JP2010159471A - FILM DEPOSITION METHOD OF Ge-Sb-Te-BASED FILM AND RECORDING MEDIUM - Google Patents

FILM DEPOSITION METHOD OF Ge-Sb-Te-BASED FILM AND RECORDING MEDIUM Download PDF

Info

Publication number
JP2010159471A
JP2010159471A JP2009003570A JP2009003570A JP2010159471A JP 2010159471 A JP2010159471 A JP 2010159471A JP 2009003570 A JP2009003570 A JP 2009003570A JP 2009003570 A JP2009003570 A JP 2009003570A JP 2010159471 A JP2010159471 A JP 2010159471A
Authority
JP
Japan
Prior art keywords
raw material
film
gaseous
gas
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009003570A
Other languages
Japanese (ja)
Other versions
JP5411512B2 (en
Inventor
Yumiko Kono
有美子 河野
Susumu Arima
進 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2009003570A priority Critical patent/JP5411512B2/en
Priority to KR1020100001216A priority patent/KR101124887B1/en
Publication of JP2010159471A publication Critical patent/JP2010159471A/en
Application granted granted Critical
Publication of JP5411512B2 publication Critical patent/JP5411512B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film deposition method of a Ge-Sb-Te-based film, by which the Ge-Sb-Te-based film having a target composition can be obtained by CVD. <P>SOLUTION: A substrate is arranged in a treatment container and then a Ge-Sb-Te-based film is deposited on the substrate by CVD while introducing a gaseous Ge raw material, a gaseous Sb raw material and a gaseous Te raw material into the treatment container. At this time, a Te-containing material is formed in gas flow passages and a reaction space before film deposition, and thereafter, a Ge-Sb-Te-based film having a predetermined composition is deposited by introducing the gaseous Ge raw material, the gaseous Sb raw material and the gaseous Te raw material or the gaseous Ge raw material and the gaseous Sb raw material into the treatment container, at respective predetermined flow rates. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、CVDによりGe−Sb−Te系膜を成膜するGe−Sb−Te系膜の成膜方法および記憶媒体に関する。   The present invention relates to a Ge—Sb—Te film forming method and a storage medium for forming a Ge—Sb—Te film by CVD.

近時、情報記録媒体として、相変化型光記録媒体が注目されている。相変化型光記録媒体は、レーザー光の照射によって記録層に非晶質状態と結晶状態とを可逆的に生じさせ、その相変化を利用して情報を記録する。このような相変化型光記憶媒体は、情報の高速処理が可能であり、しかも記録容量が大きいという利点がある。   Recently, phase change optical recording media have attracted attention as information recording media. A phase change optical recording medium reversibly generates an amorphous state and a crystalline state in a recording layer by irradiation with laser light, and records information using the phase change. Such a phase change type optical storage medium is advantageous in that it can process information at high speed and has a large recording capacity.

このような相変化型光記録媒体に用いる記録層の材料としてGe−Sb−Te系膜が多用されている(特許文献1等)。このGe−Sb−Te系膜は、特許文献1に記載されているようにスパッタリングにより形成されるのが一般的であったが、スパッタリングではステップカバレッジが十分でないことから、Ge−Sb−Te系膜をステップカバレッジの良好なCVDにより成膜することが試みられている。   A Ge—Sb—Te-based film is frequently used as a material for a recording layer used in such a phase change type optical recording medium (Patent Document 1, etc.). This Ge—Sb—Te-based film is generally formed by sputtering as described in Patent Document 1, but since the step coverage is not sufficient in sputtering, the Ge—Sb—Te-based film is used. Attempts have been made to form a film by CVD with good step coverage.

特開2006−256143号公報JP 2006-256143 A

このようなGe−Sb−Te系膜としては、現在、GeSbTeの組成のものが使われており、これを一般的な金属有機化合物であるアルキル基を含むGe化合物、Sb化合物、Te化合物でCVDを行った場合、膜中Geが目標組成に比べて少なくなり、目標組成であるGeSbTeを得難いという問題が生じることが判明した。 As such a Ge—Sb—Te film, a composition of Ge 2 Sb 2 Te 5 is currently used, and this is a Ge compound containing an alkyl group which is a general metal organic compound, and an Sb compound. It has been found that when CVD is performed with a Te compound, the Ge in the film is smaller than the target composition, and it is difficult to obtain Ge 2 Sb 2 Te 5 which is the target composition.

本発明はかかる事情に鑑みてなされたものであって、CVDにより目標の組成のGe−Sb−Te系膜を得ることができるGe−Sb−Te系膜の成膜方法を提供することを目的とする。
また、上記目的を達成するための方法を実行させるプログラムが記憶された記憶媒体を提供することを目的とする。
The present invention has been made in view of such circumstances, and an object thereof is to provide a method for forming a Ge—Sb—Te film that can obtain a Ge—Sb—Te film having a target composition by CVD. And
It is another object of the present invention to provide a storage medium storing a program for executing a method for achieving the above object.

本発明者らは、上記課題を解決するため検討を重ねた結果、Te化合物ガスは、流量構成として、他のGe化合物ガスおよびSb化合物ガスよりも少ない流量にしても、反応空間に供給すると、膜へのGeの取り込みを阻害し、それが目標組成のGe−Sb−Te系膜を得難い原因であることを見出した。そこで、さらに検討した結果、予めガスの通流経路壁や反応空間壁にTe含有材料を形成しておくことにより、Te化合物ガスを供給しなくても通流経路壁や反応空間壁からのTeを膜中に含ませることができ、これにより膜へのGeの取り込み阻害を抑制して所望の組成のGe−Sb−Te系膜が得られることを見出した。   As a result of repeated studies to solve the above problems, the present inventors have supplied the Te compound gas to the reaction space even when the flow rate configuration is smaller than other Ge compound gas and Sb compound gas. It was found that Ge incorporation into the film was inhibited, and that it was difficult to obtain a Ge—Sb—Te-based film having a target composition. Therefore, as a result of further investigation, by forming a Te-containing material on the gas flow path wall and the reaction space wall in advance, the Te from the flow path wall and the reaction space wall can be supplied without supplying the Te compound gas. It was found that a Ge—Sb—Te-based film having a desired composition can be obtained by suppressing the inhibition of Ge incorporation into the film.

本発明はそのような知見に基づいて完成されたものであり、処理容器内に基板を配置し、気体状のGe原料と、気体状のSb原料と、気体状のTe原料とを前記処理容器内に導入してCVDにより基板上にGe−Sb−Te系膜を成膜するに際し、成膜に先立ってガスの通流経路および/または反応空間にTe含有材料を形成し、その後前記処理容器内に所定流量の気体状のGe原料、気体状のSb原料および気体状のTe原料、または気体状のGe原料および気体状のSb原料を導入して所定の組成のGe−Sb−Te系膜を成膜するGe−Sb−Te系膜の成膜方法を提供する。   The present invention has been completed based on such knowledge. A substrate is disposed in a processing container, and a gaseous Ge raw material, a gaseous Sb raw material, and a gaseous Te raw material are disposed in the processing container. When a Ge—Sb—Te-based film is introduced into the substrate by CVD and formed, a Te-containing material is formed in the gas flow path and / or reaction space prior to film formation, and then the processing vessel A Ge-Sb-Te-based film having a predetermined composition by introducing a gaseous Ge raw material, a gaseous Sb raw material and a gaseous Te raw material, or a gaseous Ge raw material and a gaseous Sb raw material in a predetermined flow rate A method for forming a Ge—Sb—Te-based film is provided.

上記構成において、成膜に先立って前記処理容器内にTe原料を導入して、ガスの通流経路壁および/または反応空間壁にTeを含有する膜を形成することにより、ガスの通流経路および/または反応空間にTe含有材料を形成することができる。また、成膜に先立ってガスの通流経路および/または反応空間にTeを含有する部材を設けることによっても、ガスの通流経路および/または反応空間にTe含有材料を形成することができる。   In the above-described configuration, a gas flow path is formed by introducing a Te raw material into the processing container prior to film formation to form a film containing Te on the gas flow path wall and / or the reaction space wall. And / or a Te-containing material can be formed in the reaction space. Further, by providing a member containing Te in the gas flow path and / or reaction space prior to the film formation, the Te-containing material can be formed in the gas flow path and / or reaction space.

