JP2010160023A - Method and device for detecting circumferential surface distortion - Google Patents

Method and device for detecting circumferential surface distortion Download PDF

Info

Publication number
JP2010160023A
JP2010160023A JP2009001724A JP2009001724A JP2010160023A JP 2010160023 A JP2010160023 A JP 2010160023A JP 2009001724 A JP2009001724 A JP 2009001724A JP 2009001724 A JP2009001724 A JP 2009001724A JP 2010160023 A JP2010160023 A JP 2010160023A
Authority
JP
Japan
Prior art keywords
liquid tank
circumferential surface
liquid
reflected light
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009001724A
Other languages
Japanese (ja)
Inventor
Fumio Ogawa
二美夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009001724A priority Critical patent/JP2010160023A/en
Priority to PCT/JP2009/070486 priority patent/WO2010079661A1/en
Publication of JP2010160023A publication Critical patent/JP2010160023A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2408Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring roundness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for highly accurately detecting distortion of a circumferential surface in an object in a short time. <P>SOLUTION: The device for detecting distortion of a circumferential surface in an object includes: a drive device 1 for rotating the object around the center axial line in the circumferential surface; an illumination device 2 for optically illuminating the circumferential surface; a measuring device 3 for measuring the intensity of light reflected from the circumferential surface; and a control device 4 for determining the reflected light intensity obtained by the measuring device while correlating the intensity with the rotation position of the object. This invention also includes a detection method using the detection device. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、円周面を有する物体における該円周面の歪検出方法及び歪検出装置に関する。   The present invention relates to a strain detection method and a strain detection apparatus for a circumferential surface of an object having a circumferential surface.

例えば、軸受用の円筒ころ又は円錐ころは、外径面に僅かでも真円に対する歪があると、軸受の振動要因となり、好ましくない。この他、円筒面や円錐面等のような円周面を有する物体は、多くの場合にその円周面の加工精度が要求され、これに伴って真円に対する歪の検出が求められることが多い。   For example, if a cylindrical roller or a tapered roller for a bearing has a slight distortion on the outer diameter surface with respect to a perfect circle, it becomes a vibration factor of the bearing, which is not preferable. In addition, in many cases, an object having a circumferential surface such as a cylindrical surface or a conical surface is required to have processing accuracy of the circumferential surface, and accordingly, detection of distortion with respect to a perfect circle is required. Many.

従来そのような歪検出には、主として接触式の検出装置が用いられていた(例えば、特許文献1)。しかしながら、接触式の検出装置は、被検査物に触針等の接触子を接触させた状態で被検査物を回転させ、接触子の変位量に基づいて被検査物の外周形状の歪を検出する。したがって、接触子と被検査物とを正確に位置合わせするために、予め被検査物のチルティング(傾斜合わせ)及びセンタリング(芯合わせ)を行なって検出装置にセッティングする必要があり、そのセッティングに多大の時間を要していた。その結果、加工ラインによっては、物体の加工サイクルタイム内では検出できず、インラインでの全数検査が不可能になる等の問題も生じていた。   Conventionally, a contact-type detection device has been mainly used for such strain detection (for example, Patent Document 1). However, the contact-type detection device rotates the inspection object with a contact such as a stylus in contact with the inspection object, and detects the distortion of the outer peripheral shape of the inspection object based on the displacement of the contact. To do. Therefore, in order to accurately align the contact and the object to be inspected, it is necessary to perform tilting of the object to be inspected and centering (centering) in advance to set the detection device. It took a lot of time. As a result, depending on the processing line, there is a problem in that it cannot be detected within the processing cycle time of the object, and 100% in-line inspection becomes impossible.

特許第3738844号公報Japanese Patent No. 3738844

本発明は、このような従来技術の問題を解決し、円周面を有する物体における該円周面の歪検出を短時間に且つ高い精度で行い得る方法及び装置を提供することを目的とする。   An object of the present invention is to solve such problems of the prior art and to provide a method and apparatus capable of detecting distortion of a circumferential surface of an object having a circumferential surface with high accuracy in a short time. .

本発明は、前記目的を達成するために、物体における円周面の歪検出方法であって、前記物体を前記円周面における中心軸線を中心にして回転させつつ、前記円周面に光を照射し、前記物体の回転位置による反射光強度の変化を測定することにより、前記円周面の歪を検出することを特徴とする歪検出方法を提供するものである。   In order to achieve the above object, the present invention provides a method for detecting a strain on a circumferential surface of an object, wherein light is applied to the circumferential surface while rotating the object about a central axis of the circumferential surface. An object of the present invention is to provide a strain detection method for detecting a strain on the circumferential surface by irradiating and measuring a change in reflected light intensity depending on a rotational position of the object.

