JP2010157383A - High frequency heat plasma torch for solid synthesis - Google Patents

High frequency heat plasma torch for solid synthesis Download PDF

Info

Publication number
JP2010157383A
JP2010157383A JP2008333760A JP2008333760A JP2010157383A JP 2010157383 A JP2010157383 A JP 2010157383A JP 2008333760 A JP2008333760 A JP 2008333760A JP 2008333760 A JP2008333760 A JP 2008333760A JP 2010157383 A JP2010157383 A JP 2010157383A
Authority
JP
Japan
Prior art keywords
high frequency
frequency coil
plasma torch
outer tube
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008333760A
Other languages
Japanese (ja)
Other versions
JP5014324B2 (en
Inventor
Tetsuya Otsusaka
哲也 乙坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008333760A priority Critical patent/JP5014324B2/en
Publication of JP2010157383A publication Critical patent/JP2010157383A/en
Application granted granted Critical
Publication of JP5014324B2 publication Critical patent/JP5014324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • C03B37/01426Plasma deposition burners or torches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Discharge Heating (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Plasma Technology (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat plasma torch for synthesizing solids by which stable flames can be obtained and a product having stable characteristics can be produced with good reproducibility, and in which a torch is not damaged by vibration during operation. <P>SOLUTION: In a high frequency induction heat plasma torch in which an inside pipe 2 and an outside pipe 3 forming a cooling water passage 7 are disposed in the external part of a raw material gas introducing member 1, a high frequency coil 4 is wound on the external part of the outside pipe 3, a raw material gas passage 5 is formed in the center of the raw material gas introducing member 1, and a plasma gas passage 6 is formed between the inside pipe 2 and the raw material gas introducing member 1, an insulator 13 is interposed between the high frequency coil 4 and the outside pipe 3 on its inside, the position of the high frequency coil 4 is fixed, and position relation between the plasma gas passage 6 and the high frequency coil 4 is held constant. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光ファイバ用ガラス母材等の固体合成に好適な高周波誘導熱プラズマトーチの構造に関する。 The present invention relates to a structure of a high-frequency induction thermal plasma torch suitable for solid-state synthesis of an optical fiber glass preform or the like.

高周波誘導熱プラズマトーチは、ガス流路の周囲に配設された高周波コイルに高周波電流を印加し、内部のガスをプラズマ化して噴射する装置であり、1万度程度の超高温を得ることができ、比較的遅いプラズマ線速で、しかも酸化・還元雰囲気を自由に選択できることから、超高温の反応場の形成に好適に用いられている。さらに、反応場に電極が存在しないため不純物が入りづらく、結晶やアモルファスの粉体・膜等、高純度固体の合成用に非常に適している。また、超高温の熱源として、廃棄物の減容処理等に利用されている。さらに、超高温を利用して対象物を完全に分解できることから、ICP発光分析やフロンの分解等に用いられている。 A high-frequency induction thermal plasma torch is a device that applies a high-frequency current to a high-frequency coil disposed around a gas flow path and converts the internal gas into plasma and injects it. An ultra-high temperature of about 10,000 degrees can be obtained. In addition, since the oxidizing / reducing atmosphere can be freely selected at a relatively low plasma linear velocity, it is preferably used for forming an ultra-high temperature reaction field. Furthermore, since there is no electrode in the reaction field, it is difficult for impurities to enter, and it is very suitable for the synthesis of high purity solids such as crystals and amorphous powders and films. In addition, it is used as an ultra-high temperature heat source for waste volume reduction. Furthermore, it can be used for ICP emission analysis and CFC decomposition because the object can be completely decomposed using ultra-high temperature.

図1に、従来の、固体のガラス微粒子や膜の合成等に用いられている高周波誘導熱プラズマトーチの例を示した。
原料ガス導入部材1は、中心に原料ガス及び不活性キャリアガスを流す原料ガス流路5を有し、その外側に内側管2が配設され、原料ガス導入部材1と内側管2の間がプラズマガス流路6となっている。原料ガス導入部材1は、直接高温のプラズマに曝されるため、一般的には内部に冷却水流路を設けて、プラズマに向いた面10を水冷する構造になっている。内側管2の外側には外側管3が配設され、内側管2と外側管3の間は冷却水流路7となっている。
FIG. 1 shows an example of a conventional high-frequency induction thermal plasma torch used for synthesis of solid glass fine particles or films.
The raw material gas introduction member 1 has a raw material gas flow path 5 through which the raw material gas and the inert carrier gas flow in the center, an inner pipe 2 is disposed on the outer side, and a gap between the raw material gas introduction member 1 and the inner pipe 2 is provided. A plasma gas flow path 6 is provided. Since the raw material gas introducing member 1 is directly exposed to high-temperature plasma, generally, a cooling water flow path is provided inside, and the surface 10 facing the plasma is water-cooled. An outer tube 3 is disposed outside the inner tube 2, and a cooling water flow path 7 is formed between the inner tube 2 and the outer tube 3.