また、気体状のGe原料、気体状のSb原料および気体状のTe原料を用いて行う第1の成膜と、気体状のGe原料および気体状のSb原料を用いTe原料を用いない第2の成膜を交互に行うことによって成膜を行うことができる。   In addition, the first film formation using the gaseous Ge raw material, the gaseous Sb raw material, and the gaseous Te raw material, and the second film using the gaseous Ge raw material and the gaseous Sb raw material and not using the Te raw material. The film formation can be performed by alternately performing the film formation.

さらに、成膜の際に、ガスの通流経路および/または反応空間に形成されたTe含有材料から膜中に取り込まれるTeの量に基づいて、膜が所定の組成になるように、流量を制御して、気体状のGe原料、気体状のSb原料および気体状のTe原料、または気体状のGe原料および気体状のSb原料を導入するようにすることができる。   Furthermore, the flow rate is adjusted so that the film has a predetermined composition based on the amount of Te taken into the film from the Te-containing material formed in the gas flow path and / or reaction space during film formation. It can be controlled to introduce a gaseous Ge source, a gaseous Sb source and a gaseous Te source, or a gaseous Ge source and a gaseous Sb source.

本発明が適用されるGe−Sb−Te系膜の組成としては、GeSbTeを挙げることができる。また、Ge原料、Sb原料およびTe原料としては、アルキル基を含む化合物よりなるものであることが好ましい。 Examples of the composition of the Ge—Sb—Te based film to which the present invention is applied include Ge 2 Sb 2 Te 5 . Further, the Ge raw material, the Sb raw material and the Te raw material are preferably made of a compound containing an alkyl group.

本発明は、また、コンピュータ上で動作し、成膜装置を制御するプログラムが記憶された記憶媒体であって、前記制御プログラムは、実行時に、上記成膜方法が行われるように、コンピュータに前記成膜装置を制御させることを特徴とする記憶媒体を提供する。 The present invention is also a storage medium that operates on a computer and stores a program for controlling the film forming apparatus, and the control program stores the program in the computer so that the film forming method is performed at the time of execution. A storage medium characterized by controlling a film formation apparatus is provided.

本発明によれば、CVDによりGe−Sb−Te系膜を成膜する際に、成膜に先立ってガスの通流経路および/または反応空間にTe含有材料を形成するので、Te原料によるGeの取り込み阻害を軽減しつつ必要なTe量を確保することができ、所望の組成のGe−Sb−Te系膜を得ることができる。   According to the present invention, when a Ge—Sb—Te-based film is formed by CVD, a Te-containing material is formed in the gas flow path and / or reaction space prior to film formation. The necessary amount of Te can be ensured while reducing the uptake inhibition of Ge, and a Ge—Sb—Te-based film having a desired composition can be obtained.

本発明に係るGe−Sb−Te系膜の成膜方法の実施に用いることができる成膜装置の概略構成を示す断面図。Sectional drawing which shows schematic structure of the film-forming apparatus which can be used for implementation of the film-forming method of the Ge-Sb-Te type film | membrane which concerns on this invention. 本発明の成膜方法を説明するためのフローチャート。3 is a flowchart for explaining a film forming method of the present invention.

以下、添付図面を参照して本発明の実施形態について説明する。
図1は、本発明に係るGe−Sb−Te系膜の成膜方法の実施に用いることができる成膜装置の概略構成を示す断面図である。図1に示す成膜装置100は、例えばアルミニウムなどにより円筒状あるいは箱状に成形された処理容器1を有しており、処理容器1内には、基板Sが載置される載置台3が設けられている。載置台3は厚さ1mm程度の例えばグラファイト板あるいはSiCで覆われたグラファイト板などのカーボン素材、窒化アルミニウムなどの熱伝導性の良いセラッミクス等により構成される。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing a schematic configuration of a film forming apparatus that can be used for carrying out a method for forming a Ge—Sb—Te-based film according to the present invention. A film forming apparatus 100 shown in FIG. 1 has a processing container 1 formed into a cylindrical shape or a box shape by using aluminum or the like, for example, and a mounting table 3 on which a substrate S is placed is placed in the processing container 1. Is provided. The mounting table 3 is composed of a carbon material such as a graphite plate or a graphite plate covered with SiC having a thickness of about 1 mm, ceramics having good thermal conductivity such as aluminum nitride, and the like.

載置台3の外周側には、処理容器1底部より起立させた円筒体状の例えばアルミニウムよりなる区画壁13が形成されており、その上端を例えばL字状に水平方向へ屈曲させて屈曲部14を形成している。このように、円筒体状の区画壁13を設けることにより、載置台3の裏面側に不活性ガスパージ室15が形成される。屈曲部14の上面は、載置台3の上面と実質的に同一の平面上にあり、載置台3の外周から離間しており、この間隙に連結棒12が挿通されている。載置台3は、区画壁13の上部内壁より延びる3本(図示例では2本のみ記す)の支持アーム4により支持されている。   A cylindrical partition wall 13 made of, for example, aluminum, which is erected from the bottom of the processing container 1 is formed on the outer peripheral side of the mounting table 3, and its bent upper portion is bent in the horizontal direction, for example, in an L shape. 14 is formed. Thus, by providing the cylindrical partition wall 13, the inert gas purge chamber 15 is formed on the back surface side of the mounting table 3. The upper surface of the bent portion 14 is substantially on the same plane as the upper surface of the mounting table 3, is separated from the outer periphery of the mounting table 3, and the connecting rod 12 is inserted through this gap. The mounting table 3 is supported by three (only two in the illustrated example) support arms 4 extending from the upper inner wall of the partition wall 13.

載置台3の下方には、複数本、例えば3本のL字状のリフタピン5(図示例では2本のみ記す)がリング状の支持部材6から上方に突出するように設けられている。支持部材6は、処理容器1の底部から貫通して設けられた昇降ロッド7により昇降可能となっており、昇降ロッド7は処理容器1の下方に位置するアクチュエータ10により上下動される。載置台3のリフタピン5に対応する部分には載置台3を貫通して挿通穴8が設けられており、アクチュエータ10により昇降ロッド7および支持部材6を介してリフタピン5を上昇させることにより、リフタピン5をこの挿通穴8に挿通させて基板Sを持ち上げることが可能となっている。昇降ロッド7の処理容器1への挿入部分はベローズ9で覆われており、その挿入部分から処理容器1内に外気が侵入することを防止している。   Below the mounting table 3, a plurality of, for example, three L-shaped lifter pins 5 (only two in the illustrated example) are provided so as to protrude upward from the ring-shaped support member 6. The support member 6 can be moved up and down by a lifting rod 7 penetrating from the bottom of the processing container 1, and the lifting rod 7 is moved up and down by an actuator 10 located below the processing container 1. A portion of the mounting table 3 corresponding to the lifter pin 5 is provided with an insertion hole 8 penetrating the mounting table 3. The lifter pin 5 is lifted by the actuator 10 via the lifting rod 7 and the support member 6. 5 can be inserted into the insertion hole 8 to lift the substrate S. The insertion portion of the elevating rod 7 into the processing container 1 is covered with a bellows 9 to prevent outside air from entering the processing container 1 from the insertion portion.

載置台3の周縁部には、基板Sの周縁部を保持してこれを載置台3側へ固定するため、例えば円板状の基板Sの輪郭形状に沿った略リング状の例えば窒化アルミニウムなどのセラミック製のクランプリング部材11が設けられている。クランプリング部材11は、連結棒12を介して上記支持部材6に連結されており、リフタピン5と一体的に昇降するようになっている。リフタピン5や連結棒12等はアルミナなどのセラミックスにより形成される。   In order to hold the peripheral portion of the substrate S on the peripheral portion of the mounting table 3 and fix it to the mounting table 3 side, for example, a substantially ring shape such as aluminum nitride along the contour shape of the disk-shaped substrate S, etc. A ceramic clamp ring member 11 is provided. The clamp ring member 11 is connected to the support member 6 via a connecting rod 12 and is moved up and down integrally with the lifter pin 5. The lifter pins 5 and the connecting rods 12 are formed of ceramics such as alumina.

