャ7の作動速度が変化して、ショック緩和性能にバラツキが生ずるという問題があった。また、作動油がスリーブ5とプランジャ7との隙間の微小流路を通って出入りするので、それらの部品に高い加工精度が必要となり、加工コストが嵩むという問題もあった。   By the way, the above-mentioned conventional non-leak shockless solenoid valve depends on not only the conical protrusion 7b but also the viscosity of the hydraulic oil to obtain the shock mitigation performance, so that the plunger changes when the hydraulic oil temperature changes. 7 has a problem that the operating speed of the motor 7 is changed, and the shock mitigation performance varies. In addition, since the hydraulic oil enters and exits through the minute flow path between the sleeve 5 and the plunger 7, there is a problem that high machining accuracy is required for these parts and the machining cost increases.

一方、上記後者の従来のショックレス電磁弁は、スプールタイプであるため、本体とスプールとの隙間から作動油の漏れが生じて、構造的にノンリーク状態にならないという問題があった。そしてノンリーク状態を求めようとすると、シャットオフバルブと組み合わせる必要があって油圧回路の構成にコストが嵩むという問題があった。   On the other hand, since the latter conventional shockless solenoid valve is of a spool type, there is a problem that hydraulic oil leaks from the gap between the main body and the spool, and the structure does not become a non-leak state. When trying to obtain a non-leak state, it is necessary to combine with a shut-off valve, and there is a problem that the cost of the hydraulic circuit increases.

この発明は、上記課題を有利に解決することを目的とするものであり、この発明のノンリークショックレス電磁比例制御弁は、流出口および流入口が開口する凹部を有する本体と、前記凹部に液密に固定されてその凹部内に流入室を画成する蓋部材と、前記蓋部材の貫通孔に一端部を液密に固定されたスリーブと、前記スリーブの他端部に液密に固定された固定軸と、前記スリーブ内に摺動自在に嵌挿されたプランジャと、前記プランジャと前記固定軸との間に介挿されてそのプランジャを前記流入室へ向けて常時附勢するスプリングと、前記スリーブおよび前記固定軸の周囲に嵌装されたコイルと、前記蓋部材と前記コイルとの間に介挿されて前記コイルの磁束を前記プランジャに向かわせるフラックスプレートと、を具える電磁弁において、前記プランジャの、前記流入室に向く端面に形成された、裁頭円錐状封止面を持つ凸部と、前記流入室の前記流出口の入口に形成された、前記裁頭円錐状封止面と分離可能に液密に嵌合する裁頭円錐状座面と、を具え、前記裁頭円錐状封止面と前記裁頭円錐状座面との嵌合状態で、その裁頭円錐状封止面の基部が、前記裁頭円錐状座面から前記流入室内に露出することを特徴とするものである。   An object of the present invention is to advantageously solve the above-mentioned problems. A non-leak shockless electromagnetic proportional control valve according to the present invention includes a main body having a recess having an outlet and an inlet and an opening in the recess. A lid member that is liquid-tightly fixed and defines an inflow chamber in the recess, a sleeve that is liquid-tightly fixed at one end to the through-hole of the lid member, and liquid-tightly fixed to the other end of the sleeve A fixed shaft, a plunger slidably fitted in the sleeve, and a spring that is interposed between the plunger and the fixed shaft and constantly urges the plunger toward the inflow chamber. A solenoid valve comprising: a coil fitted around the sleeve and the fixed shaft; and a flux plate interposed between the lid member and the coil to direct the magnetic flux of the coil toward the plunger. smell A convex portion having a truncated conical sealing surface formed on an end surface of the plunger facing the inflow chamber, and the truncated conical seal formed at an inlet of the outlet of the inflow chamber. A frustoconical seating surface, which is separably liquid-tightly fitted to the surface, and the frustoconical shape in a fitted state between the frustoconical sealing surface and the frustoconical seating surface. A base portion of the sealing surface is exposed from the truncated conical seating surface to the inflow chamber.

この発明のノンリークショックレス電磁比例制御弁にあっては、流入口から流入室内およびプランジャと固定軸との間に作動油が流入した状態で、コイルへの通電開始とその通電量の増加とによってプランジャをスプリングに抗して磁力で流出口から徐々に後退させ、またコイルへの通電量の減少によってプランジャを磁力に抗してまたは通電遮断によって磁力に抗することなくスプリングで流出口へ向けて徐々に進出させると、プランジャの進退移動に伴ってそのプランジャの凸部の裁頭円錐状封止面と流出口の入口の裁頭円錐状座面との間の隙間が徐々に開閉することで、この電磁弁の開閉のショックを緩和する。またそのプランジャの進退移動に伴って、固定軸とプランジャとの間に入った作動油がスリーブとプランジャとの隙間を通って出入りする。そしてプランジャは進出限位置では、流入口から加わる作動油の油圧の、プランジャの流入室側受圧面と固定軸側受圧面との面積差による差圧と、スプリングの押圧力とで、その裁頭円錐状封止面を裁頭円錐状座面に液密に押し付けられて流出口を完全に閉止しているので、この発明のノンリークショックレス電磁比例制御弁は閉弁時には作動油の漏れが生じないノンリーク状態となる。しかも裁頭円錐状封止面と裁頭円錐状座面とが嵌合した閉弁状態で、その裁頭円錐状封止面の基部が裁頭円錐状座面から流入室内に露出するので、プランジャの流入室側受圧面はその露出した基部まで及び、プランジャの流入室側受圧面と固定軸側受圧面との面積差が僅かなものとなる。   In the non-leak shockless electromagnetic proportional control valve according to the present invention, the start of energization of the coil and the increase of the energization amount in the state where the hydraulic oil has flowed from the inlet to the inflow chamber and between the plunger and the fixed shaft. The plunger is gradually retracted from the outlet by a magnetic force against the spring by the spring, and the plunger is directed to the outlet by a spring without resisting the magnetic force by reducing the energization amount to the coil or by deactivating the energization. As the plunger moves forward and backward, the gap between the truncated cone-shaped sealing surface of the convex portion of the plunger and the truncated cone-shaped seating surface of the inlet of the outlet gradually opens and closes Therefore, the shock of opening and closing the solenoid valve is alleviated. Further, as the plunger moves forward and backward, the hydraulic oil that has entered between the fixed shaft and the plunger enters and exits through the gap between the sleeve and the plunger. When the plunger is at the advanced limit position, the hydraulic pressure of the hydraulic oil applied from the inlet is determined by the pressure difference due to the area difference between the inlet chamber side pressure receiving surface and the fixed shaft side pressure receiving surface of the plunger and the pressing force of the spring. Since the conical sealing surface is pressed against the truncated conical seating surface in a fluid-tight manner, the outlet is completely closed. A non-leak state that does not occur. Moreover, since the base of the frustoconical sealing surface is exposed to the inflow chamber from the frustoconical seating surface in a closed state where the frustoconical sealing surface and the frustoconical seating surface are fitted, The inflow chamber side pressure receiving surface of the plunger extends to the exposed base portion, and the area difference between the inflow chamber side pressure receiving surface and the fixed shaft side pressure receiving surface of the plunger is slight.