本発明はまた、前記目的を達成するために、物体における円周面の歪検出装置であって、前記物体を前記円周面における中心軸線を中心にして回転させる駆動装置と、前記円周面を光照射する照射装置と、該円周面からの反射光強度を測定する測定装置と、該測定装置によって得られる反射光強度を前記物体の回転位置と関連づけて判別するための制御装置とを備えていることを特徴とする歪検出装置を提供するものである。   In order to achieve the above object, the present invention is also a device for detecting a distortion of a circumferential surface of an object, the driving device rotating the object about a central axis of the circumferential surface, and the circumferential surface An irradiation device for irradiating light, a measuring device for measuring the intensity of reflected light from the circumferential surface, and a control device for determining the reflected light intensity obtained by the measuring device in association with the rotational position of the object The present invention provides a strain detection device characterized by comprising the above.

なお、上記の歪は、周形状における真円からのずれをいう   In addition, said distortion means the shift | offset | difference from the perfect circle in circumferential shape.

本発明に係る歪検出方法は、前記構成を採用しているので、被検査物を円周面における中心軸線を中心にして回転させつつ、円周面に光を照射し、物体の回転位置による反射光強度の変化を測定して、その測定結果から外周形状の歪を検出することができる。したがって、被検査物に接触子等を接触させる必要がなく、被検査物のチルティング(傾斜合わせ)やセンタリング(芯合わせ)のセッティング精度がある程度低くても、照射した光の被検査物による反射光を利用して測定ができる。その結果、被検査物のセッティングに要する時間が短くて済む。また、反射光強度の測定は被検査物の速い回転にも容易に追随できる。これらにより、被検査物の歪検出を短時間に且つ高い精度で行なうことができる。   The strain detection method according to the present invention employs the above-described configuration, so that the object to be inspected is rotated around the central axis on the circumferential surface, and the circumferential surface is irradiated with light, depending on the rotational position of the object. By measuring the change in reflected light intensity, it is possible to detect the distortion of the outer peripheral shape from the measurement result. Therefore, it is not necessary to bring a contact or the like into contact with the object to be inspected, and even if the setting accuracy of tilting or centering (centering) of the object to be inspected is somewhat low, the reflected light is reflected by the object under inspection. Measurements can be made using light. As a result, the time required for setting the inspection object can be shortened. Further, the measurement of the reflected light intensity can easily follow the fast rotation of the inspection object. Accordingly, it is possible to detect the distortion of the inspection object in a short time and with high accuracy.

また、本発明に係る歪検出装置は、前記構成に基づき、被検査物を駆動装置にセッティングし、照射装置及び測定装置による光照射と反射光強度の測定を行い、制御装置により反射光強度を物体の回転位置と関連づけて判別して、歪検出を行なうことができる。したがって、この場合にも、接触子と被検査物との接触を要せず、被検査物のセッティングに要する時間が短くて済み、反射光強度の測定は被検査物の速い回転にも容易に追随でき、これらにより、被検査物の歪検出を短時間に且つ高い精度で行なうことができる。   Further, the strain detection apparatus according to the present invention sets the object to be inspected to the driving device based on the above configuration, performs the light irradiation and the reflected light intensity measurement by the irradiation device and the measurement device, and the reflected light intensity is measured by the control device. Distortion can be detected by making a determination in association with the rotational position of the object. Therefore, in this case as well, the contact between the contact and the inspection object is not required, the time required for setting the inspection object can be shortened, and the reflected light intensity can be easily measured even when the inspection object is rapidly rotated. Accordingly, it is possible to detect the distortion of the inspection object in a short time and with high accuracy.

本願発明方法及び装置による歪検出の対象とされる物体の円周の歪の拡大図である。It is an enlarged view of the distortion of the circumference of the object used as the object of distortion detection by the method and apparatus of the present invention. 本発明の一実施形態に係る歪検出装置を概略的に示す図である。It is a figure showing roughly the distortion detecting device concerning one embodiment of the present invention. 図2の装置により得られた被検査物の画像を示す図である。It is a figure which shows the image of the to-be-inspected object obtained by the apparatus of FIG. 本発明の他の実施形態に係る歪検出装置を概略的に示す図である。It is a figure which shows roughly the distortion detection apparatus which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る歪検出装置を概略的に示す図である。It is a figure which shows roughly the distortion detection apparatus which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る歪検出装置を概略的に示す図である。It is a figure which shows roughly the distortion detection apparatus which concerns on other embodiment of this invention.

