JP2010161030A - Method of activating solid oxide fuel cell, and method of manufacturing solid oxide fuel cell - Google Patents

Method of activating solid oxide fuel cell, and method of manufacturing solid oxide fuel cell Download PDF

Info

Publication number
JP2010161030A
JP2010161030A JP2009003897A JP2009003897A JP2010161030A JP 2010161030 A JP2010161030 A JP 2010161030A JP 2009003897 A JP2009003897 A JP 2009003897A JP 2009003897 A JP2009003897 A JP 2009003897A JP 2010161030 A JP2010161030 A JP 2010161030A
Authority
JP
Japan
Prior art keywords
solid oxide
fuel cell
oxide fuel
sofc
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009003897A
Other languages
Japanese (ja)
Inventor
Toru Inagaki
亨 稲垣
Mitsunobu Kawano
光伸 川野
Koichi Eguchi
浩一 江口
Toshiaki Matsui
敏明 松井
Kota Murakami
幸太 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2009003897A priority Critical patent/JP2010161030A/en
Publication of JP2010161030A publication Critical patent/JP2010161030A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of activating a solid oxide fuel cell capable of efficiently improving the performance of the cell in a further short time, and a method of manufacturing a solid oxide fuel cell. <P>SOLUTION: The method includes operating a solid oxide fuel cell on the early stage of power generation at negative voltage. According to this activation method, current-carrying processing for improving the cell performance can be performed in a short time. In the method of manufacturing a solid oxide fuel cell using this activation method, SOFC excellent in cell performance can be efficiently manufactured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体酸化物形燃料電池の活性化方法、ならびに固体酸化物形燃料電池の製造方法に関する。   The present invention relates to a method for activating a solid oxide fuel cell and a method for producing a solid oxide fuel cell.

近年、特に高い電気変換効率、出力密度を有することから、燃料電池の中でも固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)が注目されている。固体酸化物形燃料電池は、固体酸化物電解質を両側から燃料極(アノード)と空気極(カソード)で挟み込んだ積層構造を有し、たとえば、平板型のSOFCにおいては、上記発電セルと、燃料極の外側に配した燃料極集電体と、空気極の外側に配した空気極集電体と、これら燃料極集電体、空気極集電体の外側に配したセパレータで構成される単セルを縦方向に複数積層させて構成される。   In recent years, a solid oxide fuel cell (SOFC) attracts attention among fuel cells because of its particularly high electric conversion efficiency and power density. A solid oxide fuel cell has a laminated structure in which a solid oxide electrolyte is sandwiched between a fuel electrode (anode) and an air electrode (cathode) from both sides. For example, in a flat-plate SOFC, the power generation cell, A fuel electrode current collector disposed outside the electrode, an air electrode current collector disposed outside the air electrode, and a separator disposed outside the fuel electrode current collector and air electrode current collector. A plurality of cells are stacked in the vertical direction.

このようなSOFCにおいては、空気極側に酸化剤ガス(酸素)が供給され、燃料極側に燃料ガス(H2、CO、CH4など)が供給される。空気極側に供給された酸化剤ガスは、空気極内の気孔を通って固体酸化物電解質との界面近傍に到達し、この部分で空気極側から電子を受け取って酸化物イオン(O2−)にイオン化される。この酸化物イオンは、燃料極側に向って固体酸化物電解質内を拡散移動する。燃料極側との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2O、CO2など)を生じ、燃料極側に電子を放出する。電極反応で生じた電子は、別ルートの外部負荷にて起電力として取り出すことができる。 In such an SOFC, an oxidant gas (oxygen) is supplied to the air electrode side, and a fuel gas (H 2 , CO, CH 4, etc.) is supplied to the fuel electrode side. The oxidant gas supplied to the air electrode side passes through pores in the air electrode and reaches the vicinity of the interface with the solid oxide electrolyte. At this portion, electrons are received from the air electrode side and oxide ions (O 2− ) Is ionized. The oxide ions diffuse and move in the solid oxide electrolyte toward the fuel electrode side. Oxide ions that have reached the vicinity of the interface with the fuel electrode side react with the fuel gas at this portion to generate a reaction product (H 2 O, CO 2, etc.) and discharge electrons to the fuel electrode side. Electrons generated by the electrode reaction can be taken out as an electromotive force at an external load on another route.