リング状のクランプリング部材11の内周側の下面には、周方向に沿って略等間隔で配置された複数の接触突起16が形成されており、クランプ時には、接触突起16の下端面が、基板Sの周縁部の上面と当接してこれを押圧するようになっている。なお、接触突起16の直径は1mm程度であり、高さは略50μm程度であり、クランプ時にはこの部分にリング状の第1ガスパージ用間隙17を形成する。なお、クランプ時の基板Sの周縁部とクランプリング部材11の内周側とのオーバラップ量(第1ガスパージ用間隙17の流路長さ)L1は数mm程度である。   A plurality of contact protrusions 16 arranged at substantially equal intervals along the circumferential direction are formed on the lower surface on the inner peripheral side of the ring-shaped clamp ring member 11, and at the time of clamping, the lower end surface of the contact protrusion 16 is The upper surface of the peripheral part of the board | substrate S is contact | abutted and this is pressed. The diameter of the contact protrusion 16 is about 1 mm and the height is about 50 μm, and a ring-shaped first gas purge gap 17 is formed in this portion during clamping. It should be noted that an overlap amount (flow path length of the first gas purge gap 17) L1 between the peripheral edge of the substrate S and the inner peripheral side of the clamp ring member 11 during clamping is about several millimeters.

クランプリング部材11の外周縁部は、区画壁13の上端屈曲部14の上方に位置され、ここにリング状の第2ガスパージ用間隙18が形成される。第2ガスパージ用間隙18の幅(高さ)は、例えば500μm程度であり、第1ガスパージ用間隙17の幅よりも10倍程大きい幅とされる。クランプリング部材11の外周縁部と屈曲部14とのオーバラップ量(第2ガスパージ用間隙18の流路長さ)は、例えば略10mm程度である。これにより、不活性ガスパージ室15内の不活性ガスは、両間隙17、18から処理空間側へ流出できるようになっている。   The outer peripheral edge portion of the clamp ring member 11 is positioned above the upper end bent portion 14 of the partition wall 13, and a ring-shaped second gas purge gap 18 is formed therein. The width (height) of the second gas purge gap 18 is, for example, about 500 μm, and is about 10 times larger than the width of the first gas purge gap 17. The overlap amount between the outer peripheral edge portion of the clamp ring member 11 and the bent portion 14 (the flow path length of the second gas purge gap 18) is, for example, about 10 mm. As a result, the inert gas in the inert gas purge chamber 15 can flow out from the gaps 17 and 18 to the processing space side.

処理容器1の底部には、上記不活性ガスパージ室15に不活性ガスを供給する不活性ガス供給機構19が設けられている。このガス供給機構19は、不活性ガス例えばArガス(バックサイドAr)を不活性ガスパージ室15に導入するためのガスノズル20と、不活性ガスとしてのArガスを供給するためのArガス供給源21と、Arガス供給源21からガスノズル20にArガスを導くガス配管22とを有している。また、ガス配管22には、流量制御器としてのマスフローコントローラ23および開閉バルブ24,25が設けられている。不活性ガスとしてArガスに替えてHeガス等の他の希ガスを用いてもよい。   An inert gas supply mechanism 19 that supplies an inert gas to the inert gas purge chamber 15 is provided at the bottom of the processing container 1. The gas supply mechanism 19 includes a gas nozzle 20 for introducing an inert gas such as Ar gas (backside Ar) into the inert gas purge chamber 15, and an Ar gas supply source 21 for supplying Ar gas as an inert gas. And a gas pipe 22 for guiding Ar gas from the Ar gas supply source 21 to the gas nozzle 20. Further, the gas pipe 22 is provided with a mass flow controller 23 as a flow rate controller and open / close valves 24 and 25. Other inert gases such as He gas may be used as the inert gas instead of Ar gas.

処理容器1の底部の載置台3の直下位置には、石英等の熱線透過材料よりなる透過窓30が気密に設けられており、この下方には、透過窓30を囲むように箱状の加熱室31が設けられている。この加熱室31内には、加熱手段として複数個の加熱ランプ32が、反射鏡も兼ねる回転台33に取り付けられている。回転台33は、回転軸を介して加熱室31の底部に設けられた回転モータ34により回転される。したがって、加熱ランプ32より放出された熱線が透過窓30を透過して載置台3の下面を照射してこれを加熱する。   A transmission window 30 made of a heat ray transmission material such as quartz is airtightly provided immediately below the mounting table 3 at the bottom of the processing container 1, and a box-like heating is provided below this to surround the transmission window 30. A chamber 31 is provided. In the heating chamber 31, a plurality of heating lamps 32 are attached as a heating means to a turntable 33 that also serves as a reflecting mirror. The turntable 33 is rotated by a rotation motor 34 provided at the bottom of the heating chamber 31 via a rotation shaft. Therefore, the heat rays emitted from the heating lamp 32 pass through the transmission window 30 and irradiate the lower surface of the mounting table 3 to heat it.

また、処理容器1底部の周縁部には、排気口36が設けられ、排気口36には図示しない真空ポンプに接続された排気管37が接続されている。そして、この排気口36および排気管37を介して排気することにより処理容器1内を所定の真空度に維持し得るようになっている。また、処理容器1の側壁には、基板Sを搬入出する搬入出口39と、搬入出口39を開閉するゲートバルブ38が設けられる。   Further, an exhaust port 36 is provided at the peripheral edge of the bottom of the processing container 1, and an exhaust pipe 37 connected to a vacuum pump (not shown) is connected to the exhaust port 36. The inside of the processing container 1 can be maintained at a predetermined degree of vacuum by exhausting through the exhaust port 36 and the exhaust pipe 37. Further, a loading / unloading port 39 for loading / unloading the substrate S and a gate valve 38 for opening / closing the loading / unloading port 39 are provided on the side wall of the processing container 1.

一方、載置台3と対向する処理容器1の天井部には、ソースガスなどを処理容器1内へ導入するためシャワーヘッド40が設けられている。シャワーヘッド40は、例えばアルミニウム等により構成され、内部に空間41aを有する円盤状をなすヘッド本体41を有している。ヘッド本体41の天井部にはガス導入口42が設けられている。ガス導入口42には、Ge−Sb−Te系膜の成膜に必要な処理ガスを供給する処理ガス供給機構50がその配管51によって接続されている。ヘッド本体41の底部には、ヘッド本体41内へ供給されたガスを処理容器1内の処理空間へ放出するための多数のガス噴射孔43が全面に亘って配置されており、基板Sの全面にガスを放出するようになっている。また、ヘッド本体41内の空間41aには、多数のガス分散孔45を有する拡散板44が配設されており、基板Sの表面に、より均等にガスを供給可能となっている。さらに、処理容器1の側壁内およびシャワーヘッド40の側壁内およびガス噴射孔43の配置されたウエハ対向面内には、それぞれ温度調整のためのカートリッジヒータ46,47が設けられており、ガスとも接触する側壁やシャワーヘッド部を所定の温度に保持できるようになっている。   On the other hand, a shower head 40 is provided on the ceiling of the processing container 1 facing the mounting table 3 in order to introduce source gas or the like into the processing container 1. The shower head 40 is made of, for example, aluminum and has a head body 41 having a disk shape having a space 41a therein. A gas inlet 42 is provided in the ceiling of the head body 41. A processing gas supply mechanism 50 that supplies a processing gas necessary for forming a Ge—Sb—Te-based film is connected to the gas inlet 42 by a pipe 51. A large number of gas injection holes 43 for discharging the gas supplied into the head main body 41 to the processing space in the processing container 1 are arranged on the entire bottom surface of the head main body 41. It is designed to release gas. A diffusion plate 44 having a large number of gas dispersion holes 45 is disposed in the space 41a in the head main body 41 so that gas can be supplied more evenly to the surface of the substrate S. Further, cartridge heaters 46 and 47 for temperature adjustment are provided in the side wall of the processing vessel 1, the side wall of the shower head 40, and the wafer facing surface where the gas injection holes 43 are arranged, respectively. The side wall and shower head part which contacts can be hold | maintained at predetermined temperature.

処理ガス供給機構50は、Te原料を貯留するTe原料貯留部52と、Sb原料を貯留するSb原料貯留部53と、Ge原料を貯留するGe原料貯留部54と、処理容器1内のガスを希釈するためのアルゴンガス等の希釈ガスを供給する希釈ガス供給源55とを有している。   The processing gas supply mechanism 50 includes a Te raw material storage unit 52 that stores Te raw material, an Sb raw material storage unit 53 that stores Sb raw material, a Ge raw material storage unit 54 that stores Ge raw material, and a gas in the processing container 1. A dilution gas supply source 55 for supplying a dilution gas such as argon gas for dilution.

