JP2010168824A - Tsunami/tidal-wave resistant reinforcing construction method for existing gravity-type structure - Google Patents

Tsunami/tidal-wave resistant reinforcing construction method for existing gravity-type structure Download PDF

Info

Publication number
JP2010168824A
JP2010168824A JP2009013075A JP2009013075A JP2010168824A JP 2010168824 A JP2010168824 A JP 2010168824A JP 2009013075 A JP2009013075 A JP 2009013075A JP 2009013075 A JP2009013075 A JP 2009013075A JP 2010168824 A JP2010168824 A JP 2010168824A
Authority
JP
Japan
Prior art keywords
rubble mound
tsunami
harbor
port
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009013075A
Other languages
Japanese (ja)
Other versions
JP5405841B2 (en
Inventor
Kyoichi Nakaho
京一 仲保
Zento Yamakawa
善人 山川
Yukifumi Matsuoka
幸文 松岡
Shunji Miki
俊二 三木
Hideyuki Niisato
英幸 新里
Yuichiro Kimura
雄一郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2009013075A priority Critical patent/JP5405841B2/en
Publication of JP2010168824A publication Critical patent/JP2010168824A/en
Application granted granted Critical
Publication of JP5405841B2 publication Critical patent/JP5405841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Abstract

<P>PROBLEM TO BE SOLVED: To reduce uplift pressure acting on a bottom face of a gravity-type structure. <P>SOLUTION: A tsunami/tidal-wave resistant reinforcing construction method is for a breakwater 11 placed on a rubble mound 13 built on the ground 12 of a harbor bottom. A foot-protection block 14 is disposed on the harbor exterior end of the rubble mound 13, and then a gap-filler 15 is laid on a sloped portion of the rubble mound 13 on which the foot-protection block 14 is disposed. Subsequently, a water-sealing plate 16 is disposed over the harbor exterior side of the rubble mound 13, the gap filler 15, and the foot-protection block 14. As a result, sea water inflow to the harbor exterior side of the rubble mound and to the gap filler is reduced, which enables to reduce the uplift pressure caused by incoming waves without accompanying an increase in the weight of the gravity-type structure such as an existing breakwater, or the like. Since the construction method requires merely disposing the foot-protection block, the gap filler, and the water-sealing plate on the harbor exterior side of the rubble mound, the construction work is facilitated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、既存の防波堤、ケーソン等の重力式構造物の底面に作用する津波・高潮等の外力による揚圧力を軽減させることができる補強工法に関するものである。   The present invention relates to a reinforcing method capable of reducing lifting pressure due to an external force such as tsunami and storm surge that acts on the bottom surface of a gravitational structure such as an existing breakwater or caisson.

既存の防波堤等は、通常、風波による外力に耐えることができるように設計されており、津波等によって港外側と港内側に水位差が発生するような状況を想定していない。よって、既存の防波堤等を津波防御施設としても利用する場合には、この水位差による影響が大きく、新たな補強が必要となることがある。   Existing breakwaters are usually designed to withstand external forces caused by wind waves, and it is not assumed that there will be a water level difference between the outside of the port and the inside of the port due to a tsunami. Therefore, when existing breakwaters are also used as tsunami defense facilities, the effect of this water level is significant and new reinforcement may be required.

例えば、従来の直立ケーソン式防波堤は、図6に示すように、海底地盤1の上に構築された捨石マウンド2の上に、重力式構造物である防波堤3が設置されている(特許文献1)。   For example, in a conventional upright caisson type breakwater, as shown in FIG. 6, a breakwater 3 that is a gravitational structure is installed on a rubble mound 2 constructed on a seabed ground 1 (Patent Document 1). ).

このような構成の重力式構造物においては、港外側から港内側に押し寄せる波(押波)や港内側から港外側に引く波(引波)等の外力は、防波堤3の港外側或いは港内側の壁面において遮断されることになる。   In the gravitational structure having such a configuration, the external force such as a wave that pushes from the outside of the port to the inside of the port (push wave) or a wave that pulls from the inside of the port to the outside of the port (pulling wave) It will be cut off at the wall.

例えば港外側から押し寄せてきた波等によって、防波堤3の港外側壁面に外力が作用した場合には、港外側壁面に波圧F1が作用する。また、防波堤3の底面には防波堤3の前後面の水位差に見合う揚圧力F2(三角形分布)が作用する。   For example, when an external force acts on the port outer wall surface of the breakwater 3 due to waves rushed from the port outer side, the wave pressure F1 acts on the port outer wall surface. In addition, a lifting pressure F2 (triangular distribution) corresponding to the difference in water level between the front and rear surfaces of the breakwater 3 acts on the bottom surface of the breakwater 3.