従来、SOFCは、動作温度が900〜1000℃と高いため、全ての部材をセラミックから構成していたため、セルスタックの製造コストの低減が容易ではなかった。たとえば特開2004−259641号公報(特許文献1)には、ジルコニア(ZrO2)をスカンジウム酸化物(Sc23)で活性化したスカンジア活性化ジルコニア(ScSZ)を電解質に用い、Bサイトに鉄(Fe)をドープしたLaNi(Fe)O3を空気極に用いたSOFCが提案されている。特許文献1には、酸化アルミニウム(Al23)を含むスカンジア活性化ジルコニア(SASZ)を固体酸化物電解質に用い、動作温度より高い900〜1100℃でセルを作製し、この後、セル電圧が安定するまで所定時間の通電処理(定電流運転)を行い、電池性能を向上させるようにしている。 Conventionally, since the operating temperature of SOFC is as high as 900 to 1000 ° C., all the members are made of ceramic, so it is not easy to reduce the manufacturing cost of the cell stack. For example, in Japanese Patent Application Laid-Open No. 2004-259641 (Patent Document 1), scandia activated zirconia (ScSZ) obtained by activating zirconia (ZrO 2 ) with scandium oxide (Sc 2 O 3 ) is used as an electrolyte, and the B site is used. An SOFC using LaNi (Fe) O 3 doped with iron (Fe) as an air electrode has been proposed. In Patent Document 1, scandia activated zirconia (SASZ) containing aluminum oxide (Al 2 O 3 ) is used as a solid oxide electrolyte, and a cell is manufactured at 900 to 1100 ° C. higher than the operating temperature. The battery performance is improved by performing energization processing (constant current operation) for a predetermined time until the battery becomes stable.

このようにSOFCは、発電初期に通電処理を行うことで、電池性能が著しく向上でき(通電効果)、この電池性能の向上は長期の発電特性にも影響を及ぼすことが知られている。しかしながら、このような電池性能の向上は、セルによる個体差が大きく、また、数日から数週間の範囲での通電処理が必要となる。特許文献1には、たとえば、セル電圧を見ながら1.0A/cm2まで徐々に電流を増加し、次いで1.0A/cm2、1.4A/cm2、1.8A/cm2と通電量を段階的に増加させて、最終的にセル電圧が0.2Vで一定となったときに処理を終わるという条件で、通電処理を4500分(75時間)程度行っている場合が例示されている(特許文献1の図2)。 As described above, it is known that the SOFC can significantly improve the battery performance (energization effect) by performing the energization process in the early stage of power generation, and this improvement in battery performance also affects long-term power generation characteristics. However, such improvement in battery performance has a large individual difference depending on the cell, and energization treatment is required in the range of several days to several weeks. In Patent Document 1, for example, the current is gradually increased to 1.0 A / cm 2 while observing the cell voltage, and then the current is supplied to 1.0 A / cm 2 , 1.4 A / cm 2 , and 1.8 A / cm 2. An example is shown in which the energization process is performed for about 4500 minutes (75 hours) under the condition that the process is terminated when the amount is gradually increased and finally the cell voltage becomes constant at 0.2V. (FIG. 2 of Patent Document 1).

