JP2010158633A - Method for separating fluorine from fluorine-containing waste water - Google Patents
Method for separating fluorine from fluorine-containing waste water Download PDFInfo
- Publication number
- JP2010158633A JP2010158633A JP2009003089A JP2009003089A JP2010158633A JP 2010158633 A JP2010158633 A JP 2010158633A JP 2009003089 A JP2009003089 A JP 2009003089A JP 2009003089 A JP2009003089 A JP 2009003089A JP 2010158633 A JP2010158633 A JP 2010158633A
- Authority
- JP
- Japan
- Prior art keywords
- fluorine
- concentration
- sodium sulfate
- wastewater
- waste water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Removal Of Specific Substances (AREA)
Abstract
Description
本発明は、非鉄金属製錬工程からの硫酸ナトリウムを含むフッ素含有排水からフッ素を分離する方法に関する。 The present invention relates to a method for separating fluorine from fluorine-containing wastewater containing sodium sulfate from a nonferrous metal smelting process.
銅や鉛など非鉄金属の製錬工程では、原料鉱石を炉に投入して熔解し、不純物をカラミとして、また硫黄を亜硫酸ガスとして分離し、目的とする金属を精製する。原料鉱石にはフッ素が含有されることがあるが、フッ素は鉱石が熔解される際に揮発し、亜硫酸ガスと共に排ガスとしてスクラバーなどに集められ、アルカリ性洗浄液中に捕集される。 In the smelting process of non-ferrous metals such as copper and lead, raw ore is put into a furnace and melted, impurities are separated as calami and sulfur is separated as sulfurous acid gas, and the target metal is purified. The raw ore may contain fluorine, but the fluorine volatilizes when the ore is melted, and is collected together with sulfurous acid gas as an exhaust gas in a scrubber and collected in an alkaline cleaning liquid.
スクラバーなどで排ガスを捕集した洗浄液は、洗浄廃液として順次取り出されて処理され、フッ素が分離回収される。フッ素を除去した後の洗浄廃液は、引き続いて排水処理施設に送られ、一般の排水とともに中和や酸化還元などの方法によって、フッ素イオン以外の重金属イオンや有機物などを分離し、無害化された後に排出される。 The cleaning liquid in which the exhaust gas is collected by a scrubber or the like is sequentially taken out and processed as cleaning waste liquid, and fluorine is separated and recovered. The cleaning waste liquid after the removal of fluorine was subsequently sent to a wastewater treatment facility, where it was rendered harmless by separating heavy metal ions and organic substances other than fluorine ions by methods such as neutralization and oxidation reduction together with general wastewater. It will be discharged later.
排水などの水溶液中に含まれるフッ素を除去する一般的な方法としては、塩化カルシウムや硫酸カルシウムなどのカルシウム化合物を添加し、フッ素を難溶性のフッ化カルシウムとして沈殿させることにより、水溶液からフッ素を分離する方法が知られている。 As a general method for removing fluorine contained in an aqueous solution such as waste water, a calcium compound such as calcium chloride or calcium sulfate is added, and the fluorine is precipitated as hardly soluble calcium fluoride, thereby removing fluorine from the aqueous solution. A method of separation is known.
例えば特開2000−140863号公報(特許文献1)には、酸性又はアルカリ性のアルミニウム塩の水溶液を中和してゲル状水酸化アルミニウムを生成させるゲル状水酸化アルミニウム生成工程と、フッ素含有排水にカルシウム化合物と前記ゲル状水酸化アルミニウムを添加することにより、生成したフッ化カルシウムをゲル状水酸化アルミニウムに吸着させる吸着工程とを含むフッ素含有排水の処理方法が記載されている。 For example, Japanese Patent Laid-Open No. 2000-140863 (Patent Document 1) discloses a gel-like aluminum hydroxide generation step for neutralizing an aqueous solution of an acidic or alkaline aluminum salt to generate gel-like aluminum hydroxide, and fluorine-containing waste water. A treatment method for fluorine-containing wastewater is described which includes an adsorption step of adsorbing the calcium fluoride and gel aluminum hydroxide produced by adding the calcium compound and the gel aluminum hydroxide.