このため、防波堤3には、港外側から港内側に向かって滑動させようとする力と転倒させようとする力が作用する。なお、引波が作用した場合は、港内側壁面に前記波圧F1が作用することが相違するだけで、揚圧力F2の発生原理は同じである。   For this reason, on the breakwater 3, a force that tries to slide from the outside of the harbor toward the inside of the harbor and a force that tries to fall over act. In addition, when the wave is applied, the generation principle of the lifting pressure F2 is the same except that the wave pressure F1 is applied to the inner wall surface of the port.

ところで、重力式構造物の安定性は、一般に、押波作用時の条件で決まる場合が多く、押波時に作用する力による滑動及び転倒に対する安定性を確保する必要がある。   By the way, in general, the stability of the gravitational structure is often determined by the conditions at the time of the wave action, and it is necessary to ensure the stability against sliding and falling due to the force acting at the time of the wave.

しかしながら、図6に示したような既存の重力式構造物では、津波・高潮により港外側と港内側に水位差が発生すると、その水位差により構造物底面に揚圧力が作用して構造物底面における下向き力が減少し、所定の滑動安全率や転倒安全率を確保できなくなる場合がある。   However, in the existing gravitational structure as shown in FIG. 6, when a water level difference occurs between the outside of the port and the inside of the port due to a tsunami / storm surge, lift pressure acts on the bottom of the structure due to the difference in water level. In some cases, the downward force at the time decreases, and a predetermined sliding safety factor and fall safety factor cannot be secured.

従って、所定の滑動安全率や転倒安全率を確保できなくなる場合は、図7に示したように、防波堤3等の既存の重力式構造物の天端及び港外側側面にブロック4,5を補強して揚圧力相当以上の重量を追加する必要があるが、単に既存の構造物上にウエイトを搭載した場合、地耐力が不足することがある。その場合、所定の滑動安全率や転倒安全率、地盤支持力を満足するためには、構造物の底面幅の拡幅が必要になる。   Therefore, when the predetermined sliding safety factor and the falling safety factor cannot be secured, the blocks 4 and 5 are reinforced at the top end and the outer side surface of the existing gravity type structure such as the breakwater 3 as shown in FIG. Thus, it is necessary to add a weight equivalent to or higher than the lifting pressure, but if the weight is simply mounted on the existing structure, the earth strength may be insufficient. In that case, in order to satisfy the predetermined sliding safety factor, the falling safety factor, and the ground supporting force, it is necessary to widen the bottom surface width of the structure.

しかしながら、既存の重力式構造物の重量増加と、底面幅の拡幅により補強する方法では、外力に対する低減効果はないばかりか、重力式構造物の底面面積が大きくなるので、揚圧力が大きくなるという問題がある。また、ブロックによる重量増加と捨石マウンドの増設(図7の2´)が必要でコストアップにつながるという問題もある。   However, the method of reinforcing by the weight increase of the existing gravity structure and the widening of the bottom surface width does not have a reduction effect on the external force, but also increases the bottom surface area of the gravity structure, so that the lifting pressure increases. There's a problem. In addition, there is a problem that an increase in weight due to the blocks and an additional rubble mound (2 ′ in FIG. 7) are necessary, leading to an increase in cost.

特開2001−207425号公報JP 2001-207425 A

本発明が解決しようとする問題点は、重力式構造物の天端及び港外側側面にブロックを補強する場合、港外側側面に補強するブロック分、重力式構造物の底面面積が大きくなるので、揚圧力が大きくなるという点である。さらに、ブロックによる重量増加と捨石マウンドの増設が必要でコストアップにつながるという点である。   The problem to be solved by the present invention is that when a block is reinforced on the top end of the gravity type structure and the outer side surface of the port, the area of the bottom surface of the gravity type structure increases because the block is reinforced on the outer side surface of the port. That is, the lifting pressure increases. In addition, it is necessary to increase the weight by blocks and add a rubble mound, leading to an increase in cost.

本発明は、前記の補強工法にあった、揚圧力が大きくなるという点とブロックによる重量増加と捨石マウンドの増設が必要という点を解決するために、以下のような構成を採用した。   The present invention adopts the following configuration in order to solve the point that the lifting pressure is increased and the weight increase due to the block and the addition of the rubble mound are necessary, which are in the above-mentioned reinforcing method.