また、たとえば、図3は、燃料極にニッケル−スカンジア活性化ジルコニア(Ni−ScSZ)、固体酸化物電解質にスカンジア活性化ジルコニア(ScSZ)、空気極にランタンストロンチウムマンガナイト(LSM)を用いたSOFCを本発明者らで作製し、その発電初期に、20時間の200mA/cm2の通電処理を行った後のI−V特性を、初期状態と比較して示すグラフであり、縦軸は端子電圧(V)、横軸は電流密度(Acm-2)である。また、図4(a)は、同様に通電処理を行った前後の空気極(カソード)側のインピーダンススペクトル、図4(b)は燃料極(アソード)側のインピーダンススペクトルを示すグラフであり、図4(a),(b)いずれも、縦軸はZ’’/Ωcm2、横軸はZ’/Ωcm2である。なお、I−V特性およびインピーダンススペクトルは、全流量100ml/分で、アノードガスとして99.4%H2および0.6%H2Oを用い、800℃で、ポテンショ/ガルバノスタットおよび周波数応答解析装置を用いて測定した結果を示しており、いずれのグラフ中においても、Aが通電処理後の状態、Bが初期状態を示している。図3、4に示されたように、本発明者らが行った実験では、20時間の通電処理でも発電特性の向上が観察された。このような通電効果は、一般には、空気極側の反応過電圧の低減が大きな要因を占めていると考えられており、図4(a),(b)に示す結果もこれを支持する内容となっている。 For example, FIG. 3 shows a SOFC using nickel-scandia activated zirconia (Ni—ScSZ) as a fuel electrode, scandia activated zirconia (ScSZ) as a solid oxide electrolyte, and lanthanum strontium manganite (LSM) as an air electrode. Is a graph showing the IV characteristics after conducting an energization treatment of 200 mA / cm 2 for 20 hours in the initial stage of power generation, in comparison with the initial state, and the vertical axis indicates the terminal Voltage (V), the horizontal axis is current density (Acm -2 ). FIG. 4A is a graph showing the impedance spectrum on the air electrode (cathode) side before and after the same energization treatment, and FIG. 4B is a graph showing the impedance spectrum on the fuel electrode (asode) side. 4 (a) and 4 (b), the vertical axis is Z ″ / Ωcm 2 and the horizontal axis is Z ′ / Ωcm 2 . The IV characteristics and impedance spectrum are a potentio / galvanostat and frequency response analysis at 800 ° C. using 99.4% H 2 and 0.6% H 2 O as anode gas at a total flow rate of 100 ml / min. The result measured using the apparatus is shown, and in any graph, A shows the state after the energization process, and B shows the initial state. As shown in FIGS. 3 and 4, in the experiment conducted by the present inventors, an improvement in power generation characteristics was observed even in the energization process for 20 hours. In general, it is considered that such energization effect is caused by a reduction in the reaction overvoltage on the air electrode side, and the results shown in FIGS. 4A and 4B also support this. It has become.

特開2004−259641号公報Japanese Patent Laid-Open No. 2004-259641

SOFCは、上述したような通電処理を施して電池性能が向上されることが望まれるが、この通電処理に多大な時間を要するため、SOFCの製造効率が低下するという問題があった。このため、従来よりも短時間でSOFCの電池性能を向上できる方法の開発が望まれている。   The SOFC is desired to improve the battery performance by performing the above-described energization process. However, since this energization process requires a lot of time, there is a problem that the production efficiency of the SOFC decreases. For this reason, development of a method capable of improving the SOFC battery performance in a shorter time than before is desired.

本発明は、上記課題を解決するためになされたものであって、その目的とするところは、従来よりも短時間で効率的に電池性能を向上できる、SOFCの活性化方法、ならびに、SOFCの製造方法を提供することである。   The present invention has been made to solve the above-described problems, and the object of the present invention is to provide an SOFC activation method capable of improving battery performance more efficiently in a shorter time than conventional methods, and SOFC. It is to provide a manufacturing method.

本発明のSOFCの活性化方法は、発電初期のSOFCを負電圧で作動させることを特徴とする。   The SOFC activation method of the present invention is characterized in that the SOFC in the initial stage of power generation is operated with a negative voltage.

本発明のSOFCの活性化方法において、負電圧が−1.5V以上0V未満の範囲内であることが、好ましい。   In the SOFC activation method of the present invention, the negative voltage is preferably in the range of not less than −1.5 V and less than 0 V.

また本発明のSOFCの活性化方法において、ジルコニア系固体酸化物電解質を備えることが好ましい。   In the SOFC activation method of the present invention, it is preferable to provide a zirconia-based solid oxide electrolyte.