上記特許文献1に記載の方法によれば、生成したフッ化カルシウムをゲル状水酸化アルミニウムに吸着させるため、フッ素の分離効果を高めることができる。しかしながら、フッ化カルシウムを吸着したゲル状水酸化アルミニウムは濾過性が劣るため、このゲル状の澱物の濾過やその後の処理に手間がかかり、極めて非効率であるという欠点があった。 According to the method described in Patent Document 1, since the generated calcium fluoride is adsorbed on the gelled aluminum hydroxide, the fluorine separation effect can be enhanced. However, since gelled aluminum hydroxide adsorbing calcium fluoride has poor filterability, it takes time to filter the gel-like starch and the subsequent treatment, resulting in a very inefficient.
また、上述したスクラバーからの洗浄廃液のように、非鉄金属製錬工程からのフッ素を含有する排水では、操業負荷や原料鉱石に含まれているフッ素品位の変動に起因して、炉から揮発するフッ素量が変動する結果、洗浄廃液中のフッ素濃度が変動する。そのため、フッ素をフッ化カルシウムとして沈殿分離する方法では、フッ素を効率よく且つ確実に除去することは難しかった。 In addition, the wastewater containing fluorine from the nonferrous metal smelting process, such as the cleaning waste liquid from the scrubber described above, volatilizes from the furnace due to fluctuations in the operational load and the fluorine quality contained in the raw ore. As a result of the variation in the amount of fluorine, the concentration of fluorine in the cleaning waste liquid varies. Therefore, it has been difficult to efficiently and reliably remove fluorine by the method of precipitation separation using fluorine as calcium fluoride.
一方、溶液中のフッ素を分離する他の方法として、例えば特開平10−113672号公報(特許文献2)に示すように、希土類の水酸化物を樹脂等に担持させた吸着材に吸着させて除去する方法がある。この方法は、フッ素イオンや重金属イオンを含む水溶液を、イオウ化合物系重金属固定剤を添加して固液分離した後、フッ素吸着樹脂と接触させて処理する方法である。 On the other hand, as another method for separating fluorine in a solution, for example, as shown in Japanese Patent Application Laid-Open No. 10-113672 (Patent Document 2), a rare earth hydroxide is adsorbed on an adsorbent supported on a resin or the like. There is a way to remove it. This method is a method in which an aqueous solution containing fluorine ions and heavy metal ions is treated by adding a sulfur compound-based heavy metal fixing agent and solid-liquid separation, and then contacting with a fluorine adsorption resin.
しかし、この方法では、固液分離水のpHを2〜5にするとともに、塩素剤を添加して酸化還元電位を600mV以上とし、造粒酸化セリウムからなるフッ素吸着樹脂により処理する。そのため、実用的なフッ素イオンの吸着速度を得ようとするならば、フッ素を含有する水溶液のpHを5以下の酸性領域に調整しなければならないため、吸着処理の前後でpH調整を必要とし、手間と薬剤コストが増加するという問題があった。 However, in this method, the pH of the solid-liquid separated water is adjusted to 2 to 5, and a chlorine agent is added to bring the oxidation-reduction potential to 600 mV or more, and the treatment is performed with a fluorine adsorption resin made of granulated cerium oxide. Therefore, if a practical fluorine ion adsorption rate is to be obtained, the pH of the aqueous solution containing fluorine must be adjusted to an acidic region of 5 or less, and thus pH adjustment is required before and after the adsorption treatment. There was a problem that labor and drug costs increased.