以下、本発明の実施形態について添付図面を参照しつつ説明する。図面中の同一又は同種の部分については、同じ番号を付して説明を一部省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The same or similar parts in the drawings are denoted by the same reference numerals and description thereof is partially omitted.

図1は、被検査物の一例である円筒ころの断面を示しており、図では理解を容易にするために凹凸を拡大して示している。図2は、この被検査物の歪検出を行なうための本発明の一実施形態に係る装置を示している。この歪検出装置は、被検査物Sをその円柱形状(回転体形状)の中心軸線を中心にして回転させる駆動装置1と、被検査物Sの外径面を光照射する照射装置2と、該外径面からの反射光の強度を測定する測定出装置3と、該測定装置によって得られた反射光強度を被検査物の回転位置と関連づけて判別するための制御装置4とを備えている。   FIG. 1 shows a cross section of a cylindrical roller which is an example of an object to be inspected. In the drawing, the unevenness is enlarged for easy understanding. FIG. 2 shows an apparatus according to an embodiment of the present invention for detecting the distortion of the inspection object. The strain detection apparatus includes a driving device 1 that rotates the inspection object S around the central axis of the cylindrical shape (rotating body shape), an irradiation device 2 that irradiates the outer diameter surface of the inspection object S, and A measurement output device 3 for measuring the intensity of reflected light from the outer diameter surface, and a control device 4 for determining the reflected light intensity obtained by the measuring device in association with the rotational position of the inspection object. Yes.

駆動装置1は、この実施形態では、1対の駆動輪11,12を備えており、相互に同一方向に回転することにより、その上に載置された被検査物Sを回転させるものである。外径面の振れが少ない回転精度の良い駆動輪を用いることにより、被検査物Sは駆動装置上で一定位置で回転し、円柱形状における中心軸線を中心にした回転を行なう。   In this embodiment, the drive device 1 includes a pair of drive wheels 11 and 12, and rotates the inspection object S placed thereon by rotating in the same direction. . By using a driving wheel with a small rotation of the outer diameter surface and good rotation accuracy, the inspection object S rotates at a fixed position on the driving device, and rotates around the central axis of the cylindrical shape.

照射装置2は、被検査物の歪が明確に検出されるように点状光源又は被検査物Sに平行に延びる線状光源とするのが望ましい。但し、被検査物の歪の検出が可能であれば、面光源を使用することもできる。照射光は、測定装置の機能に応じて、可視光、赤外光、紫外光等のコヒーレント又はインコヒーレントな光を用いることができる。   The irradiation device 2 is preferably a point light source or a linear light source extending parallel to the inspection object S so that distortion of the inspection object can be clearly detected. However, a surface light source can be used as long as the distortion of the inspection object can be detected. Irradiation light can be coherent or incoherent light such as visible light, infrared light, or ultraviolet light, depending on the function of the measuring apparatus.

測定装置3は、照射装置2により光照射された被検査物Sの外径面からの反射光強度を測定する機能を有し、この例ではラインセンサカメラ(ラインCCDカメラ)を用いている。なお、照射装置2と被検査物Sとの間、又は被検査物Sと測定装置3との間には、レンズや反射鏡等の光学機器や光学素子を適宜介在させてもよい。   The measuring device 3 has a function of measuring the intensity of reflected light from the outer diameter surface of the inspection object S irradiated with light by the irradiation device 2, and in this example, a line sensor camera (line CCD camera) is used. Note that an optical device such as a lens or a reflecting mirror or an optical element may be appropriately interposed between the irradiation device 2 and the inspection object S or between the inspection object S and the measurement device 3.

制御装置4は、測定装置3の信号線に接続されており、画像処理装置を備え、測定装置3から送られた光強度信号の変化を被検査物Sの回転位置と関連づけて判別する。この関連づけは、駆動装置1から送られる被検査物Sの回転位置情報と、光センサにより検出される光強度信号とを、制御装置4に送り該制御装置においてリアルタイムに行なうこともできるし、被検査物の外周について一連の反射光強度値を得た後に行なうこともできる。そして、歪の検出は、反射光の光強度信号が変化する位置を測定することにより行なうことができる。   The control device 4 is connected to the signal line of the measuring device 3 and includes an image processing device. The control device 4 determines a change in the light intensity signal sent from the measuring device 3 in association with the rotational position of the inspection object S. This association can be performed in real time by sending the rotational position information of the inspection object S sent from the driving device 1 and the light intensity signal detected by the optical sensor to the control device 4 in real time. It can also be performed after obtaining a series of reflected light intensity values for the outer periphery of the inspection object. The distortion can be detected by measuring the position where the light intensity signal of the reflected light changes.