従ってこの発明のノンリークショックレス電磁比例制御弁によれば、コイルの磁力の変化とスプリングとによって流出口を徐々に開閉するとともに、開弁時にコイルの磁力に対抗するプランジャの流入室側受圧面と固定軸側受圧面との差圧による押圧力をそれらの受圧面の僅かな面積差によってスプリングの押圧力より小さくしてショック緩和性能を得ているので、作動油の油温の変化でショック緩和性能がばらつくのを防止でき、またスリーブとプランジャとの加工精度を下げて加工コストを低減することができ、しかもこの制御弁単独で閉弁時には作動油の漏れが生じないノンリーク状態となるので、電磁弁の比例制御と閉弁時のノンリーク状態とを求める場合に、シャットオフバルブと組み合わせる必要をなくして油圧回路の構成コストを安くすることができる。   Therefore, according to the non-leak shockless electromagnetic proportional control valve of the present invention, the outlet is gradually opened and closed by the change in the magnetic force of the coil and the spring, and the pressure-receiving surface on the inflow chamber side of the plunger that opposes the magnetic force of the coil when the valve is opened. Since the pressure due to the pressure difference between the bearing and the fixed shaft side pressure receiving surface is made smaller than the spring pressing force due to a slight area difference between the pressure receiving surfaces, shock relaxation performance is obtained. Variations in the relaxation performance can be prevented, and the machining accuracy of the sleeve and plunger can be lowered to reduce the machining cost. Moreover, when this control valve is closed, it becomes a non-leak state that does not cause hydraulic oil leakage. Therefore, when the proportional control of the solenoid valve and the non-leak state when the valve is closed are required, it is not necessary to combine with the shut-off valve. It is possible to reduce the.

なお、この発明のノンリークショックレス電磁比例制御弁においては、前記プランジャには、そのプランジャと前記固定軸との間の隙間と、前記流入室とを連通させる油路が形成されていると好ましい。このようにすれば、プランジャの進退移動の際に作動油が、プランジャと固定軸との間の隙間と流入室との間で容易に流動できるので、作動油の油温の変化でショック緩和性能がばらつくのをより有効に防止することができる。   In the non-leak shockless electromagnetic proportional control valve of the present invention, it is preferable that the plunger is formed with an oil passage that communicates the clearance between the plunger and the fixed shaft and the inflow chamber. . In this way, the hydraulic oil can easily flow between the gap between the plunger and the fixed shaft and the inflow chamber when the plunger moves forward and backward, so the shock mitigating performance can be achieved by changing the hydraulic oil temperature. It is possible to more effectively prevent the variation.

また、この発明のノンリークショックレス電磁比例制御弁においては、前記固定軸には、前記スプリングの予加重を調節する調節ネジが液密に貫挿されて螺着されていると好ましい。このようにすれば、電磁比例制御弁を分解しなくても、作動油の油圧に合わせてスプリングの予加重を容易に調節することができる。   In the non-leak shockless electromagnetic proportional control valve according to the present invention, it is preferable that an adjustment screw for adjusting a preload of the spring is inserted into the fixed shaft in a liquid-tight manner and screwed. In this way, the preload of the spring can be easily adjusted according to the hydraulic pressure of the hydraulic oil without disassembling the electromagnetic proportional control valve.

さらに、この発明のノンリークショックレス電磁比例制御弁においては、前記プランジャと前記固定軸との互いに対向する端部は、互いに嵌合する向きでそれぞれ裁頭円錐面を形成されていると好ましい。このようにすれば、プランジャの進退移動による固定軸との距離の変化を小さくし得て、磁力によるプランジャの吸引力の制御を容易にすることができる。   Furthermore, in the non-leak shockless electromagnetic proportional control valve according to the present invention, it is preferable that the end portions of the plunger and the fixed shaft facing each other are formed with truncated cone surfaces in a direction of fitting with each other. In this way, it is possible to reduce the change in the distance from the fixed shaft due to the forward and backward movement of the plunger, and it is possible to easily control the plunger's attractive force by the magnetic force.

この発明のノンリークショックレス電磁比例制御弁の一実施例を示す断面図である。It is sectional drawing which shows one Example of the non-leak shockless electromagnetic proportional control valve of this invention. 上記実施例のノンリークショックレス電磁比例制御弁の一部を拡大して模式的に示す説明図である。It is explanatory drawing which expands and schematically shows a part of non-leak shockless electromagnetic proportional control valve of the said Example. 上記実施例のノンリークショックレス電磁比例制御弁を用いた油圧回路の一例を示す回路図である。It is a circuit diagram which shows an example of the hydraulic circuit using the non-leak shockless electromagnetic proportional control valve of the said Example. 図3に示す油圧回路で油圧シリンダを作動させる際の上記実施例のノンリークショックレス電磁比例制御弁の制御例を示す説明図である。It is explanatory drawing which shows the control example of the non-leak shockless electromagnetic proportional control valve of the said Example at the time of operating a hydraulic cylinder with the hydraulic circuit shown in FIG. 従来のノンリークショックレス電磁弁の一例を示す断面図である。It is sectional drawing which shows an example of the conventional non-leak shockless solenoid valve. 上記従来の電磁弁の一部を拡大して模式的に示す説明図である。It is explanatory drawing which expands and shows a part of said conventional solenoid valve typically.

以下、本発明の実施の形態を実施例によって、図面に基づき詳細に説明する。ここに、図1は、この発明のノンリークショックレス電磁比例制御弁の一実施例を示す断面図、図2は、上記実施例のノンリークショックレス電磁比例制御弁の一部を拡大して模式的に示す説明図、図3は、上記実施例のノンリークショックレス電磁比例制御弁を用いた油圧回路の一例を示す回路図、そして図4は、図3に示す油圧回路で油圧シリンダを作動させる際の上記実施例のノンリークショックレス電磁比例制御弁の制御例を示す説明図であり、図中、図5,6に示す従来例と同様の部分は、それと同一の符号にて示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the non-leak shockless electromagnetic proportional control valve of the present invention. FIG. 2 is an enlarged view of a part of the non-leak shockless electromagnetic proportional control valve of the above embodiment. FIG. 3 is an explanatory diagram schematically showing a circuit diagram showing an example of a hydraulic circuit using the non-leak shockless electromagnetic proportional control valve of the above embodiment, and FIG. 4 shows a hydraulic cylinder in the hydraulic circuit shown in FIG. It is explanatory drawing which shows the example of control of the non-leak shockless electromagnetic proportional control valve of the said Example at the time of making it operate | move, In the figure, the part similar to the prior art example shown in FIG.5, 6 is shown with the same code | symbol as it. .