シャワーヘッド40に接続されている配管51には、Te原料貯留部52から延びる配管56、Sb原料貯留部53から延びる配管57、Ge原料貯留部54から延びる配管58が接続されており、配管51には上記希釈ガス供給源55が接続されている。配管51には、流量制御器としてのマスフローコントローラ(MFC)60とその前後の開閉バルブ61,62が設けられている。また、配管58には、流量制御器としてのマスフローコントローラ(MFC)63とその前後の開閉バルブ64,65が設けられている。   The pipe 51 connected to the shower head 40 is connected to a pipe 56 extending from the Te raw material storage 52, a pipe 57 extending from the Sb raw material storage 53, and a pipe 58 extending from the Ge raw material storage 54. Is connected to the dilution gas supply source 55. The pipe 51 is provided with a mass flow controller (MFC) 60 as a flow rate controller and front and rear opening / closing valves 61 and 62. Further, the pipe 58 is provided with a mass flow controller (MFC) 63 as a flow rate controller and front and rear opening / closing valves 64 and 65.

Te原料貯留部52には、Ar等のバブリングのためのキャリアガスを供給するキャリアガス供給源66が配管67を介して接続されている。配管67には、流量制御器としてのマスフローコントローラ(MFC)68とその前後の開閉バルブ69,70が設けられている。また、Sb原料貯留部53にも、Ar等のキャリアガスを供給するキャリアガス供給源71が配管72を介して接続されている。配管72には、流量制御器としてのマスフローコントローラ(MFC)73とその前後の開閉バルブ74,75が設けられている。Te原料貯留部52、Sb原料貯留部53には、それぞれヒータ76、77が設けられている。そして、Te原料貯留部52に貯留されたTe原料およびSb原料貯留部53に貯留されたSb原料は、これらヒータ76、77で加熱された状態で、バブリングにより処理容器1に供給されるようになっている。また、Ge原料貯留部54に貯留されたGe原料はマスフローコントローラ(MFC)63により流量制御しつつ処理容器1に供給されるようになっている。図示してはいないが、Ge原料、Sr原料およびTi原料を気化した状態で供給する処理容器1までの配管やマスフローコントローラにもヒータが設けられている。   A carrier gas supply source 66 for supplying a carrier gas for bubbling Ar or the like is connected to the Te raw material reservoir 52 via a pipe 67. The pipe 67 is provided with a mass flow controller (MFC) 68 as a flow rate controller and front and rear opening / closing valves 69 and 70. Further, a carrier gas supply source 71 for supplying a carrier gas such as Ar is also connected to the Sb raw material reservoir 53 via a pipe 72. The pipe 72 is provided with a mass flow controller (MFC) 73 as a flow rate controller and open / close valves 74 and 75 before and after the mass flow controller (MFC) 73. The Te raw material reservoir 52 and the Sb raw material reservoir 53 are provided with heaters 76 and 77, respectively. The Te raw material stored in the Te raw material storage unit 52 and the Sb raw material stored in the Sb raw material storage unit 53 are supplied to the processing container 1 by bubbling while being heated by the heaters 76 and 77. It has become. Further, the Ge raw material stored in the Ge raw material storage unit 54 is supplied to the processing vessel 1 while the flow rate is controlled by a mass flow controller (MFC) 63. Although not shown, a heater is also provided in the piping and the mass flow controller to the processing container 1 that supplies the Ge raw material, the Sr raw material, and the Ti raw material in a vaporized state.

なお、本実施形態では、Ge原料をマスフローコントローラ供給とし、Sb原料およびTe原料をバブリング供給した例を示したが、Ge原料をバブリング供給してもよいし、Sb原料、Te原料をマスフローコントローラ供給してもよい。また、液体の状態の原料を液体マスフローコントローラで流量制御して気化器により気化して供給するようにしてもよい。   In the present embodiment, the Ge raw material is supplied by the mass flow controller, and the Sb raw material and the Te raw material are supplied by bubbling. However, the Ge raw material may be supplied by bubbling, and the Sb raw material and Te raw material are supplied by the mass flow controller. May be. Further, the raw material in a liquid state may be supplied by being controlled by a liquid mass flow controller and vaporized by a vaporizer.

Ge原料、Sb原料、Te原料としては、気体供給が可能な化合物であれば用いることができる。蒸気圧が高い化合物であれば気化しやすく有利である。アルキル基を含む化合物は、蒸気圧が高く安価であるため、好適に用いることができる。ただし、アルキル基を含むものに限定されない。   As the Ge raw material, the Sb raw material, and the Te raw material, any compound that can supply gas can be used. A compound having a high vapor pressure is advantageous because it is easily vaporized. A compound containing an alkyl group can be suitably used because it has a high vapor pressure and is inexpensive. However, it is not limited to the thing containing an alkyl group.

アルキル基を含むものとして具体的には、Ge原料としては、メチルゲルマニウムGe(CH)H、ターシャリブチルゲルマニウム[Ge((CHC)H]、テトラメチルゲルマニウム[Ge(CH]、テトラエチルゲルマニウム[Ge(C]、テトラジメチルアミノゲルマニウム[Ge((CHN)]等を挙げることができ、Sb原料としては、トリイソプロピルアンチモン[Sb(i−C]、トリメチルアンチモン[Sb(CH]、トリスジメチルアミノアンチモン[Sb((CHN)]等を挙げることができ、Te原料としては、ジイソプロピルテルル[Te(i−C]、ジターシャリブチルテルル[Te(t−C]、ジエチルテルル[Te(C]等を挙げることができる。 Specifically, as the Ge raw material containing an alkyl group, methyl germanium Ge (CH 3 ) H 3 , tertiary butyl germanium [Ge ((CH 3 ) 3 C) H 3 ], tetramethyl germanium [Ge ( CH 3 ) 4 ], tetraethylgermanium [Ge (C 2 H 5 ) 4 ], tetradimethylaminogermanium [Ge ((CH 3 ) 2 N) 4 ] and the like. Examples of the Sb raw material include triisopropylantimony [Sb (i-C 3 H 7 ) 3 ], trimethylantimony [Sb (CH 3 ) 3 ], trisdimethylaminoantimony [Sb ((CH 3 ) 2 N) 3 ] and the like can be mentioned as Te raw materials. is diisopropyl tellurium [Te (i-C 3 H 7) 2], di-tert-butyl tellurium [Te (t-C 4 H ) 2], diethyl tellurium [Te (C 2 H 5) 2] , and the like.

処理容器1の側壁上部には、クリーニングガスであるNFガスを導入するクリーニングガス導入部81が設けられている。このクリーニングガス導入部81にはNFガスを供給する配管82が接続されており、この配管82にはリモートプラズマ発生部83が設けられている。そして、このリモートプラズマ発生部83において配管82を介して供給されたNFガスがプラズマ化され、これが処理容器1内に供給されることにより処理容器1内がクリーニングされる。なお、リモートプラズマ発生部をシャワーヘッド40の直上に設け、クリーニングガスをシャワーヘッド40を介して供給するようにしてもよい。また、NFの代わりにFを用いてもよいし、リモートプラズマを使用せず、ClF等によるプラズマレスの熱クリーニングを行うようにしてもよい。 A cleaning gas introduction part 81 for introducing NF 3 gas, which is a cleaning gas, is provided on the upper side wall of the processing container 1. A pipe 82 for supplying NF 3 gas is connected to the cleaning gas introduction part 81, and a remote plasma generation part 83 is provided in the pipe 82. Then, the NF 3 gas supplied through the pipe 82 is converted into plasma in the remote plasma generation unit 83 and supplied into the processing container 1, thereby cleaning the inside of the processing container 1. Note that a remote plasma generation unit may be provided immediately above the shower head 40 and the cleaning gas may be supplied via the shower head 40. Further, F 2 may be used instead of NF 3 , and plasmaless thermal cleaning with ClF 3 or the like may be performed without using remote plasma.

