JP2010167362A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2010167362A5 JP2010167362A5 JP2009011976A JP2009011976A JP2010167362A5 JP 2010167362 A5 JP2010167362 A5 JP 2010167362A5 JP 2009011976 A JP2009011976 A JP 2009011976A JP 2009011976 A JP2009011976 A JP 2009011976A JP 2010167362 A5 JP2010167362 A5 JP 2010167362A5
- Authority
- JP
- Japan
- Prior art keywords
- stock solution
- floc
- housing
- supply pipe
- aggregation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011550 stock solution Substances 0.000 claims description 43
- 230000002776 aggregation Effects 0.000 claims description 25
- 238000004220 aggregation Methods 0.000 claims description 21
- 238000003384 imaging method Methods 0.000 claims description 20
- 238000002347 injection Methods 0.000 claims description 18
- 239000007924 injection Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 238000010790 dilution Methods 0.000 claims description 10
- 239000010802 sludge Substances 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 6
- 230000015271 coagulation Effects 0.000 claims description 6
- 238000005345 coagulation Methods 0.000 claims description 6
- 230000001808 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 5
- 238000005189 flocculation Methods 0.000 claims description 4
- 230000016615 flocculation Effects 0.000 claims description 4
- 230000000007 visual effect Effects 0.000 claims description 4
- 238000011109 contamination Methods 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- 238000003756 stirring Methods 0.000 claims 1
- 230000001112 coagulant Effects 0.000 description 7
- 239000000701 coagulant Substances 0.000 description 7
- 238000011179 visual inspection Methods 0.000 description 5
- 238000005054 agglomeration Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000004931 aggregating Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 238000009114 investigational therapy Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000000875 corresponding Effects 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Description
本発明は原液中に含まれるフロックの凝集状態を検視する検視装置、汚濁凝集処理装置及び汚濁凝集処理システムに関し、特に凝集フロックを高精度に測定する技術に関する。 The present invention relates to a visual inspection device , a pollution aggregation treatment device, and a pollution aggregation treatment system that visually examine the aggregation state of flocs contained in a stock solution, and more particularly to a technique for measuring aggregation flocs with high accuracy.
上記目的を達成するために、本発明の一様態は、(イ)凝集フロックを含む原液が原液供給管から流入する四角柱状の筐体と、(ロ)筐体の側面のうちのいずれか1つの面に対して一体的に設けられ、筐体の内部を外部から視認可能な検視窓と、(ハ)筐体と原液供給管とを結合し、筐体と原液供給管との間で原液を流入出させる結合管と、(ニ)検視窓を含む少なくとも2つ以上の筐体の側面に接触し、筐体の軸方向に往復運動が可能な直進スクレーパーと、(ホ)直進スクレーパーを駆動させる駆動装置とを備える検視装置であることを要旨とする。 In order to achieve the above object, one embodiment of the present invention is any one of (a) a rectangular columnar housing in which a stock solution containing agglomerated floc flows from a stock solution supply pipe and (b) a side surface of the housing. An observation window that is integrally provided with respect to one surface and allows the inside of the housing to be visually recognized from the outside; and (c) the housing and the stock solution supply pipe are coupled, and the stock solution is provided between the housing and the stock solution supply pipe. (D) a linearly moving scraper that makes contact with the side surfaces of at least two or more cases including a viewing window and can reciprocate in the axial direction of the case; and (e) drives the linearly moving scraper. The gist of the invention is that it is an ophthalmologic apparatus including a driving device.