また、フッ素を吸着した後の吸着樹脂からフッ素を分離回収して樹脂を再生する方法や、再生した後の樹脂の吸着性能などに関しては、上記特許文献2には具体的に述べられていない。しかし、一般にフッ素イオンと樹脂中の希土類との吸着は強いことが知られており、希土類表面からフッ素イオンを分離して樹脂を再生するには、濃厚な水酸化ナトリウムを用い、繰り返して樹脂を洗浄する必要がある。仮に樹脂の洗浄が不充分でフッ素イオンが樹脂に残留すると、フッ素の吸着性能が低下してしまう。
Further,
更に、多量に発生したフッ化アルカリの溶液は、例えばカルシウム化合物を添加してフッ化カルシウムとするなど、安定したフッ素の形態に固定しなければならない。このように、上記特許文献2に記載の方法は、廃液処理に多くのコストと手間を要し、しかも排水量が著しく増加してしまうなどの不都合があるため実用的な方法とは言い難かった。
Furthermore, the alkali fluoride solution generated in a large amount must be fixed in a stable form of fluorine, for example, by adding a calcium compound to form calcium fluoride. As described above, the method described in
以上述べたように、スクラバーからの洗浄廃液のような非鉄金属製錬工程からのフッ素含有排水から、排水中のフッ素濃度が変化した場合でも、フッ素を低コストで且つ効果的に分離する方法は知られていなかった。また、非鉄金属製錬工程からのフッ素含有排水の場合、カルシウム化合物を添加しても、フッ化カルシウムの沈殿生成が不十分となり、排水中からのフッ素の除去が不完全となる場合があった。 As described above, even if the fluorine concentration in the wastewater changes from the fluorine-containing wastewater from the nonferrous metal smelting process such as the cleaning waste liquid from the scrubber, the method for effectively separating the fluorine at a low cost is It was not known. In addition, in the case of fluorine-containing wastewater from non-ferrous metal smelting processes, precipitation of calcium fluoride may be insufficient even when calcium compounds are added, and fluorine removal from the wastewater may be incomplete. .
本発明は、上記した従来の事情に鑑み、非鉄金属製錬工程からのフッ素含有排水から簡単且つ低コストで効率よくフッ素を分離除去することができ、しかも排水中のフッ素濃度などにかかわらず、常に安定して確実なフッ素の分離除去が可能な方法を提供することを目的とする。 In view of the above-described conventional circumstances, the present invention can easily and efficiently remove and remove fluorine from a fluorine-containing wastewater from a non-ferrous metal smelting process, and regardless of the fluorine concentration in the wastewater, etc. An object of the present invention is to provide a method capable of constantly and reliably separating and removing fluorine.
上述したように、非鉄金属製錬工程からのフッ素含有排水においては、カルシウム化合物の添加により難溶性のフッ化カルシウムを生成させてフッ素を分離する際に、十分な量のカルシウム化合物を添加しても、排水中からのフッ素の除去が不完全となる場合があった。 As described above, in the fluorine-containing wastewater from the nonferrous metal smelting process, a sufficient amount of calcium compound is added when separating the fluorine by generating poorly soluble calcium fluoride by adding the calcium compound. In some cases, however, the removal of fluorine from the wastewater is incomplete.
その原因について、本発明者らは種々の検討を行なった結果、非鉄金属製錬工程からのフッ素含有排水に含まれる硫酸ナトリウム濃度がフッ素の溶解度に影響を及ぼすこと、更には硫酸ナトリウム濃度の上昇に伴って排水中のフッ素濃度が上昇してフッ素の分離が不完全になることを見出し、その知見に基づいて本発明をなすに至ったものである。 As a result of various studies on the cause, the present inventors have found that the concentration of sodium sulfate contained in the fluorine-containing wastewater from the nonferrous metal smelting process affects the solubility of fluorine, and further the increase in sodium sulfate concentration. As a result, the inventors have found that the fluorine concentration in the waste water is increased and the separation of fluorine becomes incomplete, and the present invention has been made based on the findings.
即ち、本発明が提供するフッ素含有排水からのフッ素分離方法は、非鉄金属製錬工程からの硫酸ナトリウムを含むフッ素含有排水にカルシウム化合物を添加し、フッ素をフッ化カルシウムとして沈殿させて分離する方法において、該フッ素含有排水中に含まれる硫酸ナトリウムの濃度を15g/l以下に制御することを特徴とする。 That is, the method for separating fluorine from fluorine-containing wastewater provided by the present invention is a method in which a calcium compound is added to fluorine-containing wastewater containing sodium sulfate from a non-ferrous metal smelting step, and fluorine is precipitated as calcium fluoride and separated. The concentration of sodium sulfate contained in the fluorine-containing waste water is controlled to 15 g / l or less.
