JP2010163883A - 蒸発燃料処理装置 - Google Patents

蒸発燃料処理装置 Download PDF

Info

Publication number
JP2010163883A
JP2010163883A JP2009004574A JP2009004574A JP2010163883A JP 2010163883 A JP2010163883 A JP 2010163883A JP 2009004574 A JP2009004574 A JP 2009004574A JP 2009004574 A JP2009004574 A JP 2009004574A JP 2010163883 A JP2010163883 A JP 2010163883A
Authority
JP
Japan
Prior art keywords
fuel
canister
cooling
space
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009004574A
Other languages
English (en)
Inventor
Masahide Kobayashi
奨英 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009004574A priority Critical patent/JP2010163883A/ja
Publication of JP2010163883A publication Critical patent/JP2010163883A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

【課題】構造が簡単で、且つ処理に必要なエネルギーが少なくて済む蒸発燃料処理装置を得る。
【解決手段】単一のケーシング26内に、蒸発燃料を吸着するキャニスタ48と蒸発燃料を冷却液化可能な冷却部材44とが一体化して配置されるので、これらを繋ぐ配管が不要となる。キャニスタ48は冷却部材44よりも燃料タンク14からケーシング26内に送られる蒸発燃料の流れ方向の上流側(燃料タンク14側)に位置しているので、蒸発燃料をまず冷却液化する構成と比較して、処理に必要なエネルギーが少なくて済む。
【選択図】図1