この実施例のノンリークショックレス電磁比例制御弁は、図1に断面を示すように、浅い円形の凹部1aが形成されるとともにその凹部1aの中央部に裁頭円錐状の突出部1bが形成され、その突出部1bの中央に流出口2、その突出部1bの側方に流入口3が設けられた本体1を具えるとともに、その凹部1aに例えばOリングを介し液密に螺着固定されて凹部1a内に流入室1cを画成する蓋部材としての円盤状の基部4を有するプランジャアッセンブリ9を具え、このプランジャアッセンブリ9は、その基部4の他に、その基部4の中央部の貫通孔4aに一端部を液密に例えばロー付けで固定されたスリーブ5と、そのスリーブ5の他端部に液密に例えばロー付けで固定された磁性体製の固定軸6と、スリーブ5内に僅かな隙間をあけて摺動自在に嵌挿された磁性体製のプランジャ7と、そのプランジャ7にその中心軸線に沿って後端部(固定軸6側の端部)7cから前端部(流入室1c側の端部)7aへ向けて形成された凹部7d内に収容されたスプリング8と、固定軸6にその中心軸線に沿って形成された貫通孔6b内に例えばOリングを介し液密に貫挿されてその貫通孔6b内の雌ネジ6cに頭部の雄ネジ14aを螺着された調節ネジ14と、これもプランジャ7の凹部7d内に収容されてその調節ネジ14の先端とスプリング8との間に介挿された円板状のスペーサ15とを有している。   In the non-leak shockless electromagnetic proportional control valve of this embodiment, as shown in a cross section in FIG. 1, a shallow circular recess 1a is formed, and a frustoconical protrusion 1b is formed at the center of the recess 1a. The main body 1 is provided with an outlet 2 at the center of the projecting portion 1b and an inlet 3 at the side of the projecting portion 1b, and is screwed and fixed in a liquid-tight manner to the concave portion 1a through, for example, an O-ring. And a plunger assembly 9 having a disc-like base portion 4 as a lid member defining an inflow chamber 1c in the recess 1a. The plunger assembly 9 has a central portion of the base portion 4 in addition to the base portion 4. A sleeve 5 whose one end is liquid-tightly fixed to the through hole 4a, for example, by brazing, a fixed shaft 6 made of a magnetic material, which is liquid-tightly fixed to the other end of the sleeve 5, for example, by brazing, and the sleeve 5 Leave a slight gap inside A plunger 7 made of a magnetic material slidably inserted, and a front end portion (end portion on the inflow chamber 1c side) from a rear end portion (end portion on the fixed shaft 6 side) 7c along the central axis of the plunger 7 ) The spring 8 accommodated in the recess 7d formed toward 7a and the through hole 6b formed along the central axis of the fixed shaft 6 are inserted in a liquid-tight manner, for example, via an O-ring. An adjustment screw 14 in which a male screw 14 a at the head is screwed to a female screw 6 c in the through hole 6 b, and this is also accommodated in the recess 7 d of the plunger 7, and between the tip of the adjustment screw 14 and the spring 8. And a disc-like spacer 15 inserted therein.

これによりスプリング8は、固定軸6とプランジャ7との間に介挿されてプランジャ7を流入室1cへ向けて常時附勢し、調節ネジ14は、固定軸6の貫通孔6b内でねじ込み方向へ回転されるとスペーサ15を介してスプリング8を圧縮してスプリング8の予加重を増加させ、固定軸6の貫通孔6b内で戻り方向へ回転されるとスペーサ15を介してスプリング8を伸長させてスプリング8の予加重を減少させることで、流入口3に供給される作動油の油圧に応じた押圧力でプランジャ7を押圧するようにスプリング8の予加重を調節する。   As a result, the spring 8 is inserted between the fixed shaft 6 and the plunger 7 and constantly urges the plunger 7 toward the inflow chamber 1 c, and the adjusting screw 14 is screwed in the through hole 6 b of the fixed shaft 6. The spring 8 is compressed through the spacer 15 to increase the preload of the spring 8, and the spring 8 is extended through the spacer 15 when rotated in the return direction in the through hole 6 b of the fixed shaft 6. Thus, by reducing the preload of the spring 8, the preload of the spring 8 is adjusted so as to press the plunger 7 with a pressing force corresponding to the hydraulic pressure of the hydraulic oil supplied to the inlet 3.

また、ここにおけるプランジャ7は、そのプランジャ7の外周面に形成されてプランジャ7の軸線方向へ延在する溝状の油路7eと、その油路7eと上記凹部7dとを連通させる連通路7fとを有しており、これにより、流入口3から流入室1c内に流入した作動油は、油路7eと連通路7fとを通って、プランジャ7の後端部7cの、固定軸6の基端部6aとの間の隙間およびプランジャ7の凹部7d内に入り込む。   The plunger 7 here is a groove-shaped oil passage 7e formed on the outer peripheral surface of the plunger 7 and extending in the axial direction of the plunger 7, and a communication passage 7f for communicating the oil passage 7e with the recess 7d. As a result, the hydraulic oil that has flowed into the inflow chamber 1c from the inflow port 3 passes through the oil passage 7e and the communication passage 7f, and the rear end portion 7c of the plunger 7 of the fixed shaft 6 The gap between the base end portion 6a and the concave portion 7d of the plunger 7 enters.