本発明によれば、非鉄金属製錬工程からのフッ素含有排水に含まれる硫酸ナトリウムの含有量にかかわらず、フッ素を常に安定してフッ化カルシウムとして沈殿させ、確実に分離除去することができる。また、本発明によれば、工程が簡単で特別な装置を使う必要がなく、高価な希土類や薬品を使用しないうえ、フッ化カルシウムの沈殿は濾過性に優れ処理が容易であるため、高効率であって、コストを低減できるという利点がある。 According to the present invention, regardless of the content of sodium sulfate contained in the fluorine-containing wastewater from the non-ferrous metal smelting process, fluorine can always be stably precipitated as calcium fluoride and reliably separated and removed. In addition, according to the present invention, the process is simple and does not require special equipment, and expensive rare earths and chemicals are not used. In addition, the precipitation of calcium fluoride is excellent in filterability and easy to process. However, there is an advantage that the cost can be reduced.
本発明によるフッ素含有排水からのフッ素の分離方法では、添加したカルシウム化合物をフッ素と反応させてフッ化カルシウムの沈澱を生成させる際に、非鉄金属製錬工程からのフッ素含有排水中に含まれている硫酸ナトリウムの濃度を15g/l以下に維持制御することが重要である。 In the method for separating fluorine from fluorine-containing wastewater according to the present invention, when the added calcium compound reacts with fluorine to form a precipitate of calcium fluoride, it is contained in the fluorine-containing wastewater from the nonferrous metal smelting process. It is important to maintain and control the concentration of sodium sulfate below 15 g / l.
尚、一般的に、非鉄金属製錬工程からフッ素含有排水中には硫酸ナトリウムが含まれている。フッ素含有排水中に含まれている硫酸ナトリウムは、排ガス中のフッ素を捕集するスクラバーの洗浄液に添加される中和剤に含まれるナトリウムと、スクラバーで捕集された亜硫酸ガスとから生成するものと考えられる。 In general, sodium sulfate is contained in the fluorine-containing wastewater from the nonferrous metal smelting process. Sodium sulfate contained in fluorine-containing wastewater is generated from sodium contained in the neutralizing agent added to the scrubber cleaning liquid that collects fluorine in the exhaust gas, and sulfurous acid gas collected by the scrubber. it is conceivable that.
フッ素含有排水にカルシウム化合物(例えばCaSO4)を添加してフッ化カルシウム(CaF2)の沈澱を生成させる方法においては、排水中に硫酸ナトリウムが存在する場合、生成したフッ化カルシウムは硫酸イオンと陰イオン交換することにより、下記化学式に示す反応が右側に進行して排水中のフッ素濃度が上昇することが分った。 In a method in which a calcium compound (for example, CaSO 4 ) is added to fluorine-containing wastewater to form a precipitate of calcium fluoride (CaF 2 ), when sodium sulfate is present in the wastewater, the generated calcium fluoride is separated from sulfate ions. It was found that by anion exchange, the reaction shown in the chemical formula below progressed to the right side and the fluorine concentration in the wastewater increased.
[化学式]
CaF2+SO4 2− = CaSO4+2F−
[Chemical formula]
CaF 2 + SO 4 2− = CaSO 4 + 2F −
即ち、硫酸カルシウムとフッ化カルシウムの溶解度を比較すると、フッ化カルシウムの溶解度は硫酸カルシウムよりもはるかに低く沈殿しやすいため、通常の場合は上記化学式の反応は左側に進行しやすい。しかし、硫酸ナトリウムの含有によって過剰の硫酸イオンが共存すると、平衡が右側に傾き、一部のフッ素イオンが溶出するものと考えられる。 That is, when the solubility of calcium sulfate and calcium fluoride is compared, the solubility of calcium fluoride is much lower than that of calcium sulfate and tends to precipitate, so in the usual case, the reaction of the above chemical formula tends to proceed to the left. However, if excessive sulfate ions coexist due to the inclusion of sodium sulfate, the equilibrium is inclined to the right, and it is considered that some fluorine ions are eluted.
