JP2010168655A - Stainless steel having excellent oil stain resistance and reduced fingerprint visibility - Google Patents

Stainless steel having excellent oil stain resistance and reduced fingerprint visibility Download PDF

Info

Publication number
JP2010168655A
JP2010168655A JP2009290119A JP2009290119A JP2010168655A JP 2010168655 A JP2010168655 A JP 2010168655A JP 2009290119 A JP2009290119 A JP 2009290119A JP 2009290119 A JP2009290119 A JP 2009290119A JP 2010168655 A JP2010168655 A JP 2010168655A
Authority
JP
Japan
Prior art keywords
roughness
stainless steel
short wavelength
curve
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009290119A
Other languages
Japanese (ja)
Other versions
JP5402610B2 (en
Inventor
Kazumasa Kubota
和正 窪田
Nariaki Kurihara
成明 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2009290119A priority Critical patent/JP5402610B2/en
Publication of JP2010168655A publication Critical patent/JP2010168655A/en
Application granted granted Critical
Publication of JP5402610B2 publication Critical patent/JP5402610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stainless steel which has a pure surface free from a surface covering layer such as a coating on the surface, wherein the pure surface is excellent in both oil stain resistance and reduced fingerprint visibility. <P>SOLUTION: The stainless steel has the pure surface free from the formation of a surface covering layer such as a coating, wherein the surface roughness of the pure surface has the value obtained by dividing a shortwave length roughness (Ra1) as the arithmetic average roughness of a roughness curve in which a wavelength zone is defined by λc contour curve filter=0.025 mm and a λs contour curve filter=2.5 μm, by a length of short wave (RSm1) as the average length of a roughness curve element in the same roughness curve is ≤0.0030, and also, a long wavelength roughness (Ra2) as the arithmetic average roughness of a roughness curve in which a wavelength zone is defined by a λc contour curve filter=0.8 mm and a λs contour curve filter=2.5 μm is ≥0.5 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、油汚れが付着し難い特性(耐油汚れ付着性)と、指紋の目立ち難い特性(耐指紋視認性)の両方に優れたステンレス鋼及びその製造方法に関するものである。   The present invention relates to a stainless steel excellent in both the property that oil stains are difficult to adhere (oil stain resistance) and the property that fingerprints are not noticeable (fingerprint visibility), and a method for producing the same.

ステンレス鋼は、日常環境においては特に塩素イオン濃度が高くない限り塗装を施さなくとも錆びないことから、手摺やフェンスといった意匠用途から、切断機や洗浄機やミキサーや熱交換器などの食品製造装置や食品用ショーケースといった衛生用途に至るまで幅広く使用されている。
そして、これらの用途においては、ヘアライン研磨仕上げ、#400研磨仕上げ、2B仕上げ、光輝焼鈍仕上げ等様々な表面肌仕上げから用途にあったものを選択して使用している。
Stainless steel does not rust even if it is not coated unless it has a high chlorine ion concentration in everyday environments. From design applications such as handrails and fences, food manufacturing equipment such as cutting machines, washing machines, mixers and heat exchangers Widely used in hygiene applications such as food and food showcases.
In these applications, various surface skin finishes such as hairline polishing finish, # 400 polishing finish, 2B finish, and bright annealing finish are selected and used.

このステンレス表面肌の選択において、用途によっては汚れの付着のし難さが、重要な判断基準となっている。ステンレス鋼表面は一般に水をよくはじくため水性の汚れは付着し難く、付着しても水洗いにより容易に洗い落とすことができるが、油性の汚れである油汚れは付着しやすい。そのため、衛生用途においては、油汚れが付着し難いことが重要となる。   In the selection of the stainless steel surface skin, the difficulty of attaching dirt is an important criterion for judgment depending on the application. Since the stainless steel surface generally repels water well, it is difficult for water-based stains to adhere to it, and even if it adheres, it can be easily washed off with water, but oil stains that are oily stains tend to adhere. Therefore, in hygiene applications, it is important that oil stains are difficult to adhere.

例えば、ヘアライン仕上げにおいては表面の粗さが大きく、表面で光が乱反射されるため、表面に付着した指紋が目立ち難い長所がある。そのため、手摺やフェンスといった意匠用途において多用されている。一方で、その表面の凹凸に油汚れ等の汚れが引掛りやすいため、食品製造装置等の衛生用途においてはあまり使用されていない。   For example, in hairline finishing, the surface roughness is large, and light is irregularly reflected on the surface, so that fingerprints attached to the surface are not noticeable. Therefore, it is frequently used in design applications such as handrails and fences. On the other hand, since dirt such as oil stains is easily caught on the unevenness of the surface, it is not so often used in hygiene applications such as food production equipment.

一方、光輝焼鈍仕上げや鏡面仕上げ等においては、表面の粗さが極めて小さい。そのため、表面の凹凸に油汚れが引掛り難く、食品製造装置等の衛生用途において多用されている。しかしながら、表面に付着した指紋が非常に目立つ欠点があり、食品用ショーケース、食器、ホテル等の調理風景を見せる厨房の機器等の意匠用途と衛生用途を兼ね備えた用途においては、付着した指紋が見る人に不潔感を与えてしまう。   On the other hand, the surface roughness is extremely small in the bright annealing finish and the mirror finish. Therefore, it is difficult for oil stains to be caught on the surface irregularities, and it is frequently used in hygiene applications such as food production equipment. However, there is a drawback that fingerprints attached to the surface are very conspicuous. In applications that combine design and hygiene applications such as food showcases, tableware, and kitchen equipment that shows cooking scenes in hotels, etc. It gives a filth to the viewer.

以上の様に、ステンレス鋼表面の凹凸を大きくすると指紋が目立ち難くなるが、油汚れが付着しやすくなり、凹凸を小さくすると油汚れが付着し難くなるが指紋が目立ちやすくなる。そのため、従来のステンレス鋼においては、食品用ショーケース、食器、調理風景を見せる厨房の機器等などにおいて満足するべき、付着した指紋が目立ち難いという意匠用途の要求と、油汚れが付着し難いという衛生用途の要求は同時に高い満足度で満たすことはできない。   As described above, when the irregularities on the surface of the stainless steel are increased, the fingerprints are less noticeable. However, the oil stains are easily attached. When the irregularities are reduced, the oil stains are less likely to be adhered, but the fingerprints are easily noticeable. Therefore, in conventional stainless steel, it should be satisfied in food showcases, tableware, kitchen equipment showing cooking scenery, etc., the requirement for design applications that the attached fingerprints are not noticeable and oil stains are difficult to adhere The requirements for hygiene applications cannot be met with high satisfaction at the same time.

付着した指紋を目立ち難くする技術としては、一般的にステンレス鋼表面に凹凸をつける方法と、ステンレス鋼表面を被覆する方法が知られている。
特許文献1は、表面の凹凸の形状と指紋の付着し難さの関係に着目した発明で、表面の微視的な凹凸の凸部の面積率を30%以下に規定し、かつ略均一に分布していることを特徴とする金属板に関するものである。
しかしながら、特許文献1は、指紋の付着し難さのみに着目したものであり、油汚れの付着し難さに関する記述は認められない。
As a technique for making an attached fingerprint inconspicuous, there are generally known a method for forming irregularities on a stainless steel surface and a method for coating a stainless steel surface.
Patent Document 1 is an invention that pays attention to the relationship between the shape of surface irregularities and the difficulty of attaching fingerprints. The surface area ratio of microscopic irregularities on the surface is defined as 30% or less and substantially uniform. The present invention relates to a metal plate characterized by being distributed.
However, Patent Document 1 focuses only on the difficulty of attaching fingerprints, and does not allow description of the difficulty of attaching oil stains.

特許文献2は、ステンレス鋼製器物の表面に特定の化学式で表される親水性皮膜を設け、油汚れが付着し難く、取り扱い時の指紋も目立ち難くしたものである。
しかしながら、金属表面への皮膜等の被覆層の形成は、被覆層が剥離し食品に混入する恐れがある。食の安全の観点から食品への異物の混入は避ける必要があり、食品関係の分野では使用することが困難である。
また、後述する特許文献3〜7においても種々の提案がなされているが、いずれも問題が残っている。
In Patent Document 2, a hydrophilic film represented by a specific chemical formula is provided on the surface of a stainless steel container so that oil stains are less likely to adhere and fingerprints during handling are less noticeable.
However, when a coating layer such as a film is formed on the metal surface, the coating layer may be peeled off and mixed into food. From the viewpoint of food safety, it is necessary to avoid contamination of the food with foreign substances, which is difficult to use in the field of food.
Also, various proposals have been made in Patent Documents 3 to 7 to be described later, but all of them still have problems.

特開平6−335705号公報JP-A-6-335705 特開2003−310411号公報Japanese Patent Laid-Open No. 2003-310411 特開平7−113142号公報JP-A-7-113142 特開平11−226606号公報JP-A-11-226606 特開2005−240062号公報Japanese Patent Laid-Open No. 2005-240062 特許3739887号公報Japanese Patent No. 3739887 特許3587180号公報Japanese Patent No. 3587180

本発明は、かかる従来の問題点に鑑みてなされたもので、表面に塗装等の表面被覆層を有しない無垢表面を有し、当該無垢表面に油汚れが付着し難く指紋の目立ち難い、つまり、耐油汚れ付着性及び耐指紋視認性の両方に優れたステンレス鋼を提供しようとするものである。   The present invention has been made in view of such conventional problems, and has a solid surface that does not have a surface coating layer such as a coating on the surface, and oil stains are difficult to adhere to the solid surface, that is, fingerprints are not noticeable. It is an object of the present invention to provide a stainless steel excellent in both oil-resistant soil adhesion and fingerprint resistance.