この実施例のノンリークショックレス電磁比例制御弁はさらに、上記スリーブ5および固定軸6に挿通されて固定されたコイルアッセンブリ16を具えており、このコイルアッセンブリ16は例えば、磁束を集めるフラックスプレートの役目をする磁性体製の厚板をコ字状に折曲したハウジング13の両端板13a,13bの間に、コイル11を巻かれるとともにそのコイル11の周囲を樹脂19で密封された筒状のボビン12と、そのボビン12を図1では上側の端板13bに押し付けて固定する皿ばね18とを介挿してなり、そのハウジング13の両端板のうち図1では下側の端板13aには、スリーブ5および固定軸6が貫通可能な貫通孔13cが形成され、また上側の端板13bには、固定軸6の小径の先端部(プランジャ7側と逆側の端部)6dは貫通できるがスリーブ5および固定軸6の大径部は入れない内径の貫通孔13dが形成されている。   The non-leak shockless electromagnetic proportional control valve of this embodiment further includes a coil assembly 16 that is inserted into and fixed to the sleeve 5 and the fixed shaft 6, and the coil assembly 16 is, for example, a flux plate that collects magnetic flux. A coil 11 is wound between both end plates 13a and 13b of a housing 13 obtained by bending a thick magnetic plate serving as a role into a U shape, and the periphery of the coil 11 is sealed with a resin 19. A bobbin 12 and a disc spring 18 that presses and fixes the bobbin 12 to the upper end plate 13b in FIG. 1 are interposed, and among the two end plates of the housing 13, the lower end plate 13a in FIG. A through-hole 13c through which the sleeve 5 and the fixed shaft 6 can pass is formed, and a small-diameter tip of the fixed shaft 6 (reverse to the plunger 7 side) is formed on the upper end plate 13b. The end) 6d through hole 13d of the inner diameter of the large diameter portion is not placed in the can through the sleeve 5 and the fixed shaft 6 is formed.

これによりコイルアッセンブリ16は、上記スリーブ5および固定軸6をその先端部6d側から、先ずハウジング10の下側の端板13aの貫通孔13cに挿通し、次いで皿ばね18およびボビン12に挿通し、最後にその先端部6dを上側の端板13bの貫通孔13dに挿通して、固定軸6の大径部と小径の先端部6dとの間の段差部を上側の端板13bに当接させ、その先端部6dの周囲に設けた雄ネジ6eに螺合させたナット20で上側の端板13bを固定軸6に定着することで、プランジャアッセンブリ9に固定されている。   As a result, the coil assembly 16 first inserts the sleeve 5 and the fixed shaft 6 from the tip end portion 6d side into the through hole 13c of the lower end plate 13a of the housing 10 and then into the disc spring 18 and the bobbin 12. Finally, the tip portion 6d is inserted into the through hole 13d of the upper end plate 13b, and the step portion between the large diameter portion and the small diameter tip portion 6d of the fixed shaft 6 is brought into contact with the upper end plate 13b. The upper end plate 13b is fixed to the fixed shaft 6 with a nut 20 screwed into a male screw 6e provided around the tip portion 6d, thereby being fixed to the plunger assembly 9.

そしてこの実施例のノンリークショックレス電磁比例制御弁では、図2にその一部を拡大して模式的に示すように、本体1の凹部1aに対向するプランジャ7の先端部の中央に凸部7gが設けられ、その凸部7gの先端部の周囲に裁頭円錐状封止面7hが形成され、また本体1の突出部1bの中央の流出口2の入口に裁頭円錐状座面1dが形成され、それら裁頭円錐状封止面7hと裁頭円錐状座面1dとは、流出口2へ向かうプランジャ7の進出移動によって液密に嵌合する。そしてその裁頭円錐状封止面7hと裁頭円錐状座面1dとの嵌合状態で、その裁頭円錐状封止面7hの、裁頭円錐状座面1dと嵌合している部分よりも半径方向外方に位置する基部は、裁頭円錐状座面1dからはみ出て流入室1c内に露出する。   In the non-leak shockless electromagnetic proportional control valve of this embodiment, as shown schematically in an enlarged view of a part of FIG. 2, a convex portion is formed at the center of the tip portion of the plunger 7 facing the concave portion 1a of the main body 1. 7g is provided, a truncated conical sealing surface 7h is formed around the tip of the convex portion 7g, and a truncated conical seating surface 1d is formed at the inlet of the outlet 2 at the center of the projecting portion 1b of the main body 1. The frustoconical sealing surface 7 h and the frustoconical seating surface 1 d are liquid-tightly fitted by the advance movement of the plunger 7 toward the outlet 2. The portion of the truncated conical sealing surface 7h fitted with the truncated conical seating surface 1d in the fitted state of the truncated conical sealing surface 7h and the truncated conical seating surface 1d. The base portion located radially outward is protruded from the frustoconical seat surface 1d and exposed in the inflow chamber 1c.

さらにこの実施例のノンリークショックレス電磁比例制御弁では、図1に示すように、プランジャ7の後端部7cと、その後端部7cと互いに対向する固定軸6の基端部6aとが、互いに嵌合する向きの裁頭円錐面すなわち、プランジャ7の後端部7cでは凸形状の裁頭円錐面、固定軸6の基端部6aでは凹形状の裁頭円錐面をそれぞれ形成されている。   Furthermore, in the non-leak shockless electromagnetic proportional control valve of this embodiment, as shown in FIG. 1, the rear end portion 7c of the plunger 7 and the base end portion 6a of the fixed shaft 6 opposed to the rear end portion 7c, A frustoconical surface in the direction of fitting with each other, that is, a convex frustoconical surface is formed at the rear end portion 7c of the plunger 7, and a concave frustoconical surface is formed at the base end portion 6a of the fixed shaft 6. .

かかる構成のこの実施例のノンリークショックレス電磁比例制御弁にあっては、流入口3から流入室1c内並びにプランジャ7の後端部7cと固定軸6の基端部6aとの間およびプランジャ7の凹部7d内に作動油が流入した状態で、コイル11への通電開始とその通電量の増加とによってプランジャ7をスプリング8に抗して磁力で流出口2から徐々に後退させ、またコイル11への通電量の減少によってプランジャ7を磁力に抗してまたは通電遮断によって磁力に抗することなくスプリング8で流出口2へ向けて徐々に進出させると、プランジャ7の進退移動に伴って凸部7gの裁頭円錐状封止面7hと流出口2の入口の裁頭円錐状座面1dとの間の隙間が徐々に開閉することで、この電磁弁の開閉のショックを緩和する。またそのプランジャ7の進退移動に伴って、固定軸6の基端部6aとプランジャ7の後端部7cとの間およびプランジャ7の凹部7d内に入った作動油がスリーブ5とプランジャ7との隙間だけでなく、プランジャ7の外周面の油路7eおよびその油路7eと凹部7dとを連通させる連通路7fを通って出入りする。   In the non-leak shockless electromagnetic proportional control valve of this embodiment having such a configuration, the inflow chamber 1c and the rear end portion 7c of the plunger 7 and the base end portion 6a of the fixed shaft 6 and the plunger are provided. In the state where the hydraulic oil has flowed into the recess 7d of FIG. 7, the plunger 7 is gradually retreated from the outlet 2 by the magnetic force against the spring 8 by starting energization of the coil 11 and increasing the energization amount. If the plunger 7 is gradually advanced toward the outlet 2 by the spring 8 against the magnetic force by decreasing the energization amount to 11 or without resisting the magnetic force by cutting off the energization, the plunger 7 protrudes as the plunger 7 moves forward and backward. By gradually opening and closing the gap between the truncated conical sealing surface 7h of the portion 7g and the truncated conical seating surface 1d at the inlet of the outlet 2, the shock of opening and closing of the electromagnetic valve is alleviated. Further, as the plunger 7 moves back and forth, the hydraulic oil that has entered between the base end portion 6 a of the fixed shaft 6 and the rear end portion 7 c of the plunger 7 and in the concave portion 7 d of the plunger 7 is formed between the sleeve 5 and the plunger 7. In addition to the clearance, the oil passage 7e on the outer peripheral surface of the plunger 7 and the communication passage 7f that connects the oil passage 7e and the recess 7d enter and exit.