例えば本発明の既存の重力式構造物の耐津波・高潮補強工法は、
港湾底部の地盤上に構築した捨石マウンド上に設置された重力式構造物の耐津波・高潮補強工法であって、
前記捨石マウンドの港外側端部に根固めブロックを設置した後、
この根固めブロックを設置した側の前記捨石マウンドの斜面部分に間詰め材を敷設し、
その後、これら捨石マウンドの港外側部、間詰め材及び根固めブロックの上部に遮水板を設けることを最も主要な特徴としている。
For example, the existing gravity structure of the present invention has a tsunami resistance / storm surge reinforcement method,
A tsunami resistance and storm surge reinforcement method for a gravity structure installed on a rubble mound built on the ground at the bottom of a harbor,
After installing a squeeze block at the outer edge of the port of the rubble mound,
Laying a padding material on the slope part of the rubble mound on the side where this rooting block is installed,
After that, the most important feature is to install a water shielding plate on the outside of the port of these rubble mounds, the padding material, and the upper part of the root block.

前記本発明では、捨石マウンドの港外側端部に設置した根固めブロック側の捨石マウンド斜面部分に間詰め材を敷設して遮水板で覆うので、捨石マウンド、間詰め材への海水の流入が低減し、重力式構造物の底面に作用する揚圧力を低減することができる。   In the present invention, since a padding material is laid on the rubble mound slope portion on the side of the consolidation block installed at the outer edge of the port of the rubble mound and covered with a water shielding plate, the inflow of seawater to the rubble mound and the padding material And the lifting pressure acting on the bottom surface of the gravity structure can be reduced.

前記本発明において、遮水板と根固めブロックとの間に隙間を設けておき、押波の作用時及び港外側と港内側の水圧が等しい時は、遮水板と根固めブロックとの間の隙間を塞ぎ、引波の作用時にのみ前記隙間を開く開閉部材を、遮水板の端部に設けた場合は、引波時は、捨石マウンド内部及び間詰め材内部に流入する海水は開閉部材部から港外側に流出するので、揚圧力が低減する。   In the present invention, a gap is provided between the water shielding plate and the rooting block, and when the pressure is applied and when the water pressure on the outside of the port and the inside of the port is equal, it is between the water shielding plate and the rooting block. If an opening / closing member that closes the gap and opens the gap only during the action of the wave is provided at the end of the water shielding plate, the seawater flowing into the rubble mound and the padding material will open and close during the wave. Since it flows out from the member portion to the outside of the port, the lifting pressure is reduced.

本発明では、遮水板を設けることで、港外側の捨石マウンドへの海水の流入を低減させるので、既存の防波堤等の重力式構造物の重量増加を伴わないで、押波時の揚圧力を低減することができる。また、捨石マウンドの港外側に、例えば根固めブロック、間詰め材及び遮水板を設けるだけでよいため、施工も容易である。   In the present invention, since the inflow of seawater to the rubble mound outside the port is reduced by providing a water shielding plate, the lifting pressure at the time of wave pressing is not accompanied by an increase in the weight of existing gravitational structures such as breakwaters. Can be reduced. Moreover, since it is only necessary to provide, for example, a root block, a padding material, and a water shielding plate outside the port of the rubble mound, construction is easy.

本発明において、例えば遮水板と根固めブロック間に設けた隙間を開閉部材で塞ぎ、引波時にのみ開くようにした場合は、引波時、捨石マウンド内部及び間詰め材内部に流入する海水は開閉部材部から流出するので、押波時だけでなく引波時に発生する揚圧力も低減する。   In the present invention, for example, when a gap provided between a water shielding plate and a rooting block is closed with an opening / closing member and opened only at the time of the wave, the seawater flowing into the rubble mound and the inside of the padding material at the time of the wave Flows out from the opening / closing member, so that the lifting pressure generated at the time of wave drawing as well as at the time of pushing wave is reduced.

本発明の耐津波・高潮補強工法の第1実施例の説明図で、(a)は押波作用時を側面から見た図、(b)は引波作用時を側面から見た図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of 1st Example of the tsunami-resistant / storm surge reinforcement construction method of this invention, (a) is the figure which looked at the time of pushing wave action from the side, (b) is the figure which looked at the time of wave action from the side. . 本発明の耐津波・高潮補強工法を施工した箇所の詳細図である。It is detail drawing of the location which constructed the tsunami-resistant / storm surge reinforcement method of the present invention. 本発明の耐津波・高潮補強工法の第2実施例の説明図で、(a)は押波作用時を側面から見た図、(b)は引波作用時を側面から見た図である。It is explanatory drawing of 2nd Example of the tsunami-resistant / storm surge reinforcement method of this invention, (a) is the figure which looked at the time of pushing wave action from the side, (b) is the figure which looked at the time of wave action from the side. . 押波作用時を側面から見た、本発明の耐津波・高潮補強工法の第3実施例の説明図である。It is explanatory drawing of 3rd Example of the tsunami-resistant / storm surge reinforcement method of this invention which looked at the time of pushing wave action from the side. 押波作用時を側面から見た、本発明の耐津波・高潮補強工法の第4実施例の説明図である。It is explanatory drawing of 4th Example of the tsunami-resistant / storm surge reinforcement method of this invention which looked at the time of pushing wave action from the side. 従来の直立ケーソン式防波堤の側面図である。It is a side view of the conventional upright caisson type breakwater. 従来の耐津波・高潮補強工法の説明図である。It is explanatory drawing of the conventional tsunami-resistant / storm surge reinforcement construction method.