(第1の実施の形態)
<検視装置の構成>
本発明の第1の実施の形態に係る検視装置1は、図1に示すように、凝集フロックを含む原液が原液供給管16から流入する四角柱状の筐体10と、筐体10の側面のうちのいずれか1つの面に対して一体的に設けられ、筐体10の内部を外部から視認可能な検視窓11と、筐体10と原液供給管16とを結合し、筐体10と原液供給管16との間で原液を流入出させる結合管12と、検視窓を含む少なくとも2つ以上の筐体10の側面に接触し、筐体10の軸方向に往復運動が可能な直進スクレーパー13と、直進スクレーパー13を駆動させる駆動装置14とを備える。また、本発明の第1の実施の形態に係る検視装置1は、筐体10内部に希釈水を注入する注水管15を更に備える。
(First embodiment)
<Configuration of the autopsy device>
As shown in FIG. 1, the ophthalmologic apparatus 1 according to the first exemplary embodiment of the present invention includes a rectangular columnar housing 10 into which a stock solution containing an agglomerate flock flows from a stock solution supply pipe 16, and a side surface of the housing 10. provided integrally with one of the surfaces of the inner and necropsy window 11 inside the external visible of the housing 10, by combining the casing 10 and the solution feed pipe 16, the housing 10 and the stock solution A straight pipe scraper 13 that contacts the side face of at least two or more housings 10 including a viewing window and can reciprocate in the axial direction of the housing 10. And a drive device 14 for driving the straight-ahead scraper 13. The ophthalmologic apparatus 1 according to the first embodiment of the present invention further includes a water injection pipe 15 that injects dilution water into the housing 10.
検視窓11は、筐体10の4つの側面のうちいずれか1つの面に筐体10内部が密閉状態になるように機密性を保った状態で一体的に設けられている。検視窓11は、撮像装置31へ筐体10内部を撮像可能とするため、筐体10の内部が外部より視認可能なように、無色透明なガラスまたはプラスチック等の透明性の高い材質の材料が使用可能である。透明性が高ければ高いほど、凝集フロックに対する高精度の撮像が可能となるためである。また、検視窓11は、筐体10と同様に、耐久性及び耐磨耗性等を備えることが好ましい。また、図1(a)に示す検視装置1は、原液供給管16の紙面下方、水平方向横及び斜め方向等、原液供給管16の周囲の任意の位置に配設可能である。ただし、原液供給管16の下方に配設すると、凝集フロックが検視装置1に流入し易いというメリットがある。 Postmortem window 11 is provided integrally with the four states which the internal housing 10 to any one surface maintaining confidentiality so that the sealed state of the side surface of the housing 10. The inspection window 11 is made of a highly transparent material such as colorless and transparent glass or plastic so that the inside of the housing 10 can be imaged from the outside so that the inside of the housing 10 can be imaged by the imaging device 31. It can be used. This is because the higher the transparency, the higher the accuracy of imaging with respect to the aggregated floc. Further, similarly to the housing 10, the viewing window 11 preferably has durability and wear resistance. Further, the visual inspection apparatus 1 shown in FIG. 1A can be disposed at any position around the stock solution supply pipe 16 such as below the paper surface of the stock solution supply tube 16, horizontally, and obliquely. However, the arrangement below the undiluted solution supply pipe 16 has an advantage that the aggregated flocs easily flow into the optometry apparatus 1.
結合管12は、筐体10と後述する原液供給管16とを結合し、原液供給管16の内部を流れる原液を筐体10内部へ導く。結合管12は、検視装置1の配設位置を中心に、筐体10と原液供給管16の上流側及び下流側とを結合する。 The coupling pipe 12 couples the housing 10 to a later-described stock solution supply pipe 16 and guides the stock solution flowing through the stock solution supply pipe 16 to the inside of the housing 10. Coupling tube 12 around the arrangement position of the autopsy device 1, for coupling the upstream and downstream side of the casing 10 and the solution feed pipe 16.
駆動装置14は、筐体10の注水管15が設けられた底辺に対向する底辺を通して、直進スクレーパー13の中心に取り付けられ、直進スクレーパー13を筐体10の軸に平行に直進させるよう駆動する。駆動装置14は、ピストン運動を実現するシリンダー(エアシリンダー)及びピストンによる構成が可能であり、空気圧又は電動機等によって一定時間間隔で往復運動を実行し、そこで発生した力を直進スクレーパー13に伝達することが可能である。 Drive 14, through bottom facing the bottom of water injection pipe 15 of the housing 10 is provided, attached to the center of the rectilinear scraper 13, driven so as to be parallel to straight straight scraper 13 to the axis of the housing 10 . The drive device 14 can be constituted by a cylinder (air cylinder) that realizes a piston motion and a piston. The drive device 14 performs a reciprocating motion at regular time intervals by air pressure, an electric motor, or the like, and transmits the generated force to the rectilinear scraper 13. It is possible.