そしてプランジャ7は図1,2に示す進出限位置では、流入口3から加わる作動油の油圧の、プランジャ7の前端部7aの流入室1c側受圧面と後端部7cの固定軸6側受圧面との面積差による差圧と、スプリング8の押圧力とで、その裁頭円錐状封止面7hを裁頭円錐状座面1dに液密に押し付けられて流出口2を完全に閉止しているので、この実施例のノンリークショックレス電磁比例制御弁は、閉弁時には作動油の漏れが生じないノンリーク状態となる。しかも裁頭円錐状封止面7hと裁頭円錐状座面1dとが嵌合した閉弁状態で、その裁頭円錐状封止面7hの基部が裁頭円錐状座面1dから外れ出て流入室1c内に露出しするので、プランジャ7の流入室1c側受圧面はその露出した基部まで及び、プランジャ7の流入室1c側受圧面と固定軸6側受圧面との面積差が僅かなものとなる。   1 and 2, the plunger 7 receives the hydraulic pressure of the hydraulic oil applied from the inflow port 3 and receives the pressure on the inlet chamber 1c side of the front end 7a of the plunger 7 and the pressure on the fixed shaft 6 side of the rear end 7c. With the pressure difference due to the area difference from the surface and the pressing force of the spring 8, the truncated conical sealing surface 7h is liquid-tightly pressed against the truncated conical seat surface 1d, and the outlet 2 is completely closed. Therefore, the non-leak shockless electromagnetic proportional control valve of this embodiment is in a non-leak state in which hydraulic fluid does not leak when the valve is closed. In addition, in a valve-closed state in which the frustoconical sealing surface 7h and the frustoconical seating surface 1d are fitted, the base of the frustoconical sealing surface 7h comes out of the frustoconical seating surface 1d. Since it is exposed in the inflow chamber 1c, the pressure receiving surface on the inflow chamber 1c side of the plunger 7 extends to the exposed base portion, and the area difference between the pressure receiving surface on the inflow chamber 1c side of the plunger 7 and the pressure receiving surface on the fixed shaft 6 side is slight. It will be a thing.

従ってこの実施例のノンリークショックレス電磁比例制御弁によれば、コイル11の磁力の変化とスプリング8とによって流出口2を徐々に開閉するとともに、開弁時にコイル11の磁力に対抗するプランジャ7の流入室1c側受圧面と固定軸6側受圧面との差圧による押圧力をそれらの受圧面の僅かな面積差によってスプリング8の押圧力より小さくしてショック緩和性能を得ているので、作動油の油温の変化でショック緩和性能がばらつくのを防止でき、またスリーブ5とプランジャ7との加工精度を下げて加工コストを低減することができ、しかもこの実施例の制御弁単独で閉弁時には作動油の漏れが生じないノンリーク状態となるので、電磁弁の比例制御と閉弁時のノンリーク状態とを求める場合に、シャットオフバルブと組み合わせる必要をなくして油圧回路の構成コストを安くすることができる。   Therefore, according to the non-leak shockless electromagnetic proportional control valve of this embodiment, the plunger 7 gradually opens and closes the outlet 2 by the change in the magnetic force of the coil 11 and the spring 8 and opposes the magnetic force of the coil 11 when the valve is opened. Since the pressing force due to the differential pressure between the pressure receiving surface on the inflow chamber 1c side and the pressure receiving surface on the fixed shaft 6 side is made smaller than the pressing force of the spring 8 due to a slight area difference between the pressure receiving surfaces, shock relaxation performance is obtained. The shock relaxation performance can be prevented from varying due to the change in the temperature of the hydraulic oil, the processing accuracy of the sleeve 5 and the plunger 7 can be reduced, and the processing cost can be reduced, and the control valve of this embodiment can be closed by itself. When the valve is in a non-leak state where no hydraulic oil leaks, it is combined with a shut-off valve to determine the proportional control of the solenoid valve and the non-leak state when the valve is closed. It is possible to reduce the construction cost of the hydraulic circuit to eliminate the need.

さらに、この実施例のノンリークショックレス電磁比例制御弁によれば、プランジャ7には、そのプランジャ7の後端部7cと固定軸6の基端部6aとの間の隙間と流入室1cとを連通させる油路7fが形成されていることから、プランジャ7の進退移動の際に作動油が、プランジャ7の後端部7cと固定軸6の基端部6aと間の隙間と流入室1cとの間で容易に流動できるので、作動油の油温の変化でショック緩和性能がばらつくのを有効に防止することができる。加えて、その油路7fとプランジャ7の凹部7dとを連通させる連通路7fも形成されていることから、プランジャ7の進退移動の際に作動油が、プランジャ7の凹部7dと流入室1cとの間でも容易に流動できるので、作動油の油温の変化でショック緩和性能がばらつくのをより有効に防止することができる。   Furthermore, according to the non-leak shockless electromagnetic proportional control valve of this embodiment, the plunger 7 includes a gap between the rear end portion 7c of the plunger 7 and the base end portion 6a of the fixed shaft 6, and the inflow chamber 1c. Since the oil passage 7f is formed to communicate the hydraulic fluid, the hydraulic oil is moved between the rear end portion 7c of the plunger 7 and the base end portion 6a of the fixed shaft 6 and the inflow chamber 1c when the plunger 7 moves forward and backward. Therefore, it is possible to effectively prevent variation in shock mitigation performance due to changes in the oil temperature of the hydraulic oil. In addition, since a communication passage 7f that connects the oil passage 7f and the concave portion 7d of the plunger 7 is also formed, the hydraulic oil is transferred to the concave portion 7d of the plunger 7 and the inflow chamber 1c when the plunger 7 moves forward and backward. Therefore, it is possible to more effectively prevent the shock relaxation performance from varying due to a change in the oil temperature of the hydraulic oil.