なお、プラズマ出力が低い場合、冷却水を用いずに、二重管構造を採らない場合もある。外側管3のさらに外側に、高周波コイル4が配設されている。高周波コイル4は、延長管12につながっており、延長管12は電極11に接続されている。電極11は、図示していない高周波発信盤に接続され、電極11及び延長管12を介して高周波コイル4に高周波電流が印加される。 In addition, when plasma output is low, a double pipe structure may not be taken without using cooling water. A high frequency coil 4 is disposed further outside the outer tube 3. The high frequency coil 4 is connected to the extension tube 12, and the extension tube 12 is connected to the electrode 11. The electrode 11 is connected to a high-frequency transmission board (not shown), and a high-frequency current is applied to the high-frequency coil 4 via the electrode 11 and the extension tube 12.

プラズマの点火は、特許文献1に記されているように、プラズマトーチ内部にアルゴンのみを流し、冷却水流路7の冷却水を除いた状態で、高周波コイルに高周波電流を流しつつ、プラズマトーチ内部に図示していない高電圧印加手段によって高電圧を印加・放電させることによってなされ、これによってプラズマ火炎8が形成される。 As described in Patent Document 1, plasma ignition is performed by flowing only high-frequency current through the high-frequency coil while flowing only argon inside the plasma torch and removing the cooling water from the cooling water flow path 7. The high voltage applying means (not shown) applies and discharges a high voltage, whereby a plasma flame 8 is formed.

例えば、フッ素ドープ石英ガラス微粒子を合成し、これを純粋石英ガラス棒の周りに堆積させて光ファイバ用ガラス母材を形成するような場合、プラズマ点火後に冷却水流路7に冷却水を、プラズマガス流路6には酸素とアルゴンを流し、続けて原料ガス流路5に四塩化ケイ素、四フッ化ケイ素もしくは四フッ化炭素等のフッ素含有ガス及びアルゴンを流すことで、プラズマ火炎8内部でフッ素ドープ石英ガラス微粒子が合成される。プラズマ火炎8内で合成されたガラス微粒子は、回転・移動する純粋石英ガラス製のターゲット棒9上に堆積され、プリフォームが形成される。プラズマ火炎8は、高周波コイル4に1〜4MHz、20〜100kVA程度の高周波電流を印加することにより維持される。
特開平05-242995号公報
For example, when fluorine-doped quartz glass fine particles are synthesized and deposited around a pure quartz glass rod to form a glass preform for an optical fiber, cooling water is supplied to the cooling water channel 7 after plasma ignition, Oxygen and argon are allowed to flow through the flow path 6, and then fluorine-containing gas such as silicon tetrachloride, silicon tetrafluoride, or carbon tetrafluoride and argon are allowed to flow through the source gas flow path 5, so that fluorine is generated inside the plasma flame 8. Doped quartz glass fine particles are synthesized. The glass fine particles synthesized in the plasma flame 8 are deposited on a target rod 9 made of pure quartz glass that rotates and moves to form a preform. The plasma flame 8 is maintained by applying a high frequency current of about 1 to 4 MHz and about 20 to 100 kVA to the high frequency coil 4.
Japanese Patent Laid-Open No. 05-242995

一般的に、外側管3には石英ガラスやセラミックパイプ等の耐熱絶縁材料が用いられ、高周波コイル4には水冷銅パイプが用いられている。水冷銅パイプには絶縁のためにプラスチックフィルムが被覆されている。従来、外側管3には上記したような脆性材料が用いられているため、高周波コイル4と外側管3の間には数mm前後の間隙を設けておき、装置が多少振動した場合でも、外側管3が高周波コイル4と接触して破損することがないように構成されている。   Generally, a heat-resistant insulating material such as quartz glass or a ceramic pipe is used for the outer tube 3, and a water-cooled copper pipe is used for the high-frequency coil 4. The water-cooled copper pipe is covered with a plastic film for insulation. Conventionally, since the brittle material as described above is used for the outer tube 3, a gap of about several millimeters is provided between the high-frequency coil 4 and the outer tube 3, so that even if the device vibrates somewhat, the outer tube 3 The tube 3 is configured so as not to be damaged by contact with the high-frequency coil 4.

