JP5014324B2 - High-frequency thermal plasma torch for solid synthesis - Google Patents

High-frequency thermal plasma torch for solid synthesis Download PDF

Info

Publication number
JP5014324B2
JP5014324B2 JP2008333760A JP2008333760A JP5014324B2 JP 5014324 B2 JP5014324 B2 JP 5014324B2 JP 2008333760 A JP2008333760 A JP 2008333760A JP 2008333760 A JP2008333760 A JP 2008333760A JP 5014324 B2 JP5014324 B2 JP 5014324B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
high
frequency coil
raw material
plasma torch
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008333760A
Other languages
Japanese (ja)
Other versions
JP2010157383A (en )
Inventor
哲也 乙坂
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • C03B37/01426Plasma deposition burners or torches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production
    • Y02P40/57Reduction of reject rates; Improving the yield

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat plasma torch for synthesizing solids by which stable flames can be obtained and a product having stable characteristics can be produced with good reproducibility, and in which a torch is not damaged by vibration during operation. <P>SOLUTION: In a high frequency induction heat plasma torch in which an inside pipe 2 and an outside pipe 3 forming a cooling water passage 7 are disposed in the external part of a raw material gas introducing member 1, a high frequency coil 4 is wound on the external part of the outside pipe 3, a raw material gas passage 5 is formed in the center of the raw material gas introducing member 1, and a plasma gas passage 6 is formed between the inside pipe 2 and the raw material gas introducing member 1, an insulator 13 is interposed between the high frequency coil 4 and the outside pipe 3 on its inside, the position of the high frequency coil 4 is fixed, and position relation between the plasma gas passage 6 and the high frequency coil 4 is held constant. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、光ファイバ用ガラス母材等の固体合成に好適な高周波誘導熱プラズマトーチの構造に関する。 The present invention relates to a structure of a suitable high-frequency induction thermal plasma torch to a solid synthesis of the glass base material such as an optical fiber.

高周波誘導熱プラズマトーチは、ガス流路の周囲に配設された高周波コイルに高周波電流を印加し、内部のガスをプラズマ化して噴射する装置であり、1万度程度の超高温を得ることができ、比較的遅いプラズマ線速で、しかも酸化・還元雰囲気を自由に選択できることから、超高温の反応場の形成に好適に用いられている。 High-frequency induction thermal plasma torch, a high-frequency current is applied to the high-frequency coil arranged around the gas flow path, a device for injecting into plasma inside the gas, to obtain a super high temperature of about 10,000 ° can, at a relatively low plasma linear velocity, yet the oxidation-reduction atmosphere because it can be freely selected, is suitably used in the formation of ultra-high-temperature reaction field. さらに、反応場に電極が存在しないため不純物が入りづらく、結晶やアモルファスの粉体・膜等、高純度固体の合成用に非常に適している。 Furthermore, difficult to insert an impurity because the electrode reaction field does not exist, a powder, film or the like of the crystalline or amorphous, are very suitable for the synthesis of high purity solid. また、超高温の熱源として、廃棄物の減容処理等に利用されている。 Further, as the ultra-high temperature heat source is utilized in compacting process, such as waste. さらに、超高温を利用して対象物を完全に分解できることから、ICP発光分析やフロンの分解等に用いられている。 Moreover, because it can completely decompose an object by utilizing ultra-high temperature, it is used in ICP emission analysis or fluorocarbons such as decomposition.

図1に、従来の、固体のガラス微粒子や膜の合成等に用いられている高周波誘導熱プラズマトーチの例を示した。 Figure 1 shows a conventional, an example of the high-frequency induction thermal plasma torch used in the synthesis or the like of glass particles or film of a solid.
原料ガス導入部材1は、中心に原料ガス及び不活性キャリアガスを流す原料ガス流路5を有し、その外側に内側管2が配設され、原料ガス導入部材1と内側管2の間がプラズマガス流路6となっている。 Raw material gas introduction member 1 has a raw material gas flow path 5 for supplying a raw material gas and the inert carrier gas in the center, the inner tube 2 is arranged on the outside, it is between the raw material gas introduction member 1 and the inner tube 2 and it has a plasma gas flow passage 6. 原料ガス導入部材1は、直接高温のプラズマに曝されるため、一般的には内部に冷却水流路を設けて、プラズマに向いた面10を水冷する構造になっている。 Raw material gas introduction member 1, because they are directly exposed to high-temperature plasma, generally by providing an internal cooling water passage, has a surface 10 facing the plasma structure water cooling. 内側管2の外側には外側管3が配設され、内側管2と外側管3の間は冷却水流路7となっている。 The outer tube 3 is disposed on the outside of the inner tube 2, between the inner tube 2 and outer tube 3 has a cooling water flow path 7.