図3は、図2の装置を用いて図1の被検査物Sに光照射したときに得られた画像を展開画像の形で示している。図中のWは被検査物Sにおける円筒形状面の幅、Cはその周面の長さに相当する。被測定物Sの外径面に歪があると、その箇所で照射光の反射方向が変化するため、測定装置3での受光量がそれに応じて変化する。こにより、図3のようにn箇所に歪がある外径面の場合には、n箇所において明度が変化する縞状の画像が得られる。被検査物Sの撮像は、その回転に伴って、図3の左から右へと進行した。この実施形態では、図3の光強度分布において、光強度変化を示す位置を測定することにより、歪の位置を検出することができる。反射光強度の測定は、光強度信号を得るようにして行なうことができるが、反射光の画像における明度の測定により行なうこともできる。   FIG. 3 shows an image obtained when the inspection object S of FIG. 1 is irradiated with light using the apparatus of FIG. 2 in the form of a developed image. W in the figure corresponds to the width of the cylindrical surface of the inspection object S, and C corresponds to the length of the peripheral surface thereof. If the outer diameter surface of the object to be measured S is distorted, the direction of reflection of the irradiated light changes at that location, and the amount of light received by the measuring device 3 changes accordingly. Thus, in the case of an outer diameter surface having distortion at n places as shown in FIG. 3, a striped image whose brightness changes at n places is obtained. Imaging of the inspection object S progressed from the left to the right in FIG. In this embodiment, the position of distortion can be detected by measuring the position showing the light intensity change in the light intensity distribution of FIG. The reflected light intensity can be measured by obtaining a light intensity signal, but can also be measured by measuring the brightness of the reflected light image.

また、反射光強度から歪の径方向寸法を検出することができる。これは、径方向寸法の変化が反射光の強度に反映されることを利用するものである。この測定のためには、例えば、被検査物と同じ設計寸法で径方向歪が既知である物体を検出装置にセットして光照射と反射光強度の測定を行ない、その反射光強度の測定値を基準値として準備する。基準値を得るための物体は、できるだけ径方向歪のない真円に近い外径面を有したものと、歪寸法が異なる歪寸法が既知のものとを数個準備するのが望ましい。これにより、大小の歪寸法を含んだ外径面の周方向についての反射光強度(基準値)が得られる。そして、被検査物を検出装置に同様にセットして反射光強度の測定を行ない、その測定値と基準値とを比較する。その反射光強度の差違により、径方向寸法の歪を検出することができる。   Further, the radial dimension of the strain can be detected from the reflected light intensity. This utilizes the fact that the change in the radial dimension is reflected in the intensity of the reflected light. For this measurement, for example, an object having the same design dimensions as the object to be inspected and having a known radial strain is set in the detection device, and the light irradiation and the reflected light intensity are measured, and the measured value of the reflected light intensity is measured. Is prepared as a reference value. It is desirable to prepare several objects for obtaining the reference value, one having an outer diameter surface that is as close to a perfect circle as possible with no radial distortion and one having a known strain dimension with a different strain dimension. Thereby, the reflected light intensity (reference value) in the circumferential direction of the outer diameter surface including large and small strain dimensions is obtained. Then, the object to be inspected is set in the detection device in the same manner, the reflected light intensity is measured, and the measured value is compared with the reference value. Due to the difference in reflected light intensity, it is possible to detect a distortion in the radial dimension.

さらに、ラインセンサカメラやエリアセンサカメラ等を用いて画像を得た場合は、円周面上の疵、錆等の局部的な欠陥を反射光強度の変化に基づく画像処理によって検出することができる。或いは、視認によって見いだすようにしてもよい。   Furthermore, when an image is obtained using a line sensor camera or an area sensor camera, local defects such as wrinkles and rust on the circumferential surface can be detected by image processing based on changes in reflected light intensity. . Alternatively, it may be found by visual recognition.

このようにして行なわれる歪検出は、直径20mm程度の被検査物であれば、搬送時間を含めても数秒程度で行なうことができる。したがって、インラインでの検査も可能となる。   The strain detection performed in this way can be performed in about several seconds including the conveyance time for an inspection object having a diameter of about 20 mm. Therefore, in-line inspection is also possible.