しかしながら、水冷銅パイプは強い力を加えると曲がってしまい、プラズマトーチのメンテナンス等の際に、外側管3と高周波コイル4の位置関係がずれてしまうことがあった。外側管3と高周波コイル4の中心軸がずれたり、相対的に傾斜してしまった場合は、プラズマトーチ内部での電磁場の対称性が崩れ、プラズマ火炎8に曲がりが生じる。プラズマ火炎8が曲がると、プラズマ火炎中で反応・生成した固体物質が内側管2の内壁に付着したり、ターゲット棒9への固体物質の付着率が悪くなったり、堆積組成が変化してしまうという問題があった。
また、高周波コイル4の位置が軸方向にずれたりして変化した場合には、プレート電流とプレート電圧、グリッド電流の関係が変化し、プラズマ火炎中での固体物質の生成反応に影響を与え、再現性よく特性の安定した製品を造ることができないという問題があった。
However, the water-cooled copper pipe is bent when a strong force is applied, and the positional relationship between the outer tube 3 and the high-frequency coil 4 may shift during maintenance of the plasma torch. If the central axes of the outer tube 3 and the high frequency coil 4 are shifted or relatively inclined, the symmetry of the electromagnetic field inside the plasma torch is broken and the plasma flame 8 is bent. If the plasma flame 8 bends, the solid substance reacted and generated in the plasma flame will adhere to the inner wall of the inner tube 2, the adhesion rate of the solid substance to the target rod 9 will deteriorate, or the deposition composition will change. There was a problem.
In addition, when the position of the high frequency coil 4 is changed in the axial direction, the relationship between the plate current, the plate voltage, and the grid current changes, which affects the solid substance generation reaction in the plasma flame, There was a problem that a product with good reproducibility and stable characteristics could not be produced.

本発明は、安定したプラズマ火炎が得られ、再現性よく特性の安定した製品を造ることができ、かつ稼動中の振動によってトーチに損傷の生ずることのない固体合成用高周波熱プラズマトーチを提供することを目的としている。   The present invention provides a high-frequency thermal plasma torch for solid synthesis in which a stable plasma flame can be obtained, a product with stable characteristics can be produced with good reproducibility, and the torch is not damaged by vibration during operation. The purpose is that.

本発明の固体合成用高周波熱プラズマトーチは、原料ガス導入部材の外方に、冷却水流路を形成する内側管と外側管が配設され、さらに外側管の外方に高周波コイルが巻回され、前記原料ガス導入部材の中心に原料ガス流路が形成され、前記内側管と原料ガス導入部材との間にプラズマガス流路が形成されてなる高周波誘導熱プラズマトーチにおいて、前記高周波コイルとその内側の外側管との間に絶縁体を介在させて、高周波コイルの位置を固定し、プラズマガス流路と高周波コイルとの位置関係が一定に保持されていることを特徴としている。   In the high-frequency thermal plasma torch for solid synthesis of the present invention, an inner tube and an outer tube that form a cooling water flow path are disposed outside the raw material gas introduction member, and a high-frequency coil is wound outside the outer tube. In the high-frequency induction thermal plasma torch in which a source gas flow path is formed at the center of the source gas introduction member and a plasma gas flow path is formed between the inner tube and the source gas introduction member, the high-frequency coil and its The position of the high frequency coil is fixed by interposing an insulator between the inner and outer tubes, and the positional relationship between the plasma gas flow path and the high frequency coil is kept constant.

前記高周波コイルとその内側の外側管との間に、絶縁体として軟質プラスチックを介在させることで、前記高周波コイルの径方向位置を固定することができ、高周波コイルの軸方向位置は、高周波コイルと外側管のフランジ部との間に絶縁体として軟質プラスチックを介在させることで固定することができる。絶縁体には軟質プラスチック、特にはフッ素樹脂製のものを使用するのが好ましい。
なお、高周波コイルは水冷金属パイプからなり、高周波コイル周囲の湿度を調整することで結露を防止することができる。高周波コイルから電極に至る金属パイプ製の延長管の長さを金属パイプの直径の20倍以上とするのが好ましい。
By interposing a soft plastic as an insulator between the high frequency coil and the outer tube inside the high frequency coil, the radial position of the high frequency coil can be fixed. It can be fixed by interposing a soft plastic as an insulator between the flange portion of the outer tube. As the insulator, it is preferable to use a soft plastic, particularly a fluororesin.
The high frequency coil is made of a water-cooled metal pipe, and dew condensation can be prevented by adjusting the humidity around the high frequency coil. The length of the metal pipe extension pipe extending from the high frequency coil to the electrode is preferably 20 times or more the diameter of the metal pipe.

本発明によれば、プラズマトーチを構成する外側管と高周波コイルとの位置関係がずれることなく、また、稼動中の振動によって脆性材料からなる外側管が高周波コイルと接触して損傷することもなく、安定したプラズマ火炎が得られ、再現性よく特性の安定した光ファイバ用ガラス母材等の固体製品を造ることができる。 According to the present invention, the positional relationship between the outer tube constituting the plasma torch and the high frequency coil is not shifted, and the outer tube made of a brittle material is not damaged by contact with the high frequency coil due to vibration during operation. Thus, a stable plasma flame can be obtained, and a solid product such as a glass base material for optical fibers with stable and reproducible characteristics can be produced.

本発明の固体合成用高周波熱プラズマトーチについて、図2を用いて説明する。
本発明においては、高周波コイル4とその内側の外側管3との間に絶縁体13,14を介在させて、高周波コイル4の位置を固定し、プラズマガス流路6と高周波コイル4との位置関係が一定に保持されている。
The high-frequency thermal plasma torch for solid synthesis of the present invention will be described with reference to FIG.
In the present invention, insulators 13 and 14 are interposed between the high frequency coil 4 and the inner outer tube 3 to fix the position of the high frequency coil 4, and the positions of the plasma gas flow path 6 and the high frequency coil 4 are fixed. The relationship is held constant.