また、検視装置1内へ流入する原液及び希釈水の流量は図示しない流量計で測定される。検視装置1内における凝集フロックの撮像装置31による精度の高い撮像を可能にするため、検視装置1内における凝集フロックの密度は一定の範囲に制御する必要がある。そのため、検視装置1内に流入する原液の流量に応じて注水管15から流入する希釈水の流量も制御する必要がある。すなわち、原液の流量に対して適切な希釈水の流量が1倍だったとすると、検視装置1内に流入する原液の流量が2倍に増えれば、希釈水も2倍に増やす必要がある。 Moreover, the flow volume of the undiluted | stock solution and dilution water which flow in into the visual examination apparatus 1 is measured with the flowmeter which is not shown in figure. In order to enable high-accuracy imaging with the imaging device 31 of the aggregation floc in the autopsy device 1, the density of the aggregation floc in the autopsy device 1 needs to be controlled within a certain range. Therefore, the flow rate of the dilution water flowing from the water injection pipe 15 in accordance with the flow rate of the stock solution flowing into the coroner apparatus 1 also needs to be controlled. That is, assuming that the flow rate of the dilution water appropriate for the flow rate of the stock solution is 1 time, if the flow rate of the stock solution flowing into the optometry apparatus 1 is doubled, the dilution water needs to be doubled.
なお、撮像装置31は、図1に示す検視装置1の直進スクレーパー13が第1の臨界点41又は第1aの臨界点41aに達したときに第1の空間17を撮像する。また、原液供給管16には凝集した懸濁物質の凝集フロックの状況を撮像装置31により撮像可能とする検視装置1が設けられる。検視装置1の筐体10に一体的に設けられた検視窓11から30〜40cm離れた位置に撮像装置31が設置される。
Note that the imaging device 31 images the first space 17 when the linearly-moving scraper 13 of the visual inspection device 1 illustrated in FIG. 1 reaches the first critical point 41 or the first critical point 41a. In addition, the stock solution supply pipe 16 is provided with a visual inspection device 1 that enables the imaging device 31 to image the state of the aggregated flocs of the aggregated suspended solids. The imaging device 31 is installed at a
凝集剤供給量の変更後、汚濁凝集処理システム3全体に渡る凝集剤供給の安定のため、2〜3分程度待機して、撮像装置31は再び撮像を実行する。このようにして算出した単位凝集フロックの当たりの平均面積と予め記録した基準面積とを比較し、比較結果に応じて制御装置34は凝集剤注入率を変動させ、原液中の凝集フロックに対する凝集剤注入率の制御を実行する。原液中の凝集フロックの濃度が変動するに従い、同率の凝集剤の添加でも凝集フロックの数が変わるため、懸濁物質の凝集状態は凝集フロックの面積で評価するのが好ましい。凝集フロックの面積で解析すれば、より正確に配管中に含まれる凝集フロックの大きさを2値化させることが可能となる。原液供給量を一定で運転するときにも、単位凝集フロック当たりの平均面積と基準面積を比較し、比較結果に応じて凝集剤注入率を変動させる。また、凝集剤比例注入および攪拌機回転によるコントロール方法は、凝集剤注入比率を規定量増減させ、所定の速度で撹拌する攪拌機の回転数を変動させる。凝集剤注入率と攪拌機の回転数が、上限値あるいは下限値に達した時には、異常信号を出し、技術者による状況の調査を要求する。
After the change of the coagulant supply amount, the imaging device 31 executes the imaging again after waiting for about 2 to 3 minutes in order to stabilize the coagulant supply over the entire pollution coagulation treatment system 3. The average area per unit agglomerated floc calculated in this way is compared with a reference area recorded in advance, and the
さらに、本発明の第1の実施の形態に係る汚濁凝集処理システムは、図2に示すように、攪拌機21を配設し懸濁物質を含有する原液を貯蔵する汚泥貯留槽23と、原液供給ポンプ25で圧入管26から槽底に一定量の原液を圧入する密閉状態の凝集混和槽20と、攪拌機21を配設し、凝集剤を貯留する高分子凝集剤溶解槽27とを備える。
また、凝集剤注入率の上限値及び下限値は予め設定されており、本発明の第1の実施の形態においては、0.3〜1.0%、より好ましくは、0.5〜0.7%である。凝集剤供給ポンプ28の回転数が上限値あるいは下限値に到達した時には、図示しない異常信号装置が警報等の異常信号を出力する。原液の泥の質以外の要素、または全く異なった液の混入などの要素が影響を及ぼし、調整不能となっていることが考えられ、技術者による原因の調査を要求する。なお、攪拌機21の回転数の上限値及び下限値の設定は、凝集混和槽20の大きさ、原液流量及び濃度等により異なり適宜設定される。演算装置32の凝集フロックの平均面積の演算値に基づき、制御装置34は凝集フロックの平均面積が適正値になるよう、凝集剤供給ポンプ28からの注入率と攪拌機21の回転数を制御する。凝集剤注入率を変化させた場合、凝集フロックの粒径が変化するまでの時間を考慮する。本発明の第1の実施の形態では、2〜3分後に再度、撮像装置31で撮像するが、凝集混和槽20の容量により待機時間は変化する。