また本発明によれば、1〜4時間負電圧で作動させることが好ましい。
本発明はまた、発電初期のSOFCを負電圧で作動させる工程を含む、SOFCの製造方法についても提供する。
Moreover, according to this invention, it is preferable to operate | move by a negative voltage for 1-4 hours.
The present invention also provides a method for manufacturing an SOFC, including a step of operating the SOFC in the initial stage of power generation with a negative voltage.

本発明によれば、従来、SOFCの性能向上のために数日から数週間必要であった通電処理が、数時間程度という短時間で電池性能の活性化を収束することができる。   According to the present invention, the energization process that has conventionally been required for several days to several weeks for improving SOFC performance can converge the activation of battery performance in a short time of about several hours.

本発明のSOFCの活性化方法の好ましい一例についての結果を示すグラフである。It is a graph which shows the result about a preferable example of the activation method of SOFC of this invention. 図1の場合と同様のSOFCの単セルについて、850℃で、0時間、1時間、3.5時間、6.5時間、9.5時間、負電圧で作動させた時点での電流−電圧特性を示すグラフであり、縦軸は端子電圧(V)、横軸は電流密度(A/cm2)である。The current-voltage at the time of operating at 850 ° C. at 0 hour, 1 hour, 3.5 hours, 6.5 hours, 9.5 hours, and a negative voltage for a single cell of SOFC similar to the case of FIG. It is a graph which shows a characteristic, a vertical axis | shaft is terminal voltage (V) and a horizontal axis is a current density (A / cm < 2 >). 燃料極にニッケル−スカンジア活性化ジルコニア(Ni−ScSZ)、固体電解質にスカンジア活性化ジルコニア(ScSZ)、空気極にランタンストロンチウムマンガナイト(LSM)を用いたSOFCを本発明者らで作製し、その発電初期に、20時間の200mA/cm2の通電処理を行った後のI−V特性を、初期状態と比較して示すグラフであり、縦軸は端子電圧(V)、横軸は電流密度(Acm-2)である。The present inventors prepared an SOFC using nickel-scandia activated zirconia (Ni-ScSZ) as a fuel electrode, scandia activated zirconia (ScSZ) as a solid electrolyte, and lanthanum strontium manganite (LSM) as an air electrode. It is a graph which shows the IV characteristic after carrying out the energization process of 200 mA / cm < 2 > for 20 hours in the early stage of electric power generation compared with an initial state, a vertical axis | shaft is terminal voltage (V) and a horizontal axis is current density. (Acm -2 ). 図4(a)は、同様に通電処理を行った前後の空気極(カソード)側のインピーダンススペクトル、図4(b)は燃料極(アソード)側のインピーダンススペクトルを示すグラフであり、図4(a),(b)いずれも、縦軸はZ’’/Ωcm2、横軸はZ’/Ωcm2である。FIG. 4A is a graph showing the impedance spectrum on the air electrode (cathode) side before and after the energization process, and FIG. 4B is a graph showing the impedance spectrum on the fuel electrode (asode) side. In both a) and (b), the vertical axis represents Z ″ / Ωcm 2 , and the horizontal axis represents Z ′ / Ωcm 2 .