図4は、本発明に係る歪検出方法を実施するための検出装置の他の例を示している。この実施形態に係る歪検出装置は、液槽6を備えており、該液槽に貯められた油中に駆動装置1及び被検査物Sを浸漬するようになっている。そして、照射装置2、測定装置3及び制御装置4は、液槽6外に配置される。   FIG. 4 shows another example of a detection apparatus for carrying out the distortion detection method according to the present invention. The strain detection apparatus according to this embodiment includes a liquid tank 6, and the drive device 1 and the inspection object S are immersed in oil stored in the liquid tank. The irradiation device 2, the measurement device 3, and the control device 4 are disposed outside the liquid tank 6.

液層6は、少なくとも照射装置2からの照射及び測定装置3によって測定されるべき反射光を通す部分が透光性を有するものとされる。この実施形態では、液層6は、直方体状をなす金属製本体61の側壁に開口62が形成され、該開口を透明なガラス板63で液密に覆っている。この液層6に油Lが貯められ、駆動装置1及び被検査物Sが浸漬される。   In the liquid layer 6, at least a portion through which irradiation from the irradiation device 2 and reflected light to be measured by the measurement device 3 pass is translucent. In this embodiment, the liquid layer 6 has an opening 62 formed in the side wall of a metal body 61 having a rectangular parallelepiped shape, and the opening is liquid-tightly covered with a transparent glass plate 63. Oil L is stored in the liquid layer 6, and the driving device 1 and the inspection object S are immersed therein.

軸受用ころ等の物体は、加工する際に切削油が用いられ、他の物体においても防錆油が使用されたり、加工機器から油が付着したりして、表面に油が付着していることが多い。その場合には、付着した油が反射光強度を変化させ、正確な歪検出を妨げる。一方、付着した油を除去するのは、手間を要したり防錆作用をなくしたりするという問題がある。   Cutting oil is used for objects such as bearing rollers when machining, and rust preventive oil is used for other objects, and oil adheres to the surface of processing equipment. There are many cases. In that case, the adhered oil changes the reflected light intensity, preventing accurate strain detection. On the other hand, removing the adhering oil is problematic in that it takes time and eliminates the rust prevention effect.

これに対して、図4に示す装置を用いれば、液槽6内に貯められた油中に被検査物Sを浸漬するので、表面に付着した油は液槽内の油と一体となって反射光強度に与える影響が消失乃至低減し、正確な歪検出を妨げることがない。   On the other hand, if the apparatus shown in FIG. 4 is used, since the inspection object S is immersed in the oil stored in the liquid tank 6, the oil adhering to the surface is integrated with the oil in the liquid tank. The influence on the reflected light intensity disappears or is reduced, and accurate distortion detection is not hindered.

液槽6には、図4に示すように、フィルタリング装置7及び脱気装置8のいずれかまたは双方を導管を通じて接続し、液槽6内の油をこれらの装置に循環させることができる。フィルタリング装置7により、油中の汚染物を除去し、脱気装置8により気泡を除去することにより、精度の高い検出をより長期間維持することが可能となる。フィルタリング装置及び脱気装置は、以下に説明する実施形態の液槽にも同様に接続することができる。   As shown in FIG. 4, either or both of the filtering device 7 and the deaeration device 8 are connected to the liquid tank 6 through a conduit, and the oil in the liquid tank 6 can be circulated through these apparatuses. By removing contaminants in oil by the filtering device 7 and removing bubbles by the deaeration device 8, it becomes possible to maintain highly accurate detection for a longer period of time. The filtering device and the deaeration device can be similarly connected to the liquid tank of the embodiment described below.

図5は、本発明に係る歪検出方法を実施するための検出装置のさらに他の例を示している。この実施形態に係る歪検出装置も、液槽6を備えており、該液槽内の油L中には、駆動装置1、被検査物S、及び照射装置2を浸漬するようになっている。そして、測定装置3及び制御装置4は、液槽6外に配置される。液層6は、少なくとも測定装置3によって検出されるべき反射光を通す部分が、透光性を有するものとされる。この液層6も前述のものと同様に、直方体状をなす金属製本体61の側壁に開口62が形成され、該開口を透明なガラス板63で液密に覆っている。   FIG. 5 shows still another example of a detection apparatus for carrying out the distortion detection method according to the present invention. The strain detection apparatus according to this embodiment also includes a liquid tank 6, and the driving device 1, the inspection object S, and the irradiation apparatus 2 are immersed in the oil L in the liquid tank. . The measuring device 3 and the control device 4 are arranged outside the liquid tank 6. In the liquid layer 6, at least a portion through which reflected light to be detected by the measuring device 3 passes is assumed to have translucency. Similarly to the above-described liquid layer 6, the liquid layer 6 also has an opening 62 formed on the side wall of a metal body 61 having a rectangular parallelepiped shape, and the opening is liquid-tightly covered with a transparent glass plate 63.