なお、プラズマ出力が低い場合、冷却水を用いずに、二重管構造を採らない場合もある。 Note that when the plasma output is low, without the use of cooling water, may not adopt a double pipe structure. 外側管3のさらに外側に、高周波コイル4が配設されている。 Further outside of the outer tube 3, the high-frequency coil 4 is arranged. 高周波コイル4は、延長管12につながっており、延長管12は電極11に接続されている。 RF coil 4 is connected to the extension pipe 12, the extension tube 12 is connected to the electrode 11. 電極11は、図示していない高周波発信盤に接続され、電極11及び延長管12を介して高周波コイル4に高周波電流が印加される。 Electrode 11 is connected to a high frequency oscillator board, not shown, the high-frequency current is applied to the high-frequency coil 4 via the electrode 11 and the extension tube 12.

プラズマの点火は、特許文献1に記されているように、プラズマトーチ内部にアルゴンのみを流し、冷却水流路7の冷却水を除いた状態で、高周波コイルに高周波電流を流しつつ、プラズマトーチ内部に図示していない高電圧印加手段によって高電圧を印加・放電させることによってなされ、これによってプラズマ火炎8が形成される。 Ignition of the plasma, as is described in Patent Document 1, the plasma torch inside flushed with argon alone, while the cooling water obtained by removing the cooling water passage 7, while flowing a high-frequency current to the high-frequency coil, the plasma torch inside made by applying and discharging a high voltage by the high voltage applying means not shown, this by the plasma flame 8 is formed.

例えば、フッ素ドープ石英ガラス微粒子を合成し、これを純粋石英ガラス棒の周りに堆積させて光ファイバ用ガラス母材を形成するような場合、プラズマ点火後に冷却水流路7に冷却水を、プラズマガス流路6には酸素とアルゴンを流し、続けて原料ガス流路5に四塩化ケイ素、四フッ化ケイ素もしくは四フッ化炭素等のフッ素含有ガス及びアルゴンを流すことで、プラズマ火炎8内部でフッ素ドープ石英ガラス微粒子が合成される。 For example, fluorine-doped silica glass particles synthesized, when this is deposited around the pure silica glass rod so as to form a glass preform for an optical fiber, the cooling water in the cooling water flow path 7 after plasma ignition, the plasma gas the flow path 6 is flushed with oxygen and argon, followed feed gas flow path 5 on the silicon tetrachloride, by flowing a fluorine-containing gas and argon, such as silicon or carbon tetrafluoride tetrafluoride, fluorine within the plasma flame 8 doped silica glass particles are synthesized. プラズマ火炎8内で合成されたガラス微粒子は、回転・移動する純粋石英ガラス製のターゲット棒9上に堆積され、プリフォームが形成される。 Glass particles synthesized in the plasma flame 8 is deposited on the pure silica glass target rod 9 to rotate, move, preforms are formed. プラズマ火炎8は、高周波コイル4に1〜4MHz、20〜100kVA程度の高周波電流を印加することにより維持される。 Plasma flame 8 is maintained in the high-frequency coil 4 1-4 MHz, by applying a high-frequency current of about 20~100KVA.
特開平05-242995号公報 JP 05-242995 discloses

一般的に、外側管3には石英ガラスやセラミックパイプ等の耐熱絶縁材料が用いられ、高周波コイル4には水冷銅パイプが用いられている。 Generally, heat-resistant insulating material such as quartz glass or ceramic pipe is used for the outer tube 3, a water-cooled copper pipe is used for the high-frequency coil 4. 水冷銅パイプには絶縁のためにプラスチックフィルムが被覆されている。 The water-cooled copper pipe and the plastic film is coated for insulation. 従来、外側管3には上記したような脆性材料が用いられているため、高周波コイル4と外側管3の間には数mm前後の間隙を設けておき、装置が多少振動した場合でも、外側管3が高周波コイル4と接触して破損することがないように構成されている。 Conventionally, since the outer tube 3 is used brittle material such as mentioned above, between the high-frequency coil 4 and the outer tube 3 may be provided a gap of a few mm before and after, even if the device is slightly vibrating, outer tube 3 is configured so as not to damage in contact with the high-frequency coil 4.