成膜装置100はマイクロプロセッサ(コンピュータ)からなるプロセスコントローラ90を有しており、成膜装置100の各構成部がこのプロセスコントローラ90に接続されて制御される構成となっている。また、プロセスコントローラ90には、オペレータが成膜装置100の各構成部を管理するためにコマンドの入力操作などを行うキーボードや、成膜装置100の各構成部の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェース91が接続されている。さらに、プロセスコントローラ90には、成膜装置100で実行される各種処理をプロセスコントローラ90の制御にて実現するための制御プログラムや、処理条件に応じて成膜装置100の各構成部に所定の処理を実行させるための制御プログラムすなわち処理レシピや、各種データベース等が格納された記憶部92が接続されている。処理レシピは記憶部92の中の記憶媒体(図示せず)に記憶されている。記憶媒体は、ハードディスク等の固定的に設けられているものであってもよいし、CDROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。また、他の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。   The film forming apparatus 100 includes a process controller 90 including a microprocessor (computer), and each component of the film forming apparatus 100 is connected to the process controller 90 and controlled. In addition, the process controller 90 visualizes and displays the operation status of each component of the film forming apparatus 100 and a keyboard on which an operator inputs commands to manage each component of the film forming apparatus 100. A user interface 91 including a display is connected. Further, the process controller 90 has a control program for realizing various processes executed by the film forming apparatus 100 under the control of the process controller 90, and predetermined components are assigned to respective components of the film forming apparatus 100 according to processing conditions. A storage unit 92 that stores a control program for executing the process, that is, a process recipe, various databases, and the like is connected. The processing recipe is stored in a storage medium (not shown) in the storage unit 92. The storage medium may be a fixed medium such as a hard disk or a portable medium such as a CDROM, DVD, or flash memory. Moreover, you may make it transmit a recipe suitably from another apparatus via a dedicated line, for example.

そして、必要に応じて、ユーザーインターフェース91からの指示等にて所定の処理レシピを記憶部92から呼び出してプロセスコントローラ90に実行させることで、プロセスコントローラ90の制御下で、成膜装置100での所望の処理が行われる。   Then, if necessary, a predetermined processing recipe is called from the storage unit 92 by an instruction from the user interface 91 and is executed by the process controller 90, so that the film forming apparatus 100 can control the process controller 90. Desired processing is performed.

次に、以上のように構成された成膜装置を用いて行われる成膜処理方法の実施形態について図2のフローチャートを参照しつつ説明する。   Next, an embodiment of a film forming method performed using the film forming apparatus configured as described above will be described with reference to the flowchart of FIG.

まず、処理容器1内に基板Sは搬入せずに、予めガスの通流経路および/または反応空間にTe含有材料を形成する(工程1)。この処理は、成膜の際にTe原料ガスを供給しないとき、あるいはTe原料ガスを少なくしたときのTe供給源を確保するための処理である。   First, the Te-containing material is formed in advance in the gas flow path and / or the reaction space without carrying the substrate S into the processing container 1 (step 1). This process is a process for securing a Te supply source when the Te source gas is not supplied during film formation or when the Te source gas is reduced.

この工程1は、成膜に先立って、Te原料ガスを所定の真空雰囲気に保持された処理容器1内に予め流し、ガス通流経路壁、すなわち配管51の内壁やシャワーヘッド40の内壁、および/または反応空間壁、すなわち処理容器1の内壁にTe含有膜を形成することによって行うことができる。あるいは処理容器1の側壁に設けたノズル(図示せず)から液状のTe原料を噴霧して、Te含有膜を形成してもよい。また、ガス通流経路および/または反応空間にTeを含有する部材を設けることによっても行うことができる。このTeを含有する部材を設けることは、ガス通流経路壁および/または反応空間壁にTeを含有する箔やTeを含有する部材を貼り付けてもよいし、ガス通流経路および/または反応空間に単にTeを含有する部材を置くだけでもよい。   In this step 1, prior to film formation, Te source gas is pre-flowed into the processing container 1 held in a predetermined vacuum atmosphere, and the gas flow path wall, that is, the inner wall of the pipe 51 and the inner wall of the shower head 40, and It can be carried out by forming a Te-containing film on the reaction space wall, that is, the inner wall of the processing vessel 1. Alternatively, a Te-containing film may be formed by spraying a liquid Te raw material from a nozzle (not shown) provided on the side wall of the processing container 1. Moreover, it can also carry out by providing the member containing Te in a gas flow path and / or reaction space. Providing this Te-containing member may be achieved by attaching a Te-containing foil or a Te-containing member to the gas flow path wall and / or the reaction space wall, or the gas flow path and / or reaction. A member containing Te may be simply placed in the space.

次に、ゲートバルブ38を開けて、搬入出口39から処理容器1内に基板Sを搬入する(工程2)。そして、基板Sを載置台3の上に載置し、処理容器1内を排気して所定の真空度に調整する。載置台3はあらかじめ加熱ランプ32により放出され透過窓30を透過した熱線により加熱されており、その熱により基板Sを加熱する。   Next, the gate valve 38 is opened, and the substrate S is loaded into the processing container 1 from the loading / unloading port 39 (step 2). Then, the substrate S is mounted on the mounting table 3, the inside of the processing container 1 is evacuated, and the degree of vacuum is adjusted. The mounting table 3 is heated in advance by heat rays emitted from the heating lamp 32 and transmitted through the transmission window 30, and the substrate S is heated by the heat.

次に、Ge原料ガス、Sb原料ガス、Te原料ガスを所定流量で流し、基板S上にGe−Sb−Te系膜を成膜する(工程3)。この工程3においては、まず希釈ガス供給源55から希釈ガスとして例えばArガスを100〜1000mL/sec(sccm)の流量で供給しつつ、図示しない真空ポンプにより排気口36および排気管37を介して処理容器1内を排気することにより処理容器1内の圧力を60〜1330Pa程度に真空排気する。この際の基板Sの加熱温度は、例えば200〜600℃に、好ましくは300〜400℃に設定される。   Next, Ge source gas, Sb source gas, and Te source gas are flowed at a predetermined flow rate to form a Ge—Sb—Te-based film on the substrate S (step 3). In this step 3, first, for example, Ar gas is supplied as a dilution gas from the dilution gas supply source 55 at a flow rate of 100 to 1000 mL / sec (sccm), and a vacuum pump (not shown) is connected through the exhaust port 36 and the exhaust pipe 37. By evacuating the inside of the processing container 1, the pressure in the processing container 1 is evacuated to about 60 to 1330 Pa. The heating temperature of the board | substrate S in this case is set to 200-600 degreeC, for example, Preferably it is set to 300-400 degreeC.

そして、希釈用ガス、例えばArガスの流量を100〜500mL/sec(sccm)としつつ、処理容器1内の圧力を成膜圧力である60〜6650Paに制御し、実際の成膜を開始する。なお、処理容器1内の圧力調整は、排気管37に設けられた自動圧力制御器(APC)によりなされる。   Then, while the flow rate of the dilution gas, for example, Ar gas is set to 100 to 500 mL / sec (sccm), the pressure in the processing container 1 is controlled to 60 to 6650 Pa, which is the film formation pressure, and actual film formation is started. The pressure in the processing vessel 1 is adjusted by an automatic pressure controller (APC) provided in the exhaust pipe 37.

この状態で、例えば所定流量のキャリアガスを流してバブリングにより、Te原料貯留部52からのTe原料ガスおよびSb原料貯留部53からのSb原料ガスを処理容器1内に導入し、さらに、マスフローコントローラ(MFC)63によりGe原料貯留部54から所定流量のGe原料ガスを処理容器1内に導入する。   In this state, for example, a Te source gas from the Te source reservoir 52 and an Sb source gas from the Sb source reservoir 53 are introduced into the processing vessel 1 by bubbling with a predetermined flow rate of carrier gas, and further, a mass flow controller (MFC) 63 introduces a Ge raw material gas having a predetermined flow rate into the processing container 1 from the Ge raw material reservoir 54.