具体的には、高周波コイルの径方向位置を固定するために、高周波コイル4とその内側の外側管3との間に、絶縁体13として軟質プラスチックを介在させることで高周波コイル4と外側管3の中心軸が一致するように固定されている。この絶縁体13には、軟質プラスチックシートが好適であり、その中でも耐熱性や疎水性の面からフッ素樹脂シートがより好ましい。薄いフッ素樹脂シートを渦巻き状に隙間の大きさに合わせて巻いたものを挿入することで、高周波コイル4と外側管3との間に隙間なく介在させることができる。 Specifically, in order to fix the radial position of the high frequency coil, the high frequency coil 4 and the outer tube 3 are interposed by interposing a soft plastic as an insulator 13 between the high frequency coil 4 and the outer tube 3 inside thereof. It is fixed so that the central axes of The insulator 13 is preferably a soft plastic sheet, and more preferably a fluororesin sheet in terms of heat resistance and hydrophobicity. By inserting a thin fluororesin sheet wound in a spiral shape in accordance with the size of the gap, the high-frequency coil 4 and the outer tube 3 can be interposed without a gap.

さらに、高周波コイル4と外側管3のフランジ部15との間に、絶縁体14として軟質プラスチックを介在させることで、高周波コイル4のプラズマトーチ軸方向への移動を防止することができる。この絶縁体14には、耐熱性や疎水性の面から軟質プラスチックであるフッ素樹脂リングが好ましい。このフッ素樹脂リングに高周波コイル4を押し当てることで高周波コイルの軸方向位置が固定される。高周波コイル本体は簡単には変形しないため、その一部のみを固定もしくは位置合わせするだけで、十分な安定性が得られる。 Furthermore, by interposing a soft plastic as the insulator 14 between the high frequency coil 4 and the flange portion 15 of the outer tube 3, the high frequency coil 4 can be prevented from moving in the plasma torch axis direction. The insulator 14 is preferably a fluororesin ring which is a soft plastic in terms of heat resistance and hydrophobicity. The axial position of the high frequency coil is fixed by pressing the high frequency coil 4 against the fluororesin ring. Since the high-frequency coil body is not easily deformed, sufficient stability can be obtained only by fixing or aligning only a part thereof.

なお、高周波コイル4の固定のために絶縁体13,14を用いる理由は、導電体では高周波コイル4からの誘導を受け、それ自体が加熱されるためである。また、軟質プラスチックを用いる理由は、軟質プラスチックの弾性で装置の微振動を吸収させるためである。
また、高周波コイル4が水冷金属パイプ製の場合、高周波コイル4の表面に結露が発生しないように、高周波コイル周囲の湿度を調整することが好ましい。高周波コイル表面に結露が生じると、高周波コイル4に接触している絶縁体13の表面が濡れ、異常放電を起こす可能性がある。
The reason why the insulators 13 and 14 are used for fixing the high-frequency coil 4 is that the conductor receives induction from the high-frequency coil 4 and heats itself. The reason why soft plastic is used is to absorb the slight vibration of the apparatus by the elasticity of soft plastic.
Moreover, when the high frequency coil 4 is made of a water-cooled metal pipe, it is preferable to adjust the humidity around the high frequency coil so that condensation does not occur on the surface of the high frequency coil 4. If condensation occurs on the surface of the high-frequency coil, the surface of the insulator 13 in contact with the high-frequency coil 4 may get wet and cause abnormal discharge.

さらに、高周波コイル4が水冷金属パイプ製の場合、高周波コイル4から電極11に至る金属パイプ製の延長管12の長さが短いと、装置の振動によって高周波コイル4と外側管3の間に応力が掛かり、外側管3が破損する可能性があるが、高周波コイル4から電極11までの延長管12の長さを延長管直径の20倍以上とすることで、振動時には延長管12がしなって応力を緩和することができるため、石英ガラスやセラミックパイプ等の脆性材料からなる外側管3が破損することはない。
以下、本発明の実施の形態について、実施例及び比較例を挙げてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
Further, when the high-frequency coil 4 is made of a water-cooled metal pipe, if the length of the metal pipe extension pipe 12 extending from the high-frequency coil 4 to the electrode 11 is short, stress is generated between the high-frequency coil 4 and the outer pipe 3 due to vibration of the apparatus. The outer tube 3 may be damaged, but the length of the extension tube 12 from the high frequency coil 4 to the electrode 11 is set to 20 times or more of the extension tube diameter. Therefore, the outer tube 3 made of a brittle material such as quartz glass or ceramic pipe is not damaged.
Hereinafter, although an example and a comparative example are given and an embodiment of the present invention is explained still in detail, the present invention is not limited to these.