第1の発明は、塗装等の表面被覆層を形成していない無垢表面を有するステンレス鋼であって、
該無垢表面の肌粗さは、λc輪郭曲線フィルタ=0.025mmとλs輪郭曲線フィルタ=2.5μmにより波長帯域が定義される粗さ曲線の算術平均粗さである短波長粗さ(Ra1)を、同粗さ曲線における粗さ曲線要素の平均長さである短波長長さ(RSm1)で除した値が0.0030以下であり、
かつ、λc輪郭曲線フィルタ=0.8mmとλs輪郭曲線フィルタ=2.5μmにより波長帯域が定義される粗さ曲線の算術平均粗さである長波長粗さ(Ra2)が0.5μm以上であることを特徴とする耐油汚れ付着性及び耐指紋視認性に優れたステンレス鋼にある(請求項1)。
The first invention is a stainless steel having a solid surface on which a surface coating layer such as paint is not formed,
The surface roughness of the solid surface is the short wavelength roughness (Ra1) which is the arithmetic mean roughness of the roughness curve in which the wavelength band is defined by λc contour curve filter = 0.025 mm and λs contour curve filter = 2.5 μm. Is divided by the short wavelength length (RSm1), which is the average length of the roughness curve elements in the roughness curve, is 0.0030 or less,
In addition, the long wavelength roughness (Ra2), which is the arithmetic mean roughness of the roughness curve in which the wavelength band is defined by λc contour curve filter = 0.8 mm and λs contour curve filter = 2.5 μm, is 0.5 μm or more. It is in stainless steel excellent in oil-resistant soil adhesion and fingerprint resistance.

この第1の発明は、短波長粗さ(Ra1)を短波長長さ(RSm1)で除した値、すなわち、短波長の凹凸の傾きに着目したものである。短波長の凹凸における振幅の大きさが大きくとも、傾きが小さければ、やはり油汚れが付着し難くなることを見出したものである。   The first invention focuses on the value obtained by dividing the short wavelength roughness (Ra1) by the short wavelength length (RSm1), that is, the inclination of the short wavelength unevenness. It has been found that even if the amplitude of the short wavelength unevenness is large, if the inclination is small, oil stains are hardly attached.

ここで、粗さ曲線要素の平均長さは、粗さ曲線の算術平均粗さと同様に、JIS B 0601:2001に定められており、一般的には粗さ測定機を用いて次の様にして求める。
まず、粗さ測定機を用いて被測定物の表面を探針でなぞって、被測定物表面の凹凸を輪郭曲線として得る。その後に、輪郭曲線フィルタと呼ばれる帯域フィルタを用いて、粗さ成分より波長の長い成分(うねり)、および粗さ成分より波長の短い成分を取り除く。すなわち輪郭曲線から特定の波長帯域を抜き出し、粗さ曲線を得る。このようにして得られた粗さ曲線において、JIS B 0601にて定める所定の式を用いて粗さ曲線の振幅の大きさを評価したものが算術平均粗さ(Ra)であり、JIS B 0601にて定める所定の式を用いて粗さ曲線の山と谷の間隔を評価したものが粗さ曲線要素の平均長さ(RSm)である。一般的な粗さ測定機は、輪郭曲線の測定から、粗さと定義する波長帯域を抜き出し粗さ曲線を求め、粗さ曲線の算術平均粗さと粗さ曲線要素の平均長さを計算する一連の作業を自動で行う。
Here, the average length of the roughness curve element is defined in JIS B 0601: 2001, similar to the arithmetic average roughness of the roughness curve. Generally, the roughness curve element is as follows using a roughness measuring machine. Ask.
First, the surface of the object to be measured is traced with a probe using a roughness measuring machine, and the unevenness of the surface of the object to be measured is obtained as a contour curve. Thereafter, a band filter called a contour curve filter is used to remove a component having a longer wavelength than the roughness component (swell) and a component having a shorter wavelength than the roughness component. That is, a specific wavelength band is extracted from the contour curve to obtain a roughness curve. In the roughness curve thus obtained, an arithmetic average roughness (Ra) obtained by evaluating the amplitude of the roughness curve using a predetermined formula defined in JIS B 0601 is JIS B 0601. The average length (RSm) of the roughness curve elements is obtained by evaluating the interval between the peaks and valleys of the roughness curve using the predetermined formula defined in (1). A general roughness measuring machine extracts a wavelength band defined as roughness from a contour curve measurement, obtains a roughness curve, and calculates an arithmetic average roughness of the roughness curve and an average length of the roughness curve elements. Work automatically.

算術平均粗さを求めるにあたっては、基準長さをλcとし、評価長さを基準長さの5倍とし、基準長さ毎の値の平均値を算術平均粗さとした。
粗さ曲線要素の平均長さを求めるにあたっては、基準長さをλcとし、基準長さの5倍である評価長さ全長に対して、平均長さ(RSm)を求めた。なお、粗さ曲線要素の長さを求めるために必要な最小高さの識別判定の際は、評価長さ全長における最大高さの10%未満の凹凸をノイズと判断し、最小長さの識別判定の際は、評価長さの1%未満の凹凸をノイズと判断した。
In calculating the arithmetic average roughness, the reference length was λc, the evaluation length was five times the reference length, and the average value of the values for each reference length was the arithmetic average roughness.
In obtaining the average length of the roughness curve element, the reference length was λc, and the average length (RSm) was obtained with respect to the total evaluation length that is five times the reference length. When identifying and determining the minimum height necessary for determining the length of the roughness curve element, the unevenness that is less than 10% of the maximum height of the entire evaluation length is determined as noise, and the minimum length is identified. At the time of determination, unevenness of less than 1% of the evaluation length was determined as noise.

そして上述したごとく、発明者らは鋭意研究の結果、油汚れの付着のし難さは短波長粗ささらには、短波長粗さを短波長長さで除した値に大きく影響され、長波長粗さに影響されない傾向があり、短波長粗さ(Ra1)を短波長長さ(RSm1)で除した値を小さくすることによって油汚れが付着しにくくなることを見出したのである。
一方、指紋の視認性は、長波長粗さ(Ra2)を大きくすることによって指紋が目立ちにくくなることを見出したのである。
As described above, as a result of intensive studies, the inventors have found that the difficulty of attaching oil stains is greatly influenced by the short wavelength roughness, and further by the value obtained by dividing the short wavelength roughness by the short wavelength length, and the long wavelength It has been found that there is a tendency not to be affected by roughness, and that oil dirt is less likely to adhere by reducing the value obtained by dividing the short wavelength roughness (Ra1) by the short wavelength length (RSm1).
On the other hand, the fingerprint visibility has been found to be less noticeable by increasing the long wavelength roughness (Ra2).

具体的には、λc輪郭曲線フィルタ=0.025mmとλs輪郭曲線フィルタ=2.5μmの輪郭曲線フィルタにて波長帯域が定義される粗さ曲線の算術平均粗さを短波長粗さ(Ra1)とし、同粗さ曲線における粗さ曲線要素の平均長さを短波長長さ(RSm1)とし、λc輪郭曲線フィルタ=0.8mmとλs輪郭曲線フィルタ=2.5μmの輪郭曲線フィルタにて波長帯域が定義される粗さ曲線の算術平均粗さを長波長粗さ(Ra2)とした場合に、短波長粗さ(Ra1)を短波長長さ(RSm1)で除した値が0.0030以下という条件と、長波長粗さ(Ra2)が0.5μm以上さらに望ましくは2.0μm以上という条件の両方を具備する表面粗さ特性とすることにより、上記無垢表面における油汚れの付着のし難さと付着した指紋の目立ち難さとを両立できる。   Specifically, the arithmetic mean roughness of the roughness curve in which the wavelength band is defined by the contour curve filter of λc contour curve filter = 0.025 mm and λs contour curve filter = 2.5 μm is the short wavelength roughness (Ra1). The average length of the roughness curve elements in the roughness curve is the short wavelength length (RSm1), and the wavelength band in the contour curve filter of λc contour curve filter = 0.8 mm and λs contour curve filter = 2.5 μm When the arithmetic mean roughness of the roughness curve defined by is defined as the long wavelength roughness (Ra2), the value obtained by dividing the short wavelength roughness (Ra1) by the short wavelength length (RSm1) is 0.0030 or less. By making the surface roughness characteristics both satisfying the conditions and the condition that the long wavelength roughness (Ra2) is 0.5 μm or more, more preferably 2.0 μm or more, the adhesion of oil stains on the solid surface is difficult. Attached fingerprint It is possible to achieve both inconspicuous difficulty.

上記短波長粗さ(Ra1)を短波長長さ(RSm1)で除した値については、上限値を規定しており、それ以下の値であれば基本的に問題ないが、短波長の凹凸の傾斜をあまりに小さくすることは技術的に困難であり、高コストとなるため、下限値を0.0001とすることが好ましい。
また、上記長波長粗さ(Ra2)については、下限値を規定しており、それ以上の値であれば基本的に問題ないが、あまりに大きな長波長粗さを付与することは技術的に困難であり、高コストとなるため、上限値を30μmとすることが好ましい。
For the value obtained by dividing the short wavelength roughness (Ra1) by the short wavelength length (RSm1), an upper limit value is defined. Since it is technically difficult to make the inclination too small and the cost is high, the lower limit is preferably set to 0.0001.
In addition, the above long wavelength roughness (Ra2) defines a lower limit value. If the value is larger than that, there is basically no problem, but it is technically difficult to provide a very large long wavelength roughness. Therefore, the upper limit is preferably set to 30 μm.

また、上記第1の発明においては、上記短波長粗さ(Ra1)が0.05μm以下であることが好ましい(請求項2)。この場合には、後述する実施例にも示すごとく、確実に上記短波長粗さ(Ra1)を上記短波長長さ(RSm1)で除した値を0.0030以下とすることができる。   In the first invention, the short wavelength roughness (Ra1) is preferably 0.05 μm or less (claim 2). In this case, as shown in the examples described later, a value obtained by dividing the short wavelength roughness (Ra1) by the short wavelength length (RSm1) can be surely made 0.0030 or less.

なお、ステンレス鋼の金属表面が露出した状態においては、ステンレス鋼表面を不働態皮膜と呼ばれる数nmのCrを含有した酸化皮膜が覆っている。この不働態皮膜は、耐食性を保った状態のステンレス鋼の表面には必ず存在するものであり、空気中や水中の酸素による金属表面の自然酸化や人工的には特定の薬品を用いた酸洗や電解研磨等により形成される。不働態皮膜はステンレス鋼が炭素鋼等と比較して錆び難いメカニズムにかかわるものであり、塗装等の表面被覆層とは別のものである。ステンレス鋼表面に存在する不働態皮膜は、ステンレス鋼の金属表面が露出した状態において一般的で自然な状態であり、上記塗装等の表面被覆層には含まれない。   When the stainless steel metal surface is exposed, the stainless steel surface is covered with an oxide film containing several nm of Cr called a passive film. This passive film is always present on the surface of stainless steel in a state where corrosion resistance is maintained. Natural oxidation of the metal surface by oxygen in the air or water, or pickling using a specific chemical artificially. Or by electrolytic polishing or the like. The passive film is related to a mechanism in which stainless steel is less likely to rust than carbon steel or the like, and is different from a surface coating layer such as coating. The passive film present on the surface of the stainless steel is a general and natural state when the metal surface of the stainless steel is exposed, and is not included in the surface coating layer such as the coating.