このとき、ガスの通流経路壁および/または反応空間壁に予めTe系材料が形成されているので、これらから昇華してきたTeが膜中に入る。このため、Geの膜中への取り込みを阻害するTe原料を少なくすることができる。すなわち、Te原料によるGeの膜中への取り込み阻害が生じると、Ge原料ガスの流量を多くしても、所望の組成、典型的にはGeSbTeの組成の膜よりもGe量が少なくなってしまい、逆に、それを防止するためにTe原料ガスの流量を少なくすると、Geの取り込み阻害は軽減されるがTe量が所望の組成よりも少なくなってしまう。このように、ガスの通流経路壁および/または反応空間壁に予めTe系材料を形成しておくことにより、Geの取り込み阻害を軽減すべくTe原料ガスの流量を少なくしても、所望のTe量を確保することができる。 At this time, since a Te-based material is formed in advance on the gas flow path wall and / or the reaction space wall, Te sublimated from these enters the film. For this reason, it is possible to reduce the Te raw material that inhibits the incorporation of Ge into the film. That is, when the incorporation of Ge into the film by the Te material occurs, the amount of Ge is higher than that of the film having a desired composition, typically Ge 2 Sb 2 Te 5 , even if the flow rate of the Ge material gas is increased. Conversely, if the flow rate of the Te raw material gas is reduced to prevent this, inhibition of Ge uptake is reduced, but the amount of Te becomes smaller than the desired composition. Thus, by forming a Te-based material in advance on the gas flow path wall and / or the reaction space wall, even if the flow rate of the Te source gas is reduced to reduce the inhibition of Ge uptake, a desired material can be obtained. Te amount can be secured.

この際の成膜は、ガスの通流経路壁および/または反応空間壁に予め形成したTe系材料からのTeの取り込み量を見込んでTe原料ガスの流量を少なくし、Ge原料ガスの流量を取り込み阻害を見込んで多くして、Ge原料ガス、Sb原料ガスおよびTe原料ガスを同時に供給してGe−Sb−Te系膜を成膜してもよいし、Ge原料ガス、Sb原料ガスおよびTe原料ガスをすべて導入する成膜と、Te原料ガスを除いたGe原料ガスとSb原料ガスのみによる成膜を交互に行ってGe−Sb−Te系膜を成膜してもよい。   In this film formation, the flow rate of the Te raw material gas is reduced in view of the amount of Te incorporation from the Te-based material previously formed on the gas flow path wall and / or the reaction space wall, and the flow rate of the Ge raw material gas is reduced. A Ge-Sb-Te-based film may be formed by simultaneously supplying Ge source gas, Sb source gas, and Te source gas in anticipation of uptake inhibition, or Ge source gas, Sb source gas, and Te The Ge—Sb—Te-based film may be formed by alternately performing film formation in which all of the source gas is introduced and film formation using only the Ge source gas and the Sb source gas excluding the Te source gas.

この工程3の成膜が終了したら、原料の供給を停止し、処理容器1内を希釈ガスによりパージした後、ゲートバルブ38を開け、成膜後の基板Sを処理容器から搬出する(工程4)。   When the film formation in this step 3 is completed, the supply of raw materials is stopped, the inside of the processing container 1 is purged with a dilution gas, the gate valve 38 is opened, and the substrate S after film formation is unloaded from the processing container (step 4). ).

次に、実際にGe−Sb−Te膜を成膜した実験結果について示す。
<実験1>
上記図1の成膜装置において、カートリッジヒータにより処理容器壁の温度を160℃に設定し、ランプパワーを調節して、載置台の温度を350℃に設定し、搬送ロボットのアームを用いて処理容器内に直径200mmの円板状をなす基板を搬入し、Ge−Sb−Te膜を成膜した。なお、Ge原料、Sb原料、Te原料として、ターシャリブチルゲルマニウム、トリイソプロピルアンチモン、ジイソプロピルテルルを用いた。ターシャリブチルゲルマニウムは、常温の原料容器の後段に設置したマスフローコントローラにて蒸気流量を直接制御して処理容器に供給し、トリイソプロピルアンチモンは、50℃に温度コントロールした原料容器にキャリアガスとして流量制御されたArガスを容器内に通じたバブリング法にて処理容器に供給し、ジイソプロピルテルルは、35℃に温度コントロールした原料容器にキャリアガスとして流量制御されたArガスを容器内に通じたバブリング法にて処理容器に供給した。マスフローコントローラおよび原料容器から処理容器までの配管は、マントルータにより160℃に保持した。
Next, experimental results of actually forming a Ge—Sb—Te film will be described.
<Experiment 1>
In the film forming apparatus of FIG. 1, the temperature of the processing vessel wall is set to 160 ° C. by the cartridge heater, the lamp power is adjusted, the temperature of the mounting table is set to 350 ° C., and processing is performed using the arm of the transfer robot. A disc-shaped substrate having a diameter of 200 mm was carried into the container, and a Ge—Sb—Te film was formed. Note that tertiary butyl germanium, triisopropylantimony, and diisopropyl tellurium were used as the Ge raw material, Sb raw material, and Te raw material. Tertiary butyl germanium is supplied to the processing vessel by directly controlling the vapor flow rate with a mass flow controller installed at the latter stage of the normal temperature raw material vessel, and triisopropylantimony is supplied as a carrier gas to the raw material vessel controlled at 50 ° C. The controlled Ar gas was supplied to the processing vessel by a bubbling method that passed through the vessel, and diisopropyl tellurium was bubbled through the vessel with Ar gas that was flow controlled as a carrier gas in a raw material vessel controlled at 35 ° C. To the processing vessel by the method. The mass flow controller and the piping from the raw material container to the processing container were maintained at 160 ° C. by a mantle router.

そして、以下の条件でGe−Sb−Te系膜を成膜した(第1の成膜)。
載置台温度:350℃
処理容器内圧力:665Pa
Ge原料ガス流量:150mL/min(sccm):ただしN換算にて
TeキャリアArガス流量:50mL/min(sccm)
SbキャリアArガス流量:50mL/min(sccm)
希釈Arガス流量:100mL/min(sccm)
バックサイドArガス流量:200mL/min(sccm)
成膜時間:120sec
Then, a Ge—Sb—Te-based film was formed under the following conditions (first film formation).
Mounting table temperature: 350 ° C
Processing container pressure: 665 Pa
Ge source gas flow rate: 150 mL / min (sccm): However, Te carrier Ar gas flow rate in terms of N 2 : 50 mL / min (sccm)
Sb carrier Ar gas flow rate: 50 mL / min (sccm)
Diluted Ar gas flow rate: 100 mL / min (sccm)
Backside Ar gas flow rate: 200 mL / min (sccm)
Deposition time: 120 sec

蛍光X線分析法にて第1の成膜により得られた膜の組成を測定した結果、Ge/Sb/Te=9/33/58(at%)となり、Te原料ガスの導入により、膜中へのGeの取り込みが阻害されていることがわかる。   As a result of measuring the composition of the film obtained by the first film formation by the fluorescent X-ray analysis method, Ge / Sb / Te = 9/33/58 (at%) was obtained. It can be seen that the incorporation of Ge into the is inhibited.

次に、成膜に先立ってTe原料を流して予め処理容器壁等にTe含有膜を形成しておき、以下の条件でGe−Sb−Te系膜を成膜した(第2の成膜)。
載置台温度:350℃
処理容器内圧力:665Pa
Ge原料ガス流量:150mL/min(sccm)
TeキャリアArガス流量:0mL/min(sccm)
SbキャリアArガス流量:20mL/min(sccm)
希釈Arガス流量:100mL/min(sccm)
バックサイドArガス流量:200mL/min(sccm)
成膜時間:120sec
Next, prior to film formation, a Te raw material was flowed to form a Te-containing film on the processing vessel wall or the like in advance, and a Ge—Sb—Te-based film was formed under the following conditions (second film formation). .
Mounting table temperature: 350 ° C
Processing container pressure: 665 Pa
Ge source gas flow rate: 150 mL / min (sccm)
Te carrier Ar gas flow rate: 0 mL / min (sccm)
Sb carrier Ar gas flow rate: 20 mL / min (sccm)
Diluted Ar gas flow rate: 100 mL / min (sccm)
Backside Ar gas flow rate: 200 mL / min (sccm)
Deposition time: 120 sec

蛍光X線分析法にて第2の成膜により得られた膜の組成を測定した結果、Ge/Sb/Te=37/55/8(at%)となり、Te原料ガスを導入しないためGeの取り込み阻害が生じておらず、また、Te原料を導入しないのにもかかわらず、処理容器壁に成膜されたTe含有膜からのTeの昇華により、膜中にTeが取り込まれたことが確認された。   As a result of measuring the composition of the film obtained by the second film formation by X-ray fluorescence analysis, Ge / Sb / Te = 37/55/8 (at%) was obtained, and since Te source gas was not introduced, Ge It was confirmed that Te was taken into the film by sublimation of Te from the Te-containing film formed on the processing vessel wall even though no uptake inhibition occurred and no Te raw material was introduced. It was done.