さらに、この実施例のノンリークショックレス電磁比例制御弁によれば、固定軸6に、スプリング8の予加重を調節する調節ネジ14が液密に貫挿されて螺着されているので、この実施例の電磁比例制御弁を分解しなくても、作動油の油圧に合わせてスプリング8の予加重を容易に調節することができる。   Further, according to the non-leak shockless electromagnetic proportional control valve of this embodiment, the adjusting screw 14 for adjusting the preload of the spring 8 is inserted into the fixed shaft 6 in a liquid-tight manner and screwed. Even if the electromagnetic proportional control valve of the embodiment is not disassembled, the preload of the spring 8 can be easily adjusted in accordance with the hydraulic pressure of the hydraulic oil.

そして、この実施例のノンリークショックレス電磁比例制御弁によれば、プランジャ7と固定軸6との互いに対向する端部7c,6aは、互いに嵌合する向きでそれぞれ裁頭円錐面を形成されているので、プランジャ7の進退移動による固定軸6との距離の変化を小さくし得て、磁力によるプランジャ7の吸引力の制御を容易にすることができる。   Then, according to the non-leak shockless electromagnetic proportional control valve of this embodiment, the end portions 7c and 6a of the plunger 7 and the fixed shaft 6 facing each other are formed with truncated cone surfaces in the fitting directions. Therefore, the change in the distance from the fixed shaft 6 due to the forward and backward movement of the plunger 7 can be reduced, and the control of the attractive force of the plunger 7 by the magnetic force can be facilitated.

図3は、この実施例のノンリークショックレス電磁比例制御弁をソレノイドバルブSV1〜SV8として用いた油圧回路の一例を示すものであり、この油圧回路は、モータ駆動のポンプでリザーバから吸上げた作動油を、リザーバに連通するリリーフバルブで調圧して、ソレノイドバルブSV1,3,5,7の上記流入口3に供給し、ソレノイドバルブSV1,3,5,7の上記流出口2をそれぞれ、チェックバルブCV1〜4および絞り弁TV1,3,5,7を介して単動型油圧シリンダA〜Dに供給し、またそれら単動型油圧シリンダA〜D内の作動油を、ソレノイドバルブSV2,4,6,8の上記流入口3に供給し、ソレノイドバルブSV2,4,6,8の上記流出口2をそれぞれ、絞り弁TV2,4,6,8を介してリザーバに戻すものである。   FIG. 3 shows an example of a hydraulic circuit using the non-leak shockless electromagnetic proportional control valve of this embodiment as solenoid valves SV1 to SV8. This hydraulic circuit is sucked up from a reservoir by a motor-driven pump. The hydraulic oil is regulated by a relief valve that communicates with the reservoir, and is supplied to the inlet 3 of the solenoid valves SV1, 3, 5, and 7, and the outlet 2 of the solenoid valves SV1, 3, 5, and 7, respectively. Supplying to the single-acting hydraulic cylinders A to D via the check valves CV1 to CV4 and the throttle valves TV1, 3, 5, and 7 and operating oil in the single-acting hydraulic cylinders A to D to the solenoid valves SV2, 4, 6, 8 are supplied to the inlet 3, and the outlets 2 of the solenoid valves SV 2, 4, 6, 8 are returned to the reservoir via the throttle valves TV 2, 4, 6, 8, respectively. It is intended.

図4は、上記油圧回路の単動型油圧シリンダA〜Dを例えば歯科用椅子の椅子全体のリフトアップ・ダウン、背凭れのチルトアップ・ダウン、ヘッドレストのチルトアップ・ダウン、足乗せのチルトアップ・ダウンにそれぞれ用いた場合の、単動型油圧シリンダA,Bの制御例を示すものであり、例えば椅子全体のリフトアップの場合はポンプMPを一定時間ONにするとともに、その間にSV1をパルス幅変調PWMで全開まで徐々に開き、一定時間全開を維持して単動型油圧シリンダAを伸ばした後、全閉まで徐々に閉じて単動型油圧シリンダAの伸長状態を維持する。   FIG. 4 shows the single-acting hydraulic cylinders A to D of the above hydraulic circuit, for example, lift-up / down of the whole chair of a dental chair, tilt-up / down of the backrest, tilt-up / down of the headrest, tilt-up of the footrest・ Examples of control of single-acting hydraulic cylinders A and B when used for down respectively. For example, when the entire chair is lifted up, pump MP is turned on for a certain period of time and SV1 is pulsed during that time. The single-acting hydraulic cylinder A is gradually opened until it is fully opened by the width modulation PWM, and the single-acting hydraulic cylinder A is extended for a certain period of time.

これによりこの実施例のノンリークショックレス電磁比例制御弁は、単動型油圧シリンダAの伸び始めと伸び終わりにショックを生じずに椅子全体をリフトアップしてそのリフトアップ状態に維持することができる。また例えば椅子全体のリフトダウンの場合はポンプMPをOFFに維持するとともに、その間にSV2をパルス幅変調PWMで全開まで徐々に開き、一定時間全開を維持して単動型油圧シリンダAを縮めた後、全閉まで徐々に閉じて単動型油圧シリンダAの短縮状態を維持する。これによりこの実施例のノンリークショックレス電磁比例制御弁は、単動型油圧シリンダAの縮み始めと縮み終わりにショックを生じずに椅子全体をリフトダウンしてそのリフトダウン状態に維持することができる。   As a result, the non-leak shockless electromagnetic proportional control valve of this embodiment can lift up the entire chair and maintain it in its lifted up state without causing a shock at the beginning and end of extension of the single acting hydraulic cylinder A. it can. Further, for example, in the case of lift-down of the entire chair, the pump MP is kept OFF, while the SV2 is gradually opened to the full opening by the pulse width modulation PWM, and the single-acting hydraulic cylinder A is contracted by keeping the full opening for a certain time. Thereafter, the single-acting hydraulic cylinder A is maintained in a shortened state by being gradually closed until fully closed. As a result, the non-leak shockless electromagnetic proportional control valve of this embodiment can lift down the entire chair and maintain the lifted down state without causing a shock at the beginning and end of contraction of the single acting hydraulic cylinder A. it can.