そのため、フッ素イオンの溶出を抑制し、上記化学式の反応を左側に進行させることによって、排水中のフッ素を安定的にフッ化カルシウムとして沈殿させるためには、フッ素含有排水に含まれる硫酸イオン、即ち硫酸ナトリウムの濃度を一定以下に管理する必要があることが判明した。 Therefore, in order to stably precipitate fluorine as wastewater calcium fluoride by suppressing elution of fluorine ions and allowing the reaction of the above chemical formula to proceed to the left side, sulfate ions contained in the fluorine-containing wastewater, that is, It has been found that the sodium sulfate concentration needs to be controlled below a certain level.
本発明者らの研究によれば、水溶液中の硫酸ナトリウム濃度とフッ素イオンの関係は図1に示すグラフとなる。硫酸ナトリウム濃度が3g/l以上となるとフッ素濃度の上昇が大きくなり、硫酸ナトリウム濃度が15g/lを超えるとフッ素濃度が更に高くなり、フッ素の再溶解が加速されていることが分る。そこで本発明においては、フッ素含有排水中の硫酸ナトリウム濃度を15g/l以下、好ましくは3g/l以下に維持することとした。 According to the study by the present inventors, the relationship between the sodium sulfate concentration in the aqueous solution and the fluorine ions is the graph shown in FIG. It can be seen that when the sodium sulfate concentration is 3 g / l or more, the increase in fluorine concentration increases, and when the sodium sulfate concentration exceeds 15 g / l, the fluorine concentration further increases and the re-dissolution of fluorine is accelerated. Therefore, in the present invention, the sodium sulfate concentration in the fluorine-containing waste water is maintained at 15 g / l or less, preferably 3 g / l or less.
本発明において硫酸ナトリウムを含むフッ素含有排水に添加するカルシウム化合物としては、硫酸カルシウムや塩化カルシウムなどの可溶性の硫酸塩であれば用いることができるが、コスト及び溶解性などの点で硫酸カルシウムが使いやすく最も適している。また、水溶液のpHを上昇させる必要がある場合には、水酸化カルシウムを使用すればよい。 In the present invention, calcium compounds added to fluorine-containing wastewater containing sodium sulfate can be used as long as they are soluble sulfates such as calcium sulfate and calcium chloride. However, calcium sulfate is used in terms of cost and solubility. Easy and most suitable. Further, when it is necessary to raise the pH of the aqueous solution, calcium hydroxide may be used.
また、本発明におけるフッ化カルシウムの生成は、排水中のフッ素イオンの含有量や温度によって差異はあるものの、pH値としては一般的な8.0以上で処理することができる。処理する際のフッ素含有排水の反応温度は、沸騰しない実用的な温度範囲であれば問題なく処理することができる。 Moreover, although the production | generation of the calcium fluoride in this invention has a difference by content and temperature of the fluorine ion in waste_water | drain, it can process by general 8.0 or more as pH value. If the reaction temperature of the fluorine-containing wastewater at the time of processing is a practical temperature range which does not boil, it can be processed without problems.
上記したフッ素含有排水中の硫酸ナトリウム濃度を15g/l以下に制御する工程と、フッ素含有排水にカルシウム化合物を添加してフッ化カルシウムの沈澱を生成させる工程は、一般的には濃度の制御工程の後にフッ化カルシウムの沈澱生成の工程を行なうが、いずれか片方の工程を先に行なった後に他方の工程を実施することも可能である。 The step of controlling the concentration of sodium sulfate in the fluorine-containing wastewater to 15 g / l or less and the step of adding calcium compounds to the fluorine-containing wastewater to form calcium fluoride precipitates are generally a concentration control step. Is followed by a calcium fluoride precipitate formation step, but it is also possible to carry out the other step after one of the steps is carried out first.