次に、成膜時間を20secにした他は上記第1の成膜条件と同じ条件によるステップAと、成膜時間を40secにした他は上記第2の成膜条件と同じ条件によるステップBとを交互に2回ずつ繰り返してGe−Sb−Te系膜を成膜した(第3の成膜)。   Next, Step A under the same conditions as the first film forming conditions except that the film forming time is set to 20 sec, and Step B under the same conditions as the second film forming conditions except that the film forming time is set to 40 sec. Were alternately repeated twice to form a Ge—Sb—Te-based film (third film formation).

蛍光X線分析法にて第3の成膜により得られた膜の組成を測定した結果、Ge/Sb/Te=15/37/48(at%)となり、第1の成膜であるステップAと第2の成膜であるステップCとを組み合わせることにより、Ge−Sb−Te系膜の組成を制御することができ、目標組成であるGeSbTeにより近い組成が得られることが確認された As a result of measuring the composition of the film obtained by the third film formation by X-ray fluorescence analysis, Ge / Sb / Te = 15/37/48 (at%), which is the first film formation step A And Step C, which is the second film formation, can control the composition of the Ge—Sb—Te-based film, and a composition closer to the target composition Ge 2 Sb 2 Te 5 can be obtained. confirmed

<実験2>
ここでは、実験1と同様の装置を用い、成膜に先立ってTe原料を流して予め処理容器壁等にTe含有膜を形成しておき、以下の条件でGe−Sb−Te系膜を成膜した。Ge原料、Sb原料、Te原料として、トリメチルゲルマニウム、トリイソプロピルアンチモン、ジイソプロピルテルルを用いた。トリメチルゲルマニウムは、マスフローコントローラにより処理容器に供給した。
<Experiment 2>
Here, using the same apparatus as in Experiment 1, a Te-containing film was formed in advance on the processing vessel wall by flowing a Te raw material prior to film formation, and a Ge—Sb—Te-based film was formed under the following conditions. Filmed. Trimethylgermanium, triisopropylantimony, and diisopropyltellurium were used as the Ge raw material, Sb raw material, and Te raw material. Trimethyl germanium was supplied to the processing vessel by a mass flow controller.

成膜条件は以下の通りとした。
載置台温度:350℃
処理容器内圧力:665Pa
Ge原料ガス流量:550mL/min(sccm):ただしN換算にて
TeキャリアArガス流量:50mL/min(sccm)
SbキャリアArガス流量:20mL/min(sccm)
希釈Arガス流量:300mL/min(sccm)
バックサイドArガス流量:200mL/min(sccm)
成膜時間:180sec
The film forming conditions were as follows.
Mounting table temperature: 350 ° C
Processing container pressure: 665 Pa
Ge source gas flow rate: 550 mL / min (sccm): However, Te carrier Ar gas flow rate in terms of N 2 : 50 mL / min (sccm)
Sb carrier Ar gas flow rate: 20 mL / min (sccm)
Diluted Ar gas flow rate: 300 mL / min (sccm)
Backside Ar gas flow rate: 200 mL / min (sccm)
Deposition time: 180 sec

蛍光X線分析法にて得られた膜の組成を測定した結果、Ge/Sb/Te=22.2/22.2/55.6(at%)となり、GeSbTe膜が得られたことが確認された。 As a result of measuring the composition of the film obtained by X-ray fluorescence analysis, Ge / Sb / Te = 22.2 / 22.2 / 55.6 (at%) was obtained, and a Ge 2 Sb 2 Te 5 film was obtained. It was confirmed that

なお、本発明は上記実施形態に限定されず種々限定可能である。
成膜装置としてランプ加熱で被処理基板を加熱するものを示したが、抵抗加熱ヒータで加熱するものであってもよい。
In addition, this invention is not limited to the said embodiment, A various limitation is possible.
Although the apparatus for heating the substrate to be processed by lamp heating is shown as the film forming apparatus, it may be heated by a resistance heater.

また、上記実施形態では、GeSbTe組成の膜を形成する場合について示したが、これに限らず種々の組成の膜に対応することができる。Teの割合が低い膜を成膜する場合には、Te原料を全く導入せずに成膜を行うこともできる。 Further, in the above embodiment has been described for the case of forming a film of Ge 2 Sb 2 Te 5 composition may correspond to the film having various compositions is not limited thereto. When a film having a low Te ratio is formed, the film formation can be performed without introducing any Te raw material.

本発明に係るGe−Sb−Te系膜は、相変化型光記録媒体に用いる記録層の材料として有効である。   The Ge—Sb—Te film according to the present invention is effective as a material for a recording layer used in a phase change type optical recording medium.

1;処理容器
3;載置台
32;加熱ランプ
40;シャワーヘッド
50;処理ガス供給機構
52;Te原料貯留部
53;Sb原料貯留部
54;Ge原料貯留部
90;プロセスコントローラ
92;記憶部
100;成膜装置
S;基板
DESCRIPTION OF SYMBOLS 1; Processing container 3; Mounting base 32; Heating lamp 40; Shower head 50; Processing gas supply mechanism 52; Te raw material storage part 53; Sb raw material storage part 54; Ge raw material storage part 90; Process controller 92; Deposition system S: Substrate

Claims (8)

処理容器内に基板を配置し、気体状のGe原料と、気体状のSb原料と、気体状のTe原料とを前記処理容器内に導入してCVDにより基板上にGe−Sb−Te系膜を成膜するに際し、
成膜に先立ってガスの通流経路および/または反応空間にTe含有材料を形成し、その後前記処理容器内に所定流量の気体状のGe原料、気体状のSb原料および気体状のTe原料、または気体状のGe原料および気体状のSb原料を導入して所定の組成のGe−Sb−Te系膜を成膜するGe−Sb−Te系膜の成膜方法。
A substrate is placed in a processing vessel, a gaseous Ge raw material, a gaseous Sb raw material, and a gaseous Te raw material are introduced into the processing vessel, and a Ge—Sb—Te-based film is formed on the substrate by CVD. When forming the film,
Prior to film formation, a Te-containing material is formed in a gas flow path and / or reaction space, and then a gaseous Ge raw material, a gaseous Sb raw material, and a gaseous Te raw material at a predetermined flow rate in the processing vessel, Alternatively, a Ge—Sb—Te based film forming method in which a gaseous Ge raw material and a gaseous Sb raw material are introduced to form a Ge—Sb—Te based film having a predetermined composition.
成膜に先立って前記処理容器内にTe原料を導入して、ガスの通流経路壁および/または反応空間壁にTeを含有する膜を形成することにより、ガスの通流経路および/または反応空間にTe含有材料を形成することを特徴とする請求項1に記載のGe−Sb−Te系膜の成膜方法。   Prior to film formation, a Te raw material is introduced into the processing vessel to form a film containing Te on the gas flow path wall and / or the reaction space wall, thereby allowing the gas flow path and / or reaction. The method for forming a Ge—Sb—Te film according to claim 1, wherein a Te-containing material is formed in the space. 成膜に先立ってガスの通流経路および/または反応空間にTeを含有する部材を設けることにより、ガスの通流経路および/または反応空間にTe含有材料を形成することを特徴とする請求項1に記載のGe−Sb−Te系膜の成膜方法。   The Te-containing material is formed in the gas flow path and / or the reaction space by providing a member containing Te in the gas flow path and / or the reaction space prior to film formation. 2. A method for forming a Ge—Sb—Te-based film according to 1. 気体状のGe原料、気体状のSb原料および気体状のTe原料を用いて行う第1の成膜と、気体状のGe原料および気体状のSb原料を用いTe原料を用いない第2の成膜を交互に行うことを特徴とする請求項1から請求項3のいずれか1項に記載のGe−Sb−Te系膜の成膜方法。   A first film formation using a gaseous Ge raw material, a gaseous Sb raw material and a gaseous Te raw material, and a second film formation using a gaseous Ge raw material and a gaseous Sb raw material without using a Te raw material. 4. The method for forming a Ge—Sb—Te-based film according to claim 1, wherein the films are alternately formed. 5. 成膜の際に、ガスの通流経路および/または反応空間に形成されたTe含有材料から膜中に取り込まれるTeの量に基づいて、膜が所定の組成になるように、流量を制御して、気体状のGe原料、気体状のSb原料および気体状のTe原料、または気体状のGe原料および気体状のSb原料を導入することを特徴とする請求項1から請求項3のいずれか1項に記載のGe−Sb−Te系膜の成膜方法。   During film formation, the flow rate is controlled so that the film has a predetermined composition based on the amount of Te taken into the film from the Te-containing material formed in the gas flow path and / or reaction space. 4. A gaseous Ge raw material, a gaseous Sb raw material and a gaseous Te raw material, or a gaseous Ge raw material and a gaseous Sb raw material are introduced. 2. A method for forming a Ge—Sb—Te-based film according to item 1. Ge−Sb−Te系膜の組成がGeSbTeであることを特徴とする請求項1から請求項5のいずれか1項に記載のGe−Sb−Te系膜の成膜方法。 6. The method for forming a Ge—Sb—Te film according to claim 1, wherein the composition of the Ge—Sb—Te film is Ge 2 Sb 2 Te 5 . Ge原料、Sb原料およびTe原料は、アルキル基を含む化合物よりなることを特徴とする請求項1から請求項6のいずれか1項に記載のGe−Sb−Te系膜の成膜方法。   7. The method for forming a Ge—Sb—Te-based film according to claim 1, wherein the Ge raw material, the Sb raw material, and the Te raw material are made of a compound containing an alkyl group. コンピュータ上で動作し、成膜装置を制御するプログラムが記憶された記憶媒体であって、前記制御プログラムは、実行時に、請求項1から請求項7のいずれかの成膜方法が行われるように、コンピュータに前記成膜装置を制御させることを特徴とする記憶媒体。   A storage medium that operates on a computer and stores a program for controlling a film forming apparatus, wherein the control program performs the film forming method according to any one of claims 1 to 7 at the time of execution. A storage medium that causes a computer to control the film forming apparatus.
JP2009003570A 2009-01-09 2009-01-09 Method for forming Ge-Sb-Te film and storage medium Expired - Fee Related JP5411512B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009003570A JP5411512B2 (en) 2009-01-09 2009-01-09 Method for forming Ge-Sb-Te film and storage medium
KR1020100001216A KR101124887B1 (en) 2009-01-09 2010-01-07 METHOD FOR FORMING Ge-Sb-Te BASED FILM AND STORAGE MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009003570A JP5411512B2 (en) 2009-01-09 2009-01-09 Method for forming Ge-Sb-Te film and storage medium