このように、駆動装置1及び被検査物Sのみならず、照射装置2をも液槽6の油中に浸漬することにより、ガラス等の透光性部材を介して光照射を行なう場合に該透光性部材によって生じる反射をなくし、効率のよい光照射を行なうことができる。   Thus, when light irradiation is performed through a translucent member such as glass by immersing not only the driving device 1 and the inspection object S but also the irradiation device 2 in the oil of the liquid tank 6, Efficient light irradiation can be performed by eliminating reflection caused by the translucent member.

図6は、本発明に係る歪検出方法を実施するための検出装置のさらに他の例を示している。この実施形態に係る歪検出装置も、液槽6’を備えており、該液槽内の油L中には、駆動装置1、被検査物S、照射装置2及び測定装置3を浸漬するようになっている。そして、制御装置4は、液槽6外に配置される。この液槽6’は、槽壁に光を透過させる必要がないので、油Lを貯めて上記部材を収容し得る寸法を有していればよい。   FIG. 6 shows still another example of a detection apparatus for carrying out the distortion detection method according to the present invention. The strain detection apparatus according to this embodiment also includes a liquid tank 6 ′, and the driving apparatus 1, the inspection object S, the irradiation apparatus 2, and the measurement apparatus 3 are immersed in the oil L in the liquid tank. It has become. The control device 4 is disposed outside the liquid tank 6. Since the liquid tank 6 ′ does not need to transmit light to the tank wall, the liquid tank 6 ′ only needs to have a size that can store the oil L and accommodate the member.

このように、駆動装置1及び被検査物Sのみならず、照射装置2及び測定装置3をも液槽6’の油中に浸漬することにより、ガラス等の透光性部材を介して光照射及び反射光強度の測定を行なう場合に該透光性部材によって生じる反射をなくし、効率のよい光照射及び検出を行なうことができる。   In this way, not only the driving device 1 and the inspection object S but also the irradiation device 2 and the measuring device 3 are immersed in the oil in the liquid tank 6 ′, so that light is irradiated through a translucent member such as glass. In addition, when the reflected light intensity is measured, reflection caused by the translucent member can be eliminated, and efficient light irradiation and detection can be performed.

本発明は、上記実施形態に限定されるものではなく、種々の変更が可能である。例えば、被検査物としては、実施形態において述べた円筒ころのみならず、円筒や円錐等の回転体形状をなす面を備えた種々の物体を対象とすることができる。検出対象となる面が円錐形状である場合は、その物体を円錐の中心軸線を中心として回転させ、円錐の母線に対して垂直な位置に照射装置及び測定装置を配置するのが望ましい。対象形状が全体として円錐台状をなす場合も同様である。   The present invention is not limited to the above embodiment, and various modifications can be made. For example, the object to be inspected can be not only the cylindrical roller described in the embodiment, but also various objects having a surface having a rotating body shape such as a cylinder or a cone. When the surface to be detected has a conical shape, it is desirable to rotate the object about the central axis of the cone and place the irradiation device and the measurement device at a position perpendicular to the generatrix. The same applies to the case where the target shape has a truncated cone shape as a whole.

駆動装置としては、上記のものの他、被検査物の一端部または両端部を支持する支持部を有し、該支持部を回転させるものとすることができる。その支持部は、一端部または両端部を把持するもの、両端面の中心部に係合するピン状のもの等とすることができる。   In addition to the above-mentioned drive device, the drive device may include a support portion that supports one end portion or both end portions of the inspection object, and the support portion may be rotated. The supporting part may be one that grips one end part or both end parts, or a pin-like one that engages the center part of both end faces.

液槽には、油に代えて他の液体を収容してもよい。その液体としては、被検査物に付着する液と同種とするか、付着液を溶解等により一体化する性質のものを選択するのが望ましい。   The liquid tank may contain other liquid instead of oil. As the liquid, it is desirable to select the same liquid as the liquid adhering to the object to be inspected, or one having the property of integrating the adhering liquid by dissolution or the like.