本発明の固体電解質形燃料電池(SOFC)の活性化方法は、発電初期の固体酸化物形燃料電池を負電圧で作動させる(すなわち、酸素ポンプとして作動させる)ことを特徴とする。ここで、図1は、本発明のSOFCの活性化方法の好ましい一例についての結果を示すグラフである。図1には、たとえば、燃料極にニッケル−イットリア活性化ジルコニア(Ni−YSZ)、固体電解質にYSZ、空気極にLSMを用いた単セルの燃料電池であって、燃料極側に1%H2O+99%H2を供給し、空気極側に21%O2+79%N2を供給し、850℃で空気極に、端子電圧が0Vになるまで1.2A/cm2の電流を印加し(図中、A)、次に端子電圧が0Vになるまで1.5A/cm2の電流を印加し(図中、B)、さらに一定時間2.0A/cm2の電流を印加した(図中、C)後、3.0A/cm2の電流を印加する(図中、D)というようにして通電処理を行った結果が示されており、縦軸は端子電圧(V)、横軸は時間(時間)である。図1から、端子電圧が0V以下となるように、当該端子電圧を見ながら、印加する電流を段階的に増加させていくと、電流を増加した際に一旦端子電圧は減少するが、通電処理を行っている間に端子電圧は経時的に増加し、やがてはほぼ一定に安定することが分かる。 The solid oxide fuel cell (SOFC) activation method of the present invention is characterized by operating a solid oxide fuel cell in the early stage of power generation with a negative voltage (that is, operating as an oxygen pump). Here, FIG. 1 is a graph showing the results of a preferred example of the SOFC activation method of the present invention. FIG. 1 shows a single-cell fuel cell using, for example, nickel-yttria activated zirconia (Ni-YSZ) for the fuel electrode, YSZ for the solid electrolyte, and LSM for the air electrode, with 1% H on the fuel electrode side. 2 O + 99% H 2 was supplied to the 21% O 2 + 79% N 2 to the air electrode side is supplied to the air electrode at 850 ° C., the terminal voltage is a current of 1.2A / cm 2 was applied to a 0V (A in the figure), then, a current of 1.5 A / cm 2 was applied until the terminal voltage became 0 V (B in the figure), and a current of 2.0 A / cm 2 was further applied for a certain period of time (FIG. Middle, after C), the result of conducting the energization treatment is shown as applying a current of 3.0 A / cm 2 (D in the figure), the vertical axis is the terminal voltage (V), the horizontal axis Is time. From FIG. 1, if the current to be applied is increased stepwise while looking at the terminal voltage so that the terminal voltage becomes 0 V or less, the terminal voltage once decreases when the current is increased. It can be seen that the terminal voltage increases with time during the process, and eventually stabilizes at a constant level.

また、図2は、図1の場合と同様のSOFCの単セルについて、850℃で、0時間、1時間、3.5時間、6.5時間、9.5時間、負電圧で作動させた時点での電流−電圧特性を示すグラフであり、縦軸は端子電圧(V)、横軸は電流密度(A/cm2)である。図2中、曲線aは、3.5時間、6.5時間、9.5時間の結果であり、これらはほぼ重複している。また曲線bは1時間の結果であり、曲線cは0時間の結果である。図2に示される結果から、1時間以上の負電圧での作動で、有意にSOFCの電池性能が改善されていることが分かる。 FIG. 2 shows a SOFC single cell similar to that in FIG. 1 operated at 850 ° C. at 0 hour, 1 hour, 3.5 hours, 6.5 hours, 9.5 hours, and a negative voltage. It is a graph which shows the current-voltage characteristic in a time point, a vertical axis | shaft is terminal voltage (V) and a horizontal axis is a current density (A / cm < 2 >). In FIG. 2, curve a is the result of 3.5 hours, 6.5 hours, and 9.5 hours, which are almost overlapping. Curve b is the result for 1 hour, and curve c is the result for 0 hour. From the results shown in FIG. 2, it can be seen that the battery performance of the SOFC is significantly improved by operating at a negative voltage for 1 hour or more.

このように本発明では、1〜4時間という従来と比較すれば格段に短い時間での負電圧での作動によって、電池性能の活性化を短時間で収束させることができる。   As described above, in the present invention, the activation of the battery performance can be converged in a short time by the operation with the negative voltage in a remarkably short time as compared with the conventional one to four hours.

本発明のSOFCの活性化方法において、負電圧としては−1.5V以上0V未満の範囲内であることが好ましく、−1.0V以上0V未満の範囲内であることがより好ましい。負電圧が−1.5V未満である場合には、電池が不可逆的に劣化する傾向にあり、また、0V以上である場合には、酸素ポンプとして機能しないためである。   In the SOFC activation method of the present invention, the negative voltage is preferably in the range of −1.5 V or more and less than 0 V, and more preferably in the range of −1.0 V or more and less than 0 V. This is because when the negative voltage is less than −1.5 V, the battery tends to be irreversibly deteriorated, and when it is 0 V or more, it does not function as an oxygen pump.