Publications (2)

Publication Number Publication Date
JP2010159471A true JP2010159471A (en) 2010-07-22
JP5411512B2 JP5411512B2 (en) 2014-02-12

Family

ID=42576852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009003570A Expired - Fee Related JP5411512B2 (en) 2009-01-09 2009-01-09 Method for forming Ge-Sb-Te film and storage medium

Country Status (2)

Country Link
JP (1) JP5411512B2 (en)
KR (1) KR101124887B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043154A1 (en) * 2010-09-29 2012-04-05 東京エレクトロン株式会社 METHOD FOR FORMING Ge-Sb-Te FILM AND STORAGE MEDIUM
TWI450999B (en) * 2011-08-19 2014-09-01 Tokyo Electron Ltd Ge-Sb-Te film forming method, Ge-Te film forming method, Sb-Te film forming method and memory medium
CN107142459A (en) * 2017-04-19 2017-09-08 江南大学 A kind of method that thermal atomic layer deposition technique grows GeTe alloy firms

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243317A (en) * 2002-02-22 2003-08-29 Showa Denko Kk Boron phosphide-based semiconductor layer and vapor- phase growth method therefor
JP2007056369A (en) * 2005-08-24 2007-03-08 Integrated Process Systems Ltd METHOD OF DEPOSITING Ge-Sb-Te THIN FILM
JP2007186784A (en) * 2006-01-10 2007-07-26 Samsung Electronics Co Ltd Method of forming phase change material thin film and method of manufacturing phase change memory device using the same
JP2008103731A (en) * 2006-10-20 2008-05-01 Samsung Electronics Co Ltd Method for manufacturing phase-change memory element, and method for forming phase-change layer applied to the same
JP2008218555A (en) * 2007-03-01 2008-09-18 Tokyo Electron Ltd METHOD OF FORMING SrTiO3 FILM AND COMPUTER-READABLE RECORDING MEDIUM

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990085526A (en) * 1998-05-19 1999-12-06 장용균 Phase change optical disk
JP2000043414A (en) * 1998-07-30 2000-02-15 Victor Co Of Japan Ltd Phase change type optical recording medium
KR100704125B1 (en) * 2005-08-24 2007-04-06 주식회사 아이피에스 A method for manufacturing Ge-Sb-Te thin film on wafer
KR100871692B1 (en) * 2006-11-07 2008-12-08 삼성전자주식회사 Metal precursor for low temperature deposition, method of forming metal layer using the precursor and method of fabricating phase-change memory device using the precursor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243317A (en) * 2002-02-22 2003-08-29 Showa Denko Kk Boron phosphide-based semiconductor layer and vapor- phase growth method therefor
JP2007056369A (en) * 2005-08-24 2007-03-08 Integrated Process Systems Ltd METHOD OF DEPOSITING Ge-Sb-Te THIN FILM
JP2007186784A (en) * 2006-01-10 2007-07-26 Samsung Electronics Co Ltd Method of forming phase change material thin film and method of manufacturing phase change memory device using the same
JP2008103731A (en) * 2006-10-20 2008-05-01 Samsung Electronics Co Ltd Method for manufacturing phase-change memory element, and method for forming phase-change layer applied to the same
JP2008218555A (en) * 2007-03-01 2008-09-18 Tokyo Electron Ltd METHOD OF FORMING SrTiO3 FILM AND COMPUTER-READABLE RECORDING MEDIUM

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043154A1 (en) * 2010-09-29 2012-04-05 東京エレクトロン株式会社 METHOD FOR FORMING Ge-Sb-Te FILM AND STORAGE MEDIUM
JP2012072455A (en) * 2010-09-29 2012-04-12 Tokyo Electron Ltd METHOD OF FORMING Ge-Sb-Te FILM, AND STORAGE MEDIUM
US9187822B2 (en) 2010-09-29 2015-11-17 Tokyo Electron Limited Method for forming Ge-Sb-Te film and storage medium
TWI450999B (en) * 2011-08-19 2014-09-01 Tokyo Electron Ltd Ge-Sb-Te film forming method, Ge-Te film forming method, Sb-Te film forming method and memory medium
CN107142459A (en) * 2017-04-19 2017-09-08 江南大学 A kind of method that thermal atomic layer deposition technique grows GeTe alloy firms

Also Published As

Publication number Publication date
JP5411512B2 (en) 2014-02-12
KR20100082725A (en) 2010-07-19
KR101124887B1 (en) 2012-03-27

Similar Documents

Publication Publication Date Title
JP6289908B2 (en) Ge-Sb-Te film forming method, Sb-Te film forming method and program
US20150221529A1 (en) Gas supply method and thermal treatment method
JP2007154297A (en) Film deposition method and film deposition system
JP2007146252A (en) Heat treatment method, heat treatment device, and storage medium
JP2015190035A (en) Gas supply mechanism and gas supply method, and film deposition apparatus and film deposition method using the same
JP2018145459A (en) Gas supply device, gas supply method, and film deposition method
US9735007B2 (en) Method of processing substrate, substrate processing apparatus, and recording medium
JP5649894B2 (en) Method for forming Ge-Sb-Te film
JP5248025B2 (en) Method for forming SrTiO3 film and computer-readable storage medium
KR101361984B1 (en) METHOD FOR FORMING Ge-Sb-Te FILM, AND STORAGE MEDIUM
JP5411512B2 (en) Method for forming Ge-Sb-Te film and storage medium
JP5346699B2 (en) Method for forming Ge-Sb-Te film, storage medium, and method for manufacturing PRAM
JP5792438B2 (en) Film forming apparatus and film forming method
JP5095230B2 (en) Method for forming SrTiO3 film and computer-readable storage medium
WO2016046947A1 (en) Substrate holder, substrate-processing apparatus, and semiconductor device manufacturing method
JP5913463B2 (en) Method for forming Ge-Sb-Te film
US20230374656A1 (en) Filling method and film forming apparatus
TWI834936B (en) Film forming method
JP2015183260A (en) Cleaning method, substrate processing apparatus, and program
JP2002008986A (en) Semiconductor manufacturing apparatus
JP2013213269A (en) Film forming method and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

LAPS Cancellation because of no payment of annual fees