本発明では、揚圧力低減という目的を、捨石マウンドの港外側端部に設置した根固めブロック側の前記捨石マウンドの斜面部分に間詰め材を敷設した後、これら捨石マウンド、間詰め材及び根固めブロックの上部に遮水板を設けることで実現した。   In the present invention, for the purpose of reducing lifting pressure, after laying a padding material on the slope portion of the rubble mound on the side of the kerf block installed at the outer edge of the port of the rubble mound, the rubble mound, the padding material, and the root This was realized by providing a water shielding plate at the top of the solidified block.

以下、本発明の既存の重力式構造物の耐津波・高潮補強工法について図1〜図3を用いて説明する。   Hereinafter, the tsunami-resistant / storm surge reinforcing method of the existing gravity structure of the present invention will be described with reference to FIGS.

(第1の実施例:図1及び図2)
図1及び図2において、11は港湾底部の地盤12上に構築した捨石マウンド13の上に載せ置かれた例えば防波堤であり、この防波堤11の底面11aと捨石マウンド13の上面13aは隙間なく接するようになされている。
(First embodiment: FIGS. 1 and 2)
In FIGS. 1 and 2, reference numeral 11 denotes a breakwater, for example, placed on a rubble mound 13 constructed on the ground 12 at the bottom of the harbor. It is made like that.

このように設置された既存の防波堤11に対して、本発明の耐津波・高潮補強工法は以下のように施工する。   With respect to the existing breakwater 11 installed in this way, the tsunami-resistant / storm surge reinforcing method of the present invention is constructed as follows.

先ず、捨石マウンド13の港外側端部の地盤12上に根固めブロック14を沈めて設置する。次に、前記根固めブロック14を設置した側の、捨石マウンド13の斜面部分の上に間詰め材15を沈めて敷設する。   First, the root block 14 is sunk and installed on the ground 12 at the outer edge of the harbor of the rubble mound 13. Next, the filling material 15 is sunk and laid on the slope portion of the rubble mound 13 on the side where the root block 14 is installed.

そして、その後、捨石マウンド13の港外側部、間詰め材15及び根固めブロック14の上部に遮水板16を沈めて、これら捨石マウンド13の港外側部、間詰め材15及び根固めブロック14の上部を覆うように設置する。   And after that, the water shielding board 16 is sunk in the port outer part of the rubble mound 13, the padding material 15, and the upper part of the rooting block 14, and the port outer part of the rubble mound 13, the padding material 15 and the rooting block 14 are sunk. Install to cover the top of the.

この施工に際し、根固めブロック14同士の間、及び根固めブロック14と遮水板16の間にある隙間17(図2参照)は小さいほど良い。しかしながら、防波堤11の直下の隙間(捨石マウンド13間の隙間、捨石マウンド13と防波堤11の間の隙間、及び捨石マウンド13と地盤12の間の隙間)より小さいという条件を満たせば、防波堤11に作用する揚圧力を低減できる。但し、逆の場合は、揚圧力の低減効果はない。   In this construction, the smaller the gaps 17 (see FIG. 2) between the root-solidifying blocks 14 and between the root-solidifying blocks 14 and the water shielding plate 16 are better. However, if the conditions are smaller than the gap directly under the breakwater 11 (the gap between the rubble mound 13, the gap between the rubble mound 13 and the breakwater 11, and the gap between the rubble mound 13 and the ground 12), the breakwater 11 The working lifting pressure can be reduced. However, in the opposite case, there is no effect of reducing the lifting pressure.

上記補強を行えば、押波の作用時には、遮水板16の上側には港外側水圧が、また、遮水板16の下側は港内側水圧が作用することになって、この水圧差(港外側水位は港内側水位より高い)により、遮水板16には下向きの力F3が作用することになる。   If the above-mentioned reinforcement is performed, the port outside water pressure acts on the upper side of the water shielding plate 16 and the port inner side water pressure acts on the lower side of the water shielding plate 16 at the time of the action of the push wave. Due to the fact that the water level outside the harbor is higher than the water level inside the harbor, a downward force F3 acts on the water shielding plate 16.