しかしながら、水冷銅パイプは強い力を加えると曲がってしまい、プラズマトーチのメンテナンス等の際に、外側管3と高周波コイル4の位置関係がずれてしまうことがあった。 However, water-cooled copper pipe will be bent upon application of strong force, during maintenance and the like of the plasma torch, there is the positional relationship of the outer tube 3 and the high-frequency coil 4 is shifted. 外側管3と高周波コイル4の中心軸がずれたり、相対的に傾斜してしまった場合は、プラズマトーチ内部での電磁場の対称性が崩れ、プラズマ火炎8に曲がりが生じる。 Central axis or displacement of the outer tube 3 and the high-frequency coil 4, if you've relatively inclined, broken symmetry of the electromagnetic field inside the plasma torch, bending occurs in the plasma flame 8. プラズマ火炎8が曲がると、プラズマ火炎中で反応・生成した固体物質が内側管2の内壁に付着したり、ターゲット棒9への固体物質の付着率が悪くなったり、堆積組成が変化してしまうという問題があった。 The plasma flame 8 is bent, or solid material reactions and generated in the plasma flame is adhered to the inner wall of the inner tube 2, or worse adhesion of the solid material into target rods 9, deposition composition is changed there is a problem in that.
また、高周波コイル4の位置が軸方向にずれたりして変化した場合には、プレート電流とプレート電圧、グリッド電流の関係が変化し、プラズマ火炎中での固体物質の生成反応に影響を与え、再現性よく特性の安定した製品を造ることができないという問題があった。 Further, when the position of the high-frequency coil 4 has changed or displaced in the axial direction, the plate current and plate voltage, the relationship changes in grid current, influence the formation reaction of the solid material in the plasma flame, there is a problem that can not be to create a stable product with good reproducibility characteristics.

本発明は、安定したプラズマ火炎が得られ、再現性よく特性の安定した製品を造ることができ、かつ稼動中の振動によってトーチに損傷の生ずることのない固体合成用高周波熱プラズマトーチを提供することを目的としている。 The present invention is obtained a stable plasma flame, it is possible to produce a stable product of good reproducibility characteristics, and provides a solid synthetic high-frequency thermal plasma torch never caused damaged to the torch by the vibration of the running It is aimed at.

本発明の固体合成用高周波熱プラズマトーチは、原料ガス導入部材の外方に、冷却水流路を形成する内側管と外側管が配設され、さらに外側管の外方に高周波コイルが巻回され、前記原料ガス導入部材の中心に原料ガス流路が形成され、前記内側管と原料ガス導入部材との間にプラズマガス流路が形成されてなる高周波誘導熱プラズマトーチにおいて、前記高周波コイルとその内側の外側管との間に、絶縁体として軟質プラスチックのシートを渦巻き状に隙間の大きさに合わせて巻いたものを介在させて前記高周波コイルの径方向位置を固定し、前記高周波コイルと外側管のフランジ部との間に、絶縁体として軟質プラスチックを介在させて前記高周波コイルの軸方向位置を固定し、プラズマガス流路と高周波コイルとの位置関係が一定に保 High-frequency thermal plasma torch for solid synthesis of the present invention, the outside of the raw material gas introduction member, the inner and outer tubes forming a cooling water passage is arranged, a high frequency coil is wound further outward of the outer tube , the raw material gas flow path formed in the center of the raw material gas introduction member, in a high-frequency induction thermal plasma torch plasma gas flow passage is formed between the inner tube and the raw material gas introduction member, the high frequency coil and its between the inside of the outer tube, a flexible plastic sheet with intervening ones wound in accordance with the size of the gap spiral fix the radial position of the high-frequency coil as an insulator, the high-frequency coil and the outer between the flange portion of the tube, with the soft plastic is interposed as an insulator to fix the axial position of the high-frequency coil, coercive on the positional relationship between the plasma gas flow path and the high frequency coil is fixed されていることを特徴としている。 It is characterized in that it is.