1 駆動装置
2 照射装置
3 測定装置
4 制御装置
6,6’液層
L 油
S 被検査物
DESCRIPTION OF SYMBOLS 1 Drive apparatus 2 Irradiation apparatus 3 Measuring apparatus 4 Control apparatus 6, 6 'Liquid layer L Oil S Inspected object

Claims (13)

物体における円周面の歪検出方法であって、前記物体を円周面における中心軸線を中心にして回転させつつ、前記円周面に光を照射し、前記物体の回転位置による反射光強度の変化を測定することにより、前記円周面の歪を検出することを特徴とする歪検出方法。   A method for detecting a distortion of a circumferential surface of an object, wherein the object is irradiated with light while rotating the object around a central axis on the circumferential surface, and the reflected light intensity of the rotation position of the object is measured. A strain detection method, comprising: detecting a strain on the circumferential surface by measuring a change. 前記物体を液槽に貯められた液中に浸漬して回転させつつ、該液槽外から光照射及び反射光強度の測定を行なうことを特徴とする請求項1に記載の歪検出方法。   The strain detection method according to claim 1, wherein the measurement of light irradiation and reflected light intensity is performed from outside the liquid tank while the object is immersed and rotated in a liquid stored in the liquid tank. 前記物体を液槽に貯められた液中に浸漬して回転させ、且つ光照射を該液槽内において行ない、該液槽外において反射光強度の測定を行なうことを特徴とする請求項1に記載の歪検出方法。   2. The object according to claim 1, wherein the object is immersed and rotated in a liquid stored in a liquid tank, and light irradiation is performed in the liquid tank, and the reflected light intensity is measured outside the liquid tank. The distortion detection method as described. 前記物体を液槽に貯められた液中に浸漬して回転させ、且つ光照射及び反射光強度の測定を該液槽内において行なうことを特徴とする請求項1に記載の歪検出方法。   The strain detection method according to claim 1, wherein the object is immersed in a liquid stored in a liquid tank and rotated, and light irradiation and reflected light intensity are measured in the liquid tank. 円周面における歪部分の周方向位置を検出することを特徴とする請求項1〜4のいずれか1項に記載の歪検出方法。   The strain detection method according to any one of claims 1 to 4, wherein a circumferential position of a strain portion on the circumferential surface is detected. 歪状態が既知である円周面について得た測定データと、被検査物の測定データとの比較により、被検査物の円周面における歪部分の径方向寸法を検出することを特徴とする請求項1〜5のいずれか1項に記載の歪検出方法。   The radial dimension of the strained portion on the circumferential surface of the inspection object is detected by comparing the measurement data obtained for the circumferential surface whose strain state is known and the measurement data of the inspection object. Item 6. The distortion detection method according to any one of Items 1 to 5. 前記反射光の画像処理により、前記円周面における疵、錆等の局部的欠陥を検出することを特徴とする請求項1〜6のいずれか1項に記載の歪検出方法。   The distortion detection method according to claim 1, wherein local defects such as wrinkles and rust on the circumferential surface are detected by image processing of the reflected light. 物体における円周面の歪検出装置であって、前記物体を円周面における中心軸線を中心にして回転させる駆動装置と、前記円周面を光照射する照射装置と、該円周面からの反射光強度を測定する測定装置と、該測定装置によって得られる反射光強度を前記物体の回転位置と関連づけて判別するための制御装置とを備えていることを特徴とする歪検出装置。   A device for detecting distortion of a circumferential surface of an object, the driving device rotating the object about a central axis of the circumferential surface, an irradiation device for irradiating the circumferential surface with light, and from the circumferential surface A strain detection apparatus comprising: a measurement device that measures reflected light intensity; and a control device for determining the reflected light intensity obtained by the measurement device in association with the rotational position of the object. 前記駆動装置及び前記物体を液中に浸漬するための液槽をさらに備え、前記照射装置、測定装置及び制御装置が該液槽外に配置されることを特徴とする請求項8に記載の歪検出装置。   The strain according to claim 8, further comprising a liquid tank for immersing the driving device and the object in the liquid, wherein the irradiation device, the measurement device, and the control device are arranged outside the liquid tank. Detection device. 前記駆動装置及び前記物体を液中に浸漬するための液槽をさらに備え、前記照射装置が該液槽内に配置され、前記測定装置及び制御装置が該液槽外に配置されることを特徴とする請求項8に記載の歪検出装置。   A liquid tank for immersing the driving device and the object in the liquid is further provided, the irradiation device is disposed in the liquid tank, and the measuring device and the control device are disposed outside the liquid tank. The strain detection apparatus according to claim 8. 前記駆動装置及び前記物体を液中に浸漬するための液槽をさらに備え、前記照射装置及び測定装置が該液槽内に配置され、前記制御装置が該液槽外に配置されることを特徴とする請求項8に記載の歪検出装置。   A liquid tank for immersing the drive device and the object in the liquid is further provided, the irradiation device and the measuring device are disposed in the liquid tank, and the control device is disposed outside the liquid tank. The strain detection apparatus according to claim 8. 液中の汚染物を除去するためのフィルタリング装置が前記液槽に接続されていることを特徴とする請求項8〜11のいずれか1項に記載の歪検出装置。   The strain detection device according to any one of claims 8 to 11, wherein a filtering device for removing contaminants in the liquid is connected to the liquid tank. 液中の気泡を除去するための脱気装置が前記液槽に接続されていることを特徴とする請求項8〜12のいずれか1項に記載の歪検出装置。   The strain detection apparatus according to claim 8, wherein a deaeration device for removing bubbles in the liquid is connected to the liquid tank.
JP2009001724A 2009-01-07 2009-01-07 Method and device for detecting circumferential surface distortion Pending JP2010160023A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009001724A JP2010160023A (en) 2009-01-07 2009-01-07 Method and device for detecting circumferential surface distortion
PCT/JP2009/070486 WO2010079661A1 (en) 2009-01-07 2009-12-07 Method and device for detecting circumferential surface distortion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009001724A JP2010160023A (en) 2009-01-07 2009-01-07 Method and device for detecting circumferential surface distortion