第2の発明は、ステンレス鋼における塗装等の表面被覆層を形成していない無垢表面に、λc輪郭曲線フィルタ=0.8mmとλs輪郭曲線フィルタ=2.5μmにより波長帯域が定義される粗さ曲線の算術平均粗さである長波長粗さ(Ra2)が0.6μm以上となる肌粗さが得られるようにショット加工を行い、
その後、λc輪郭曲線フィルタ=0.025mmとλs輪郭曲線フィルタ=2.5μmにより波長帯域が定義される粗さ曲線の算術平均粗さである短波長粗さ(Ra1)を、同粗さ曲線における粗さ曲線要素の平均長さである短波長長さ(RSm1)で除した値が0.0030以下となる肌粗さが得られるまで電解研磨加工を行うことを特徴とする耐油汚れ付着性及び耐指紋視認性に優れたステンレス鋼の製造方法にある(請求項3)。
The second invention is a roughness whose wavelength band is defined by a λc contour curve filter = 0.8 mm and a λs contour curve filter = 2.5 μm on a solid surface on which a surface coating layer such as a coating in stainless steel is not formed. Shot processing is performed so as to obtain a skin roughness with a long wavelength roughness (Ra2) of 0.6 μm or more, which is the arithmetic average roughness of the curve,
Thereafter, the short wavelength roughness (Ra1), which is the arithmetic mean roughness of the roughness curve in which the wavelength band is defined by λc contour curve filter = 0.025 mm and λs contour curve filter = 2.5 μm, Oil stain resistance, characterized in that electropolishing is performed until a skin roughness is obtained in which the value divided by the short wavelength length (RSm1), which is the average length of the roughness curve elements, is 0.0030 or less, and It exists in the manufacturing method of stainless steel excellent in fingerprint-proof visibility (Claim 3).

本発明に係る製造方法は、上記第1の発明のステンレス鋼を製造するための方法であり、発明者らが、はじめて、ショット加工と電解研磨加工を適切に利用することで、上記耐油汚れ付着性及び耐指紋視認性に優れたステンレス鋼を比較的容易に製造できることを見出したのである。   The production method according to the present invention is a method for producing the stainless steel of the first invention, and the inventors have used the shot processing and the electropolishing process appropriately for the first time, so that the oil-resistant dirt adheres. It has been found that stainless steel having excellent properties and fingerprint visibility can be produced relatively easily.

上記ショット加工は、材料の表面に粒子を投射する加工であってショットブラスト処理とも呼ばれるものであり、複雑形状の材料表面においてもその表面に凹凸を形成することができる。
上記電解研磨加工は、表面における長波長の凹凸より短波長の凹凸を優先して平滑化する特徴があり、複雑形状の材料表面においても加工が可能である。
The shot process is a process of projecting particles onto the surface of a material, and is also called a shot blast process, and irregularities can be formed on the surface of a material having a complicated shape.
The electropolishing process has a feature of smoothing the unevenness of the short wavelength in preference to the unevenness of the long wavelength on the surface, and can be processed even on the surface of the material having a complicated shape.

本発明では、この2つの加工の特徴を利用し、まずはステンレス鋼の無垢表面に凹凸を付与するショット加工を行う。そして、ショット加工後の上記無垢表面の表面粗さが、λc輪郭曲線フィルタ=0.8mmとλs輪郭曲線フィルタ=2.5μmにより波長帯域が定義される粗さ曲線の算術平均粗さである長波長粗さ(Ra2)が、0.6μm以上さらに望ましく2.3μm以上となるよう長波長粗さ成分を有する凹凸を形成する。なお、この時点でのステンレス鋼の上記無垢表面には、大きな短波長粗さ成分が存在する。   In the present invention, using these two processing features, first, shot processing is performed to give irregularities to the solid surface of stainless steel. The surface roughness of the solid surface after the shot processing is an arithmetic average roughness of a roughness curve in which a wavelength band is defined by λc contour curve filter = 0.8 mm and λs contour curve filter = 2.5 μm. Irregularities having a long wavelength roughness component are formed so that the wavelength roughness (Ra2) is 0.6 μm or more, more preferably 2.3 μm or more. Note that a large short wavelength roughness component exists on the solid surface of the stainless steel at this point.

上記ショット加工後には、上記電解研磨加工を行う。これにより、λc輪郭曲線フィルタ=0.025mmとλs輪郭曲線フィルタ=2.5μmにて波長帯域が定義される粗さ曲線の算術平均粗さである短波長粗さ(Ra1)を、同粗さ曲線における粗さ曲線要素の平均長さである短波長長さ(RSm1)で除した値を0.0030以下とする。電解研磨は、適切な条件を選択することにより、長波長粗さより短波長粗さを優先して平滑化する特徴があるため、適切な時間電解研磨を施すだけで、長波長粗さの値に大きな影響を及ぼすことなく、上記値を低減することができる。   After the shot processing, the electrolytic polishing is performed. As a result, the short wavelength roughness (Ra1) which is the arithmetic mean roughness of the roughness curve in which the wavelength band is defined by the λc contour curve filter = 0.025 mm and the λs contour curve filter = 2.5 μm is equal to the roughness. The value divided by the short wavelength length (RSm1), which is the average length of the roughness curve elements in the curve, is 0.0030 or less. Electropolishing is characterized by smoothing by prioritizing short-wavelength roughness over long-wavelength roughness by selecting appropriate conditions. The above value can be reduced without significant influence.

上記電解研磨により、長波長粗さも大きな影響はないものの若干減少する傾向があるため、電解研磨後に長波長粗さ0.5μm以上さらに望ましくは2.0μm以上を確保するべく、ショット加工後においては長波長粗さ(Ra2)は0.6μm以上さらに望ましくは2.3μm以上とすることが好ましい。   Although the long wavelength roughness does not have a great influence by the electrolytic polishing, there is a tendency to slightly decrease. Therefore, after the shot processing, in order to ensure the long wavelength roughness of 0.5 μm or more, more preferably 2.0 μm or more after the electrolytic polishing. The long wavelength roughness (Ra2) is preferably 0.6 μm or more, more preferably 2.3 μm or more.

上記ショット加工によって調整する長波長粗さ(Ra2)は、上記のごとく0.6μm以上とするが、その上限は、あまりに大きな長波長粗さをショット加工により付与することは技術的に困難であり、高コストであるため、31μmとすることが好ましい。   The long wavelength roughness (Ra2) adjusted by the shot processing is set to 0.6 μm or more as described above, but the upper limit is technically difficult to provide a very long long wavelength roughness by the shot processing. Because of high cost, the thickness is preferably 31 μm.

上記の条件を満たすショット加工の例としては、例えば、直径が0.4mm程度、硬さがHRC40〜50の球状のスチールショットをインペラー式のスチールショット機で投射速度80m/secにてステンレス鋼表面に投射する加工が挙げられる。長波長粗さ(Ra2)の調整は、ショット粒の形状、大きさ、硬さおよびショット粒の投射速度の条件を変更することによって行うことができ、具体的な条件は、予め実験を行えば比較的簡単に最適条件を求めることができる。   As an example of shot processing that satisfies the above conditions, for example, a spherical steel shot with a diameter of about 0.4 mm and a hardness of HRC 40-50 is cast on a stainless steel surface with an impeller-type steel shot machine at a projection speed of 80 m / sec. And processing to project to. The long wavelength roughness (Ra2) can be adjusted by changing the conditions of shot grain shape, size, hardness, and shot grain projection speed. Optimal conditions can be determined relatively easily.

また、上記の条件を満たす電解研磨加工の例としては、例えば、硫酸25%−燐酸60%−亜燐酸3%−残部水の50℃の電解研磨液を用いて、材料をアノードとして電流密度3.67A/dm2にて40分電解する方法が挙げられる。この例は一例であって、材料の材質等によって最適条件が異なってくる。短波長粗さ(Ra1)の調整は、電解研磨液の組成、温度、電流密度、電解時間の条件を変更することによって行うことができ、具体的な条件は、予め実験を行えば比較的簡単に最適条件を求めることができる。 Moreover, as an example of the electropolishing which satisfies the above conditions, for example, an electropolishing liquid of sulfuric acid 25% -phosphoric acid 60% -phosphorous acid 3% -remaining water 50 ° C. is used, and the current density is 3 with the material as the anode. And a method of electrolysis at 67 A / dm 2 for 40 minutes. This example is an example, and the optimum condition varies depending on the material and the like. The short wavelength roughness (Ra1) can be adjusted by changing the conditions of the composition, temperature, current density, and electrolysis time of the electropolishing liquid. The optimum condition can be obtained.

また、上記第2の発明においては、上記電解研磨加工は、上記短波長粗さ(Ra1)が0.05μm以下となる肌粗さが得られるまで行うことが好ましい(請求項4)。この場合には、上記短波長粗さ(Ra1)を上記短波長長さ(RSm1)で除した値を容易に0.0030以下とすることができる。
なお、上記電解研磨によって調整する短波長粗さ(Ra1)は、上記のごとく0.05μm以下とすることが好ましいが、その下限は、あまりに小さな短波長粗さは、電解研磨処理を行っても達成が難しくなりコスト高となるため、0.01μmとすることが好ましい。
In the second aspect of the invention, it is preferable that the electrolytic polishing is performed until a skin roughness with which the short wavelength roughness (Ra1) is 0.05 μm or less is obtained (claim 4). In this case, a value obtained by dividing the short wavelength roughness (Ra1) by the short wavelength length (RSm1) can be easily set to 0.0030 or less.
Note that the short wavelength roughness (Ra1) adjusted by the electrolytic polishing is preferably 0.05 μm or less as described above, but the lower limit thereof is too small even if the electrolytic polishing treatment is performed. Since it is difficult to achieve and the cost is high, 0.01 μm is preferable.