一方、例えば椅子の背凭れのチルトアップの場合はポンプMPを一定時間ONにするとともに、その間にSV3をパルス幅変調PWMで全開まで徐々に開き、一定時間全開を維持して単動型油圧シリンダBを伸ばした後、全閉まで徐々に閉じて単動型油圧シリンダBの伸長状態を維持する。これによりこの実施例のノンリークショックレス電磁比例制御弁によれば、単動型油圧シリンダBの伸び始めと伸び終わりにショックを生じずに椅子の背凭れをチルトアップしてそのチルトアップ状態に維持することができる。また例えば椅子の背凭れのチルトダウンの場合はポンプMPをOFFに維持するとともに、その間にSV4をパルス幅変調PWMで全開まで徐々に開き、一定時間全開を維持して単動型油圧シリンダBを縮めた後、全閉まで徐々に閉じて単動型油圧シリンダBの短縮状態を維持する。これによりこの実施例のノンリークショックレス電磁比例制御弁は、単動型油圧シリンダBの縮み始めと縮み終わりにショックを生じずに椅子の背凭れをチルトダウンしてそのチルトダウン状態に維持することができる。   On the other hand, for example, in the case of tilting up the back of the chair, the pump MP is turned on for a certain time, and during that time, the SV3 is gradually opened by pulse width modulation PWM until it is fully opened, and is kept fully open for a certain time. After extending B, the single-acting hydraulic cylinder B is maintained in an extended state by being gradually closed until fully closed. As a result, according to the non-leak shockless electromagnetic proportional control valve of this embodiment, the backrest of the chair is tilted up to the tilted-up state without causing a shock at the beginning and end of extension of the single-acting hydraulic cylinder B. Can be maintained. For example, in the case of tilting down the back of the chair, the pump MP is kept OFF, and during that time, the SV4 is gradually opened by the pulse width modulation PWM until it is fully opened, and the single-acting hydraulic cylinder B is kept open for a certain period of time. After the contraction, the single-acting hydraulic cylinder B is maintained in a shortened state by being gradually closed until fully closed. As a result, the non-leak shockless electromagnetic proportional control valve of this embodiment tilts the backrest of the chair and maintains the tilted-down state without causing a shock at the beginning and end of contraction of the single-acting hydraulic cylinder B. be able to.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、特許請求の範囲の記載範囲内で適宜変更でき、例えば、プランジャ7の凸部7gの先端部の周囲に形成する裁頭円錐状封止面7hは、円錐面の一部であっても良い。また、本体1の流出口2の入口に形成する裁頭円錐状座面1dは、突出部1bでなく凹部1aの平坦な底面に形成しても良い。   Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described examples, and can be appropriately changed within the scope of the claims, for example, around the tip of the convex portion 7g of the plunger 7 The truncated conical sealing surface 7h formed in the above may be a part of the conical surface. Further, the truncated conical seating surface 1d formed at the inlet of the outlet 2 of the main body 1 may be formed on the flat bottom surface of the recess 1a instead of the protruding portion 1b.

かくしてこの発明のノンリークショックレス電磁比例制御弁によれば、コイルの磁力の変化とスプリングとによって流出口を徐々に開閉するとともに、開弁時にコイルの磁力に対抗するプランジャの流入室側受圧面と固定軸側受圧面との差圧による押圧力をそれらの受圧面の僅かな面積差によってスプリングの押圧力より小さくしてショック緩和性能を得ているので、作動油の油温の変化でショック緩和性能がばらつくのを防止でき、またスリーブとプランジャとの加工精度を下げて加工コストを低減することができ、しかもこの制御弁単独で閉弁時には作動油の漏れが生じないノンリーク状態となるので、電磁弁の比例制御と閉弁時のノンリーク状態とを求める場合に、シャットオフバルブと組み合わせる必要をなくして油圧回路の構成コストを安くすることができる。   Thus, according to the non-leak shockless electromagnetic proportional control valve of the present invention, the outlet is gradually opened and closed by the change in the magnetic force of the coil and the spring, and the pressure-receiving surface on the inflow chamber side of the plunger that opposes the magnetic force of the coil when the valve is opened. Since the pressure due to the pressure difference between the bearing and the fixed shaft side pressure receiving surface is made smaller than the spring pressing force due to a slight area difference between the pressure receiving surfaces, shock relaxation performance is obtained. Variations in the relaxation performance can be prevented, and the machining accuracy of the sleeve and plunger can be lowered to reduce the machining cost. Moreover, when this control valve is closed, it becomes a non-leak state that does not cause hydraulic oil leakage. Therefore, when the proportional control of the solenoid valve and the non-leak state when the valve is closed, it is not necessary to combine it with the shut-off valve. It is possible to reduce the door.

1 本体
1a 凹部
1b 突出部
1c 流入室
1d 裁頭円錐状座面
2 流出口
3 流入口
4 基部
4a 貫通孔
5 スリーブ
6 固定軸
6a 基端部
6b 貫通孔
6c 雌ネジ
6d 先端部
6e 雄ネジ
7 プランジャ
7a 先端部
7b 突起
7c 後端部
7d 凹部
7e 油路
7f 連通路
7g 凸部
7h 裁頭円錐状封止面
8 スプリング
9 プランジャアッセンブリ
10 フラックスプレート
11 コイル
12 ボビン
13 ハウジング
13a,13b 端板
13c,13d 貫通孔
14 調節ネジ
14a 雄ネジ
15 スペーサ
16 コイルアッセンブリ
18 皿ばね
19 樹脂
20 ナット
DESCRIPTION OF SYMBOLS 1 Main body 1a Recessed part 1b Protruding part 1c Inflow chamber 1d Cone conical seat surface 2 Outlet 3 Inlet 4 Base 4a Through-hole 5 Sleeve 6 Fixed shaft 6a Base end 6b Through-hole 6c Female screw 6d Tip 6e Male screw 7 Plunger 7a Front end portion 7b Protrusion 7c Rear end portion 7d Concave portion 7e Oil passage 7f Communication passage 7g Protrusion portion 7h Cone conical sealing surface 8 Spring 9 Plunger assembly 10 Flux plate 11 Coil 12 Bobbin 13 Housing 13a, 13b End plate 13c, 13d Through hole 14 Adjustment screw 14a Male screw 15 Spacer 16 Coil assembly 18 Belleville spring 19 Resin 20 Nut

Claims (4)