Description

本発明は、燃料タンク内で生じた蒸発燃料を処理するための蒸発燃料処理装置に関する。
燃料タンク内で生じた蒸発燃料を処理するための蒸発燃料処理装置として、特許文献1には、吸着材に吸着されていた蒸発燃料を加熱器の加熱動作により蒸発させた後、リザーバ内で冷却器により冷却液化してエンジン内に噴射するようにした構造のものが記載されている。
しかし、特許文献1の構造では、加熱器と冷却器とが分離されているので、これらを接続するための配管等が必要で、構造が複雑になる。
これに対し、特許文献2には、冷却器とキャニスタとが一体となった蒸発燃料処理装置が記載されている。しかし、特許文献2の構造では、燃料タンク内の燃料蒸気をまず冷却器で冷却して液化し、冷却器を通過した燃料蒸気をキャニスタ内の活性炭で吸着するようになっている。このように、燃料タンク内の燃料蒸気をキャニスタでの吸着前に冷却する構成では、液化のために多くのエネルギーが必要となる。
特開2002−122047 特開2001−32752
本発明は上記事実を考慮し、構造が簡単で、且つ処理に必要なエネルギーが少なくて済む蒸発燃料処理装置を得ることを課題とする。
請求項1に記載の発明では、燃料タンク内で生じた蒸発燃料を吸着するための吸着剤と、この吸着剤を加熱することで吸着された燃料を気化させる加熱部材と、を備えたキャニスタと、気体燃料を冷却して液化するための冷却部材と、前記冷却部材で液化された液化燃料をエンジンに供給するために送出する液化燃料送出配管と、前記キャニスタと前記冷却部材を一体化する一体化手段と、を有し、前記キャニスタが前記冷却部材よりも前記燃料タンクからの前記蒸発燃料の流れ方向の上流側に配置されている。
本発明では、燃料タンク内で生じた蒸発燃料を吸着するための吸着剤と、この吸着剤を加熱することで吸着された燃料を気化させる加熱部材と、を備えたキャニスタと、気体燃料を冷却して液化するための冷却部材とを有するが、キャニスタは冷却部材よりも燃料タンクからの蒸発燃料の流れ方向の上流側に配置されている。このため、燃料タンク内で生じた蒸発燃料は、まず、吸着剤で吸着される。そして、たとえば吸着剤から脱離された気化燃料や、吸着剤で吸着されなかった蒸発燃料等の気体燃料が冷却部材で冷却されて液化される。すなわち、気体燃料の冷却液化を必要な場合のみ行うことになるので、蒸発燃料を最初に冷却して液化する構成と比較して、冷却液化に必要なエネルギーが少なくて済む。冷却部材で冷却されて生じた液化燃料は、液化燃料送出配管によりエンジンに供給される。
また、本発明では、キャニスタと冷却部材とが一体化手段により一体化されている。したがって、別体とした構成と比較して、これらを接続する配管等の部材が不要で、構造が簡単になる。また、これらを接続する配管等による余分な熱の授受を防止して、効率的な蒸発燃料の処理が可能になる。
なお、ここでいう「気体燃料」には、吸着剤から脱離されて気化した気化燃料が含まれるが、さらに、燃料タンク内で燃料が蒸発することで生じ、吸着剤で吸着される前段階の蒸発燃料も含まれる。
請求項2に記載の発明では、請求項1に記載の発明において、前記一体化手段が、前記キャニスタが収容されるキャニスタ空間と前記冷却部材が収容される冷却空間とが内部に区画されたケース部材である。
このように、ケース部材を用いた簡単な構造で一体化手段を構成し、キャニスタと冷却部材とを一体化できる。ケース部材には、キャニスタ空間と冷却空間とが区画されているので、蒸発燃料の吸着剤による吸着及び脱離(気化)と、冷却部材による冷却液化とを分けて行うことができる。
請求項3に記載の発明では、請求項2に記載の発明において、前記ケース部材に備えられ、前記キャニスタ空間と前記冷却空間との圧力差に応じて開閉してこれら空間の内圧を調整する内圧制御弁を有する。
したがって、キャニスタ空間と冷却空間との圧力差に応じて、蒸発燃料をこれら空間で移動させて内圧調整を行い、脱離効率を向上させることが可能になる。たとえば、キャニスタ空間が相対的に高圧になった場合には、内圧制御弁を開弁してキャニスタ空間の気体燃料の一部を冷却空間に送り、冷却液化することができる。
請求項4に記載の発明では、請求項2又は請求項3に記載の発明において、前記ケース部材に備えられ、前記キャニスタ空間と前記冷却空間との間で気体の流れを生じさせるエアーポンプを有する。
このエアーポンプにより、ケース部材内での気体の流れを積極的に生じさせて、より脱離効率を向上させることが可能になる。たとえば、吸着剤から脱離した気化燃料の流れを制御し、必要に応じて冷却部材で冷却液化することができる。また、エアーポンプを正転及び逆転可能とし、冷却部材での冷却液化をより効率的に行えるようにケース部材内での気体燃料の流れを制御することもできる。
請求項5に記載の発明では、請求項1〜請求項4のいずれか1項に記載の発明において、前記燃料タンクから前記エンジンに燃料を供給するための燃料供給配管と、前記燃料供給配管から分岐部で分岐され前記エンジンへの供給燃料の圧力を調整するプレッシャレギュレータと、を備え、前記液化燃料送出配管が、前記分岐部よりも燃料供給方向の下流側の合流部で前記燃料供給配管に接続されている。