上記第1発明及び第2発明は、ステンレス鋼の無垢表面の表面粗さに着目した発明であり、塗装等の被覆層を有しないステンレス鋼であれば鋼種を限定するものではなく、ステンレス鋼の組成(鋼種)に関しては特に限定するものではない。   The first invention and the second invention are inventions that focus on the surface roughness of the solid surface of stainless steel, and are not limited to the steel type as long as the stainless steel does not have a coating layer such as a coating. The composition (steel type) is not particularly limited.

なお、一般的には表面粗さの測定において特に上記λcを指示せずに粗さを求めている場合が多い。この場合は、λcの値はJIS B 0633:2001に則したルールにて決定し、JIS B 0601に則して算術平均粗さを求めたと解釈できる。
JIS B 0633に定めるルールでは、λc(=基準長さ)の値を0.08〜8mmにおいて5水準定め、各水準毎にRaの値の上下限を定めている。あるλcの値において測定し求めたRaの値が規格の定める上下限範囲にある場合において、最も小さいλcで測定した値をその表面の算術平均粗さRaとして採用するよう定めている。
In general, there are many cases where the roughness is obtained without particularly indicating the above-mentioned λc in the measurement of the surface roughness. In this case, it can be interpreted that the value of λc is determined according to the rule according to JIS B 0633: 2001, and the arithmetic average roughness is obtained according to JIS B 0601.
According to the rules defined in JIS B 0633, the value of λc (= reference length) is set to five levels in the range of 0.08 to 8 mm, and the upper and lower limits of the Ra value are determined for each level. When the Ra value measured and obtained at a certain λc value is in the upper and lower limit range defined by the standard, the value measured at the smallest λc is determined to be adopted as the arithmetic average roughness Ra of the surface.

そして、以下の特許文献3〜7については、λcの値を規定していないRaを規定したものがあるので、上記解釈に基づいてこれらの文献に記載された技術との相違点を説明する。
特許文献3(特開平7−113142号公報)は、表面粗さRaが0.5〜10μm、かつ鋼材表面の凸部を有する耐汚染性および耐食性に優れた建築用ステンレス鋼板に関する特許文献である。
この特許文献における算術平均粗さRaは、基準長さすなわちλc輪郭曲線フィルタの値が指示されていない。このことから、JISB0633より、Ra=0.5〜10μmにおいて用いるλcの値は、λc=0.8mmもしくは2.5mmとなり、本発明における長波長粗さと同等もしくはさらに長波長の成分を評価したものといえる。よって、本発明における短波長粗さには触れておらず、本発明と異なるものである。
And since the following patent documents 3-7 have some which prescribed | regulated Ra which does not prescribe | regulate the value of (lambda) c, a difference with the technique described in these literatures is demonstrated based on the said interpretation.
Patent Document 3 (Japanese Patent Laid-Open No. 7-113142) is a patent document relating to a stainless steel sheet for construction having a surface roughness Ra of 0.5 to 10 μm and having a convex portion on the surface of a steel material and excellent in contamination resistance and corrosion resistance. .
The arithmetic average roughness Ra in this patent document does not indicate the reference length, that is, the value of the λc contour curve filter. Therefore, from JISB0633, the value of λc used at Ra = 0.5 to 10 μm is λc = 0.8 mm or 2.5 mm, which is equal to or longer than the long wavelength roughness in the present invention. It can be said. Therefore, the short wavelength roughness in the present invention is not mentioned and is different from the present invention.

特許文献4(特開平11−226606号公報)は、Raが0.5μm以上、かつ、表面粗さのパワースペクトル解析で10μm以下の波長領域における最大の振幅が0.02μm以下であることを特徴とする指紋の目立ち難い金属表面に関するものである。
この特許文献4は、長波長の表面起伏と短波長の表面起伏の2つのパラメータに着目している点が本発明と類似しているといえる。しかしながら、特許文献4においては、長波長の表面起伏と短波長の表面起伏が「意匠ニーズ」である指紋の目立ち難さに及ぼす影響のみに着目しており、本発明が着目する油汚れの付着のしにくさ等の「衛生ニーズ」との関係は触れられていない。そして、この技術では、短波長の表面起伏が、パワースペクトル解析により分解した個々の波長成分の振幅に着目しているため、「意匠ニーズ」と「衛生ニーズ」の両立を達成することはできない。
Patent Document 4 (Japanese Patent Laid-Open No. 11-226606) is characterized in that Ra is 0.5 μm or more and the maximum amplitude in a wavelength region of 10 μm or less is 0.02 μm or less in the power spectrum analysis of the surface roughness. It relates to a metal surface where fingerprints are difficult to stand out.
This patent document 4 can be said to be similar to the present invention in that it focuses on two parameters, a long-wavelength surface undulation and a short-wavelength surface undulation. However, Patent Document 4 focuses only on the effect of long-wavelength surface undulations and short-wavelength surface undulations on the conspicuousness of fingerprints, which is a “design need”, and the adhesion of oil stains to which the present invention is focused. There is no mention of the relationship with “sanitary needs” such as the difficulty of working. In this technique, since the surface undulation of the short wavelength focuses on the amplitude of each wavelength component decomposed by the power spectrum analysis, it is impossible to achieve both “design needs” and “sanitary needs”.

また、特許文献4においては、具体的にどのようにして所望の表面粗さを得るのかが示されておらず、実施例に挙げている圧延転写にて製造する場合、特殊な表面加工を施した圧延ロールが必要となる。加えて、表面起伏を転写するためのロール表面の凹凸が場所によるロール周速の差を生み出し、それにより発生する細かなキズが短波長の表面起伏の増大を引き起こし、大幅な製造コストの増加が避けられない。   Further, Patent Document 4 does not specifically show how to obtain a desired surface roughness, and a special surface treatment is applied when manufacturing by rolling transfer described in the examples. A rolled roll is required. In addition, the unevenness of the roll surface for transferring the surface undulations creates a difference in the roll peripheral speed depending on the location, and the fine scratches caused thereby increase the surface undulations of short wavelengths, which greatly increases the manufacturing cost. Inevitable.

また、特許文献4においてショット加工および電解研磨加工のいずれか、またはその組み合わせにより所望の表面粗さを得ることが示されているが、具体的な記述は認められない。つまり、ショット加工によりどの波長の粗さをどのように制御するのか、電解研磨によりどの波長の粗さをどのように制御するのかが明らかとなっていない。一般的に電解研磨加工においても、電解条件により凹凸が増加することもあれば減少することもある。目視にて判る範囲における凹凸の増減や、目視では鏡面や曇りがかった感じにしか判らない凹凸の増減があり、粗さの増減だけでなく波長範囲に関しても一義的に述べることはできない。   Further, Patent Document 4 shows that a desired surface roughness can be obtained by either or a combination of shot processing and electropolishing processing, but no specific description is recognized. That is, it is not clear how to control the roughness of which wavelength by shot processing and how to control the roughness of which wavelength by electrolytic polishing. In general, in electropolishing, unevenness may increase or decrease depending on electrolysis conditions. There is an increase / decrease in the unevenness in the range that can be visually recognized, and an increase / decrease in the unevenness that can only be seen visually as a mirror surface or a cloudy feeling, and it is impossible to unambiguously describe not only the increase / decrease in roughness but also the wavelength range.

本願第2発明の製造方法は、ショット加工において長波長粗さを無垢表面に与え、ショット加工の際不可避的に生じる短波長粗さを、短波長粗さが低減する電解研磨条件にて電解研磨加工し除去するものであり、特許文献4の記述と比較してはるかに高度で具体的な技術である。また、圧延ロールによる転写と比較しても、鋼材の形状の自由度が高いメリットが存在する。   In the manufacturing method of the second invention of the present application, long wavelength roughness is given to a solid surface in shot processing, and short wavelength roughness inevitably generated in shot processing is electropolished under electropolishing conditions in which the short wavelength roughness is reduced. It is processed and removed, and is a much more advanced and specific technique than the description in Patent Document 4. In addition, there is a merit that the degree of freedom of the shape of the steel material is high as compared with the transfer by the rolling roll.

特許文献5(特開2005−240062号公報)は、SiO2主体の酸化物からなる皮膜を有するRaが0.30μm以上のステンレス鋼板に関するものである。この特許文献5の発明はSiO2主体の酸化物からなる皮膜を有するステンレス鋼に関し示されたものであり、一般的なステンレス鋼表面すなわちCr酸化物を主体とする表面に関する本発明とは異なるものである。 Patent Document 5 (JP 2005-240062) is, Ra having film comprising an oxide of SiO 2 mainly is related more stainless steel 0.30 .mu.m. The invention of Patent Document 5 is related to a stainless steel having a coating made of an oxide mainly composed of SiO 2, and is different from the present invention relating to a general stainless steel surface, ie, a surface mainly composed of Cr oxide. It is.

特許文献6(特許3739887号公報)の発明は、Raが0.30μm以下であることを特徴とする汚れ除去性に優れた研磨仕上げステンレス鋼板およびその製造方法に関する発明である。汚れに関し、粗さRaが小さい方がよいとする点が、本発明に類似しているといえる。しかしながら、特許文献6の発明は、「汚れの除去性」すなわち付着した汚れの落し易さに関した発明であり、本発明の「油汚れの付着のし難さ」とは、汚れに関する着目点が異なる。このことは、特許文献6の実施例において、ワセリンを塗布した後、布で拭き取り、アセトンで超音波洗浄を行って評価していることからも明白である。一方、本発明は、拭き取り性や洗浄性に着目したものではなく、ステンレス鋼の無垢表面における油の凝集性(薄く広がるか、まとまるか)が、短波長粗さ、さらには短波長粗さを短波長長さで除した値により大きく左右される知見に基づくものであり、特許文献6の発明とは大きく異なる。   The invention of Patent Document 6 (Patent No. 3739887) is an invention related to a polished stainless steel sheet excellent in dirt removal property and a method for producing the same, characterized in that Ra is 0.30 μm or less. It can be said that it is similar to the present invention that the smaller the roughness Ra, the better. However, the invention of Patent Document 6 is an invention relating to “removability of dirt”, that is, ease of removing attached dirt, and “difficulty to adhere oil dirt” of the present invention refers to a point of interest regarding dirt. Different. This is also clear from the fact that, in the example of Patent Document 6, evaluation is performed by applying petrolatum, wiping with a cloth, and performing ultrasonic cleaning with acetone. On the other hand, the present invention does not focus on wiping and cleaning properties, but the cohesiveness of oil (whether thinly spread or gathered) on the solid surface of stainless steel has a short wavelength roughness, and further a short wavelength roughness. This is based on the knowledge greatly influenced by the value divided by the short wavelength length, and is greatly different from the invention of Patent Document 6.