従って、押波の作用時、根固めブロック14と遮水板16によって、捨石マウンド13、間詰め材15への海水の流入が低減し、防波堤11に作用する揚圧力を低減させることができる。   Accordingly, when the wave is applied, the root block 14 and the water shielding plate 16 reduce the inflow of seawater to the rubble mound 13 and the padding material 15, and the lift pressure acting on the breakwater 11 can be reduced.

港外側の水圧と港内側の水圧との差がゼロで等しい場合(静水時など)、防波堤11および遮水板16は十分な水中重量を有しているので、遮水板16の浮き上がりや、防波堤11の転倒は生じない。   When the difference between the water pressure outside the harbor and the water pressure inside the harbor is equal to zero (such as when the water is still), the breakwater 11 and the water shielding plate 16 have sufficient underwater weight. The breakwater 11 will not fall over.

図1に示した例では、一端部を遮水板16に、他端部を防波堤11に取付けたタイロッド18(またはチェーン)で、遮水板16と防波堤11を連結している。このタイロッド18(またはチェーン)は鋼製で、十分な腐食代を持ったものを使用する。なお、既存の防波堤11へのタイロッド18(またはチェーン)の取付けは、例えば水中施工にて既設の防波堤11にアンカーボルト(アイボルト)を取付けて、これとタイロッド18(またはチェーン)を連結させることにより行う。   In the example shown in FIG. 1, the water shielding plate 16 and the breakwater 11 are connected by a tie rod 18 (or a chain) having one end attached to the water shielding plate 16 and the other end attached to the breakwater 11. The tie rod 18 (or chain) is made of steel and has a sufficient corrosion allowance. The tie rod 18 (or chain) is attached to the existing breakwater 11 by, for example, attaching an anchor bolt (eye bolt) to the existing breakwater 11 in underwater construction and connecting it to the tie rod 18 (or chain). Do.

このようにした場合、押波の作用時には、遮水板16に作用する下向き力F3がタイロッド18(またはチェーン)を介して防波堤11を支えることになる。すなわち、既存の防波堤11で不足する水平方向の抵抗力を遮水板16によって補うことになる。従って、港外側から押し寄せてくる波(外力)により防波堤11が港外側から港内側へ水平移動するのを阻止することができる。   In this case, the downward force F3 acting on the water shielding plate 16 supports the breakwater 11 via the tie rod 18 (or chain) during the action of the pushing wave. That is, the water shielding plate 16 compensates for the horizontal resistance that is insufficient in the existing breakwater 11. Therefore, it is possible to prevent the breakwater 11 from horizontally moving from the outside of the harbor to the inside of the harbor due to waves (external force) rushing from the outside of the harbor.

上記補強を行った防波堤11の場合、引波の作用時において、港内側水圧が港外側水圧より低い場合は、その水圧差から、防波堤11及び遮水板16には下向きの力が働くことになり、防波堤11に上向きの水圧が発生することはない。   In the case of the breakwater 11 that has been reinforced, if the water pressure inside the port is lower than the water pressure outside the port during the action of the wave, a downward force acts on the breakwater 11 and the water shielding plate 16 due to the water pressure difference. Thus, no upward water pressure is generated on the breakwater 11.

しかしながら、港内側水圧が港外側水圧より高い場合、その水圧差から、防波堤11の底面11a及び遮水板16の下側から上向きの水圧が作用することになり、防波堤11の底面11a及び遮水板16に揚圧力F2が発生する。但し、実際は引波時の荷重は押波時の荷重に比較して十分小さいので、大きな揚圧力F2は発生しない。   However, when the harbor inner water pressure is higher than the harbor outer water pressure, upward water pressure acts from the bottom surface 11a of the breakwater 11 and the bottom of the water shielding plate 16 due to the difference in the water pressure, and the bottom surface 11a of the breakwater 11 and the water shield. A lifting pressure F <b> 2 is generated on the plate 16. However, since the load at the time of the wave is actually sufficiently smaller than the load at the time of the wave, a large lifting pressure F2 is not generated.

上記本発明の補強工法によれば、既存の防波堤11の重量増加を伴わず、押波作用時に発生する津波・高潮による防波堤11の揚圧力F2を低減し、押波時に作用する力による防波堤11の滑動及び転倒に対する安定性を確保することができる。   According to the above reinforcing method of the present invention, without increasing the weight of the existing breakwater 11, the lifting pressure F2 of the breakwater 11 due to the tsunami and storm surge generated during the push action is reduced, and the breakwater 11 due to the force acting during the push action is reduced. Stability against sliding and falling can be ensured.