このプレッシャレギュレータにより、燃料タンクから燃料供給配管を通じてエンジンに供給される燃料の圧力が調整されるが、プレッシャレギュレータからは、余剰の燃料が燃料タンクに戻される。液化燃料送出配管は、プレッシャレギュレータの分岐部よりも燃料供給方向の下流側の合流部で燃料供給配管に接続されているので、冷却部材で冷却液化された燃料を、燃料タンクに戻すことなく、エンジンに送ることができる。
請求項6に記載の発明では、請求項5に記載の発明において、前記分岐部と前記合流部の間の前記燃料供給配管に、燃料を貯留可能な燃料貯留部が設けられている。
したがって、たとえばエンジン停止時等に、冷却部材で冷却液化された液化燃料がエンジンに供給されない場合でも、この液化燃料を一時的に燃料貯留部に貯留することで、燃料タンクへの還流を抑制できる。
請求項7に記載の発明では、請求項1〜請求項6のいずれか1項に記載の発明において、前記燃料タンクから前記吸着剤に蒸発燃料を送るための蒸発燃料配管と、前記蒸発燃料配管に備えられ前記キャニスタの内圧に対する前記燃料タンク側の圧力上昇に応じて開弁する封鎖弁と、を有する。
したがって、キャニスタの内圧に対する燃料タンク側の圧力上昇に応じて、蒸発燃料を吸着剤に送ることが可能になる。
本発明は上記構成としたので、構造が簡単で、且つ処理に必要なエネルギーが少なくて済む蒸発燃料処理装置が得られる。
本発明の一実施形態の蒸発燃料処理装置を示す概略図である。 本発明の一実施形態の蒸発燃料処理装置のブロック図である。
図1及び図2には、本発明の一実施形態の蒸発燃料処理装置12が示されている。この蒸発燃料処理装置12は、燃料タンク14内で生じた蒸発燃料を処理するために用いられる。
燃料タンク14内には燃料ポンプ16が配置されており、燃料供給配管18を通じて燃料がエンジン72(図1では図示省略、後述する図2参照)に送出される。燃料供給配管18には、燃料中の異物を除去するフィルタ20が備えられている。さらにその下流側の分岐部18Pから分岐された配管には、プレッシャレギュレータ22が備えられている。プレッシャレギュレータ22は、エンジンへの供給燃料の圧力を所望の範囲に調整し、余剰の燃料をリターン燃料としてリターン配管24から燃料タンク14内へ戻す作用を有する。
蒸発燃料処理装置12は、略箱状のケーシング26を備えている。 ケーシング26には、上下方向の略中央に平板状のペルチェ素子28が備えられ、さらにこのペルチェ素子28の両側(図1の右側及び左側)に隔壁30が設けられている。そして、ペルチェ素子28及び隔壁30によって、ケーシング26内が、下側のキャニスタ空間32Aと上側の冷却空間32Bに区画されている。
隔壁30の一方(図1ではペルチェ素子28の左側の隔壁30)には、内圧制御弁34により開閉されるバイパス流路36が備えられている。内圧制御弁34は、キャニスタ空間32Aが冷却空間32Bよりも所定値以上の高圧になったときに開弁する第1弁部材34Aと、これとは逆に冷却空間32Bがキャニスタ空間32Aよりも所定値以上(この所定値は第1弁部材34Aの開弁圧の絶対値と一致している必要はない)の高圧になったときに開弁する第2弁部材34Bとを有している。したがって、キャニスタ空間32Aと冷却空間32Bの圧力差に応じて、これら2つの空間で気体が、その状態での高圧側から低圧側へと移動可能になり、内圧制御(内圧調整)されるる。
隔壁30の他方(図1ではペルチェ素子28の右側の隔壁30)には、キャニスタ空間32Aと冷却空間32Bとの間での気体の移動を可能にする気体流路35が形成されると共に、エアーポンプ38が備えられている。エアーポンプ38は正転及び逆転可能とされており、正転により、矢印F1方向の気流(正方向流)を、逆転により矢印F2方向の気流(逆方向流)をケーシング26内に生じさせることが可能となっている。なお、エアーポンプ38としては、ファン(羽根車)やタービンを用いることができるが、これらに限定されない。
ペルチェ素子28は、高温側が下面28Hで低温側が上面28Cになる向きで配置されている。下面28Hからは複数の加熱フィン40が下方に延出されている。さらに、下面の下方には、加熱フィン40を取り囲むようにして活性炭42が充填されており、少なくともペルチェ素子28の下面28H(高温側)と活性炭42とを含んで、本発明のキャニスタ48が構成されている。そして、ペルチェ素子28の作動により、加熱フィン40を通じて活性炭42が効率的に加熱される。なお、活性炭42は、ケーシング26の側壁26Sには達しない程度の充填範囲に充填されており、内圧制御弁34やエアーポンプ38の動作には影響しないようになっている。
ペルチェ素子28の上面28Cは低温側とされており、本発明における冷却部材44を構成している。この上面28Cからは、複数の冷却フィン46が上方に延出されている。本実施形態では、冷却フィン46を通じて冷却空間32B内を冷却することでペルチェ素子28の作動による冷却効果を高めている。
そして、本実施形態では、ケーシング26によってキャニスタ48と冷却部材44とが一体化されている。換言すれば、この単一のケーシング26内に、キャニスタ48が収容されるキャニスタ空間32Aと、冷却部材44が配置される冷却空間32Bとが隣接した状態で配置されていることになる。