Furthermore, as shown in FIG. 2, the pollution coagulation treatment system according to the first embodiment of the present invention includes a
In addition, the upper limit value and the lower limit value of the flocculant injection rate are set in advance, and in the first embodiment of the present invention, 0.3 to 1.0%, more preferably 0.5 to 0.00. 7%. When the rotational speed of the coagulant supply pump 28 reaches the upper limit value or the lower limit value, an abnormal signal device (not shown) outputs an abnormal signal such as an alarm. Elements other than the quality of the mud stock or have an element influence of completely different liquid contamination, it is believed that a non-adjustable, and requests an investigation of the cause by the technician. In addition, the setting of the upper limit value and the lower limit value of the rotation speed of the stirrer 21 varies depending on the size of the agglomeration mixing tank 20, the stock solution flow rate, the concentration, and the like, and is set as appropriate. Based on the calculated value of the average area of the coagulation floc of the
凝集混和槽20に配設され、可変速駆動機29に連結した攪拌機21は、原液と高分子凝集剤を予め設定した回転数で撹拌する。本発明の第1の実施の形態においては、40rpmである。制御装置34は、凝集フロックの平均解析面積に対応して、凝集混和槽20に設置した攪拌機21の可変速駆動機29の回転数を段階的に切替える規定値が3〜5rpmに設定されている。制御装置34は凝集剤供給ポンプ28からの凝集剤の注入率を制御すると共に、平均解析面積と基準面積を比較して、攪拌機21の回転数を制御する。本発明の第1の実施の形態においては、解析面積が基準面積より大きい場合は、攪拌機21の回転数を3〜5rpm、規定値より増速させる。解析面積が基準面積より小さい場合は、攪拌機21の回転数を3〜5rpm、規定値より減速させる。
A stirrer 21 disposed in the agglomeration mixing tank 20 and connected to the
(ハ)ステップS104において、撮像装置31は、検視装置1中の懸濁物質である凝集フロックの浮遊する原液を15〜30秒間に1回の頻度で撮像する。撮像して得られた輝度信号はデジタル信号に変換され、電気信号としての輝度情報を画像として図示しない記憶装置に記録されてもよく、演算装置32に送信してもよい。ステップS105において、撮像装置31から送信される凝集フロックの画像輝度情報を、演算装置32は輝度レベルに応じて2値化する。
(C) In step S104, the imaging device 31 images the stock solution in which the aggregated floc, which is a suspended substance in the ophthalmologic apparatus 1, floats, at a frequency of once every 15 to 30 seconds. Luminance signal resulting et al is by imaging is converted into a digital signal may be recorded luminance information as an electric signal storage device (not shown) as an image, it may be sent to the
また、直進スクレーパー13が第1の臨界点41又は第1aの臨界点41aから第2の臨界点42又は第2aの臨界点42aまでの間を往復する毎に新たな凝集フロックを吸引することで、1往復毎に連続的な検視が可能である。さらに、直進スクレーパー13を検視窓11の検視装置1内部及び筐体10内部に接触させて直進させると、内壁面に付着した汚泥物質を払拭することが可能である。さらにまた、注水管15により希釈水を注水可能とすることで、凝集フロックの様々(広範囲)な濃度における検視の環境を提供することができる。 Further, each time the linearly-moving scraper 13 reciprocates between the first critical point 41 or the 1a critical point 41a and the second critical point 42 or the second a critical point 42a, a new flocs floc is sucked. , Ru Oh enables continuous necropsy per round trip. Further, when the straight scraper 13 is brought into contact with the inside of the inspection apparatus 1 and the inside of the housing 10 of the inspection window 11 to move straight, it is possible to wipe off the sludge substance adhering to the inner wall surface. Furthermore, by making it possible to inject dilution water through the water injection pipe 15, it is possible to provide an environment for visual inspection at various (wide range) concentrations of the aggregated floc.