また、この特許文献6の発明においては粗さRaは、基準長さすなわちλc輪郭曲線フィルタの値が指示されていない。このことから、JISB0633より、Ra=0.30μm以下において用いるλcの値は、λc=0.8mm以下と解釈できる。特許文献6の発明において、最も大きな粗さであるRa=0.30μmに対応するλcは0.8mmであり、この場合、本発明の長波長粗さにおけるλcの値と同様である。しかしながら、本発明は、λc=0.8mmにおいてRa=0.5μm以上さらにのぞましくは2.0μm以上を発明に必要な要素としており、特許文献6と粗さの範囲においてもやはり異なる発明であると言える。   In the invention of Patent Document 6, the roughness Ra is not designated as the reference length, that is, the value of the λc contour curve filter. From this, according to JISB0633, the value of λc used when Ra = 0.30 μm or less can be interpreted as λc = 0.8 mm or less. In the invention of Patent Document 6, λc corresponding to the largest roughness Ra = 0.30 μm is 0.8 mm, which is the same as the value of λc in the long wavelength roughness of the present invention. However, in the present invention, Ra = 0.5 μm or more at λc = 0.8 mm, more preferably 2.0 μm or more is a necessary element for the invention, and the invention is also different from Patent Document 6 in the roughness range. It can be said that.

特許文献7(特許3587180号公報)は、十点平均粗さRzが3.5μm以上、6.5μm
以下、表面凹凸の平均間隔Smが120μm以上、250μm以下、凸部面積率が15%以上、45%以下の表面を有する耐汚れ性と耐食性に優れたステンレス鋼板に関するものである。この発明は、短波長粗さに着目しておらず、耐汚れ性は浮遊粉塵等を対象としたものであり本発明と異なる。すなわち本発明における鋼材表面の油の凝集性(薄く広がるか、まとまるか)が、短波長粗さにより大きく左右される知見に関して触れられておらず、本発明と異なるものである。
Patent Document 7 (Japanese Patent No. 3587180) has a ten-point average roughness Rz of 3.5 μm or more and 6.5 μm.
Hereinafter, the present invention relates to a stainless steel plate having a surface having an average spacing Sm of 120 μm or more and 250 μm or less and a convex area ratio of 15% or more and 45% or less and excellent in stain resistance and corrosion resistance. This invention does not pay attention to short wavelength roughness, and stain resistance is intended for suspended dust and the like, and is different from the present invention. That is, the agglomeration property (whether thinly spread or gathered) of the steel surface in the present invention is not touched on the knowledge that is greatly influenced by the short wavelength roughness, and is different from the present invention.

本発明の実施例に係る耐油汚れ付着性及び耐指紋視認性に優れたステンレス鋼及びその製造方法につき、より具体的に説明する。   The stainless steel excellent in oil stain resistance and fingerprint resistance according to the embodiment of the present invention and the manufacturing method thereof will be described more specifically.

表2に記載するように、本発明を含め各種表面仕上げのSUS304ステンレス鋼板を作製または準備した。これらの鋼板に対し、長波長粗さ(Ra2)の測定、短波長粗さ(Ra1)の測定、短波長長さ(RSm1)の測定、耐油汚れ付着性の評価試験、および耐指紋視認性の評価試験を行った。
また、参考までに特にλcを指示せず、JIS B 0633:2001の7.2に定めるルールに従い測定した場合の算術平均粗さも併記した。
As shown in Table 2, SUS304 stainless steel sheets with various surface finishes including the present invention were prepared or prepared. For these steel plates, measurement of long wavelength roughness (Ra2), measurement of short wavelength roughness (Ra1), measurement of short wavelength length (RSm1), evaluation test for adhesion resistance to oil stains, and fingerprint visibility resistance An evaluation test was conducted.
For reference, the arithmetic mean roughness when measured according to the rules defined in 7.2 of JIS B 0633: 2001 is also shown together without particularly indicating λc.

まず、評価試験に用いた試験片に関して説明する。
試料No.1、試料No.2、および試料No.8〜21は、本発明の実施例を示したものであり、試料No.3は比較例を示したものである。試料No.4〜試料No.7は従来例であり、市中で入手可能な一般的な表面仕上げのステンレス鋼である。実施例、比較例、従来例を問わず、材質は全てSUS304である。
試料No.1〜3、および試料No.8〜21の製造工程を表1に示す。
First, the test piece used for the evaluation test will be described.
Sample No. 1, sample no. 2 and Sample No. 8 to 21 show examples of the present invention. 3 shows a comparative example. Sample No. 4 to Sample No. 7 is a conventional example and is a general surface-finished stainless steel available in the market. Regardless of the examples, comparative examples, and conventional examples, the material is all SUS304.
Sample No. 1 to 3 and sample no. Table 1 shows the manufacturing steps of 8-21.

<試料No.1>
試料No.1の材料は、酸洗仕上げ材にスチールショット加工を施し、つづいて電解研磨加工したものである。
上記ショット加工では、ステンレス鋼の無垢表面に、インペラー式のスチールショット機を用いて、JIS Z 0311:2004の定める直径が0.4mm程度(粒度番号040)、硬さがHRC40〜50の球状のスチールショット粒を投射速度80m/sec、投射密度312kg/m2にて投射することにより、耐指紋視認性に必要な長波長粗さを表面に付与した。
試料No.1の上記ショット加工の後であって続く電解研磨加工前の状態における表面粗さは、上記短波長粗さ(Ra1)が0.19μm、上記長波長粗さ(Ra2)が4.95μmであった。
<Sample No. 1>
Sample No. The material No. 1 is obtained by subjecting a pickled finish to steel shot processing and then electrolytic polishing.
In the above shot processing, on a solid surface of stainless steel, an impeller-type steel shot machine is used, the diameter defined by JIS Z 0311: 2004 is about 0.4 mm (grain size number 040), and the hardness is HRC 40-50 spherical. By projecting steel shot grains at a projection speed of 80 m / sec and a projection density of 312 kg / m 2 , a long wavelength roughness necessary for fingerprint resistance visibility was imparted to the surface.
Sample No. The surface roughness after the above-described shot processing and before the subsequent electropolishing processing was 0.19 μm for the short wavelength roughness (Ra1) and 4.95 μm for the long wavelength roughness (Ra2). It was.

ショット加工により生じる短波長粗さは、油汚れの付着のし難さに対し有害となる。そこで、続いて電解研磨加工を施し短波長粗さを低減した。
試料No.1の試験片における電解研磨加工は、硫酸と燐酸からなる混酸を用いた電解研磨の後、硝酸に浸漬し不働態皮膜を再生する一般的なものを用いた。尚、硝酸に浸漬するのは、ステンレス鋼表面の不働態皮膜を再生し、ステンレス鋼本来の耐食性をステンレス鋼に付与し、錆を防止するためのものである。不働態皮膜は数nmの厚さであり、本発明に限らず、比較例や従来例においてもステンレス鋼表面に一般的に存在するものである。上記電解研磨は、さらに詳しくは、硫酸25%−燐酸60%−亜燐酸3%−残部水の50℃の電解研磨液を用いて、材料をアノードとして電流密度3.67A/dm2にて40分電解した。
なお、試料No.1の最終的な上記短波長粗さ(Ra1)、短波長長さ(RSm1)および長波長粗さ(Ra2)の値は、後述する表2に示す通りである。
The short wavelength roughness produced by shot processing is detrimental to the difficulty of oil stains. Therefore, the electrolytic polishing process was subsequently performed to reduce the short wavelength roughness.
Sample No. The electropolishing process for the test piece 1 was a general one that regenerated the passive film by dipping in nitric acid after electropolishing using a mixed acid composed of sulfuric acid and phosphoric acid. The purpose of immersing in nitric acid is to regenerate the passive film on the surface of the stainless steel, impart the original corrosion resistance to the stainless steel, and prevent rust. The passive film has a thickness of several nm, and is not limited to the present invention, and is generally present on the surface of stainless steel not only in the present invention but also in the comparative example and the conventional example. More specifically, the electropolishing is carried out using an electropolishing liquid of sulfuric acid 25% -phosphoric acid 60% -phosphorous acid 3% -remaining water at 50 ° C. with the material as the anode at a current density of 3.67 A / dm 2 . Electrolysis was performed.
Sample No. The final short wavelength roughness (Ra1), short wavelength length (RSm1) and long wavelength roughness (Ra2) of 1 are as shown in Table 2 described later.

<試料No.2>
試料No.2の材料は、試料No.1の場合と同様のショット加工を施した後、試料No.1の場合の電解研磨を2分割して実施した。そして2回の電解研磨の途中に、30%硝酸浸漬工程を入れ、最後に5%硝酸浸漬工程を行うことで最終的に得られる耐食性を向上させたものである。試料No.2における電解研磨加工により、試料No.1の工程と比較して優れた耐食性を得ることができる。
<Sample No. 2>
Sample No. The material of Sample No. 2 After performing the same shot processing as in the case of No. 1, The electropolishing in the case of No. 1 was performed in two parts. And the corrosion resistance finally obtained is improved by putting a 30% nitric acid dipping step in the middle of the electrolytic polishing twice and finally performing a 5% nitric acid dipping step. Sample No. As a result of the electropolishing process in FIG. As compared with the first step, excellent corrosion resistance can be obtained.

最初の38分電解研磨は、前工程であるショット加工の際に生じた短波長粗さを、電解研磨により低減するためのものである。続く30%硝酸浸漬工程は、最初の電解工程後に表面に析出するCuを除去するためのものであり、その後に行う2回目の2分間の電解研磨と5%硝酸浸漬工程にて、素地と比較してCr濃度が高い耐食性に優れた不働態皮膜をステンレス鋼の無垢表面に得る。   The first 38-minute electropolishing is intended to reduce the short wavelength roughness generated during the shot processing, which is the previous process, by electropolishing. The subsequent 30% nitric acid immersion process is for removing Cu deposited on the surface after the first electrolysis process, and is compared with the substrate in the second 2 minute electropolishing and 5% nitric acid immersion process performed after that. Thus, a passive film having a high Cr concentration and excellent corrosion resistance is obtained on the solid surface of stainless steel.