ペルチェ素子28の上面28Cの周囲からは、冷却フィン46のすべてを取り囲むように貯留壁50が延出されている。後述するように、冷却空間32B内の冷却により蒸発燃料が液化されて液化燃料が生じると、この液化燃料を貯留壁50の内側に貯留できる。
ペルチェ素子28の上面28Cの中央には、送出ポンプ52が備えられており、その上端から延出された液化燃料送出配管54が、ケーシング26の上壁26Uを貫通して、合流部18Cにより燃料供給配管18に合流している。貯留壁50の内側に貯留された液化燃料は、送出ポンプ52の駆動により加圧されて、液化燃料送出配管54から燃料供給配管18へ合流される。合流部18Cは、燃料供給配管18において分岐部18Pよりも下流側に設定されている。したがって、液化燃料送出配管54を流れた液化燃料が、不用意に燃料タンク14に戻ることが抑制されている。
分岐部18Pと合流部18Cの間の燃料供給配管18には、燃料を一時的に貯留可能なバッファ部56が設けられている。
燃料タンク14と、ケーシング26のキャニスタ空間32Aとは、封鎖弁60を備えた蒸発燃料配管58で接続されている。封鎖弁60を開弁することで、燃料タンク14中の蒸発燃料を、蒸発燃料配管58を通じてキャニスタ空間32Aに送ることができる。また、図1から分かるように、燃料タンク14からケーシング26内に送られる蒸発燃料の流れを考えると、キャニスタ48は冷却部材(ペルチェ素子28の上面28C)よりも、この流れ方向の上流側(燃料タンク14側)に位置していることになる。
ケーシング26の冷却空間32Bからはキーオフポンプ64を備えたキーオフ配管62が延出されている。キーオフポンプ64を駆動してケーシング26内を高圧にすることで、漏れ検知等が行えるようになっている。
図2にも示すように、燃料タンク14には、内圧を検出するタンク内圧センサ66が備えられ、ケーシング26にも内圧を検出するケーシング内圧センサ68が備えされており、これらの検出データがECU70に送られると、ECU70は、これら内圧データと、エンジンの駆動状態等に応じて、ペルチェ素子28、エアーポンプ38、送出ポンプ52、封鎖弁60等を駆動制御する。
次に、本実施形態の蒸発燃料処理装置12の動作及び作用を説明する。
燃料タンク14内で生じた蒸発燃料によりタンク内圧が高くなると、ECU70は封鎖弁60を開弁する。これにより、燃料タンク14内の蒸発燃料がケーシング26のキャニスタ空間32Aに送られる。そして、キャニスタ空間32Aでは、活性炭42により蒸発燃料が吸着される。
なお、このように活性炭42で蒸発燃料を吸着するときには、通常は、エアーポンプ38を正転させて矢印F1方向の正方向流を生じさせるが、特に吸着初期はキャニスタ空間32Aの入口側(図1で左側)での蒸発燃料の濃度が相対的に高い。そこで、この場合には、エアーポンプ38を逆転させて矢印F2方向の逆方向流を生じさせることで、高濃度の蒸発燃料が活性炭42を短時間で上流側(左側)から下流側(右側)に抜けることを抑制できる。このとき、ペルチェ素子28を駆動することで、冷却空間32B内の蒸発燃料の一部を冷却液化することができるが、残りの蒸発燃料は気体流路35からキャニスタ空間32Aへ流れる。
また、キャニスタ空間32Aが相対的に高圧になることで第1弁部材34Aが開弁されると、蒸発燃料の一部はバイパス流路36を通るので、矢印F2方向に循環する。そして、循環が進むにつれて、活性炭42において蒸発燃料が吸着された部分の偏りも少なくなって平均化される。このように平均化されると、エアーポンプ38を正転させて矢印F1方向の正方向流を生じさせる。なお、活性炭42において蒸発燃料の吸着が平均化された状態は、たとえば、エアーポンプ38の逆転時間で判断するようにしてもよいし、キャニスタ空間32A内での圧力分布等を検出しこれに基づいて判断するようにしてもよい。
もちろん、エアーポンプ38の正転あるいは逆転によるケーシング26内での気流の制御は、上記したものに限定されない。すなわち、冷却部材44での冷却効率をより高くするために、エアーポンプ38の正転と逆転をと適切に切り替えることができる。
また、エアーポンプ38を駆動させない場合であっても、内圧制御弁34の開閉によりキャニスタ空間32A及び冷却空間32Bの内圧が制御されるので、活性炭42からの脱離効率をより高くすることも可能である。
活性炭42に蒸発燃料が吸着された状態でペルチェ素子28を駆動すると、ペルチェ素子28の下面28H及び加熱フィン40によって活性炭42が加熱されるので、活性炭42に吸着された燃料が脱離され、気化燃料が生じる。また、ペルチェ素子28の上面28C及び冷却フィン46によって、冷却空間32B内は冷却される。キャニスタ空間32Aは冷却空間32Bよりも高圧なので、第1弁部材34Aの開弁により気体燃料が冷却空間32Bに流れ冷却液化される。液化燃料は貯留壁50の内側に貯留される。
ここで、送出ポンプ52を駆動すると、貯留壁50の内部に液化燃料が貯留されているので、この液化燃料を直接的に吸い上げて加圧することができる。そして、加圧された液化燃料は、液化燃料送出配管54から合流部18Cを経て燃料供給配管18を通り、エンジンへ送られる。すなわち、液化燃料を燃料タンク14に還流させることなく、確実にエンジンに供給することができる。また、液化燃料の冷却空間での再気化も抑制できる。