絶縁体には軟質プラスチック、特にはフッ素樹脂製のシートを使用するのが好ましい。 Soft plastic is an insulator, particularly preferable to use a fluorocarbon resin sheet.
なお、高周波コイルは水冷金属パイプからなり、高周波コイル周囲の湿度を調整することで結露を防止することができる。 It should be noted that the high frequency coil is made of water-cooled metal pipes, it is possible to prevent dew condensation by adjusting the humidity of the ambient high-frequency coil.

本発明によれば、プラズマトーチを構成する外側管と高周波コイルとの位置関係がずれることなく、また、稼動中の振動によって脆性材料からなる外側管が高周波コイルと接触して損傷することもなく、安定したプラズマ火炎が得られ、再現性よく特性の安定した光ファイバ用ガラス母材等の固体製品を造ることができる。 According to the present invention, without the positional relationship between the outer tube and the high-frequency coil constituting the plasma torch is displaced, also without the outer tube made of a brittle material by vibration during operation is damaged by contact with the high-frequency coil , stable plasma flame can be obtained, it is possible to build a solid product such as a stable optical fiber glass preform of good reproducibility characteristics.

本発明の固体合成用高周波熱プラズマトーチについて、図2を用いて説明する。 For high-frequency thermal plasma torch for solid synthesis present invention will be described with reference to FIG.
本発明においては、高周波コイル4とその内側の外側管3との間に絶縁体13,14を介在させて、高周波コイル4の位置を固定し、プラズマガス流路6と高周波コイル4との位置関係が一定に保持されている。 In the present invention, by interposing an insulator 13, 14 between the radio frequency coil 4 and the outer tube 3 inside, to fix the position of the high-frequency coil 4, the position of the plasma gas flow passage 6 and the high-frequency coil 4 relationship is kept constant.

具体的には、高周波コイルの径方向位置を固定するために、高周波コイル4とその内側の外側管3との間に、絶縁体13として軟質プラスチックを介在させることで高周波コイル4と外側管3の中心軸が一致するように固定されている。 More specifically, in order to fix the radial position of the radio frequency coil, between the high-frequency coil 4 and the outer tube 3 of the inner, high-frequency coil 4 by interposing the soft plastic as an insulator 13 and the outer tube 3 is fixed so that the center axis of the match. この絶縁体13には、軟質プラスチックシートが好適であり、その中でも耐熱性や疎水性の面からフッ素樹脂シートがより好ましい。 The insulator 13 is a flexible plastic sheet are preferred, the fluorine resin sheet in view of heat resistance and hydrophobicity among them are more preferable. 薄いフッ素樹脂シートを渦巻き状に隙間の大きさに合わせて巻いたものを挿入することで、高周波コイル4と外側管3との間に隙間なく介在させることができる。 A thin fluororesin sheet by inserting those wound in accordance with the size of the gap spiral, can be interposed without a gap between the high-frequency coil 4 and the outer tube 3.

さらに、高周波コイル4と外側管3のフランジ部15との間に、絶縁体14として軟質プラスチックを介在させることで、高周波コイル4のプラズマトーチ軸方向への移動を防止することができる。 Further, between the flange portion 15 of the high-frequency coil 4 and the outer tube 3, by interposing the soft plastic as an insulator 14, it is possible to prevent movement of the plasma torch axis direction of the high-frequency coil 4. この絶縁体14には、耐熱性や疎水性の面から軟質プラスチックであるフッ素樹脂リングが好ましい。 The insulator 14, fluorocarbon resin ring is preferably a flexible plastic heat-resistant and hydrophobic surface. このフッ素樹脂リングに高周波コイル4を押し当てることで高周波コイルの軸方向位置が固定される。 The axial position of the high frequency coil is fixed by pressing the RF coil 4 to the fluorine resin ring. 高周波コイル本体は簡単には変形しないため、その一部のみを固定もしくは位置合わせするだけで、十分な安定性が得られる。 Since the high-frequency coil body is not easily deformed, just fit fixing or position only a portion, sufficient stability is obtained.