なお、試料No.2の上記ショット加工の後であって続く電解研磨加工前の状態における表面粗さは、上記短波長粗さ(Ra1)が0.28μm、上記長波長粗さ(Ra2)が4.29μmであった。最終的な上記短波長粗さ(Ra1)、短波長長さ(RSm1)および長波長粗さ(Ra2)の値は、後述する表2に示す通りである。   Sample No. The surface roughness after the above-described shot processing and before the subsequent electropolishing processing was 0.28 μm for the short wavelength roughness (Ra1) and 4.29 μm for the long wavelength roughness (Ra2). It was. The final short wavelength roughness (Ra1), short wavelength length (RSm1), and long wavelength roughness (Ra2) values are as shown in Table 2 described later.

<試料No.8〜21>
試料No.8〜21の材料は、試料No.1と同様に、酸洗仕上げ材にスチールショット加工を施し、つづいて電解研磨加工したものである。
上記ショット加工では、ステンレス鋼の無垢表面に、インペラー式のスチールショット機を用いて、JIS Z 0311:2004の定める高炭素鋳鋼ショットを表3に示すショット条件にて投射することにより、耐指紋視認性に必要な長波長粗さを表面に付与した。
<Sample No. 8-21>
Sample No. The materials of Nos. 8 to 21 are sample Nos. In the same manner as in No. 1, the steel pickling finish was subjected to steel shot processing, followed by electrolytic polishing.
In the above shot processing, a high carbon cast steel shot defined by JIS Z 0311: 2004 is projected on a solid surface of stainless steel under the shot conditions shown in Table 3 using an impeller-type steel shot machine. The surface was given a long wavelength roughness necessary for the properties.

試料No.8〜21の上記ショット加工の後であって続く電解研磨加工前の状態における表面状態は、表3に示すとおりである。
表1に示す様に、試料No.8〜14の電解研磨時間は20分、試料No.15〜21の電解研磨時間は40分である。
なお、試料No.8〜21の最終的な上記短波長粗さ(Ra1)、短波長長さ(RSm1)および長波長粗さ(Ra2)の値は、後述する表2に示す通りである。
Sample No. Table 3 shows the surface state in the state after the above-described shot processing of 8 to 21 and before the subsequent electropolishing processing.
As shown in Table 1, sample no. The electropolishing time of 8 to 14 was 20 minutes, and sample No. The electropolishing time for 15-21 is 40 minutes.
Sample No. The final short wavelength roughness (Ra1), short wavelength length (RSm1) and long wavelength roughness (Ra2) values of 8 to 21 are as shown in Table 2 described later.

<試料No.3>
試料No.3の材料は、試料No.1の場合と同様のショット加工を施した後、試料No.1の電解研磨加工における電解研磨の時間を短くし、電解研磨による短波長粗さの低減効果を抑えた比較例である。
<Sample No. 3>
Sample No. The material of Sample No. 3 After performing the same shot processing as in the case of No. 1, This is a comparative example in which the electropolishing time in the electropolishing process of 1 is shortened and the effect of reducing the short wavelength roughness by electropolishing is suppressed.

なお、試料No.3の上記ショット加工の後であって続く電解研磨加工前の状態における表面粗さは、上記短波長粗さ(Ra1)が0.19μm、上記短波長長さ(RSm1)が18.2、上記長波長粗さ(Ra2)が4.88μmであった。最終的な上記短波長粗さ(Ra1)および長波長粗さ(Ra2)の値は、後述する表2に示す通りである。   Sample No. The surface roughness in the state after the above shot processing of 3 and before the subsequent electropolishing processing is 0.19 μm for the short wavelength roughness (Ra1), 18.2 for the short wavelength length (RSm1), The long wavelength roughness (Ra2) was 4.88 μm. The final values of the short wavelength roughness (Ra1) and the long wavelength roughness (Ra2) are as shown in Table 2 described later.

次に評価条件について説明する。
上記試料No.1〜3および試料No.8〜21の試料の他に、市販の試料No.4〜7の4種類の試料を準備し、以下のように各評価試験を行った。
各評価試験においては、各種表面仕上げのSUS304ステンレス鋼板を長さ150mm×幅100mmに切断し、表面をアセトンを用いて洗浄した後に中性洗剤を用いて洗浄し、自然乾燥したものを、試験片としてそれぞれ用いた。尚、ヘアライン研磨仕上げや#400仕上げ等、表面の凹凸に方向性が存在するものは、試験片長さ方向が研磨方向となるように試験片を切断した。
粗さは株式会社小坂研究所製表面粗さ測定機SE3500を用いて測定した。
Next, evaluation conditions will be described.
Sample No. above. 1 to 3 and sample no. In addition to the samples 8 to 21, a commercially available sample No. Four types of samples 4 to 7 were prepared, and each evaluation test was performed as follows.
In each evaluation test, a SUS304 stainless steel plate with various surface finishes was cut into a length of 150 mm and a width of 100 mm, the surface was washed with acetone, washed with a neutral detergent, and naturally dried. Respectively. In addition, the test piece was cut so that the direction of the test piece length direction was the polishing direction for the surface irregularities such as hairline polishing finish and # 400 finish.
The roughness was measured using a surface roughness measuring device SE3500 manufactured by Kosaka Laboratory.

長波長粗さ(Ra2)の測定においては、先端半径2μmの探針を備える粗さ測定機を用い、長波長の粗さ成分を測定するべく、λc=0.8mm、λs=2.5μm、基準長さ0.8mm、評価長さ4.0mmにてJIS B 0601:2001に従い算術平均粗さを求め、長波長粗さとし、3ヶ所を測定した平均値を最終的な長波長粗さとした。   In the measurement of the long wavelength roughness (Ra2), λc = 0.8 mm, λs = 2.5 μm, in order to measure the long wavelength roughness component using a roughness measuring instrument equipped with a probe having a tip radius of 2 μm, Arithmetic average roughness was obtained according to JIS B 0601: 2001 at a reference length of 0.8 mm and an evaluation length of 4.0 mm, and was regarded as long wavelength roughness, and an average value measured at three locations was regarded as final long wavelength roughness.

短波長粗さ(Ra1)の測定においては、先端半径2μmの探針を備える粗さ測定機を用い、短波長の粗さ成分を測定するべく、λc=0.025mm、λs=2.5μm、基準長さ0.025mm、評価長さ0.125mmにてJIS B 0601:2001に従い算術平均粗さを求め、短波長粗さとし、3ヶ所を測定した平均値を最終的な短波長粗さとした。   In the measurement of the short wavelength roughness (Ra1), λc = 0.025 mm, λs = 2.5 μm, in order to measure the roughness component of the short wavelength using a roughness measuring instrument equipped with a probe having a tip radius of 2 μm, Arithmetic average roughness was determined according to JIS B 0601: 2001 at a reference length of 0.025 mm and an evaluation length of 0.125 mm, and was defined as short wavelength roughness, and an average value measured at three locations was defined as final short wavelength roughness.

短波長長さ(RSm1)の測定においては、先端半径2μmの探針を備える粗さ測定機を用い、短波長の粗さ成分を測定するべく、λc=0.025mm、λs=2.5μmにて粗さ曲線を求め、λcの5倍である評価長さ全長に対して、JIS B 0601:2001に従い、粗さ曲線要素の平均長さRSmを求め、3ヶ所を測定した平均値を最終的な短波長長さとした。
なお、粗さ曲線要素の長さを求めるために必要な最小高さの識別判定の際は、評価長さ全長における最大高さ10%未満の凹凸をノイズと判断し、最小長さの識別判定の際は、評価長さの1%未満の凹凸をノイズと判断した。
In the measurement of the short wavelength length (RSm1), a roughness measuring machine equipped with a probe having a tip radius of 2 μm is used, and in order to measure the short wavelength roughness component, λc = 0.025 mm and λs = 2.5 μm. The roughness curve is obtained, and the average length RSm of the roughness curve element is obtained according to JIS B 0601: 2001 with respect to the evaluation length full length which is 5 times λc, and the average value obtained by measuring three points is finally obtained. It was a short wavelength length.
When identifying and determining the minimum height necessary to obtain the length of the roughness curve element, the unevenness having a maximum height of less than 10% in the entire evaluation length is determined as noise, and the minimum length is identified and determined. In this case, unevenness of less than 1% of the evaluation length was judged as noise.

参考までに、従来技術との比較のために、先端半径2μmの探針を備える粗さ測定機を用いて特にλcを指示せず、JIS B 0633:2001の7.2に定めるルールに従い測定し、JIS B 0601:2001に従い算術平均粗さを求めた。
これらの結果は、表2に示す。
For reference, for comparison with the prior art, use a roughness measuring machine equipped with a probe having a tip radius of 2 μm and measure λc according to the rules defined in 7.2 of JIS B 0633: 2001. The arithmetic average roughness was determined according to JIS B 0601: 2001.
These results are shown in Table 2.

耐油汚れ付着性の評価試験は、質量比でオリーブ油61.5%、オレイン酸38%、オイルレッド0.5%を混合した人工汚染物質を用いて評価した。この人工汚染物質は、JIS L 1919:2006繊維製品の防汚性試験方法にて親油性人工汚染物質−2として掲載されているものと同様である。   The oil stain resistance evaluation test was performed using an artificial contaminant mixed with 61.5% olive oil, 38% oleic acid, and 0.5% oil red by mass ratio. This artificial pollutant is the same as that listed as oleophilic artificial pollutant-2 in the JIS L 1919: 2006 textile product antifouling test method.

耐油汚れ付着性の評価試験においては、試験片長手方向を上下方向とし、垂直に対し45°の角度で傾斜させて配置する。次に、傾斜配置された試験片の中央にマイクロピペッターを用いて人工汚染物質を1mL滴下し、滴下した人工汚染物質が試験片表面を垂れ落ちていくままに一分静置する。静置後において付着した人工汚染物質の幅をノギスを用いて目視にて下記三段階で判定した。   In the oil stain resistance evaluation test, the longitudinal direction of the test piece is the vertical direction, and is inclined at an angle of 45 ° with respect to the vertical. Next, 1 mL of artificial pollutant is dropped on the center of the inclined test piece using a micropipette, and the test piece is allowed to stand for one minute as the dropped artificial pollutant drips down the surface of the test piece. The width of the artificial pollutant adhered after standing was visually judged using the calipers in the following three stages.