また、合流部18Cはプレッシャレギュレータ22の分岐部18Pよりも燃料供給配管18の下流側に設けられているので、液化燃料がプレッシャレギュレータ22からのリターン燃料として、燃料タンクに戻ってしまうことが抑制されている。
駐車中(エンジン停止時)に送出ポンプ52が駆動されると、加圧された液化燃料はエンジンに送られないが、この場合は、バッファ部56に液化燃料が貯留される。すなわち、駐車中であっても、液化燃料が燃料タンク14に戻ることが抑制されている。
また、本実施形態では、単一のケーシング26内に、キャニスタ48と冷却部材44とを備えるようにして、これらをケーシング26により一体化している。換言すれば、単一のケーシング26内に、キャニスタ48が収容されるキャニスタ空間32Aと、冷却部材44が配置される冷却空間32Bとを隣接した状態で配置している。キャニスタ48と冷却部材44とを別体にした構成では、キャニスタ48と冷却部材44とを接続する配管等が必要になるが、本実施形態では不要なので、構造が簡単になる。また、キャニスタ48と冷却部材44とを接続する配管等を設けると、この配管による余分な熱の授受が生じることがあるが、本実施形態では、このような余分な熱の授受が防止されるので、効率的な蒸発燃料の処理が可能になる。
さらに、本実施形態では、キャニスタ48は冷却部材44よりも、燃料タンクからの蒸発燃料の流れ方向の上流側に位置しているおり、燃料タンクで生じた蒸発燃料を、ます活性炭42で吸着することが可能となる。そして、活性炭42から脱離されて気化燃料や、活性炭42で吸着されなかった蒸発燃料を冷却部材44で冷却して液化する。したがって、蒸発燃料(気化燃料)を吸着剤で吸着させる前に冷却液化させる構成と比較して、実質的に必要な場合にのみ冷却液化を行うことになるので、冷却液化に必要なエネルギーが少なくて済む。
また、本実施形態では冷却空間32Bがキャニスタ空間32Aよりも下流側に配置されているため、この冷却空間32Bを、キャニスタ48からの蒸発燃料の吹き抜け防止のための空間として用いることができる。たとえば、燃料タンク14への給油を行っている場合には、エンジンは停止されているが、この場合に、キャニスタ空間32Aに送られた蒸発燃料が多くても、冷却空間32Bに所定の容積が確保されているので、吹き抜けを防止できる。また、冷却空間32Bにおいて燃料の冷却液化を行っているときは、エンジンが作動していることが多く、活性炭42で蒸発燃料を吸着する必要はない(吹き抜けのおそれもない)。このように、キャニスタ空間32Aよりも下流側に設けた冷却空間32Bを、吹き抜け防止のための空間と、燃料の冷却液化のための空間の双方に利用することで、スペースの効率的な利用を図っている。
本実施形態において、封鎖弁60を開弁して燃料タンク14内の蒸発燃料をキャニスタ空間32Aに送るタイミングや条件としては、上記した給油時が挙げられるが、これに限定されない。
たとえば、エンジンの駆動中にタンク内圧がケーシング内圧よりも高くなると、封鎖弁60を開弁し、燃料タンク14内の蒸発燃料をキャニスタ空間32Aに導入する。このとき、燃料の低沸騰成分が積極的にキャニスタ空間に送られるため、結果的に、その後に冷却部材44で冷却液化される成分も低沸騰成分が多くなる。すなわち、燃料の低沸騰成分を積極的に液化して消費することになるので、ガソリンのリード蒸気圧を低下させることができ、燃料タンク14の密閉時における内圧変動を小さくできる。
また、車両の駐車中においても、燃料タンク14の内圧がいわゆるリリーフ圧に達した場合には、封鎖弁60を開弁して、燃料タンク14内の蒸発燃料をキャニスタ空間32Aに導入し、冷却部材44による燃料の冷却液化と、送出ポンプ52による液化燃料の送出を行う。この結果、燃料タンク14の内圧上昇を抑制でき、炭化水素(HC)成分の車外放出を抑制できる。
なお、蒸気では、活性炭42の加熱を行う加熱部材と、気体燃料の冷却を行う冷却部材をペルチェ素子28で兼用するのを挙げているが、加熱部材と冷却部材が別々の構成でもよい。ただし、ペルチェ素子28を用いると単一の素子で加熱と冷却の双方を行うことができるので、部品点数が少なくなる。さらに、単一の素子で加熱と冷却とを行うことができるので、加熱と冷却に伴う外部との熱エネルギーの出入りを回避して、加熱及び冷却を高効率で行うことができるので、好ましい。
12 蒸発燃料処理装置
14 燃料タンク
16 燃料ポンプ
18 燃料供給配管
18P 分岐部
18C 合流部
22 プレッシャレギュレータ
26 ケーシング(ケース部材、一体化手段)
28 ペルチェ素子
30 隔壁
32A キャニスタ空間
32B 冷却空間
34 内圧制御弁
35 気体流路
36 バイパス流路
38 エアーポンプ
40 加熱フィン
42 活性炭
44 冷却部材
46 冷却フィン
48 キャニスタ
50 貯留壁
52 送出ポンプ
54 液化燃料送出配管
56 バッファ部(燃料貯留部)
58 蒸発燃料配管
60 封鎖弁
66 タンク内圧センサ
68 ケーシング内圧センサ