希釈水の流量は、検視装置1内へ流入する原液と共に図示しない流量計で測定されるようになっている。検視装置1内における凝集フロックに対して撮像装置31による精度の高い撮像を可能にする目的で、検視装置1内における凝集フロックの密度を一定の範囲に制御するために(例えば、密度を所定の割合い以下にするために)、検視装置1内に流入する原液の流量に応じて注水管15から流入する希釈水の流量も制御することができる。例えば、原液の流量に対して適切な希釈水の流量を線形の比例関係が成り立つように制御が可能である。 The flow rate of the dilution water is measured with a flow meter (not shown) together with the stock solution flowing into the optometry apparatus 1. For the purpose of enabling high-precision imaging by the imaging device 31 with respect to the aggregation floc in the visual examination apparatus 1, in order to control the density of the aggregation floc in the visual examination apparatus 1 within a certain range (for example, the density is set to a predetermined value). to the following proportions physician), the flow rate of the dilution water flowing from the water injection pipe 15 in accordance with the flow rate of the stock solution flowing into the coroner device 1 can also be controlled. For example, it is possible to control the flow rate of the appropriate dilution water with respect to the flow rate of the stock solution so that a linear proportional relationship is established.
検視装置1がこれらの環境を提供することで、撮像装置31は高精度の凝集フロックの撮像を行うことが可能である。それによって、汚泥凝集処理システムは高精度の凝集フロックの形成の制御を行うことが可能となる。 By providing these environments, the imaging device 1 can perform high-accuracy aggregation floc imaging. Thereby, the sludge aggregation treatment system can control the formation of the aggregation flocs with high accuracy.
1…検視装置
2…汚濁凝集処理装置
3…汚濁凝集処理システム
10…筐体
11…検視窓
12…結合管
13…直進スクレーパー
14…駆動装置
15…注水管
16…原液供給管
17…第1の空間
18…第2の空間
19…照明
20…凝集混和槽
21…攪拌機
22…汚泥脱水機
23…汚泥貯留槽
24…薬品注入制御器
25…原液供給ポンプ
26…圧入管
27…高分子凝集剤溶解槽
28…凝集剤供給ポンプ
29…可変速駆動機
30…スクリュープレス
31…撮像装置
32…演算装置
33…比較装置
34…制御装置
41…第1の臨界点
41a…第1aの臨界点
42…第2の臨界点
42a…第2aの臨界点
43…逆止弁
44…取り付けプレート部
45…円形弁部
1 ...
DESCRIPTION OF SYMBOLS 1 ... casing 11 ... inspection window 12 ... coupling pipe 13 ... straight advance scraper 14 ... drive device 15 ... water injection pipe 16 ... undiluted solution supply pipe 17 ... 1st space 18 ... 2nd space 19 ... illumination 20 ... coagulation mixing tank DESCRIPTION OF SYMBOLS 21 ... Stirrer 22 ...