流出口および流入口が開口する凹部を有する本体と、
前記凹部に液密に固定されてその凹部内に流入室を画成する蓋部材と、
前記蓋部材の貫通孔に一端部を液密に固定されたスリーブと、
前記スリーブの他端部に液密に固定された固定軸と、
前記スリーブ内に摺動自在に嵌挿されたプランジャと、
前記プランジャと前記固定軸との間に介挿されてそのプランジャを前記流入室へ向けて常時附勢するスプリングと、
前記スリーブおよび前記固定軸の周囲に嵌装されたコイルと、
前記蓋部材と前記コイルとの間に介挿されて前記コイルの磁束を前記プランジャに向かわせるフラックスプレートと、
を具える電磁弁であって、
前記プランジャの、前記流入室に向く端面に形成された、裁頭円錐状封止面を持つ凸部と、
前記流入室の前記流出口の入口に形成された、前記裁頭円錐状封止面と分離可能に液密に嵌合する裁頭円錐状座面と、
を具え、
前記裁頭円錐状封止面と前記裁頭円錐状座面との嵌合状態で、その裁頭円錐状封止面の基部が、前記裁頭円錐状座面から前記流入室内に露出することを特徴とする、ノンリークショックレス電磁比例制御弁。
A body having an outlet and a recess in which the inlet opens;
A lid member fixed in a liquid-tight manner in the recess and defining an inflow chamber in the recess;
A sleeve whose one end is liquid-tightly fixed to the through hole of the lid member;
A fixed shaft liquid-tightly fixed to the other end of the sleeve;
A plunger slidably inserted into the sleeve;
A spring that is interposed between the plunger and the fixed shaft and constantly biases the plunger toward the inflow chamber;
A coil fitted around the sleeve and the fixed shaft;
A flux plate interposed between the lid member and the coil to direct the magnetic flux of the coil to the plunger;
A solenoid valve comprising:
A convex portion having a truncated conical sealing surface formed on an end surface of the plunger facing the inflow chamber;
A frustoconical seating surface formed at the inlet of the outlet of the inflow chamber, the frustoconical sealing surface separably and separably fitted to the frustoconical sealing surface;
With
When the truncated conical sealing surface and the truncated conical seating surface are fitted, the base of the truncated conical sealing surface is exposed from the truncated conical seating surface to the inflow chamber. Non-leak shockless electromagnetic proportional control valve.
前記プランジャには、そのプランジャと前記固定軸との間の隙間と、前記流入室とを連通させる油路が形成されていることを特徴とする、請求項1記載のノンリークショックレス電磁比例制御弁。   2. The non-leak shockless electromagnetic proportional control according to claim 1, wherein the plunger is formed with an oil passage that communicates the clearance between the plunger and the fixed shaft and the inflow chamber. valve. 前記固定軸には、前記スプリングの予加重を調節する調節ネジが液密に貫挿されて螺着されていることを特徴とする、請求項1または2記載のノンリークショックレス電磁比例制御弁。   The non-leak shockless electromagnetic proportional control valve according to claim 1 or 2, wherein an adjustment screw for adjusting a preload of the spring is inserted in a liquid-tight manner and screwed to the fixed shaft. . 前記プランジャと前記固定軸との互いに対向する端部は、互いに嵌合する向きでそれぞれ裁頭円錐面を形成されていることを特徴とする、請求項1から3までの何れか1項記載のノンリークショックレス電磁比例制御弁。   The end portions of the plunger and the fixed shaft facing each other are each formed with a truncated conical surface in a direction in which they are fitted to each other. Non-leak shockless electromagnetic proportional control valve.
JP2009013021A 2009-01-23 2009-01-23 Non leak shockless solenoid proportional control valve Pending JP2010169206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013021A JP2010169206A (en) 2009-01-23 2009-01-23 Non leak shockless solenoid proportional control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013021A JP2010169206A (en) 2009-01-23 2009-01-23 Non leak shockless solenoid proportional control valve

Publications (1)

Publication Number Publication Date
JP2010169206A true JP2010169206A (en) 2010-08-05

Family

ID=42701544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013021A Pending JP2010169206A (en) 2009-01-23 2009-01-23 Non leak shockless solenoid proportional control valve

Country Status (1)

Country Link
JP (1) JP2010169206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157914A (en) * 2018-03-08 2019-09-19 日電工業株式会社 Solenoid valve and fluid pressure circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440933A (en) * 1977-09-06 1979-03-31 Mitsubishi Motors Corp Mixture supply equipment
JPS5557572A (en) * 1978-10-20 1980-04-28 Ferrosan Ab Diphenylbutyllpiperazinecarboxamide and carbothioamide*its acid addition salt*its manufacture and medical composition containing it
JPS58193171A (en) * 1982-05-07 1983-11-10 Canon Inc Thermal transfer printer
WO2006137404A1 (en) * 2005-06-24 2006-12-28 Ckd Corporation Flow control valve
JP4190020B1 (en) * 2007-10-15 2008-12-03 東フロコーポレーション株式会社 Proportional solenoid valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440933A (en) * 1977-09-06 1979-03-31 Mitsubishi Motors Corp Mixture supply equipment
JPS5557572A (en) * 1978-10-20 1980-04-28 Ferrosan Ab Diphenylbutyllpiperazinecarboxamide and carbothioamide*its acid addition salt*its manufacture and medical composition containing it
JPS58193171A (en) * 1982-05-07 1983-11-10 Canon Inc Thermal transfer printer
WO2006137404A1 (en) * 2005-06-24 2006-12-28 Ckd Corporation Flow control valve
JP4190020B1 (en) * 2007-10-15 2008-12-03 東フロコーポレーション株式会社 Proportional solenoid valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157914A (en) * 2018-03-08 2019-09-19 日電工業株式会社 Solenoid valve and fluid pressure circuit
JP7054908B2 (en) 2018-03-08 2022-04-15 日電工業株式会社 Solenoid valve and fluid pressure circuit

Similar Documents

Publication Publication Date Title
JP5193299B2 (en) Fuel injection valve with pressure balance type control valve
CN109306926B (en) Valve assembly and check valve for fluid pump
JP6531633B2 (en) solenoid valve
JP6647540B2 (en) Regulating unit for a mechanically adjustable coolant pump of an internal combustion engine
US20180163889A1 (en) Valve, in particular proportional pressure regulating valve
JP5993000B2 (en) Valves, in particular pressure regulating valves or pressure limiting valves
JP2010169206A (en) Non leak shockless solenoid proportional control valve
JP2004019845A (en) Self-closed faucet
JP4602857B2 (en) Pilot type flow control device and main valve unit used therefor
JP2007107513A (en) Fuel injection valve
JP4961873B2 (en) Pressure control device
JP4948330B2 (en) Pressure reducing valve device
JP4988775B2 (en) Hydraulic valve assembly
JP4743181B2 (en) Pressure control device
JP2008008163A (en) Fuel injection valve
JP2009079638A (en) Pressure control device
US20240110633A1 (en) Pressure Relief Valve Assembly, Modular Pressure Relief Valve Assembly, and Hydraulic Control Assembly Having Such a Pressure Relief Valve Assembly
JP4987393B2 (en) Pressure control valve
JP2008175155A (en) Injector
JP2005016652A (en) Pilot valve type electromagnetic normally opened valve
US20150040867A1 (en) Fuel injector needle sleeve
JPH07293387A (en) Electromagnetic fuel injection valve
KR20050118728A (en) Infinitely variable directional valve
JP5428517B2 (en) Check valve and poppet type solenoid valve using the same
JP6088608B1 (en) One-way flow control valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20110422

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110510

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111004

Free format text: JAPANESE INTERMEDIATE CODE: A02