Claims (7)

  1. 燃料タンク内で生じた蒸発燃料を吸着するための吸着剤と、この吸着剤を加熱することで吸着された燃料を気化させる加熱部材と、を備えたキャニスタと、
    気体燃料を冷却して液化するための冷却部材と、
    前記冷却部材で液化された液化燃料をエンジンに供給するために送出する液化燃料送出配管と、
    前記キャニスタと前記冷却部材を一体化する一体化手段と、
    を有し、
    前記キャニスタが前記冷却部材よりも前記燃料タンクからの前記蒸発燃料の流れ方向の上流側に配置されている蒸発燃料処理装置。
  2. 前記一体化手段が、前記キャニスタが収容されるキャニスタ空間と前記冷却部材が収容される冷却空間とが内部に区画されたケース部材である請求項1に記載の蒸発燃料処理装置。
  3. 前記ケース部材に備えられ、前記キャニスタ空間と前記冷却空間との圧力差に応じて開閉してこれら空間の内圧を調整する内圧制御弁を有する請求項2に記載の蒸発燃料処理装置。
  4. 前記ケース部材に備えられ、前記キャニスタ空間と前記冷却空間との間で気体の流れを生じさせるエアーポンプを有する請求項2又は請求項3に記載の蒸発燃料処理装置。
  5. 前記燃料タンクから前記エンジンに燃料を供給するための燃料供給配管と、
    前記燃料供給配管から分岐部で分岐され前記エンジンへの供給燃料の圧力を調整するプレッシャレギュレータと、
    を備え、
    前記液化燃料送出配管が、前記分岐部よりも燃料供給方向の下流側の合流部で前記燃料供給配管に接続されている請求項1〜請求項4のいずれか1項に記載の蒸発燃料処理装置。
  6. 前記分岐部と前記合流部の間の前記燃料供給配管に、燃料を貯留可能な燃料貯留部が設けられている請求項5に記載の蒸発燃料処理装置。
  7. 前記燃料タンクから前記吸着剤に蒸発燃料を送るための蒸発燃料配管と、
    前記蒸発燃料配管に備えられ前記キャニスタの内圧に対する前記燃料タンク側の圧力上昇に応じて開弁する封鎖弁と、
    を有する請求項1〜請求項6のいずれか1項に記載の蒸発燃料処理装置。
JP2009004574A 2009-01-13 2009-01-13 蒸発燃料処理装置 Pending JP2010163883A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009004574A JP2010163883A (ja) 2009-01-13 2009-01-13 蒸発燃料処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009004574A JP2010163883A (ja) 2009-01-13 2009-01-13 蒸発燃料処理装置