(第2の実施例:図3)
図3において、19は遮水板16と根固めブロック14との間に設けた隙間であり、第2の実施例では、この隙間19を設けるようにして遮水板16を設置する。そして、遮水板16の端部に開閉部材20を設け、押波の作用時及び港外側と港内側の水圧が等しい時は、この開閉部材20で前記隙間19を塞ぎ、引波の作用時にのみ前記隙間19を開くようにする。
(Second embodiment: FIG. 3)
In FIG. 3, reference numeral 19 denotes a gap provided between the water shielding plate 16 and the rooting block 14. In the second embodiment, the water shielding plate 16 is installed so as to provide this gap 19. Then, an opening / closing member 20 is provided at the end of the water shielding plate 16, and when the wave action is applied and when the water pressure on the outside of the port and the inside of the port is equal, the opening / closing member 20 closes the gap 19 and Only the gap 19 is opened.

この第2の実施例は、引波が作用した時に発生する揚圧力F2によって、防波堤11の安定性に問題が生じる場合に適したもので、引波時に発生する揚圧力F2を抑制することができる。   This second embodiment is suitable when a problem arises in the stability of the breakwater 11 due to the lifting pressure F2 generated when the wave is applied, and suppresses the lifting pressure F2 generated during the wave. it can.

すなわち、上記補強を行えば、引波の作用時には、図2(b)のように、遮水板16と根固めブロック14との間の隙間19を塞ぐ開閉部材20を、捨石マウンド13の内部及び間詰め材15の内部を流れる港内側水圧によって開放することになる。従って、海水を港外側に流出させて防波堤11に作用する揚圧力F2を低減させることができる。   That is, if the above-described reinforcement is performed, the opening / closing member 20 that closes the gap 19 between the water shielding plate 16 and the root block 14 is provided inside the rubble mound 13 as shown in FIG. And it opens by the port inner side water pressure which flows through the inside of the padding material 15. Accordingly, it is possible to reduce the lifting pressure F2 acting on the breakwater 11 by causing seawater to flow out to the outside of the port.

一方、押波の作用時には、開閉部材20は、押波によって遮水板16と根固めブロック14との間の隙間19を閉鎖するように押し付けられるので、海水の流入を低減させて防波堤11に作用する揚圧力F2を低減させることができる。   On the other hand, at the time of the action of the wave, the opening / closing member 20 is pressed by the wave so as to close the gap 19 between the water shielding plate 16 and the root block 14, so that the inflow of seawater is reduced and the breakwater 11 is applied. The acting lifting pressure F2 can be reduced.

上記本発明の補強工法によれば、既存の防波堤11の重量増加を伴わず、押波作用時のみならず引波作用時に発生する防波堤11の揚圧力F2をも低減することができる。   According to the reinforcing method of the present invention, the lifting pressure F2 of the breakwater 11 generated not only during the wave action but also during the wave action can be reduced without increasing the weight of the existing breakwater 11.

本発明は上記の例に限らず、各請求項に記載された技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   The present invention is not limited to the above example, and it goes without saying that the embodiments may be changed as appropriate within the scope of the technical idea described in each claim.

例えば上記の実施例では、遮水板16と防波堤11をタイロッド18で連結したものを示したが、遮水板16と防波堤11をタイロッド18で連結しなくても良い。   For example, in the above embodiment, the water shielding plate 16 and the breakwater 11 are connected by the tie rod 18, but the water shielding plate 16 and the breakwater 11 may not be connected by the tie rod 18.

また、上記の実施例では、間詰め材15を設置しているが、遮水板16が十分な剛性を有していれば、間詰め材15は設置しなくても良い。   Further, in the above embodiment, the interlining material 15 is installed, but the interlining material 15 may not be installed as long as the water shielding plate 16 has sufficient rigidity.

さらに、上記の実施例では、根固めブロック14及び間詰め材15によって遮水板16を水平状態に維持している。しかしながら、津波・高潮により防波堤11が水平移動しない位の重量を有している場合は、捨石マウンド13の港外側部を防波堤11直下の隙間より小さくなるよう遮水部材で覆うようにしても良い。遮水部材としては、図4に示す遮水板16や遮水膜(図示せず)の他、図5に示す遮水板16と遮水膜21を組み合わせたもの等を採用すればよい。また、防波堤11直下に比較して十分透水性の小さい、れきや砂の層で覆うようにしても良い。   Further, in the above-described embodiment, the water shielding plate 16 is maintained in a horizontal state by the root block 14 and the padding material 15. However, when the breakwater 11 has a weight that does not move horizontally due to a tsunami or storm surge, the outside of the port of the rubble mound 13 may be covered with a water shielding member so as to be smaller than the gap directly under the breakwater 11. . As the water shielding member, in addition to the water shielding plate 16 and the water shielding film (not shown) shown in FIG. 4, a combination of the water shielding plate 16 and the water shielding film 21 shown in FIG. Moreover, you may make it cover with the layer of a gravel and sand whose water permeability is small enough compared with the breakwater 11 directly.