また、フッ素含有排水中の硫酸ナトリウム濃度を15g/l以下に制御する工程では、フッ素含有排水中の硫酸ナトリウム濃度を測定し、得られた測定濃度よりも低い硫酸ナトリウム濃度を有する水を加えることが好ましい。このような水として、例えば、非鉄金属製錬工程からの硫酸イオン濃度の低い排水、非鉄金属製錬工程から排水を処理して硫酸イオン濃度を低下させた処理済排水などを用いることが好ましい。 In the step of controlling the sodium sulfate concentration in the fluorine-containing wastewater to 15 g / l or less, the sodium sulfate concentration in the fluorine-containing wastewater is measured, and water having a sodium sulfate concentration lower than the obtained measured concentration is added. Is preferred. As such water, for example, wastewater having a low sulfate ion concentration from the nonferrous metal smelting process, treated wastewater having a reduced sulfate ion concentration by treating the wastewater from the nonferrous metal smelting process, and the like are preferably used.
[実施例1]
水溶液中における硫酸ナトリウム濃度とフッ素イオン濃度の関係を調べた。即ち、純水200mlにフッ化カルシウム16gに加え、撹拌して懸濁させた。このフッ素含有水溶液に、それぞれ下記表1に示す硫酸ナトリウム濃度となる量の無水硫酸ナトリウム(試薬)を添加し、スターラーを用いて25℃の温度に維持しながら60分間撹拌して溶解させた。その後、5C濾紙を用いて自然濾過することで固液分離した。得られた濾液を採取し、ICPを用いてフッ素濃度を分析したところ、下記表1に示す結果が得られた。
[Example 1]
The relationship between sodium sulfate concentration and fluoride ion concentration in aqueous solution was investigated. That is, 200 g of pure water was added to 16 g of calcium fluoride and suspended by stirring. To this fluorine-containing aqueous solution, anhydrous sodium sulfate (reagent) in an amount corresponding to the sodium sulfate concentration shown in Table 1 below was added, and dissolved by stirring for 60 minutes while maintaining the temperature at 25 ° C. using a stirrer. Then, solid-liquid separation was performed by natural filtration using 5C filter paper. The obtained filtrate was collected and analyzed for fluorine concentration using ICP. The results shown in Table 1 below were obtained.
上記表1から分るように、フッ素含有水溶液中に硫酸ナトリウムが存在しない場合には、多くの沈殿が生成し、濾液中のフッ素濃度は水への溶解度にほぼ相当する2.4mg/lであった。しかし、硫酸ナトリウム濃度が増加すると、フッ化カルシウムの溶解が増え、濾液中のフッ素濃度が増加した。 As can be seen from Table 1 above, when sodium sulfate is not present in the fluorine-containing aqueous solution, many precipitates are formed, and the fluorine concentration in the filtrate is 2.4 mg / l, which corresponds approximately to the solubility in water. there were. However, as the sodium sulfate concentration increased, calcium fluoride dissolution increased and the fluorine concentration in the filtrate increased.
この結果から、フッ素含有水溶液中の硫酸ナトリウム濃度が高いとフッ素は溶解しやすいが、硫酸ナトリウム濃度が低下するとフッ素は溶解できずに沈殿し、フッ素濃度が低下することが確認された。尚、容器中に残った沈殿をX線回折で化合物を同定したところ、フッ化カルシウムと硫酸カルシウムが検出された。 From this result, it was confirmed that when the sodium sulfate concentration in the fluorine-containing aqueous solution is high, fluorine is easily dissolved, but when the sodium sulfate concentration is lowered, fluorine cannot be dissolved but precipitates, and the fluorine concentration is lowered. When the compound remaining in the container was identified by X-ray diffraction, calcium fluoride and calcium sulfate were detected.
[比較例1]
上記実施例1と同一のフッ化カルシウムを懸濁させたフッ素含有水溶液を使用し、硫酸ナトリウムの代わりに塩化ナトリウム濃度を下記表2に示す濃度となるように添加し、スターラーを用いて25℃の温度に維持しながら60分間撹拌して溶解させた。
[Comparative Example 1]
Using the same fluorine-containing aqueous solution in which the same calcium fluoride as in Example 1 was suspended, sodium chloride concentration was added instead of sodium sulfate so as to be the concentration shown in Table 2 below, and 25 ° C. using a stirrer. While maintaining the temperature, the solution was stirred for 60 minutes for dissolution.