本発明におけるSOFCは、通常、上述した固体酸化物電解質を両側から燃料極(アノード)と空気極(カソード)で挟み込んだ積層構造の発電セルを有する。SOFCは、平板型と円筒型との2種類の構造に大別でき、たとえば平板型のSOFCにおいては、上記発電セルと、燃料極の外側に配した燃料極集電体と、空気極の外側に配した空気極集電体と、これら燃料極集電体、空気極集電体の外側に配したセパレータで構成される単セルを縦方向に複数積層させて構成される。   The SOFC in the present invention usually has a power generation cell having a laminated structure in which the above-described solid oxide electrolyte is sandwiched between a fuel electrode (anode) and an air electrode (cathode) from both sides. SOFCs can be broadly divided into two types of structures, flat plate type and cylindrical type. For example, in a flat plate type SOFC, the power generation cell, a fuel electrode current collector disposed outside the fuel electrode, and an outside of the air electrode. And a plurality of single cells composed of separators disposed outside the fuel electrode current collector and the air electrode current collector in the vertical direction.

本発明において、SOFCに用いられる固体酸化物電解質は、通常のSOFCに用いられる従来公知の適宜の固体酸化物電解質を特に制限なく用いることができ、たとえば、ジルコニア系固体酸化物電解質、セリウム系固体酸化物電解質、ランタン系固体酸化物電解質などが挙げられる。中でも、イオン伝導率、信頼性、構成材料間の両立性、コストなどの理由から、ジルコニア系固体酸化物電解質が好ましい。ジルコニア系固体酸化物電解質としては、たとえば、イットリア活性化ジルコニア(YSZ)、スカンジア活性化ジルコニア(ScSZ)などが挙げられ、信頼性、コストなどの理由から、これらの中でもYSZが好ましい。   In the present invention, as the solid oxide electrolyte used in the SOFC, a conventionally known appropriate solid oxide electrolyte used in a normal SOFC can be used without particular limitation. For example, a zirconia solid oxide electrolyte, a cerium solid Examples thereof include oxide electrolytes and lanthanum-based solid oxide electrolytes. Among these, zirconia-based solid oxide electrolytes are preferable for reasons such as ion conductivity, reliability, compatibility between constituent materials, and cost. Examples of the zirconia-based solid oxide electrolyte include yttria activated zirconia (YSZ) and scandia activated zirconia (ScSZ). Among these, YSZ is preferable among these because of reliability and cost.

燃料極の形成に用いられる材料としては、たとえば、セラミックス粉末材料などの酸化物イオン伝導体と金属触媒との混合物を用いることができる。酸化物イオン伝導体としては、蛍石型またはペロブスカイト型の結晶構造を有するものを好ましく用いることができる。蛍石型の結晶構造を有するものとしては、たとえばサマリウムやガドリニウムなどをドープしたセリア系酸化物、スカンジウムやイットリウムを含むジルコニア系酸化物などを挙げることができる。また、ペロブスカイト型の結晶構造を有するものとしては、ストロンチウムやマグネシウムをドープしたランタン・ガレード系酸化物を挙げることができる。金属触媒を構成する金属としては、還元性雰囲気中で安定であり、かつ、水素酸化活性を有する材料を用いることができ、たとえば、ニッケル、鉄、コバルトや、貴金属(白金、ルテニウム、パラジウムなど)などが使用できる。上記材料の中では、水素酸化の活性が高いニッケルが好ましい。具体的には、ニッケル−イットリア活性化ジルコニア(Ni−YSZ)が特に好適に用いられる。また、上述した酸化物イオン伝導体粒子は、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。   As a material used for forming the fuel electrode, for example, a mixture of an oxide ion conductor such as a ceramic powder material and a metal catalyst can be used. As the oxide ion conductor, one having a fluorite type or perovskite type crystal structure can be preferably used. Examples of those having a fluorite-type crystal structure include ceria-based oxides doped with samarium and gadolinium, and zirconia-based oxides containing scandium and yttrium. Further, examples of those having a perovskite type crystal structure include lanthanum galide oxides doped with strontium and magnesium. As the metal constituting the metal catalyst, a material that is stable in a reducing atmosphere and has hydrogen oxidation activity can be used. For example, nickel, iron, cobalt, noble metals (platinum, ruthenium, palladium, etc.) Etc. can be used. Among the above materials, nickel having high hydrogen oxidation activity is preferable. Specifically, nickel-yttria activated zirconia (Ni-YSZ) is particularly preferably used. Moreover, the oxide ion conductor particle | grains mentioned above may be used individually by 1 type, and may mix and use 2 or more types.