Publications (1)

Publication Number Publication Date
JP2010160023A true JP2010160023A (en) 2010-07-22

Family

ID=42316432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009001724A Pending JP2010160023A (en) 2009-01-07 2009-01-07 Method and device for detecting circumferential surface distortion

Country Status (2)

Country Link
JP (1) JP2010160023A (en)
WO (1) WO2010079661A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711412B2 (en) * 1990-07-05 1995-02-08 住友金属工業株式会社 Pipe shape measuring device
JP3014297B2 (en) * 1995-03-07 2000-02-28 大旺鋼球製造株式会社 Surface inspection equipment for test materials
JP2001159611A (en) * 1999-12-03 2001-06-12 Daio Kokyu Seizo Kk Apparatus for inspecting tumbling object
JP2004257906A (en) * 2003-02-26 2004-09-16 Kanegafuchi Chem Ind Co Ltd Method of measuring surface distortion of roller-shape molding
JP2006258726A (en) * 2005-03-18 2006-09-28 Ricoh Co Ltd Defect-inspecting method

Also Published As

Publication number Publication date
WO2010079661A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP4500641B2 (en) Defect inspection method and apparatus
US10261028B2 (en) Device for optically inspecting a surface of a sample
KR960014919A (en) Optical inspection method and optical inspection device
JP2008175565A (en) Flaw detector of light transmissive member, and flaw detection method
US20170030842A1 (en) Device and method for optically inspecting and analyzing stent-like objects
EP3177902B1 (en) Methods and apparatus for determining geometric properties of optical fiber preforms
WO2011115256A1 (en) Visual inspection method and visual inspection apparatus for tires
JP6602061B2 (en) System and method for detecting pinholes in fiberglass and composite parts
JP2013057393A (en) Method of manufacturing bearing device component, and bearing device component
WO2010079661A1 (en) Method and device for detecting circumferential surface distortion
JP2006194626A (en) Eccentricity measuring device
JP2006242828A (en) Surface defect detection device
JP2007285869A (en) Surface inspection system and surface inspection method
JP5415162B2 (en) Cylindrical surface inspection equipment
JP2008045957A (en) Visual inspection device of bearing roll
JP2011209092A (en) Round rod inspection apparatus and method of inspecting round rod
JP3162099U (en) Translucent inspection device
JP2010038555A (en) Setting device of circumferential direction start position in oil well pipe screw-thread shape perimeter measurement
JP2005043222A (en) Object surface inspection device and object surface inspection method
JP2007033389A (en) Surface inspection apparatus
JP3075273U (en) Cylinder inner surface inspection device
JP2008185356A (en) Round rod inspection device and round rod inspection method
JP2005308517A (en) Outside surface inspection method and outside surface inspection device
JP4260705B2 (en) Metal ring side edge inspection method
JP3920713B2 (en) Optical displacement measuring device