得られた各水溶液を、5C濾紙を用いて自然濾過することで固液分離した。得られた濾液を採取し、ICPを用いてフッ素濃度を分析したところ、下記表2に示す結果が得られた。 Each aqueous solution obtained was subjected to natural filtration using 5C filter paper to separate into solid and liquid. The obtained filtrate was collected and analyzed for fluorine concentration using ICP. The results shown in Table 2 below were obtained.
上記表2の結果から、上記表1に示す同一ナトリウム濃度の水溶液で比較しても、硫酸ナトリウムの代わりに塩化ナトリウムの量を増加しても濾液中のフッ素濃度は増加せず、フッ素の再溶解は硫酸ナトリウムの存在によって生じることが確認された。 From the results in Table 2 above, even when the aqueous solutions having the same sodium concentration shown in Table 1 were compared, increasing the amount of sodium chloride instead of sodium sulfate did not increase the fluorine concentration in the filtrate. It was confirmed that dissolution was caused by the presence of sodium sulfate.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009003089A JP5187199B2 (en) | 2009-01-09 | 2009-01-09 | Fluorine separation method from fluorine-containing wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009003089A JP5187199B2 (en) | 2009-01-09 | 2009-01-09 | Fluorine separation method from fluorine-containing wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010158633A true JP2010158633A (en) | 2010-07-22 |
JP5187199B2 JP5187199B2 (en) | 2013-04-24 |
Family
ID=42576210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009003089A Active JP5187199B2 (en) | 2009-01-09 | 2009-01-09 | Fluorine separation method from fluorine-containing wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5187199B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016203130A (en) * | 2015-04-28 | 2016-12-08 | 住友金属鉱山株式会社 | Method for separating fluorine from fluorine-containing wastewater |
JP2017047336A (en) * | 2015-08-31 | 2017-03-09 | 住友金属鉱山株式会社 | Fluorine separation method from fluorine-containing waste water |
JP2020182889A (en) * | 2019-04-26 | 2020-11-12 | Jx金属株式会社 | Treatment method of wastewater containing fluorine |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5067793A (en) * | 1973-10-23 | 1975-06-06 | ||
JPS5717426A (en) * | 1980-07-07 | 1982-01-29 | Hachinohe Seiren Kk | Treatment of solution containing fluorine |
JPH01304096A (en) * | 1988-06-02 | 1989-12-07 | Kurita Water Ind Ltd | Water treatment |
JPH09117771A (en) * | 1995-10-26 | 1997-05-06 | Kurita Water Ind Ltd | Device for treating waste water from stack gas desulfurization process |
JPH09276876A (en) * | 1996-04-19 | 1997-10-28 | Sumitomo Metal Mining Co Ltd | Method for deactivation treatment of fluorine |
JPH10137768A (en) * | 1996-11-12 | 1998-05-26 | Nikko Kinzoku Kk | Impurity removing method from waste acid |
JP2001212574A (en) * | 2000-02-02 | 2001-08-07 | Kurita Water Ind Ltd | Method for treating fluorine-containing water |
JP2007038049A (en) * | 2005-07-29 | 2007-02-15 | Nec Facilities Ltd | Method for treating fluorine in mixed acid |
JP2007069199A (en) * | 2005-08-09 | 2007-03-22 | Sanyo Electric Co Ltd | Apparatus for treating water |
JP2007230803A (en) * | 2006-02-28 | 2007-09-13 | Mitsui Eng & Shipbuild Co Ltd | Production system for sodium chloride |
-
2009
- 2009-01-09 JP JP2009003089A patent/JP5187199B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5067793A (en) * | 1973-10-23 | 1975-06-06 | ||
JPS5717426A (en) * | 1980-07-07 | 1982-01-29 | Hachinohe Seiren Kk | Treatment of solution containing fluorine |
JPH01304096A (en) * | 1988-06-02 | 1989-12-07 | Kurita Water Ind Ltd | Water treatment |
JPH09117771A (en) * | 1995-10-26 | 1997-05-06 | Kurita Water Ind Ltd | Device for treating waste water from stack gas desulfurization process |
JPH09276876A (en) * | 1996-04-19 | 1997-10-28 | Sumitomo Metal Mining Co Ltd | Method for deactivation treatment of fluorine |