Publications (1)

Publication Number Publication Date
JP2010163883A true JP2010163883A (ja) 2010-07-29

Family

ID=42580246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009004574A Pending JP2010163883A (ja) 2009-01-13 2009-01-13 蒸発燃料処理装置

Country Status (1)

Country Link
JP (1) JP2010163883A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3133277A1 (en) 2015-08-18 2017-02-22 Toyota Jidosha Kabushiki Kaisha Canister structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3133277A1 (en) 2015-08-18 2017-02-22 Toyota Jidosha Kabushiki Kaisha Canister structure
US9863376B2 (en) 2015-08-18 2018-01-09 Toyota Jidosha Kabushiki Kaisha Canister structure

Similar Documents

Publication Publication Date Title
RU2656082C2 (ru) Охлаждение сжиженного природного газа в процессе работы
JP3932963B2 (ja) 蒸発燃料処理装置
US9732706B2 (en) System and methods for regulating fuel vapor flow in a fuel vapor recirculation line
JP6522373B2 (ja) 蒸発燃料処理装置
US10125751B2 (en) Multimode gas delivery for rail tender
JP4793162B2 (ja) 超臨界燃料用燃料噴射装置
JPH07217505A (ja) 内燃機関の蒸発燃料処理装置
JP5502153B2 (ja) 燃料供給装置
JP2013064402A (ja) インタンク蒸発ガス排出制御システム
US20120312281A1 (en) Evaporated fuel treatment apparatus
JP5638586B2 (ja) 燃料供給装置
WO2014020865A1 (ja) 蒸発燃料処理装置
JP2013108471A (ja) 蒸発燃料処理装置
JP2010163883A (ja) 蒸発燃料処理装置
JP2009216078A (ja) 蒸発燃料処理装置
JP5927979B2 (ja) 蒸発燃料パージ装置
JP2013040569A (ja) 燃料供給装置
JP6106999B2 (ja) 吸収式ヒートポンプ装置
US20200198460A1 (en) Fuel supply apparatus for internal combustion engine
JP5623381B2 (ja) 燃料供給装置
JP5856530B2 (ja) 燃料供給装置
JP5744674B2 (ja) 燃料供給装置
JP7491810B2 (ja) 改質器付き燃料供給装置
KR102540547B1 (ko) 차량의 연료시스템 냉각 장치
JP2009108710A (ja) 蒸発燃料処理装置