評価基準は次のようにした。
○:残留した人工汚染の幅が5mm以内のもの。
△:残留した人工汚染の幅が5mm以上10mm以下のもの。
×:残留した人工汚染の幅が10mm以上のもの。
The evaluation criteria were as follows.
○: The width of the remaining artificial contamination is within 5 mm.
Δ: The width of the remaining artificial contamination is 5 mm or more and 10 mm or less.
X: The width of the remaining artificial contamination is 10 mm or more.

耐指紋視認性の評価試験は目視にて行った。人間の手の指を試験片に3秒間押し付け、その指紋痕の目立つ程度を目視にて観察し、指紋跡が全くわからないものを5点とし、指紋痕が明瞭に目立つものを1点として、その間を5点〜1点の5段階に分けて評点づけした。20名の評価者がつけた評点の平均を算出し、各試験片の最終的な評点(平均値)を得た。表2には、この最終的な評点に加え、4以上のものを◎、3以上4未満のものを○、2以上3未満のものを△、2未満のものを×と層別して表記した。   The evaluation test for anti-fingerprint visibility was performed visually. Press the finger of a human hand against the test piece for 3 seconds, visually observe the degree of the fingerprint trace that is noticeable, give 5 points where the fingerprint trace is not obvious at all, and 1 point that clearly shows the fingerprint trace. Were scored in 5 grades of 5 to 1 points. The average of the scores given by 20 evaluators was calculated, and the final score (average value) of each test piece was obtained. In Table 2, in addition to this final score, four or more samples are indicated by ◎, three or more and less than four by ◯, two or more by three and less by Δ, and less than two by ×.

表2より知られるごとく、実施例1(試料No.1)、実施例2(試料No.2)、および実施例8(試料No.8)〜実施例21(試料No.21)は、ステンレス鋼の表面に適切なショット加工を施した後に適切な電解研磨加工を施したものである。いずれも、λc輪郭曲線フィルタ=0.025mmとλs輪郭曲線フィルタ=2.5μmにて波長帯域が定義される粗さ曲線の算術平均粗さである短波長粗さ(Ra1)を、同粗さ曲線における粗さ曲線要素の平均長さである短波長長さ(RSm1)で除した値が0.0030以下であり、かつ、λc輪郭曲線フィルタ=0.8mmとλs輪郭曲線フィルタ=2.5μmにより波長帯域が定義される粗さ曲線の算術平均粗さである長波長粗さ(Ra2)が0.5μm以上(2.0μm以上)である。   As is known from Table 2, Example 1 (Sample No. 1), Example 2 (Sample No. 2), and Example 8 (Sample No. 8) to Example 21 (Sample No. 21) are made of stainless steel. The steel surface is subjected to appropriate shot polishing and then subjected to appropriate electropolishing. In either case, the short wavelength roughness (Ra1), which is the arithmetic mean roughness of the roughness curve in which the wavelength band is defined by λc contour curve filter = 0.025 mm and λs contour curve filter = 2.5 μm, is the same roughness. The value divided by the short wavelength length (RSm1) which is the average length of the roughness curve elements in the curve is 0.0030 or less, and the λc contour curve filter = 0.8 mm and the λs contour curve filter = 2.5 μm. The long wavelength roughness (Ra2), which is the arithmetic mean roughness of the roughness curve in which the wavelength band is defined, is 0.5 μm or more (2.0 μm or more).

この実施例1、2、8〜21の試験片の耐油汚れ付着性の評価試験においては、斜めに立てかけられた試験片の上に滴下された油汚れは、最初はステンレス鋼表面を濡らし、幅の広い帯状となり垂れ落ちてゆくが、次第に油汚れは垂れ落ちてゆき、帯状の汚れの幅は減少してゆき、1分後にはその幅は5mm以下となり、油汚れが付着し難い結果を示す。また、長波長粗さが生み出す鋼材表面の凹凸が光を乱反射するため、付着した指紋も目立ち難い。   In the evaluation test of the oil stain resistance of the test pieces of Examples 1, 2, and 8 to 21, the oil stain dropped on the test piece leaning diagonally first wets the stainless steel surface, and the width Although the oil stains hang down gradually, the width of the belt-like stains decreases, and after 1 minute, the width becomes 5 mm or less, indicating that the oil stains are difficult to adhere. . Moreover, since the irregularities on the surface of the steel material produced by the long wavelength roughness diffusely reflect light, the attached fingerprints are not noticeable.

比較例3(試料No.3)は、実施例1と同様にステンレス鋼にショット加工を施した後に電解研磨加工を施したものであるが、電解研磨時間が短くて不適切であり、ショット加工時に生じた短波長粗さの凹凸成分を十分に低減できていないものである。長波長粗さは3.0μm以上であり、付着した指紋は目立ち難いが、短波長粗さが0.09μmであり、短波長粗さを短波長長さで除した値においても0.0044と大きいため、油汚れの付着のし難さに劣るものである。   Comparative Example 3 (Sample No. 3) was obtained by subjecting stainless steel to shot machining as in Example 1 and then performing electropolishing, but the electropolishing time was short and inappropriate. The uneven component of the short wavelength roughness that is sometimes generated cannot be sufficiently reduced. The long wavelength roughness is 3.0 μm or more, and the attached fingerprint is not noticeable, but the short wavelength roughness is 0.09 μm, and the value obtained by dividing the short wavelength roughness by the short wavelength length is 0.0044. Since it is large, it is inferior to oil stains.

比較例3の試験片の耐油汚れ付着性の評価試験においては、斜めに立てかけられた試験片の上に滴下された油汚れは、ステンレス鋼表面を濡らし、幅の広い帯状となり垂れ落ちてゆくが、時間をおいても帯状の汚れの幅はあまり減少せず、1分後においてもその幅は10mm以上あり、油汚れが付着し易い結果を示す。なお、長波長粗さが生み出す鋼材表面の凹凸が光を乱反射するため、付着した指紋は目立ち難い。   In the evaluation test of oil stain resistance of the test piece of Comparative Example 3, the oil stain dripped on the test piece leaning diagonally wets the stainless steel surface and drips down into a wide band. The width of the strip-like dirt does not decrease so much even with time, and the width is 10 mm or more even after one minute, indicating that the oil dirt is likely to adhere. In addition, since the irregularities on the surface of the steel material produced by the long wavelength roughness diffusely reflect light, the attached fingerprint is not noticeable.

従来例4〜7は、一般的に用いられている表面仕上げを施した材料である。
従来例7に示す光輝焼鈍仕上げの試験片は、鏡面に近い表面状態の試験片である。そのため、短波長粗さは0.02μmと小さく、短波長粗さを短波長長さで除した値においても0.0019と小さく、油汚れが付着しがたく、食品製造装置等の衛生用途においては多く使用されている。しかしながら、長波長粗さも小さいため、付着した指紋は非常に目立ち、食品用ショーケース、食器、ホテル等の調理風景を見せる厨房の機器等の衛生用途と意匠用途を兼ね備えた用途においては、使用し難い欠点がある。
Conventional examples 4 to 7 are materials having a surface finish generally used.
The bright annealed test piece shown in Conventional Example 7 is a test piece having a surface state close to a mirror surface. Therefore, the short wavelength roughness is as small as 0.02 μm, the value obtained by dividing the short wavelength roughness by the short wavelength length is as small as 0.0019, and oil stains are difficult to adhere, and in hygiene applications such as food production equipment Is used a lot. However, since the long wavelength roughness is small, the attached fingerprint is very conspicuous, and it is used in applications that combine hygiene and design applications such as food showcases, tableware, and kitchen equipment that shows cooking scenes in hotels, etc. There are difficult drawbacks.

従来例5に示す#400研磨仕上げの試験片は、従来例7と同様に、短波長粗さ及び短波長粗さを短波長長さで除した値は本発明を満たすものの、長波長粗さは本発明を満たさず、油汚れは付着し難いが、付着した指紋は目立つ。
従来例4に示すヘアライン研磨仕上げの試験片および従来例6に示す2B仕上げの試験片は、短波長粗さ、短波長粗さを短波長長さで除した値、長波長粗さのいずれも本発明を満たさず、油汚れは付着し易く、付着した指紋も目立つ。
The test piece of # 400 polishing finish shown in Conventional Example 5 is similar to Conventional Example 7, although the short wavelength roughness and the value obtained by dividing the short wavelength roughness by the short wavelength length satisfy the present invention. Does not satisfy the present invention and oil stains are difficult to adhere, but the attached fingerprints are conspicuous.
The hairline polishing finish specimen shown in Conventional Example 4 and the 2B finish specimen shown in Conventional Example 6 are both short wavelength roughness, short wavelength roughness divided by short wavelength length, and long wavelength roughness. Not satisfying the present invention, oil stains are easily attached, and attached fingerprints are also conspicuous.

従来例4に示すヘアライン研磨仕上げは、従来例の中では最も長波長粗さが大きく、付着した指紋の目立ち難さ評価試験では評点2.9であり、従来例の中では最も付着した指紋が目立ち難い。そのため、意匠用途においては多用されている。しかし、研磨目に汚れが付着するため、食品製造装置等の衛生用途においてはあまり使用されていない。   The hairline polishing finish shown in Conventional Example 4 has the largest long-wavelength roughness among the conventional examples, and the score of 2.9 in the evaluation of the conspicuousness of the attached fingerprint, and the most adhered fingerprint in the conventional example. Inconspicuous. Therefore, it is frequently used in design applications. However, since dirt adheres to the polishing eye, it is not used much in hygiene applications such as food production equipment.