11 防波堤
12 地盤
13 捨石マウンド
14 根固めブロック
15 間詰め材
16 遮水板
18 タイロッド
19 隙間
20 開閉部材
DESCRIPTION OF SYMBOLS 11 Breakwater 12 Ground 13 Rubble mound 14 Rooting block 15 Packing material 16 Water shielding board 18 Tie rod 19 Clearance 20 Opening and closing member

Claims (5)

港湾底部の地盤上に構築した捨石マウンド上に設置された重力式構造物の耐津波・高潮補強工法であって、
前記捨石マウンドの港外側端部に根固めブロックを設置した後、
この根固めブロックの上部と捨石マウンドの港外側部に遮水板を設けることを特徴とする既存の重力式構造物の耐津波・高潮補強工法。
A tsunami resistance and storm surge reinforcement method for a gravity structure installed on a rubble mound built on the ground at the bottom of a harbor,
After installing a squeeze block at the outer edge of the port of the rubble mound,
A tsunami and storm surge reinforcement method for existing gravitational structures, characterized in that a water shielding plate is installed on the upper part of this consolidation block and on the outer side of the port of the rubble mound.
前記根固めブロックの設置後、
この根固めブロックを設置した側の前記捨石マウンドの斜面部分に間詰め材を敷設し、
その後、捨石マウンドの港外側部、間詰め材及び根固めブロックの上部に遮水板を設けることを特徴とする請求項1に記載の既存の重力式構造物の耐津波・高潮補強工法。
After installing the root block,
Laying a padding material on the slope part of the rubble mound on the side where this rooting block is installed,
2. The existing tsunami and storm surge reinforcement method for an existing gravity structure according to claim 1, wherein a water shielding plate is provided on the outer side of the port of the rubble mound, the padding material and the upper part of the root block.
前記遮水板と前記根固めブロックとの間に隙間を設けておき、
押波の作用時及び港外側と港内側の水圧が等しい時は前記隙間を塞ぎ、引波の作用時にのみ前記隙間を開く開閉部材を、前記遮水板の端部に設けたことを特徴とする請求項1又は2に記載の既存の重力式構造物の耐津波・高潮補強工法。
A gap is provided between the water shielding plate and the root block,
An opening / closing member is provided at the end of the water shielding plate that closes the gap when the pressure is applied and when the water pressure is equal between the outside and the inside of the port, and opens the gap only when the wave acts. A tsunami-resistant / storm surge reinforcing method for the existing gravity structure according to claim 1 or 2.
港湾底部の地盤上に構築した捨石マウンド上に設置された重力式構造物の耐津波・高潮補強工法であって、
前記捨石マウンドの港外側部の透水性が重力式構造物直下の隙間より小さくなるよう、前記港外側部に遮水部材或いは重力式構造物直下の隙間より透水性の小さい部材を設けることを特徴とする既存の重力式構造物の耐津波・高潮補強工法。
A tsunami resistance and storm surge reinforcement method for a gravity structure installed on a rubble mound built on the ground at the bottom of a harbor,
A water-impervious member or a member that is less permeable than the gap directly under the gravity structure is provided on the outside of the harbor so that the water permeability of the port outside of the rubble mound is smaller than the gap immediately below the gravity structure. Tsunami-resistant and storm surge reinforcement method for existing gravitational structures.
前記遮水板を重力式構造物に連結することを特徴とする請求項1〜4の何れかに記載の既存の重力式構造物の耐津波・高潮補強工法。   The said water shielding board is connected with a gravity type structure, The tsunami-resistant / storm surge reinforcement method of the existing gravity type structure in any one of Claims 1-4 characterized by the above-mentioned.
JP2009013075A 2009-01-23 2009-01-23 Tsunami resistance and storm surge reinforcement method for existing gravity structures Active JP5405841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013075A JP5405841B2 (en) 2009-01-23 2009-01-23 Tsunami resistance and storm surge reinforcement method for existing gravity structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013075A JP5405841B2 (en) 2009-01-23 2009-01-23 Tsunami resistance and storm surge reinforcement method for existing gravity structures