[実施例1]
図2に示したプラズマトーチを用いてガラス微粒子を合成し、堆積させて光ファイバ用ガラス母材を製造した。
プラズマトーチの内側管2には内径38mmの窒化珪素セラミック製パイプを用いた。外側管3には外径55mmの石英ガラス製パイプを用いた。高周波コイル4及び延長管12には外径10mmの銅製パイプを用い、内部に冷却水を循環させた。高周波コイル4の形状は3ターン・巻き内径57mmとした。高周波コイル4と外側管3の間には、厚さ0.1mmのテフロンシートを渦巻き状に10周巻いたものを挿入し、高周波コイル4の中心軸とプラズマガス流路6の中心軸とが常に一致するようにした。
[Example 1]
Glass fine particles were synthesized using the plasma torch shown in FIG. 2 and deposited to produce a glass preform for an optical fiber.
A silicon nitride ceramic pipe having an inner diameter of 38 mm was used for the inner tube 2 of the plasma torch. For the outer tube 3, a quartz glass pipe having an outer diameter of 55 mm was used. A copper pipe having an outer diameter of 10 mm was used for the high-frequency coil 4 and the extension pipe 12, and cooling water was circulated inside. The shape of the high-frequency coil 4 was 3 turns and the winding inner diameter was 57 mm. Between the high-frequency coil 4 and the outer tube 3, a Teflon sheet having a thickness of 0.1 mm is inserted in a spiral shape so that the central axis of the high-frequency coil 4 and the central axis of the plasma gas flow path 6 are always aligned. Matched.

次に、高周波コイル4の前後方向の位置は、外側管3のフランジ部15にコイル位置調整用の絶縁体(フッ素樹脂リング)14を取り付け、この絶縁体14に高周波コイル4を押し当てて固定した。図示していないプラズマトーチを囲うカバーの中に室内空気を100L/minの流量で流し、高周波コイル4の周囲を除湿した。高周波コイル4から電極11に至る2本の延長管12のうち、短い方の長さをコイル外径10mmの20倍である200mmとした。   Next, the position of the high-frequency coil 4 in the front-rear direction is fixed by attaching an insulator (fluororesin ring) 14 for adjusting the coil position to the flange portion 15 of the outer tube 3 and pressing the high-frequency coil 4 against the insulator 14. did. Room air was flowed at a flow rate of 100 L / min through a cover surrounding a plasma torch (not shown) to dehumidify the periphery of the high-frequency coil 4. Of the two extension tubes 12 extending from the high-frequency coil 4 to the electrode 11, the shorter length was set to 200 mm, which is 20 times the coil outer diameter of 10 mm.

プラズマガス流路6にはAr86L/min、O246L/minを、原料ガス流路5にはAr10L/min、SiCl40.8L/min及びSiF40.7L/minを流しながら、高周波コイル4に4MHzの高周波電流を印加してプラズマ火炎8を発生させ、火炎中で合成されたフッ素ドープ石英ガラス微粒子を回転・トラバースするターゲット棒9上に堆積させ、光ファイバ用ガラス母材を合成した。 Ar86 L / min, O 2 46 L / min are supplied to the plasma gas flow path 6, Ar10 L / min, SiCl 4 0.8 L / min and SiF 4 0.7 L / min are supplied to the source gas flow path 5, and the high frequency coil 4 is supplied. A plasma flame 8 was generated by applying a high frequency current of 4 MHz, and fluorine-doped quartz glass fine particles synthesized in the flame were deposited on a target rod 9 that was rotated and traversed to synthesize an optical fiber glass base material.

光ファイバ用ガラス母材の合成を繰り返し、プラズマトーチの分解組み立てを繰り返した場合でも、プラズマ火炎9のプラズマガス流路6の軸線に対する曲がりは最大で0.8°未満であり、堆積速度のバラツキも4%以内であった。なお、装置に振幅3mmの振動を繰り返し与えた場合でも外側管3が破損することはなかった。また、外気湿度が高い場合でもコイル周辺で結露することなく、異常放電も起こらなかった。さらに、プレート入力電力を一定としたときの、プレート入力電力とプレート入力電流の比も一定で安定していた。   Even when the synthesis of the glass preform for the optical fiber is repeated and the disassembly and assembly of the plasma torch are repeated, the bending of the plasma flame 9 with respect to the axis of the plasma gas flow path 6 is less than 0.8 ° at the maximum, and the dispersion of the deposition rate is 4 %. Note that the outer tube 3 was not damaged even when a vibration having an amplitude of 3 mm was repeatedly given to the apparatus. Even when the outside air humidity was high, no condensation occurred around the coil and no abnormal discharge occurred. Furthermore, when the plate input power is constant, the ratio of the plate input power and the plate input current is also constant and stable.