Figure 2010168655
Figure 2010168655

Figure 2010168655
Figure 2010168655

Figure 2010168655
Figure 2010168655

Claims (4)

塗装等の表面被覆層を形成していない無垢表面を有するステンレス鋼であって、
該無垢表面の肌粗さは、λc輪郭曲線フィルタ=0.025mmとλs輪郭曲線フィルタ=2.5μmにより波長帯域が定義される粗さ曲線の算術平均粗さである短波長粗さ(Ra1)を、同粗さ曲線における粗さ曲線要素の平均長さである短波長長さ(RSm1)で除した値が0.0030以下であり、
かつ、λc輪郭曲線フィルタ=0.8mmとλs輪郭曲線フィルタ=2.5μmにより波長帯域が定義される粗さ曲線の算術平均粗さである長波長粗さ(Ra2)が0.5μm以上であることを特徴とする耐油汚れ付着性及び耐指紋視認性に優れたステンレス鋼。
Stainless steel with a solid surface that does not have a surface coating layer such as paint,
The surface roughness of the solid surface is the short wavelength roughness (Ra1) which is the arithmetic mean roughness of the roughness curve in which the wavelength band is defined by λc contour curve filter = 0.025 mm and λs contour curve filter = 2.5 μm. Is divided by the short wavelength length (RSm1), which is the average length of the roughness curve elements in the roughness curve, is 0.0030 or less,
In addition, the long wavelength roughness (Ra2), which is the arithmetic mean roughness of the roughness curve in which the wavelength band is defined by λc contour curve filter = 0.8 mm and λs contour curve filter = 2.5 μm, is 0.5 μm or more. Stainless steel with excellent adhesion to oil stains and fingerprint resistance.
請求項1において、上記短波長粗さ(Ra1)が0.05μm以下であることを特徴とする耐油汚れ付着性及び耐指紋視認性に優れたステンレス鋼。   2. The stainless steel according to claim 1, wherein the short wavelength roughness (Ra1) is 0.05 [mu] m or less, and is excellent in oil stain resistance and fingerprint resistance. ステンレス鋼における塗装等の表面被覆層を形成していない無垢表面に、λc輪郭曲線フィルタ=0.8mmとλs輪郭曲線フィルタ=2.5μmにより波長帯域が定義される粗さ曲線の算術平均粗さである長波長粗さ(Ra2)が0.6μm以上となる肌粗さが得られるようにショット加工を行い、
その後、λc輪郭曲線フィルタ=0.025mmとλs輪郭曲線フィルタ=2.5μmにより波長帯域が定義される粗さ曲線の算術平均粗さである短波長粗さ(Ra1)を、同粗さ曲線における粗さ曲線要素の平均長さである短波長長さ(RSm1)で除した値が0.0030以下となる肌粗さが得られるまで電解研磨加工を行うことを特徴とする耐油汚れ付着性及び耐指紋視認性に優れたステンレス鋼の製造方法。
Arithmetic average roughness of a roughness curve in which a wavelength band is defined by a λc contour curve filter = 0.8 mm and a λs contour curve filter = 2.5 μm on a solid surface on which a surface coating layer such as paint is not formed in stainless steel The long wavelength roughness (Ra2) is shot processing so as to obtain a skin roughness of 0.6 μm or more,
Thereafter, the short wavelength roughness (Ra1), which is the arithmetic mean roughness of the roughness curve in which the wavelength band is defined by λc contour curve filter = 0.025 mm and λs contour curve filter = 2.5 μm, Oil stain resistance, characterized in that electropolishing is performed until a skin roughness is obtained in which the value divided by the short wavelength length (RSm1), which is the average length of the roughness curve elements, is 0.0030 or less, and Stainless steel manufacturing method with excellent fingerprint visibility.
請求項3において、上記ショット加工は、上記電解研磨加工は、上記短波長粗さ(Ra1)が0.05μm以下となる肌粗さが得られるまで行うことを特徴とする耐油汚れ付着性及び耐指紋視認性に優れたステンレス鋼の製造方法。   In Claim 3, the shot processing is performed until the skin roughness with the short wavelength roughness (Ra1) of 0.05 μm or less is obtained. Stainless steel manufacturing method with excellent fingerprint visibility.
JP2009290119A 2008-12-25 2009-12-22 Stainless steel with excellent resistance to oil stains and fingerprint visibility Active JP5402610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009290119A JP5402610B2 (en) 2008-12-25 2009-12-22 Stainless steel with excellent resistance to oil stains and fingerprint visibility

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008329431 2008-12-25
JP2008329431 2008-12-25
JP2009290119A JP5402610B2 (en) 2008-12-25 2009-12-22 Stainless steel with excellent resistance to oil stains and fingerprint visibility

Publications (2)

Publication Number Publication Date
JP2010168655A true JP2010168655A (en) 2010-08-05
JP5402610B2 JP5402610B2 (en) 2014-01-29

Family

ID=42701059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009290119A Active JP5402610B2 (en) 2008-12-25 2009-12-22 Stainless steel with excellent resistance to oil stains and fingerprint visibility

Country Status (1)

Country Link
JP (1) JP5402610B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061689A1 (en) * 2011-10-24 2013-05-02 日本写真印刷株式会社 Hairline-like decorative molded article providing sensation unique to hairline processing and providing fingerprint resistance
JP5656138B1 (en) * 2014-05-08 2015-01-21 株式会社原田伸銅所 Phosphor bronze alloy having antibacterial properties and article using the same
JP5860991B1 (en) * 2015-07-21 2016-02-16 新家工業株式会社 Method for producing stainless steel-containing member
JP2019118927A (en) * 2017-12-28 2019-07-22 日本製鉄株式会社 Titanium material and apparatus
JP2021000702A (en) * 2019-06-22 2021-01-07 株式会社サーフテクノロジー Antibacterial surface treatment method and antibacterial member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118301A (en) * 1987-10-30 1989-05-10 Kawasaki Steel Corp Manufacture of dull finished austenitic stainless steel sheet having good finger mark stain resistance
JPH06335705A (en) * 1993-05-26 1994-12-06 Kawasaki Steel Corp Dull finished metallic sheet which is hard to be contaminated by fingerprint
JPH079007A (en) * 1993-06-22 1995-01-13 Kawasaki Steel Corp Dull finish steel plate rarely showing finger print
JPH10259418A (en) * 1997-03-21 1998-09-29 Nippon Steel Corp Grinding finished stainless steel sheet excellent in strain removability and its production
JPH11226606A (en) * 1998-02-12 1999-08-24 Nippon Steel Corp Metal surface on which finger print is hard to be noticeable
JP2002361303A (en) * 2001-06-07 2002-12-17 Sumitomo Metal Ind Ltd Stainless steel plate excellent in contamination resistance and corrosion resistance, and manufacturing method therefor
JP2008274386A (en) * 2007-05-07 2008-11-13 Aichi Steel Works Ltd Surface-treated stainless steel excellent in design characteristics and corrosion resistance and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118301A (en) * 1987-10-30 1989-05-10 Kawasaki Steel Corp Manufacture of dull finished austenitic stainless steel sheet having good finger mark stain resistance
JPH06335705A (en) * 1993-05-26 1994-12-06 Kawasaki Steel Corp Dull finished metallic sheet which is hard to be contaminated by fingerprint
JPH079007A (en) * 1993-06-22 1995-01-13 Kawasaki Steel Corp Dull finish steel plate rarely showing finger print
JPH10259418A (en) * 1997-03-21 1998-09-29 Nippon Steel Corp Grinding finished stainless steel sheet excellent in strain removability and its production
JPH11226606A (en) * 1998-02-12 1999-08-24 Nippon Steel Corp Metal surface on which finger print is hard to be noticeable
JP2002361303A (en) * 2001-06-07 2002-12-17 Sumitomo Metal Ind Ltd Stainless steel plate excellent in contamination resistance and corrosion resistance, and manufacturing method therefor
JP2008274386A (en) * 2007-05-07 2008-11-13 Aichi Steel Works Ltd Surface-treated stainless steel excellent in design characteristics and corrosion resistance and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061689A1 (en) * 2011-10-24 2013-05-02 日本写真印刷株式会社 Hairline-like decorative molded article providing sensation unique to hairline processing and providing fingerprint resistance
JP5656138B1 (en) * 2014-05-08 2015-01-21 株式会社原田伸銅所 Phosphor bronze alloy having antibacterial properties and article using the same
JP5860991B1 (en) * 2015-07-21 2016-02-16 新家工業株式会社 Method for producing stainless steel-containing member
US10030316B2 (en) 2015-07-21 2018-07-24 Araya Industrial Co., Ltd. Production method for stainless steel containing member
JP2019118927A (en) * 2017-12-28 2019-07-22 日本製鉄株式会社 Titanium material and apparatus
JP2021000702A (en) * 2019-06-22 2021-01-07 株式会社サーフテクノロジー Antibacterial surface treatment method and antibacterial member

Also Published As

Publication number Publication date
JP5402610B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
KR101459984B1 (en) Stainless steel plate and manufacturing method thereof
JP5402610B2 (en) Stainless steel with excellent resistance to oil stains and fingerprint visibility
RU2563611C2 (en) Method of making article of stainless steel
JP4983379B2 (en) Surface-treated stainless steel with excellent design and corrosion resistance and manufacturing method thereof
KR20170121282A (en) Austenitic stainless steel sheet, cover member and a method for manufacturing austenitic stainless steel sheet
US20070009755A1 (en) Faux stainless steel and method of making
CN107427871A (en) The manufacture method of ferrite series stainless steel plate, cover and ferrite series stainless steel plate
JP3587180B2 (en) Stainless steel plate with excellent stain resistance and corrosion resistance and its manufacturing method.
JP4226131B2 (en) Manufacturing method of stainless steel strip with excellent anti-contamination, cleaning and anti-glare properties
US20230081814A1 (en) Sheet Metal Packaging Product with Textured Surface And Method of Producing Such a Sheet Metal Packaging Product
JP2013208638A (en) Ferritic stainless steel having excellent washability and method for producing the same
JP2000015304A (en) Titanium plate excellent in glare shielding property and production thereof and work roll used to this production
DK2801443T3 (en) Treatment medium for the treatment of surfaces in stainless steel or other metal surfaces, method for treatment of surface of stainless steel or other metal surfaces using such treatment medium and ...
JP2018165394A (en) Stainless steel plate excellent in wipeability
JP3233056B2 (en) Dull finishing work roll, surface treatment method thereof, and method for producing stainless steel sheet excellent in mattability
JP7448859B2 (en) titanium material
WO2017061215A1 (en) Stainless steel pipe with excellent corrosion resistance and manufacturing method thereof
JP6108497B1 (en) Stainless steel pipe with excellent corrosion resistance
WO2017061217A1 (en) Stainless steel pipe with excellent corrosion resistance and manufacturing method thereof
JP2005246432A (en) Method for manufacturing cold-rolled steel sheet and rolling roll used for the same
CN110000212B (en) Method for determining treatment of stainless cold-rolled steel sheet and method for treatment
JP6722489B2 (en) Stainless steel processed product excellent in corrosion resistance and method for manufacturing the same
US20200270719A1 (en) Reduction and removal of process oxides on stainless steel
JP2004130352A (en) Thin steel sheet for working less prone to cause star mark
JPH06136600A (en) Method for roughening stainless steel surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250