Publications (2)

Publication Number Publication Date
JP2010168824A true JP2010168824A (en) 2010-08-05
JP5405841B2 JP5405841B2 (en) 2014-02-05

Family

ID=42701215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013075A Active JP5405841B2 (en) 2009-01-23 2009-01-23 Tsunami resistance and storm surge reinforcement method for existing gravity structures

Country Status (1)

Country Link
JP (1) JP5405841B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032683A (en) * 2012-01-25 2013-02-14 Penta Ocean Construction Co Ltd Breakwater structure and undertow reinforcing mechanism
JP2013170354A (en) * 2012-02-17 2013-09-02 Shimizu Corp Raising technique for breakwater
CN115030092A (en) * 2022-06-20 2022-09-09 长江生态环保集团有限公司 Construction process of side slope corner protector for unfavorable geology
CN115949029A (en) * 2023-02-21 2023-04-11 中国水产科学研究院渔业工程研究所 Flat-plate permeable breakwater structure supported by box-type foundation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138923U (en) * 1980-03-24 1981-10-21
JPH11229346A (en) * 1998-02-10 1999-08-24 Penta Ocean Constr Co Ltd Method for reducing uplift on caisson
JP2001295245A (en) * 2000-04-17 2001-10-26 World Engineering Kk Protecting method for structure
JP2002059108A (en) * 2000-08-23 2002-02-26 Nippon Kaijo Koji Kk Method of underwater seepage control work using asphalt mat
JP2005207132A (en) * 2004-01-23 2005-08-04 Mitsubishi Heavy Ind Ltd Caisson, and revetment for reclamation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138923U (en) * 1980-03-24 1981-10-21
JPH11229346A (en) * 1998-02-10 1999-08-24 Penta Ocean Constr Co Ltd Method for reducing uplift on caisson
JP2001295245A (en) * 2000-04-17 2001-10-26 World Engineering Kk Protecting method for structure
JP2002059108A (en) * 2000-08-23 2002-02-26 Nippon Kaijo Koji Kk Method of underwater seepage control work using asphalt mat
JP2005207132A (en) * 2004-01-23 2005-08-04 Mitsubishi Heavy Ind Ltd Caisson, and revetment for reclamation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032683A (en) * 2012-01-25 2013-02-14 Penta Ocean Construction Co Ltd Breakwater structure and undertow reinforcing mechanism
JP2013170354A (en) * 2012-02-17 2013-09-02 Shimizu Corp Raising technique for breakwater
CN115030092A (en) * 2022-06-20 2022-09-09 长江生态环保集团有限公司 Construction process of side slope corner protector for unfavorable geology
CN115949029A (en) * 2023-02-21 2023-04-11 中国水产科学研究院渔业工程研究所 Flat-plate permeable breakwater structure supported by box-type foundation

Also Published As

Publication number Publication date
JP5405841B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP2017072020A (en) Installation method of capturing body and weir structure
EP1880058B1 (en) Flood barrier
JP5405841B2 (en) Tsunami resistance and storm surge reinforcement method for existing gravity structures
KR20160030882A (en) A gravity-based structure
JP5024943B2 (en) Bottom structure of undulating gate type breakwater
JP6049382B2 (en) Seismic / overflow structure
US20100158617A1 (en) Erosion control systems and methods
JP3170990U (en) Breakwater for overturning drag
JP5407995B2 (en) Filling reinforcement structure
CN108951540B (en) Algae collecting, blocking and guiding enclosure system
JP2013023874A (en) Breakwater water structure
JP2006161402A (en) Construction method for improving water breaking structure
KR20120011120A (en) installation of the waterproof cloths for work of the pier under water
JP6881916B2 (en) How to install the structure
JP6128726B2 (en) breakwater
JP6659489B2 (en) Breakwater structure
CN113250217A (en) Annular flat plate structure for protecting cofferdam toe
JP4730691B2 (en) Raising the existing breakwater
CN105649140A (en) Water taking structure, water taking system, circulating water system and construction method of water taking structure
JP5669189B2 (en) Construction method of transmission type sea area control structure
JP2004003238A (en) Water gate for preventing high tide
JP2015190109A (en) Scouring-resistant apron floor structure
JP3634324B2 (en) The dam body temporary deadline slit installation method in Sabo Dam and the protector used for the method
JP6159586B2 (en) Reinforcement structure of existing breakwater, reinforcement method of existing breakwater, reinforcement
JP4482859B2 (en) Stabilization method behind the revetment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R150 Certificate of patent or registration of utility model

Ref document number: 5405841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250