空気極の形成に用いられる材料としては、たとえば、ペロブスカイト型の結晶構造を有する金属酸化物を用いることができる。具体的には(Sm,Sr)CoO3、(La,Sr)MnO3(LSM)、(La,Sr)CoO3、(La,Sr)(Fe,Co)O3、(La,Sr)(Fe,Co,Ni)O3などの金属酸化物が挙げられ、酸化性雰囲気下の安定性、およびYSZとの両立の観点から(La,Sr)MnO3を使用することが好ましい。上述した金属酸化物は、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。また、空気極を形成する材料として、白金、ルテニウム、パラジウムなどの貴金属を使用することもできる。 As a material used for forming the air electrode, for example, a metal oxide having a perovskite crystal structure can be used. Specifically, (Sm, Sr) CoO 3 , (La, Sr) MnO 3 (LSM), (La, Sr) CoO 3 , (La, Sr) (Fe, Co) O 3 , (La, Sr) ( Examples thereof include metal oxides such as Fe, Co, Ni) O 3 , and (La, Sr) MnO 3 is preferably used from the viewpoint of stability in an oxidizing atmosphere and compatibility with YSZ. One kind of the metal oxides described above may be used alone, or two or more kinds may be mixed and used. Moreover, noble metals, such as platinum, ruthenium, and palladium, can also be used as a material for forming the air electrode.

またSOFCにおける燃料極集電体、空気極集電体、セパレータは、従来公知の適宜の材料を用いて構成することができ、これらについても特に制限されるものではない。具体的には、燃料極集電体についてはNi基合金などのスポンジ状の多孔質焼結金属板、空気極集電体についてはAg基合金などのスポンジ状の多孔質焼結金属板、セパレータについてはステンレスなどで好適に構成することができる。   Further, the fuel electrode current collector, the air electrode current collector, and the separator in the SOFC can be configured by using conventionally known appropriate materials, and these are not particularly limited. Specifically, for a fuel electrode current collector, a sponge-like porous sintered metal plate such as an Ni-based alloy, and for an air electrode current collector, a sponge-like porous sintered metal plate such as an Ag-based alloy, a separator Can be suitably made of stainless steel or the like.

本発明はまた、発電初期のSOFCを負電圧で作動させる工程を含む、SOFCの製造方法についても提供する。このような本発明のSOFCの製造方法によれば、電池性能を向上させるための通電処理が短時間で済むため、優れた電池性能を有するSOFCを効率的に製造することができるようになる。本発明のSOFCの製造方法において、発電初期のSOFCを負電圧で作動させる工程以外の工程については特に制限されることなく、従来公知の適宜のSOFCの製造方法における各工程を採用することができる。   The present invention also provides a method for manufacturing an SOFC, including a step of operating the SOFC in the initial stage of power generation with a negative voltage. According to the SOFC manufacturing method of the present invention, since the energization process for improving the battery performance is completed in a short time, an SOFC having excellent battery performance can be efficiently manufactured. In the SOFC manufacturing method of the present invention, the steps other than the step of operating the SOFC in the initial stage of power generation with a negative voltage are not particularly limited, and each step in a conventionally known appropriate SOFC manufacturing method can be adopted. .