Claims (5)
前記筐体の側面のうちのいずれか1つの面に対して一体的に設けられ、前記筐体の内部を外部から視認可能な検視窓と、
前記筐体と前記原液供給管とを結合し、前記筐体と前記原液供給管との間で前記原液を流入出させる結合管と、
前記検視窓を含む少なくとも2つ以上の前記筐体の側面に接触し、前記筐体の軸方向に往復運動が可能な直進スクレーパーと、
前記直進スクレーパーを駆動させる駆動装置
とを備えることを特徴とする検視装置。 A rectangular columnar housing in which a stock solution containing agglomerated floc flows from the stock solution supply pipe;
A viewing window provided integrally with any one of the side surfaces of the housing, and capable of visually recognizing the inside of the housing from the outside;
A coupling pipe for coupling the casing and the stock solution supply pipe, and allowing the stock solution to flow in and out between the casing and the stock solution supply pipe;
A rectilinear scraper that contacts at least two side surfaces of the casing including the viewing window and is capable of reciprocating in the axial direction of the casing;
And a driving device for driving the linearly moving scraper.
前記筐体内部に希釈水を注入する注水管を更に備えることを特徴とする検視装置。 The ophthalmologic apparatus according to claim 1,
It said analyzing visual device you further comprising a water injection tube to inject dilution water into the interior housing.
前記直進スクレーパーは、前記往復運動をする際、前記凝集フロックを含む原液が前記筐体内部を一方向に流通させる逆止弁を備えることを特徴とする検視装置。 The ophthalmologic apparatus according to claim 1 or 2,
The rectilinear scraper, when the reciprocating test vision device you further comprising a check valve stock including the floc is circulating inside the housing in one direction.
前記凝集フロックを含む原液をタンク圧で前記汚泥脱水機に供給する前記原液供給管と、
請求項1乃至請求項3のいずれか1項に記載の検視装置
とを備えることを特徴とする汚濁凝集処理装置。 Aggregation flocs of suspended substances contained in the stock solution are formed by stirring the stock solution to which the flocculant in the coagulation mixing tank has been added, and a sludge dehydrator is formed from the stock solution supplied from the stock solution supply pipe. And a flocculation treatment apparatus for separating and discharging the flocculation floc,
The stock solution supply pipe for supplying the stock solution containing the aggregated floc to the sludge dehydrator at a tank pressure;
請 Motomeko 1 to contamination aggregation processing device; and a necropsy device according to any one of claims 3.
前記検視窓を通して前記検視装置の内部を撮像し、画像として出力する撮像装置と、
前記画像を2値化して単位凝集フロック数当りの平均解析面積を算出する演算装置と、
前記平均解析面積と予め設定した基準面積とを比較し、比較結果に応じた制御信号を出力する比較装置と、
前記制御信号の特性に応じて、凝集剤供給ポンプを制御する制御装置
とを備えることを特徴とする汚濁凝集処理システム。 The pollution aggregation processing apparatus according to claim 4,
An imaging device that images the inside of the autosteresis device through the autopsy window and outputs the image as an image;
An arithmetic unit that binarizes the image and calculates an average analysis area per unit aggregation floc number;
A comparison device that compares the average analysis area with a preset reference area and outputs a control signal according to the comparison result;
And a control device that controls the flocculant supply pump according to the characteristics of the control signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009011976A JP4966985B2 (en) | 2009-01-22 | 2009-01-22 | Inspection apparatus, pollution aggregation processing apparatus, and pollution aggregation processing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009011976A JP4966985B2 (en) | 2009-01-22 | 2009-01-22 | Inspection apparatus, pollution aggregation processing apparatus, and pollution aggregation processing system |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2010167362A JP2010167362A (en) | 2010-08-05 |
JP2010167362A5 true JP2010167362A5 (en) | 2011-03-10 |
JP4966985B2 JP4966985B2 (en) | 2012-07-04 |
Family
ID=42699999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009011976A Active JP4966985B2 (en) | 2009-01-22 | 2009-01-22 | Inspection apparatus, pollution aggregation processing apparatus, and pollution aggregation processing system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4966985B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5143091B2 (en) * | 2009-06-25 | 2013-02-13 | 株式会社クボタ | Aggregation tank monitoring device |