JPH10137768A (en) * | 1996-11-12 | 1998-05-26 | Nikko Kinzoku Kk | Impurity removing method from waste acid |
JP2001212574A (en) * | 2000-02-02 | 2001-08-07 | Kurita Water Ind Ltd | Method for treating fluorine-containing water |
JP2007038049A (en) * | 2005-07-29 | 2007-02-15 | Nec Facilities Ltd | Method for treating fluorine in mixed acid |
JP2007069199A (en) * | 2005-08-09 | 2007-03-22 | Sanyo Electric Co Ltd | Apparatus for treating water |
JP2007230803A (en) * | 2006-02-28 | 2007-09-13 | Mitsui Eng & Shipbuild Co Ltd | Production system for sodium chloride |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016203130A (en) * | 2015-04-28 | 2016-12-08 | 住友金属鉱山株式会社 | Method for separating fluorine from fluorine-containing wastewater |
JP2017047336A (en) * | 2015-08-31 | 2017-03-09 | 住友金属鉱山株式会社 | Fluorine separation method from fluorine-containing waste water |
JP2020182889A (en) * | 2019-04-26 | 2020-11-12 | Jx金属株式会社 | Treatment method of wastewater containing fluorine |
JP7083782B2 (en) | 2019-04-26 | 2022-06-13 | Jx金属株式会社 | Treatment method of wastewater containing fluorine |
Also Published As
Publication number | Publication date |
---|---|
JP5187199B2 (en) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6742454B2 (en) | Production of phosphate compounds from materials containing phosphorus and at least one of iron and aluminum | |
MXPA03005959A (en) | Production of zinc oxide from complex sulfide concentrates using chloride processing. | |
JP6350379B2 (en) | Fluorine separation method from fluorine-containing wastewater | |
EA023142B1 (en) | Method for producing a poorly soluble calcium-arsenic compound | |
TWI383958B (en) | Wastewater treatment methods | |
JP4597169B2 (en) | Wastewater treatment method containing heavy metals | |
JP6485290B2 (en) | Fluorine separation method from fluorine-containing wastewater | |
JP5187199B2 (en) | Fluorine separation method from fluorine-containing wastewater | |
US9206492B2 (en) | Closed loop method for gold and silver extraction by halogens | |
JP7102875B2 (en) | Fluorine removal method | |
JP2010059035A (en) | Method for producing aqueous arsenous acid solution of high purity from copper removal slime | |
BG66925B1 (en) | Method with a closed cycle for extracting gold and silver through halogens | |
WO2012143394A1 (en) | Method for recovery of thallium from an aqueous solution | |
EP1468122B1 (en) | Method for the separation of zinc and nickel in the presence of chloride ions | |
JP7084704B2 (en) | Silica-containing water treatment equipment and treatment method | |
JP7083782B2 (en) | Treatment method of wastewater containing fluorine | |
JP7102876B2 (en) | Fluorine removal method | |
JP2010013670A (en) | Operation method for waste water treatment process in zinc-lead refining method | |
JP4716913B2 (en) | Recycling of used titanium compounds as fluorine scavengers | |
JP7183694B2 (en) | Ruthenium recovery method | |
JP7275608B2 (en) | Method for recovering fluorine concentrates from solutions containing fluorine | |
JPH1099874A (en) | Reduction of hexavalent selenium | |
JP2002282867A (en) | Wastewater treating method | |
JP2006334492A (en) | Method for treating selenium-containing water | |
JP2005288413A (en) | Method for treating flying-ash leachate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110523 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120321 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121009 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130107 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160201 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5187199 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |