JP2010157529A - Method of manufacturing dielectric thin-film element - Google Patents

Method of manufacturing dielectric thin-film element Download PDF

Info

Publication number
JP2010157529A
JP2010157529A JP2008333389A JP2008333389A JP2010157529A JP 2010157529 A JP2010157529 A JP 2010157529A JP 2008333389 A JP2008333389 A JP 2008333389A JP 2008333389 A JP2008333389 A JP 2008333389A JP 2010157529 A JP2010157529 A JP 2010157529A
Authority
JP
Japan
Prior art keywords
dielectric thin
thin film
temperature
film element
reducing atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008333389A
Other languages
Japanese (ja)
Other versions
JP4941466B2 (en
Inventor
Koji Tokita
浩司 時田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008333389A priority Critical patent/JP4941466B2/en
Publication of JP2010157529A publication Critical patent/JP2010157529A/en
Application granted granted Critical
Publication of JP4941466B2 publication Critical patent/JP4941466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a dielectric thin-film element capable of sufficiently increasing insulation resistance while preventing oxidation of metal foil. <P>SOLUTION: This method of manufacturing the dielectric thin-film element includes: a baking process S3 of heating a dielectric thin film 12 formed on the metal foil 11 to 400-1,200°C in a vacuum atmosphere or reductive atmosphere; a reductive annealing process S4 of executing an annealing process in a reductive atmosphere after the baking process S3. Thereby, leak current can be reduced while preventing oxidation of the metal foil, and insulation resistance can be sufficiently increased. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、誘電体薄膜素子の製造方法に関する。   The present invention relates to a method for manufacturing a dielectric thin film element.

チタン酸バリウムをベースにした誘電体は、チップコンデンサの材料として広く用いられている。近年、電子部品の薄型化が急速に進んでおり、誘電体層は従来の粉末を焼結して形成する手法では薄型化の限界が近い。そこで誘電体の薄膜を用いた電子部品への要望が高まってきており、例えば基板と下部電極を兼ねる金属箔上に誘電体薄膜を成膜し、その上に上部電極を形成した薄膜コンデンサに対するニーズが高まってきている。   Dielectrics based on barium titanate are widely used as material for chip capacitors. In recent years, electronic parts have been made thinner and rapidly, and the dielectric layer is close to the limit of thickness reduction by the conventional method of sintering powder. Therefore, there is an increasing demand for electronic parts using a dielectric thin film. For example, there is a need for a thin film capacitor in which a dielectric thin film is formed on a metal foil serving as a substrate and a lower electrode, and an upper electrode is formed on the dielectric thin film. Is growing.

コンデンサなど受動部品は低コストであることが大前提であるため、金属箔や電極の材料に安価な卑金属を用いることが望ましい。この場合、卑金属は酸化を受けやすい性質があるため、金属箔の酸化による導電性低下を抑制すべく、チタン酸バリウムをベースにした誘電体薄膜を真空雰囲気で焼成する必要がある(例えば特許文献1)。
特開2007−66754号公報
Since passive components such as capacitors are premised on low cost, it is desirable to use inexpensive base metals for the metal foil and electrode materials. In this case, since the base metal is susceptible to oxidation, it is necessary to fire a dielectric thin film based on barium titanate in a vacuum atmosphere in order to suppress a decrease in conductivity due to oxidation of the metal foil (for example, Patent Documents). 1).
JP 2007-66754 A

しかしながら、特許文献1のように誘電体薄膜を真空焼成した場合、金属箔の酸化を防止して導電性低下を抑制できるものの、誘電体薄膜に欠陥(酸素欠陥など)が入るために誘電体内に生じる荷電要素(電子や正孔)により、リーク電流が発生し、絶縁抵抗が充分高くできないという問題があった。   However, when the dielectric thin film is baked in vacuum as in Patent Document 1, although the metal foil can be prevented from being oxidized and reduced in conductivity, defects (such as oxygen defects) enter the dielectric thin film. Due to the generated charged elements (electrons and holes), there is a problem that leakage current is generated and the insulation resistance cannot be sufficiently high.

本発明は、上記問題点を鑑みてなされたものであり、金属箔の酸化を防止しながら、絶縁抵抗を充分高くできる誘電体薄膜素子の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a dielectric thin film element that can sufficiently increase an insulation resistance while preventing oxidation of a metal foil.

本発明に係る誘電体薄膜素子の製造方法は、上記課題を解決するために、金属箔上に形成された誘電体薄膜を、真空雰囲気又は還元雰囲気の下で400〜1200℃に加熱する焼成工程と、焼成工程の後に、還元雰囲気でアニール処理を行う還元アニール工程と、を備えることを特徴とする。   In order to solve the above problems, the method for manufacturing a dielectric thin film element according to the present invention heats the dielectric thin film formed on the metal foil to 400 to 1200 ° C. in a vacuum atmosphere or a reducing atmosphere. And a reduction annealing step of performing an annealing process in a reducing atmosphere after the firing step.

このような誘電体薄膜素子の製造方法によれば、金属箔の酸化を防止すべく真空雰囲気又は還元雰囲気で焼成された誘電体薄膜を、さらに還元雰囲気でアニールすることによりリーク電流を低減でき、絶縁抵抗を充分高くできる。   According to such a method for manufacturing a dielectric thin film element, a leakage current can be reduced by further annealing the dielectric thin film fired in a vacuum atmosphere or a reducing atmosphere to prevent oxidation of the metal foil in a reducing atmosphere. The insulation resistance can be made sufficiently high.

ここで、還元アニール工程における還元アニール温度が280〜480℃であることが好適であり、還元アニール温度が300〜460℃であることがさらに好適である。これにより、リーク電流をさらに低減でき、絶縁抵抗をより一層高くできる。   Here, the reduction annealing temperature in the reduction annealing step is preferably 280 to 480 ° C., and the reduction annealing temperature is more preferably 300 to 460 ° C. Thereby, the leakage current can be further reduced and the insulation resistance can be further increased.

また、還元アニール工程における還元アニール時間が20〜740分であることが好適であり、還元アニール時間が30〜720分であることがさらに好適である。これにより、リーク電流をさらに低減でき、絶縁抵抗をより一層高くできる。   The reduction annealing time in the reduction annealing step is preferably 20 to 740 minutes, and more preferably the reduction annealing time is 30 to 720 minutes. Thereby, the leakage current can be further reduced and the insulation resistance can be further increased.

また、還元アニール工程が昇温工程及び降温工程を備え、この昇温工程において還元雰囲気を開始し、降温工程において還元雰囲気を終了することが好適である。そして、昇温工程において還元雰囲気を室温から開始し、降温工程において還元雰囲気を室温で終了することが好適である。同様に、昇温工程において還元雰囲気を220℃以下から開始し、降温工程において還元雰囲気を220℃以下で終了することが好適である。これにより、リーク電流をさらに低減でき、絶縁抵抗をより一層高くできる。   In addition, it is preferable that the reduction annealing step includes a temperature raising step and a temperature lowering step, in which the reducing atmosphere is started and the reducing atmosphere is ended in the temperature lowering step. It is preferable that the reducing atmosphere is started from room temperature in the temperature raising step and the reducing atmosphere is ended at room temperature in the temperature lowering step. Similarly, it is preferable that the reducing atmosphere is started at 220 ° C. or lower in the temperature raising step and the reducing atmosphere is ended at 220 ° C. or lower in the temperature lowering step. Thereby, the leakage current can be further reduced and the insulation resistance can be further increased.

本発明に係る誘電体薄膜素子の製造方法によれば、金属箔の酸化を防止しながら、絶縁抵抗を充分高くできる。   According to the method for manufacturing a dielectric thin film element according to the present invention, the insulation resistance can be sufficiently increased while preventing the metal foil from being oxidized.

以下、本発明の好適な実施形態について説明する。但し、本発明は以下の実施形態に限定されるものではない。なお、同一又は同等の要素については同一の符号を付し、説明が重複する場合にはその説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments. In addition, the same code | symbol is attached | subjected about the same or equivalent element, and the description is abbreviate | omitted when description overlaps.

図1は、本発明の一実施形態に係る誘電体薄膜素子10の構造を示す概略断面図である。誘電体薄膜素子10は、金属箔11と、この金属箔11の上に設けられた誘電体薄膜12と、誘電体薄膜12の上に設けられた上部電極13とを備えて構成されている。   FIG. 1 is a schematic sectional view showing the structure of a dielectric thin film element 10 according to an embodiment of the present invention. The dielectric thin film element 10 includes a metal foil 11, a dielectric thin film 12 provided on the metal foil 11, and an upper electrode 13 provided on the dielectric thin film 12.

金属箔11は、低コスト化のため、安価なNi、Cu、Al、などの卑金属またはこれらの合金を主成分としたもの、ステンレス鋼、インコネルが好ましく、特にNi箔が好ましい。金属箔11の膜厚は5〜500μmであることが好ましい。本実施形態では、金属箔11は、誘電体薄膜12を保持する保持部材としての機能と、下部電極としての機能と、誘電体薄膜を形成する基体として機能と、を兼ね備えている。   The metal foil 11 is preferably made of a base metal such as inexpensive Ni, Cu, Al or the like, or an alloy thereof, stainless steel, or Inconel for reducing the cost, and particularly preferably Ni foil. The thickness of the metal foil 11 is preferably 5 to 500 μm. In the present embodiment, the metal foil 11 has both a function as a holding member that holds the dielectric thin film 12, a function as a lower electrode, and a function as a substrate on which the dielectric thin film is formed.

誘電体薄膜12は、BTすなわちチタン酸バリウムBaTiO、BSTすなわちチタン酸バリウムストロンチウム(BaSr)TiO、チタン酸ストロンチウムSrTiO、(BaSr)(TiZr)O、BaTiZrOなどのペロブスカイト型酸化物が好適に用いられる。誘電体薄膜12は、これらの酸化物のうち一つ以上を含んでいてもよい。誘電体薄膜12の膜厚は、30nm〜5μm程度が好ましい。 The dielectric thin film 12 is made of a perovskite oxide such as BT, that is, barium titanate BaTiO 3 , BST, that is, barium strontium titanate (BaSr) TiO 3 , strontium titanate SrTiO 3 , (BaSr) (TiZr) O 3 , BaTiOZrO 3. Preferably used. The dielectric thin film 12 may contain one or more of these oxides. The film thickness of the dielectric thin film 12 is preferably about 30 nm to 5 μm.

上部電極13は、低コスト化のため、安価な卑金属材料を主成分として構成されるのが好ましく、特にCuを主成分として構成されるのが好ましい。なお、上部電極13は、例えば、Ni、Pt、Pd、Ir、Ru、Rh、Re、Os、Au、Ag、Cu、IrO、RuO、SrRuO、およびLaNiOの少なくともいずれか1つを含むように構成してもよい。 The upper electrode 13 is preferably composed of an inexpensive base metal material as a main component for cost reduction, and particularly preferably composed of Cu as a main component. The upper electrode 13 is made of, for example, at least one of Ni, Pt, Pd, Ir, Ru, Rh, Re, Os, Au, Ag, Cu, IrO 2 , RuO 2 , SrRuO 3 , and LaNiO 3. You may comprise so that it may be included.

次に、図2を参照して、誘電体薄膜素子10の製造方法を説明する。   Next, a manufacturing method of the dielectric thin film element 10 will be described with reference to FIG.

まず、金属箔11が、誘電体薄膜を形成するための基体として準備され(S1)、金属箔11の上にBTなどの誘電体からなる前躯体層が形成される(S2)。前躯体層の形成には、例えばスパッタ法、CSD法などが用いられる。成膜後の前躯体層においては、一般に、誘電体がアモルファスの状態にある。   First, the metal foil 11 is prepared as a base for forming a dielectric thin film (S1), and a precursor layer made of a dielectric material such as BT is formed on the metal foil 11 (S2). For example, a sputtering method, a CSD method, or the like is used to form the precursor layer. In the precursor layer after film formation, the dielectric is generally in an amorphous state.

次に、金属箔11上に形成された前駆体層が、真空雰囲気又は還元雰囲気の下で加熱され、誘電体の結晶化が進行して、高い誘電率を有する誘電体薄膜12が得られる(S3:焼成工程)。特に本実施形態においては、焼成温度は、400〜1200℃が好ましく、700〜900℃がより好ましい。   Next, the precursor layer formed on the metal foil 11 is heated in a vacuum atmosphere or a reducing atmosphere, and the crystallization of the dielectric proceeds to obtain the dielectric thin film 12 having a high dielectric constant ( S3: Firing step). Particularly in the present embodiment, the firing temperature is preferably 400 to 1200 ° C, more preferably 700 to 900 ° C.

ここで、本実施形態における「真空雰囲気」とは、圧力が1×10−9〜1×10Paとなる減圧雰囲気のことであり、一般的には、1×10−5〜1×10Paであることが好ましく、1×10−3〜10Paであることがより好ましい。特に金属箔11が主としてNiからなる場合には、上記圧力が2×10−3〜8×10−1Paであることが好ましく、金属箔11が主としてCuからなる場合には、上記圧力が4×10−1〜8×10−1Paであることが好ましい。また、「還元雰囲気」とは、窒素やヘリウム、アルゴンなどの不活性ガスと水素ガスからなる雰囲気のことであり、不活性ガスに水素を4vol%以下含有されていることが好ましい。このような条件化で熱処理することにより、Ni箔などの金属箔11の酸化が抑制される。 Here, the “vacuum atmosphere” in the present embodiment is a reduced pressure atmosphere in which the pressure is 1 × 10 −9 to 1 × 10 3 Pa, and is generally 1 × 10 −5 to 1 × 10. 2 Pa is preferable, and 1 × 10 −3 to 10 Pa is more preferable. In particular, when the metal foil 11 is mainly made of Ni, the pressure is preferably 2 × 10 −3 to 8 × 10 −1 Pa. When the metal foil 11 is mainly made of Cu, the pressure is 4 × is preferably 10 -1 ~8 × 10 -1 Pa. The “reducing atmosphere” is an atmosphere composed of an inert gas such as nitrogen, helium, and argon and hydrogen gas, and preferably contains 4 vol% or less of hydrogen in the inert gas. By performing the heat treatment under such conditions, the oxidation of the metal foil 11 such as the Ni foil is suppressed.

次に、金属箔11上に形成された誘電体薄膜12が、還元雰囲気でアニール処理される(S4:還元アニール工程)。特に本実施形態においては、アニール処理中における被処理物近傍で維持される温度である「還元アニール温度」は、280〜480℃であることが好ましく、300〜460℃であることがより好ましく、340〜420℃であることがさらに好ましい。また、上記還元アニール温度を継続する時間である「還元アニール時間」は、20〜740分であることが好ましく、30〜720分であることより好ましく、90〜600分であることがより好ましく、160〜480分であることがさらに好ましい。また、「還元雰囲気」とは、窒素やヘリウム、アルゴンなどの不活性ガスと水素ガスからなる雰囲気のことであり、不活性ガスに水素を4vol%以下含有されていることが好ましい。   Next, the dielectric thin film 12 formed on the metal foil 11 is annealed in a reducing atmosphere (S4: reduction annealing step). Particularly in the present embodiment, the “reduction annealing temperature”, which is a temperature maintained in the vicinity of the workpiece during the annealing treatment, is preferably 280 to 480 ° C., more preferably 300 to 460 ° C., More preferably, it is 340-420 degreeC. Further, the “reduction annealing time” that is the time for continuing the reduction annealing temperature is preferably 20 to 740 minutes, more preferably 30 to 720 minutes, and more preferably 90 to 600 minutes, More preferably, it is 160 to 480 minutes. The “reducing atmosphere” is an atmosphere composed of an inert gas such as nitrogen, helium, and argon and hydrogen gas, and preferably contains 4 vol% or less of hydrogen in the inert gas.

本実施形態では、還元アニール工程は、アニール炉の内部温度を室温(25℃程度)から還元アニール温度まで昇温させる昇温工程と、還元アニール温度を還元アニール時間維持する維持工程と、還元アニール温度から室温まで降温させる降温工程とを備える。この昇温工程において室温から所定温度に到達したときに、アニール炉内に還元性の雰囲気ガスが導入され、アニール炉内の雰囲気が還元雰囲気に切り換えられて、還元雰囲気が開始される。同様に、降温工程において還元アニール温度から所定温度に到達したときに、アニール炉内への還元性の雰囲気ガスの導入が停止され、還元雰囲気が終了する。還元雰囲気を開始・終了する所定温度は、220℃以下が好ましく、例えば室温、80、100、180、200、220℃などに設定することができる。   In this embodiment, the reduction annealing step includes a temperature raising step for raising the internal temperature of the annealing furnace from room temperature (about 25 ° C.) to the reduction annealing temperature, a maintenance step for maintaining the reduction annealing temperature for the reduction annealing time, and reduction annealing. And a temperature lowering step for lowering the temperature from room temperature to room temperature. When a predetermined temperature is reached from room temperature in this temperature raising step, a reducing atmosphere gas is introduced into the annealing furnace, the atmosphere in the annealing furnace is switched to a reducing atmosphere, and a reducing atmosphere is started. Similarly, when a predetermined temperature is reached from the reduction annealing temperature in the temperature lowering step, the introduction of the reducing atmosphere gas into the annealing furnace is stopped and the reducing atmosphere is ended. The predetermined temperature for starting and ending the reducing atmosphere is preferably 220 ° C. or lower, and can be set to room temperature, 80, 100, 180, 200, 220 ° C., or the like.

還元アニール工程において、このような条件化で誘電体薄膜12をアニール処理することにより、誘電体薄膜素子10におけるリーク電流が低減される。これは、真空焼成または還元焼成した誘電体はキャリアとしてホールを多く含むため酸素欠陥が発生するが、還元アニールで水素がドープされることでホールが減少し、発生した酸素欠陥が緩和されるため、リーク電流が低減すると考えられる。   In the reduction annealing step, the leakage current in the dielectric thin film element 10 is reduced by annealing the dielectric thin film 12 under such conditions. This is because a vacuum-fired or reduction-fired dielectric contains a large number of holes as carriers, so oxygen defects are generated. However, when hydrogen is doped by reduction annealing, holes are reduced and the generated oxygen defects are alleviated. It is considered that the leakage current is reduced.

そして、還元アニール処理された誘電体薄膜12の上に上部電極13が形成される(S5)。上部電極13の形成方法としては、例えばスパッタ法などが挙げられる。上部電極13形成後、必要に応じて酸素雰囲気あるいは減圧雰囲気中などで所定時間にわたってリカバリーアニールが行われる(S6)。   Then, the upper electrode 13 is formed on the dielectric thin film 12 subjected to the reduction annealing process (S5). Examples of a method for forming the upper electrode 13 include a sputtering method. After the upper electrode 13 is formed, recovery annealing is performed for a predetermined time in an oxygen atmosphere or a reduced pressure atmosphere as required (S6).

なお、ステップS4の還元アニール工程は、ステップS5の上部電極13の形成後に行ってもよい。   Note that the reduction annealing process in step S4 may be performed after the formation of the upper electrode 13 in step S5.

このように、本実施形態に係る誘電体薄膜素子10の製造方法によれば、金属箔11の酸化を防止すべく真空雰囲気又は還元雰囲気で焼成された誘電体薄膜12を、さらに還元雰囲気でアニールするため、リーク電流を低減でき、絶縁抵抗を充分高くできる。   As described above, according to the method for manufacturing the dielectric thin film element 10 according to this embodiment, the dielectric thin film 12 baked in a vacuum atmosphere or a reducing atmosphere to prevent oxidation of the metal foil 11 is further annealed in a reducing atmosphere. Therefore, the leakage current can be reduced and the insulation resistance can be sufficiently increased.

以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

(実施例)
表面を鏡面研磨した下部電極としてのNi箔上に、下記条件のスパッタ法による前駆体層としてのBT薄膜を成膜した。
・基板(Ni箔)温度:24℃
・入力電力:1.8W/cm2
・雰囲気:Ar+O2(33容積%)
・成膜時間:120分
・膜厚:300nm
(Example)
On the Ni foil as the lower electrode whose surface was mirror-polished, a BT thin film as a precursor layer was formed by sputtering under the following conditions.
-Substrate (Ni foil) temperature: 24 ° C
・ Input power: 1.8W / cm2
・ Atmosphere: Ar + O2 (33% by volume)
-Film formation time: 120 minutes-Film thickness: 300 nm

次いで、得られたBT薄膜を真空雰囲気(圧力4×10−2Pa)又は還元雰囲気(窒素−水素混合ガス(水素0.1%)を流し、35℃のウエッターを用いて酸素分圧1×10−14MPaに調整)の下で、焼成温度を400、700、800、900、1200℃として加熱することにより、BTの結晶化が進行した誘電体薄膜を形成させた。 Next, the obtained BT thin film was passed through a vacuum atmosphere (pressure 4 × 10 −2 Pa) or a reducing atmosphere (nitrogen-hydrogen mixed gas (hydrogen 0.1%)), and oxygen partial pressure 1 × using a 35 ° C. wetter. The dielectric thin film in which BT crystallization progressed was formed by heating at a firing temperature of 400, 700, 800, 900, and 1200 ° C. under a control of 10 −14 MPa.

そして、Ni箔上に形成された誘電体薄膜に対して、水素3vol%(残りは窒素)の混合ガスを毎分500cc流す還元雰囲気の下で、下記条件を表1のように組み合わせて還元アニール処理を行った。
・還元アニール温度:280、300、340、380、420、460、480℃
・還元アニール時間:20、30、90、160、200、480、600、720、740分
・還元雰囲気開始温度及び終了温度(還元雰囲気保持の最低温度):室温(R.T.)、80、100、180、200、220℃
Then, reduction annealing is performed on the dielectric thin film formed on the Ni foil by combining the following conditions as shown in Table 1 under a reducing atmosphere in which a mixed gas of 3 vol% hydrogen (remaining nitrogen) flows at 500 cc per minute. Processed.
Reduction annealing temperature: 280, 300, 340, 380, 420, 460, 480 ° C
Reduction annealing time: 20, 30, 90, 160, 200, 480, 600, 720, 740 minutes Reduction atmosphere start temperature and end temperature (minimum temperature for holding the reduction atmosphere): Room temperature (RT), 80, 100, 180, 200, 220 ° C

その後、誘電体薄膜上にスパッタリング法によって基板加熱無しでCu膜を形成し、メタルマスクを用いて1mmΦ、膜厚200nmの電極を作製して上部電極を形成し、真空炉中で加熱温度350℃、加熱時間1時間の条件でリカバリーアニールを行った。作製した誘電体薄膜素子について、リーク特性を測定した。   Thereafter, a Cu film is formed on the dielectric thin film by sputtering without heating the substrate, an electrode having a thickness of 1 mmΦ and a thickness of 200 nm is formed using a metal mask, an upper electrode is formed, and the heating temperature is 350 ° C. in a vacuum furnace. Recovery annealing was performed under the condition of a heating time of 1 hour. About the produced dielectric thin film element, the leak characteristic was measured.

リーク特性としては、室温下で誘電体薄膜素子(Ni箔)及び上部電極間に4Vの直流電圧を印加することにより測定したリーク電流値を電極面積で除して得られるリーク電流密度(A/cm)を算出した。 As the leakage characteristics, the leakage current density (A / A) obtained by dividing the leakage current value measured by applying a DC voltage of 4 V between the dielectric thin film element (Ni foil) and the upper electrode at room temperature by the electrode area cm 2 ) was calculated.

(比較例1)
実施例と同様にNi箔上に成膜したBT薄膜を、大気雰囲気、焼成温度800℃で焼成し、還元アニール温度380℃、還元アニール時間200分、還元雰囲気開始温度80℃で還元アニールし、その後の処理は実施例と同様に行った。作製した誘電体薄膜素子について、実施例と同様にリーク特性を測定した。
(Comparative Example 1)
The BT thin film formed on the Ni foil in the same manner as in the example was baked at an atmospheric temperature and a baking temperature of 800 ° C., and was subjected to reduction annealing at a reduction annealing temperature of 380 ° C., a reduction annealing time of 200 minutes, and a reduction atmosphere start temperature of 80 ° C. Subsequent processing was performed in the same manner as in the example. About the produced dielectric thin film element, the leak characteristic was measured like the Example.

(比較例2)
実施例と同様にNi箔上に成膜したBT薄膜を、真空雰囲気及び還元雰囲気の下、焼成温度800℃で焼成し、還元アニール処理は行わずに、誘電体薄膜上にスパッタ法にてCuを主成分とする上部電極を形成し、リカバリーアニールを行った。作製した誘電体薄膜素子について、実施例と同様にリーク特性を測定した。
(Comparative Example 2)
Similar to the example, the BT thin film formed on the Ni foil was fired at a firing temperature of 800 ° C. in a vacuum atmosphere and a reducing atmosphere, and Cu was formed on the dielectric thin film by sputtering without performing a reduction annealing treatment. An upper electrode containing as a main component was formed, and recovery annealing was performed. About the produced dielectric thin film element, the leak characteristic was measured like the Example.

(比較例3)
実施例と同様にNi箔上に成膜したBT薄膜を、真空雰囲気及び還元雰囲気の下、焼成温度380℃で焼成し、還元アニール温度380℃、還元アニール時間200分、還元雰囲気開始温度80℃で還元アニールし、その後の処理は実施例と同様に行った。作製した誘電体薄膜素子について、実施例と同様にリーク特性を測定した。
(Comparative Example 3)
The BT thin film formed on the Ni foil was fired at a firing temperature of 380 ° C. in a vacuum atmosphere and a reducing atmosphere in the same manner as in the example, the reducing annealing temperature was 380 ° C., the reducing annealing time was 200 minutes, and the reducing atmosphere starting temperature was 80 ° C. Then, reduction annealing was performed, and the subsequent treatment was performed in the same manner as in the example. About the produced dielectric thin film element, the leak characteristic was measured like the Example.

(比較例4)
実施例と同様にNi箔上に成膜したBT薄膜を、真空雰囲気及び還元雰囲気の下、焼成温度1250℃で焼成し、還元アニール温度380℃、還元アニール時間200分、還元雰囲気開始温度80℃で還元アニールし、その後の処理は実施例と同様に行った。作製した誘電体薄膜素子について、実施例と同様にリーク特性を測定した。
(Comparative Example 4)
The BT thin film formed on the Ni foil was fired at a firing temperature of 1250 ° C. in a vacuum atmosphere and a reducing atmosphere in the same manner as in the example, a reducing annealing temperature of 380 ° C., a reducing annealing time of 200 minutes, and a reducing atmosphere start temperature of 80 ° C. Then, reduction annealing was performed, and the subsequent treatment was performed in the same manner as in the example. About the produced dielectric thin film element, the leak characteristic was measured like the Example.

上述の実施例及び比較例1〜4について、焼成雰囲気、焼成温度、還元アニール温度、還元アニール時間、還元雰囲気開始温度、リーク電流密度を表1に示す。

Figure 2010157529

Table 1 shows the firing atmosphere, firing temperature, reduction annealing temperature, reduction annealing time, reducing atmosphere start temperature, and leakage current density for the above Examples and Comparative Examples 1 to 4.
Figure 2010157529

表1に示すように、還元又は真空雰囲気の下焼成温度400〜1200℃で焼成し、還元アニール温度280〜480℃、還元アニール時間20〜740分、還元雰囲気開始温度220以下の条件で還元アニールを行って作製された実施例の誘電体薄膜素子は、リーク電流密度が充分に低いことが確認された。これに対して、大気雰囲気で焼成を行った比較例1、真空又は還元焼成の後に還元アニールを行わない比較例2、焼成温度が380℃の比較例3、焼成温度が1250℃の比較例4は、リーク電流密度が実施例よりも著しく大きかった。すなわち、実施例の誘電体薄膜素子は、比較例に比べてリーク電流密度を1/10倍から1/10000倍程度に低減でき、リーク特性を向上できる。このように、本発明によれば、金属箔の酸化を防止しながら、リーク電流を低減して絶縁抵抗を充分高くできる誘電体薄膜素子が提供されることが確認された。   As shown in Table 1, firing is performed at a firing temperature of 400 to 1200 ° C. in a reducing or vacuum atmosphere, and reduction annealing is performed under conditions of a reduction annealing temperature of 280 to 480 ° C., a reduction annealing time of 20 to 740 minutes, and a reducing atmosphere start temperature of 220 or less. It was confirmed that the dielectric thin film element of the example manufactured by performing the above has a sufficiently low leakage current density. On the other hand, Comparative Example 1 which was fired in an air atmosphere, Comparative Example 2 which was not subjected to reduction annealing after vacuum or reduction firing, Comparative Example 3 whose firing temperature was 380 ° C., and Comparative Example 4 whose firing temperature was 1250 ° C. The leakage current density was significantly larger than that of the example. That is, the dielectric thin film element of the example can reduce the leakage current density from about 1/10 to 1 / 10,000 times that of the comparative example, and can improve the leakage characteristics. Thus, according to the present invention, it was confirmed that a dielectric thin film element capable of reducing the leakage current and sufficiently increasing the insulation resistance while preventing oxidation of the metal foil is provided.

本発明の一実施形態に係る誘電体薄膜素子の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the dielectric thin film element concerning one Embodiment of this invention. 本実施形態に係る誘電体薄膜素子の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the dielectric thin film element concerning this embodiment.

符号の説明Explanation of symbols

10…誘電体薄膜素子、11…金属箔、12…誘電体薄膜、13…上部電極。












DESCRIPTION OF SYMBOLS 10 ... Dielectric thin film element, 11 ... Metal foil, 12 ... Dielectric thin film, 13 ... Upper electrode












Claims (8)

金属箔上に形成された誘電体薄膜を、真空雰囲気又は還元雰囲気の下で400〜1200℃に加熱する焼成工程と、
前記焼成工程の後に、還元雰囲気でアニール処理を行う還元アニール工程と、を備えることを特徴とする誘電体薄膜素子の製造方法。
A firing step of heating the dielectric thin film formed on the metal foil to 400 to 1200 ° C. in a vacuum atmosphere or a reducing atmosphere;
And a reduction annealing step in which annealing treatment is performed in a reducing atmosphere after the firing step.
前記還元アニール工程における還元アニール温度が280〜480℃であることを特徴とする、請求項1に記載の誘電体薄膜素子の製造方法。   The method for manufacturing a dielectric thin film element according to claim 1, wherein a reduction annealing temperature in the reduction annealing step is 280 to 480 ° C. 前記還元アニール温度が300〜460℃であることを特徴とする、請求項2に記載の誘電体薄膜素子の製造方法。   The method of manufacturing a dielectric thin film element according to claim 2, wherein the reduction annealing temperature is 300 to 460 ° C. 前記還元アニール工程における還元アニール時間が20〜740分であることを特徴とする、請求項1〜3のいずれか1項に記載の誘電体薄膜素子の製造方法。   The method for manufacturing a dielectric thin film element according to any one of claims 1 to 3, wherein a reduction annealing time in the reduction annealing step is 20 to 740 minutes. 前記還元アニール時間が30〜720分であることを特徴とする、請求項4に記載の誘電体薄膜素子の製造方法。   The method of manufacturing a dielectric thin film element according to claim 4, wherein the reduction annealing time is 30 to 720 minutes. 前記還元アニール工程が昇温工程及び降温工程を備え、該昇温工程において還元雰囲気を開始し、前記降温工程において還元雰囲気を終了することを特徴とする、請求項1〜5のいずれか1項に記載の誘電体薄膜素子の製造方法。   6. The reduction annealing process includes a temperature raising step and a temperature lowering step, wherein a reducing atmosphere is started in the temperature raising step, and the reducing atmosphere is terminated in the temperature lowering step. A method for producing a dielectric thin film element according to 1. 前記昇温工程において還元雰囲気を室温から開始し、前記降温工程において還元雰囲気を室温で終了することを特徴とする、請求項6に記載の誘電体薄膜素子の製造方法。   7. The method for manufacturing a dielectric thin film element according to claim 6, wherein the reducing atmosphere is started at room temperature in the temperature raising step, and the reducing atmosphere is ended at room temperature in the temperature lowering step. 前記昇温工程において還元雰囲気を220℃以下から開始し、前記降温工程において還元雰囲気を220℃以下で終了することを特徴とする、請求項7に記載の誘電体薄膜素子の製造方法。




8. The method for manufacturing a dielectric thin film element according to claim 7, wherein the reducing atmosphere is started at 220 [deg.] C. or lower in the temperature raising step, and the reducing atmosphere is ended at 220 [deg.] C. or lower in the temperature lowering step.




JP2008333389A 2008-12-26 2008-12-26 Dielectric thin film element manufacturing method Active JP4941466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333389A JP4941466B2 (en) 2008-12-26 2008-12-26 Dielectric thin film element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333389A JP4941466B2 (en) 2008-12-26 2008-12-26 Dielectric thin film element manufacturing method

Publications (2)

Publication Number Publication Date
JP2010157529A true JP2010157529A (en) 2010-07-15
JP4941466B2 JP4941466B2 (en) 2012-05-30

Family

ID=42575242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333389A Active JP4941466B2 (en) 2008-12-26 2008-12-26 Dielectric thin film element manufacturing method

Country Status (1)

Country Link
JP (1) JP4941466B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014646A1 (en) * 2010-07-30 2012-02-02 三洋電機株式会社 Method for producing substrate-embedded capacitor, and capacitor-integrated substrate provided with same
WO2012014647A1 (en) * 2010-07-30 2012-02-02 三洋電機株式会社 Substrate-embedded capacitor, capacitor-integrated substrate provided with same, and method for producing substrate-embedded capacitor
WO2012014648A1 (en) * 2010-07-30 2012-02-02 三洋電機株式会社 Substrate-embedded capacitor, capacitor-integrated substrate provided with same, and method for producing substrate-embedded capacitor
WO2015182114A1 (en) * 2014-05-30 2015-12-03 パナソニックIpマネジメント株式会社 Semiconductor device, built-in capacitor unit, semiconductor-mounting body, and method for manufacturing built-in capacitor unit
WO2016031206A1 (en) * 2014-08-29 2016-03-03 パナソニックIpマネジメント株式会社 Semiconductor device, assembly, and vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208394A (en) * 1996-02-07 1997-08-12 Tdk Corp Production of ferroelectric thin film and ferroelectric thin film capacitor
JP2007150207A (en) * 2005-11-30 2007-06-14 Tdk Corp Dielectric element and method of manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208394A (en) * 1996-02-07 1997-08-12 Tdk Corp Production of ferroelectric thin film and ferroelectric thin film capacitor
JP2007150207A (en) * 2005-11-30 2007-06-14 Tdk Corp Dielectric element and method of manufacturing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014646A1 (en) * 2010-07-30 2012-02-02 三洋電機株式会社 Method for producing substrate-embedded capacitor, and capacitor-integrated substrate provided with same
WO2012014647A1 (en) * 2010-07-30 2012-02-02 三洋電機株式会社 Substrate-embedded capacitor, capacitor-integrated substrate provided with same, and method for producing substrate-embedded capacitor
WO2012014648A1 (en) * 2010-07-30 2012-02-02 三洋電機株式会社 Substrate-embedded capacitor, capacitor-integrated substrate provided with same, and method for producing substrate-embedded capacitor
WO2015182114A1 (en) * 2014-05-30 2015-12-03 パナソニックIpマネジメント株式会社 Semiconductor device, built-in capacitor unit, semiconductor-mounting body, and method for manufacturing built-in capacitor unit
JPWO2015182114A1 (en) * 2014-05-30 2017-04-20 パナソニックIpマネジメント株式会社 Semiconductor device, built-in capacitor unit, semiconductor mounting body, and method for manufacturing built-in capacitor unit
US9905501B2 (en) 2014-05-30 2018-02-27 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device, embedded capacitor unit, semiconductor package, and method of manufacturing embedded capacitor unit
WO2016031206A1 (en) * 2014-08-29 2016-03-03 パナソニックIpマネジメント株式会社 Semiconductor device, assembly, and vehicle
JPWO2016031206A1 (en) * 2014-08-29 2017-06-15 パナソニックIpマネジメント株式会社 Semiconductor device, mounting body, vehicle
US10186479B2 (en) 2014-08-29 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device, package, and vehicle

Also Published As

Publication number Publication date
JP4941466B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
CN108257779B (en) Laminated ceramic electronic component
TWI294132B (en) Method of production of multilayer ceramic electronic device
US7581311B2 (en) Method for manufacturing a dielectric element
JP4941466B2 (en) Dielectric thin film element manufacturing method
JP4362079B2 (en) Multilayer chip capacitor and manufacturing method thereof
TWI249754B (en) Multilayer ceramic capacitor
JP2007005804A (en) Acceptor doped barium-titanate-based thin film capacitors on metal foils and methods of making thereof
JP4956939B2 (en) Dielectric film and manufacturing method thereof
JP2012015505A (en) Manufacturing method of thin film capacitor and thin film capacitor manufactured thereby
JP2005285806A (en) Method of manufacturing multilayered ceramic element
JP4604939B2 (en) Dielectric thin film, thin film dielectric element and manufacturing method thereof
JP5375582B2 (en) Thin film capacitor manufacturing method
JPH08167536A (en) Manufacture of copper-inside electrode laminated ceramic capacitor
JP2008147497A (en) Method for manufacturing laminated ceramic element
JP4403733B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2018150205A (en) Barium titanate film and method for forming the same
KR100296865B1 (en) a method prepaparing a layered ceramic condenser
JP3586258B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3240048B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2008135478A (en) Method of forming terminal electrode and method of manufacturing electronic part
JP2008227115A (en) Lower electrode for thin film capacitor and its manufacturing method
JP4993056B2 (en) Manufacturing method and oxygen supply method of multilayer piezoelectric element
JPH11111558A (en) Production of ceramic electrical component
JP5307531B2 (en) Dielectric thin film element manufacturing method
JP4946978B2 (en) Method for manufacturing thin film capacitor material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4941466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3