JP6381472B2 (en) * | 2015-03-31 | 2018-08-29 | 株式会社クボタ | Aggregation state monitoring device |
JP6774977B2 (en) * | 2018-03-20 | 2020-10-28 | 月島機械株式会社 | Coagulant addition amount control device, sludge concentration system, coagulant addition amount control method |
JP6726696B2 (en) * | 2018-03-20 | 2020-07-22 | 月島機械株式会社 | Diluted sludge imaging system, flocculant addition amount control system, sludge concentration system, diluted sludge imaging method |
JP7361521B2 (en) * | 2019-07-29 | 2023-10-16 | メタウォーター株式会社 | Aggregate imaging device |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61111111A (en) * | 1984-11-02 | 1986-05-29 | Hitachi Ltd | Flocculation controller |
JPS61154554A (en) * | 1984-12-26 | 1986-07-14 | 松下電器産業株式会社 | Sanitary washer |
JPS6345000A (en) * | 1986-04-02 | 1988-02-25 | Masataka Sugawara | Device for flocculating sludge of water treatment |
JP3131661B2 (en) * | 1992-07-07 | 2001-02-05 | 株式会社日立製作所 | Water pollution monitoring apparatus and method |
JP3676397B2 (en) * | 1994-07-28 | 2005-07-27 | 富士エンジニアリング株式会社 | Waste water treatment equipment in landfills |
JPH08224599A (en) * | 1995-02-20 | 1996-09-03 | Nishihara Environ Sanit Res Corp | Monitoring and controlling device for separation liquid |
JP3565944B2 (en) * | 1995-05-08 | 2004-09-15 | 株式会社西原環境テクノロジー | Separated liquid monitoring device |
JP2000102703A (en) * | 1998-09-29 | 2000-04-11 | Mitsubishi Electric Corp | Flocculant injection controller |
JP3619995B2 (en) * | 2001-03-06 | 2005-02-16 | 水道機工株式会社 | Sludge concentrator and coagulant adjustment method |
JP2003287489A (en) * | 2002-03-27 | 2003-10-10 | Toshiba Corp | Flock imaging system |
JP4238983B2 (en) * | 2003-06-20 | 2009-03-18 | 株式会社石垣 | Flocculant injection control method and control apparatus therefor |
-
2009
- 2009-01-22 JP JP2009011976A patent/JP4966985B2/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010167363A5 (en) | ||
JP4871965B2 (en) | Inspection apparatus, pollution aggregation processing apparatus, and pollution aggregation processing system | |
JP2010167362A5 (en) | ||
US10338631B1 (en) | System for automated water sample jar testing | |
JP4966985B2 (en) | Inspection apparatus, pollution aggregation processing apparatus, and pollution aggregation processing system | |
JP5769116B2 (en) | Flexible sample container | |
US11498858B2 (en) | Methods for optimizing water treatment coagulant dosing | |
KR102102285B1 (en) | Microorganism evaluation system | |
US7104422B2 (en) | Fluid dispensing apparatus having means for measuring fluid volume continuously | |
Soares et al. | Evaluation of silica nanoparticle colloidal stability with a fiber optic quasi-elastic light scattering sensor | |
JP4238983B2 (en) | Flocculant injection control method and control apparatus therefor | |
US5119029A (en) | Easily cleaned streaming current monitor | |
JP6818336B2 (en) | Cleaning liquid contamination degree determination device and contamination degree determination method | |
JP3814559B2 (en) | Endotoxin concentration measuring device | |
JP2010101705A (en) | Instrument for measuring physical properties of particles | |
JP4960370B2 (en) | Apparatus for measuring filter characteristics of fluids | |
JP2023142677A (en) | Device and method for monitoring flocculation state of wastewater | |
CN108956256A (en) | Based on the online water quality monitor self-checking device under vacuum ultra clean environment | |
CN111443175A (en) | Waste water detection device and detection method thereof | |
JP2022044371A (en) | Flow device, water quality inspection system, and water quality inspection method | |
CN207281040U (en) | A kind of sodium ion analysis detection sample introduction equipment | |
RU2747790C1 (en) | Flowing microscope for measuring particle size distribution of liquid-suspended particles | |
US8089263B2 (en) | Device for measuring the streaming potential of fibers and particles in suspensions | |
US9766176B2 (en) | Method and arrangement in connection with separate sample taken from process liquid | |
JP6381472B2 (en) | Aggregation state monitoring device |