Claims (5)

発電初期の固体酸化物形燃料電池を負電圧で作動させる、固体酸化物形燃料電池の活性化方法。   A method for activating a solid oxide fuel cell, wherein the solid oxide fuel cell in the initial stage of power generation is operated at a negative voltage. 負電圧が−1.5V以上0V未満の範囲内である、請求項1に記載の方法。   The method according to claim 1, wherein the negative voltage is within a range of −1.5V or more and less than 0V. ジルコニア系固体酸化物電解質を備える、請求項1または2に記載の方法。   The method according to claim 1, comprising a zirconia-based solid oxide electrolyte. 1〜4時間負電圧で作動させる、請求項1〜3のいずれかに記載の方法。   4. The method according to any of claims 1 to 3, wherein the method is operated with a negative voltage for 1 to 4 hours. 発電初期の固体酸化物形燃料電池を負電圧で作動させる工程を含む、固体酸化物形燃料電池の製造方法。   A method for producing a solid oxide fuel cell, comprising a step of operating a solid oxide fuel cell in an initial stage of power generation with a negative voltage.
JP2009003897A 2009-01-09 2009-01-09 Method of activating solid oxide fuel cell, and method of manufacturing solid oxide fuel cell Pending JP2010161030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009003897A JP2010161030A (en) 2009-01-09 2009-01-09 Method of activating solid oxide fuel cell, and method of manufacturing solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009003897A JP2010161030A (en) 2009-01-09 2009-01-09 Method of activating solid oxide fuel cell, and method of manufacturing solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2010161030A true JP2010161030A (en) 2010-07-22

Family

ID=42578052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009003897A Pending JP2010161030A (en) 2009-01-09 2009-01-09 Method of activating solid oxide fuel cell, and method of manufacturing solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2010161030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122225A (en) * 2013-12-24 2015-07-02 日本特殊陶業株式会社 Solid oxide fuel cell, and manufacturing method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259641A (en) * 2003-02-27 2004-09-16 Nippon Telegr & Teleph Corp <Ntt> Method of operating solid oxide fuel cell
JP2004349050A (en) * 2003-05-21 2004-12-09 Aisin Seiki Co Ltd Polymer electrolyte fuel cell activating method
JP2008311064A (en) * 2007-06-14 2008-12-25 Canon Inc Fuel cell system and activation method of fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259641A (en) * 2003-02-27 2004-09-16 Nippon Telegr & Teleph Corp <Ntt> Method of operating solid oxide fuel cell
JP2004349050A (en) * 2003-05-21 2004-12-09 Aisin Seiki Co Ltd Polymer electrolyte fuel cell activating method
JP2008311064A (en) * 2007-06-14 2008-12-25 Canon Inc Fuel cell system and activation method of fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122225A (en) * 2013-12-24 2015-07-02 日本特殊陶業株式会社 Solid oxide fuel cell, and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP6018639B2 (en) Solid oxide fuel cell half-cell and solid oxide fuel cell
TWI688154B (en) Sofc cathode compositions with improved resistance to sofc degradation
JP2011119178A (en) Solid oxide fuel cell
JP5144236B2 (en) Solid oxide fuel cell
JP6338342B2 (en) Solid oxide fuel cell half-cell and solid oxide fuel cell
JP2015088284A (en) Solid oxide fuel cell
JP5481611B2 (en) High temperature steam electrolysis cell
JP6889900B2 (en) Anode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel cell
JP4795701B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP2010103122A (en) Solid oxide fuel cell, and method of manufacturing the same
JP7231431B2 (en) electrochemical cell
JP2002280017A (en) Single room type solid electrolyte fuel cell and its manufacturing method
JP2010061829A (en) Operation method of solid oxide fuel cell
JP7301768B2 (en) Electrochemical cells, electrochemical cell stacks and electrolytes for electrochemical cells
JP2010161030A (en) Method of activating solid oxide fuel cell, and method of manufacturing solid oxide fuel cell
JP2013051043A (en) Fuel electrode for fuel battery, and method of manufacturing the same
JP2018014309A (en) Method for manufacturing electrochemical reaction cell stack, and electrochemical reaction cell stack
Futamura et al. Alternative SOFC Anode Materials with Ion–and Electron–Conducting Backbones for Higher Fuel Utilization
JP2005174663A (en) Single chamber fuel cell
EP3432397B1 (en) Method for manufacturing fuel cell stack
JP2009129602A (en) Solid oxide fuel cell
JP2020091949A (en) Solid oxide fuel cell with mixed conductor layer
JPH0745297A (en) Solid electrolyte fuel cell
JP4559255B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP2009181928A (en) Solid oxide fuel cell body and fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402