[比較例1]
図1に示したプラズマトーチを用いてガラス微粒子を合成し、堆積させて光ファイバ用ガラス母材を製造した。
プラズマトーチの内側管2には内径38mmの窒化珪素セラミック製パイプを用いた。外側管3には外径55mmの石英ガラス製パイプを用いた。高周波コイル4及び延長管12には外径10mmの銅製パイプを用い、内部に冷却水を循環させた。高周波コイル4の形状は3ターン・巻き内径57mmとした。高周波コイル4と外側管3の間には、1mmの間隙があり、高周波コイル4が外側管3と接触しないように取り付けた。高周波コイル4から電極11に至る2本の延長管12のうち、短い方の長さを高周波コイル4の外径10mmの12倍である120mmとした。
[Comparative Example 1]
Glass fine particles were synthesized using the plasma torch shown in FIG. 1 and deposited to produce a glass preform for an optical fiber.
A silicon nitride ceramic pipe having an inner diameter of 38 mm was used for the inner tube 2 of the plasma torch. For the outer tube 3, a quartz glass pipe having an outer diameter of 55 mm was used. A copper pipe having an outer diameter of 10 mm was used for the high-frequency coil 4 and the extension pipe 12, and cooling water was circulated inside. The shape of the high-frequency coil 4 was 3 turns and the winding inner diameter was 57 mm. There was a 1 mm gap between the high frequency coil 4 and the outer tube 3, and the high frequency coil 4 was attached so as not to contact the outer tube 3. Of the two extension tubes 12 extending from the high frequency coil 4 to the electrode 11, the shorter length was set to 120 mm, which is 12 times the outer diameter of the high frequency coil 4.

プラズマガス流路6にはAr86L/min、O246L/minを、原料ガス流路5にはAr10L/min、SiCl40.8L/min、SiF40.7L/minを流しながら、高周波コイル4に4MHzの高周波電流を印加してプラズマ火炎8を発生させ、火炎中で合成されたフッ素ドープ石英ガラス微粒子を回転・トラバースするターゲット棒9上に堆積させ、光ファイバ用ガラス母材を合成した。 Ar86 L / min, O 2 46 L / min are supplied to the plasma gas flow path 6, Ar10 L / min, SiCl 4 0.8 L / min, SiF 4 0.7 L / min are supplied to the source gas flow path 5, and the high frequency coil 4 is supplied. A plasma flame 8 was generated by applying a high frequency current of 4 MHz, and fluorine-doped quartz glass fine particles synthesized in the flame were deposited on a target rod 9 that was rotated and traversed to synthesize an optical fiber glass base material.

光ファイバ用ガラス母材の合成を繰り返し、プラズマトーチの分解組み立てを繰り返した場合、プラズマ火炎8の、プラズマガス流路の軸線に対する曲がりは最大で4°に達し、堆積速度のバラツキは最大で12%であった。プラズマ火炎8の曲がりが大きい場合には、内側管2の内壁に石英ガラスが付着していた。さらに、プレート入力電力を一定としたときの、プレート入力電力とプレート入力電流の比には、7%のバラツキがあった。   When the synthesis of the glass preform for the optical fiber is repeated and the disassembly and assembly of the plasma torch are repeated, the bending of the plasma flame 8 with respect to the axis of the plasma gas flow path reaches a maximum of 4 °, and the variation in the deposition rate is a maximum of 12 %Met. When the bending of the plasma flame 8 was large, quartz glass adhered to the inner wall of the inner tube 2. Furthermore, there was a variation of 7% in the ratio between the plate input power and the plate input current when the plate input power was constant.

[比較例2]
高周波コイル4から電極11に至る2本の延長管12のうち、短い方の長さを高周波コイル4のコイル外径10mmの12倍である120mmとした以外は、実施例1と同様の構成からなる図2に示したプラズマトーチを用いて、実施例1と同様にして光ファイバ用ガラス母材の合成を行った。
装置に振幅3mmの振動を繰り返し与えたところ、外側管3にクラックが入り、そこから冷却水が噴出した。
[Comparative Example 2]
Of the two extension pipes 12 from the high frequency coil 4 to the electrode 11, the shorter length is set to 120 mm which is 12 times the coil outer diameter of the high frequency coil 4 and is the same as that of the first embodiment. A glass preform for optical fiber was synthesized in the same manner as in Example 1 using the plasma torch shown in FIG.
When a vibration having an amplitude of 3 mm was repeatedly given to the apparatus, a crack was generated in the outer tube 3, and cooling water was ejected therefrom.

本発明によれば、装置の稼働率が上がり、特性の安定した固体製品が得られ、生産性の向上に寄与する。   According to the present invention, the operating rate of the apparatus is increased, and a solid product with stable characteristics is obtained, which contributes to the improvement of productivity.

比較例1で使用したプラズマトーチの概略を示す断面図である。3 is a cross-sectional view showing an outline of a plasma torch used in Comparative Example 1. FIG. 本発明の実施例1で使用したプラズマトーチの概略を示す断面図である。It is sectional drawing which shows the outline of the plasma torch used in Example 1 of this invention.

符号の説明Explanation of symbols

1.原料ガス導入部材、
2.内側管、
3.外側管、
4.高周波コイル、
5.原料ガス流路、
6.プラズマガス流路、
7.冷却水流路、
8.プラズマ火炎、
9.ターゲット棒、
10.プラズマに向いた面、
11.電極、
12.延長管、
13.絶縁体、
14.絶縁体、
15.フランジ部。
1. Raw material gas introduction member,
2. Inner tube,
3. Outer tube,
4). High frequency coil,
5). Raw material gas flow path,
6). Plasma gas flow path,
7). Cooling water flow path,
8). Plasma flame,
9. Target stick,
10. The surface facing the plasma,
11. electrode,
12 Extension tube,
13. Insulator,
14 Insulator,
15. Flange part.

Claims (6)

原料ガス導入部材の外方に、冷却水流路を形成する内側管と外側管が配設され、さらに外側管の外方に高周波コイルが巻回され、前記原料ガス導入部材の中心に原料ガス流路が形成され、前記内側管と原料ガス導入部材との間にプラズマガス流路が形成されてなる高周波誘導熱プラズマトーチにおいて、前記高周波コイルとその内側の外側管との間に絶縁体を介在させて、高周波コイルの位置を固定し、プラズマガス流路と高周波コイルとの位置関係が一定に保持されていることを特徴とする高周波誘導熱プラズマトーチ。 An inner tube and an outer tube that form a cooling water flow path are disposed outside the source gas introduction member, and a high-frequency coil is wound outside the outer tube so that the source gas flow is centered on the source gas introduction member. In a high frequency induction thermal plasma torch in which a path is formed and a plasma gas flow path is formed between the inner tube and the raw material gas introduction member, an insulator is interposed between the high frequency coil and the outer tube inside the high frequency coil. A high frequency induction thermal plasma torch characterized in that the position of the high frequency coil is fixed and the positional relationship between the plasma gas flow path and the high frequency coil is maintained constant. 前記高周波コイルとその内側の外側管との間に、絶縁体として軟質プラスチックを介在させることで、前記高周波コイルの径方向位置が固定されている請求項1に記載の高周波誘導熱プラズマトーチ。 The high frequency induction thermal plasma torch according to claim 1, wherein a radial position of the high frequency coil is fixed by interposing a soft plastic as an insulator between the high frequency coil and an outer tube inside the high frequency coil. 前記高周波コイルと外側管のフランジ部との間に、絶縁体として軟質プラスチックを介在させることで、前記高周波コイルの軸方向位置が固定されている請求項1に記載の高周波誘導熱プラズマトーチ。 The high frequency induction thermal plasma torch according to claim 1, wherein the axial position of the high frequency coil is fixed by interposing a soft plastic as an insulator between the high frequency coil and a flange portion of the outer tube. 前記軟質プラスチックがフッ素樹脂製のものである請求項2又は3に記載の高周波誘導熱プラズマトーチ。 The high frequency induction thermal plasma torch according to claim 2 or 3, wherein the soft plastic is made of a fluororesin. 前記高周波コイルが水冷金属パイプからなり、高周波コイル周囲の湿度を調整することで結露を防止している請求項1乃至4のいずれかに記載の高周波誘導熱プラズマトーチ。 The high frequency induction thermal plasma torch according to any one of claims 1 to 4, wherein the high frequency coil is made of a water-cooled metal pipe, and condensation is prevented by adjusting a humidity around the high frequency coil. 前記高周波コイルから電極に至る金属パイプ製の延長管の長さが、金属パイプの直径の20倍以上である請求項1乃至5のいずれかに記載の高周波誘導熱プラズマトーチ。 The high frequency induction thermal plasma torch according to any one of claims 1 to 5, wherein a length of an extension pipe made of a metal pipe extending from the high frequency coil to the electrode is 20 times or more a diameter of the metal pipe.
JP2008333760A 2008-12-26 2008-12-26 High-frequency thermal plasma torch for solid synthesis Active JP5014324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333760A JP5014324B2 (en) 2008-12-26 2008-12-26 High-frequency thermal plasma torch for solid synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333760A JP5014324B2 (en) 2008-12-26 2008-12-26 High-frequency thermal plasma torch for solid synthesis

Publications (2)

Publication Number Publication Date
JP2010157383A true JP2010157383A (en) 2010-07-15
JP5014324B2 JP5014324B2 (en) 2012-08-29

Family

ID=42575139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333760A Active JP5014324B2 (en) 2008-12-26 2008-12-26 High-frequency thermal plasma torch for solid synthesis

Country Status (1)

Country Link
JP (1) JP5014324B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012034605A1 (en) * 2010-09-15 2012-03-22 J-Plasma Gmbh Torch
CN105025649A (en) * 2015-07-06 2015-11-04 山西大学 Device and method for generating inductive coupling hot plasma under low air pressure
WO2019116616A1 (en) * 2017-12-13 2019-06-20 株式会社島津製作所 Plasma generation device, emission analysis device, and mass spectroscope

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64699A (en) * 1987-03-06 1989-01-05 Perkin Elmer Corp:The Induced plasma generator and its method
JPH02135656A (en) * 1988-11-15 1990-05-24 Yokogawa Electric Corp High frequency inductive coupling plasma mass spectrometer
JPH0697116A (en) * 1992-09-17 1994-04-08 Fujitsu Ltd Fabrication system for semiconductor device
JP2002088486A (en) * 2000-09-13 2002-03-27 Chubu Electric Power Co Inc High-frequency induction heat plasma apparatus
JP2003514126A (en) * 1999-11-18 2003-04-15 東京エレクトロン株式会社 Method and apparatus for ionized physical vapor deposition
JP2004505459A (en) * 2000-08-01 2004-02-19 東京エレクトロン株式会社 Source of high-density plasma in the shape of a ring and method of generating the same
JP2005505906A (en) * 2001-10-05 2005-02-24 ユニヴェルシテ・ドゥ・シャーブルック Multi-coil induction plasma torch for solid-state power supply
JP2007048514A (en) * 2005-08-08 2007-02-22 Shin Etsu Chem Co Ltd High frequency induction heat plasma torch and method of synthesizing solid material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64699A (en) * 1987-03-06 1989-01-05 Perkin Elmer Corp:The Induced plasma generator and its method
JPH02135656A (en) * 1988-11-15 1990-05-24 Yokogawa Electric Corp High frequency inductive coupling plasma mass spectrometer
JPH0697116A (en) * 1992-09-17 1994-04-08 Fujitsu Ltd Fabrication system for semiconductor device
JP2003514126A (en) * 1999-11-18 2003-04-15 東京エレクトロン株式会社 Method and apparatus for ionized physical vapor deposition
JP2004505459A (en) * 2000-08-01 2004-02-19 東京エレクトロン株式会社 Source of high-density plasma in the shape of a ring and method of generating the same
JP2002088486A (en) * 2000-09-13 2002-03-27 Chubu Electric Power Co Inc High-frequency induction heat plasma apparatus
JP2005505906A (en) * 2001-10-05 2005-02-24 ユニヴェルシテ・ドゥ・シャーブルック Multi-coil induction plasma torch for solid-state power supply
JP2007048514A (en) * 2005-08-08 2007-02-22 Shin Etsu Chem Co Ltd High frequency induction heat plasma torch and method of synthesizing solid material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012034605A1 (en) * 2010-09-15 2012-03-22 J-Plasma Gmbh Torch
CN105025649A (en) * 2015-07-06 2015-11-04 山西大学 Device and method for generating inductive coupling hot plasma under low air pressure
WO2019116616A1 (en) * 2017-12-13 2019-06-20 株式会社島津製作所 Plasma generation device, emission analysis device, and mass spectroscope

Also Published As

Publication number Publication date
JP5014324B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
US20130337653A1 (en) Semiconductor processing apparatus with compact free radical source
CN107210178A (en) Apparatus and method for the plasma igniting using self-resonance equipment
JP5014324B2 (en) High-frequency thermal plasma torch for solid synthesis
WO2009110226A1 (en) High frequency antenna unit and plasma processing apparatus
CN105502897B (en) The preparation method of super pure silica glass
CA1291645C (en) Method of manufacturing solid glass preforms from hollow preforms
JP2008144271A (en) Apparatus and method for carrying out pcvd deposition process
JP2008280238A (en) Apparatus for carrying out plasma chemical vapor deposition and method of manufacturing optical preform
CN107195524B (en) Plasma processing apparatus, method of plasma processing and the method for manufacturing electronic device
US8815168B2 (en) Carbon nanotube synthesizing apparatus
JPH10321596A (en) System using plasma for etching or precipitation
JP4537032B2 (en) Plasma processing apparatus and plasma processing method
JP5519145B2 (en) Optical fiber manufacturing method using isothermal, low pressure plasma deposition technology
JP2012022917A (en) Plasma processing apparatus and plasma processing method
JP2012254888A (en) Apparatus and method for manufacturing optical fiber preform
NL1041529B1 (en) A method for etching a primary preform and the etched primary preform thus obtained.
TWI243803B (en) Glass, plasma resisting component, component for electromagnetic wave-transparent window and plasma processing apparatus
JPS62273047A (en) Combustion flame composite high frequency hot plasma generating apparatus
Chaudhary et al. Open-air silicon etching by H2–He–CH4 flowing cold plasma
US6658897B2 (en) Optical fiber draw furnace having a SiC or Silicon Nitride tube
JP2010155732A (en) Method and apparatus for manufacturing optical fiber preform using high frequency induction thermal plasma torch
JP4581844B2 (en) Manufacturing method of glass base material
JPH07130494A (en) Microwave plasma processing device
JP2003311146A (en) High-frequency induction thermal plasma device
US6796270B2 (en) Device for producing PCVD coated glass tubes for the drawing of optical fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5014324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150