なお、高周波コイル4の固定のために絶縁体13,14を用いる理由は、導電体では高周波コイル4からの誘導を受け、それ自体が加熱されるためである。 The reason for using the insulating members 13, 14 for fixation of the RF coil 4 receives a derived from the high-frequency coil 4 is a conductor, because per se is heated. また、軟質プラスチックを用いる理由は、軟質プラスチックの弾性で装置の微振動を吸収させるためである。 Also, the reason for using a soft plastic is for absorbing the micro-vibration of the apparatus in the elasticity of the soft plastic.
また、高周波コイル4が水冷金属パイプ製の場合、高周波コイル4の表面に結露が発生しないように、高周波コイル周囲の湿度を調整することが好ましい。 Also, if the high-frequency coil 4 is made of water-cooled metal pipes, as condensation on the surface of the high-frequency coil 4 is not generated, it is preferable to adjust the humidity of the ambient high-frequency coil. 高周波コイル表面に結露が生じると、高周波コイル4に接触している絶縁体13の表面が濡れ、異常放電を起こす可能性がある。 Condensation on the high-frequency coil surface occurs, wetting the surface of the insulator 13 in contact with the high-frequency coil 4, which may cause abnormal discharge.

さらに、高周波コイル4が水冷金属パイプ製の場合、高周波コイル4から電極11に至る金属パイプ製の延長管12の長さが短いと、装置の振動によって高周波コイル4と外側管3の間に応力が掛かり、外側管3が破損する可能性があるが、高周波コイル4から電極11までの延長管12の長さを延長管直径の20倍以上とすることで、振動時には延長管12がしなって応力を緩和することができるため、石英ガラスやセラミックパイプ等の脆性材料からなる外側管3が破損することはない。 Further, if the high-frequency coil 4 is made of water-cooled metal pipe, the length of the extension pipe 12 made of metal pipe leading from the high-frequency coil 4 to the electrode 11 is short, the stress between the high-frequency coil 4 and the outer tube 3 by the vibration of the device takes, there is a possibility that the outer tube 3 is broken, by the length of the extension tube 12 from the high-frequency coil 4 to the electrode 11 and more than 20 times the extension tube diameter, at the time of vibration Na' to the extension pipe 12 the stress can be relaxed Te, outer tube 3 made of a brittle material such as quartz glass or ceramic pipe is not damaged.
以下、本発明の実施の形態について、実施例及び比較例を挙げてさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention, further be described in detail by way of Examples and Comparative Examples, the present invention is not limited thereto.

[実施例1] [Example 1]
図2に示したプラズマトーチを用いてガラス微粒子を合成し、堆積させて光ファイバ用ガラス母材を製造した。 To synthesize glass fine particles using a plasma torch shown in FIG. 2, to produce a glass optical fiber preform by depositing.
プラズマトーチの内側管2には内径38mmの窒化珪素セラミック製パイプを用いた。 Using the silicon nitride ceramic pipe having an inner diameter of 38mm in inner tube 2 of the plasma torch. 外側管3には外径55mmの石英ガラス製パイプを用いた。 Using quartz glass pipe having an outer diameter of 55mm in outer tube 3. 高周波コイル4及び延長管12には外径10mmの銅製パイプを用い、内部に冷却水を循環させた。 The RF coil 4 and the extension tube 12 with a copper pipe having an outer diameter of 10 mm, was circulated cooling water therein. 高周波コイル4の形状は3ターン・巻き内径57mmとした。 The shape of the high-frequency coil 4 was 3 turn winding inner diameter 57 mm. 高周波コイル4と外側管3の間には、厚さ0.1mmのテフロンシートを渦巻き状に10周巻いたものを挿入し、高周波コイル4の中心軸とプラズマガス流路6の中心軸とが常に一致するようにした。 Between the high-frequency coil 4 and the outer tube 3, the Teflon sheet having a thickness of 0.1mm was inserted what wound 10 laps spirally, central axis of the plasma gas flow passage 6 of the RF coil 4 and always It was to match.

次に、高周波コイル4の前後方向の位置は、外側管3のフランジ部15にコイル位置調整用の絶縁体(フッ素樹脂リング)14を取り付け、この絶縁体14に高周波コイル4を押し当てて固定した。 Next, longitudinal position of the high-frequency coil 4 is insulation for adjusting coil position (fluororesin ring) 14 mounted on the flange portion 15 of the outer tube 3 is pressed against the high-frequency coil 4 to the insulator 14 fixed did. 図示していないプラズマトーチを囲うカバーの中に室内空気を100L/minの流量で流し、高周波コイル4の周囲を除湿した。 Into the cover surrounding the plasma torch (not shown) flowing room air at a flow rate of 100L / min, dehumidified around the high-frequency coil 4. 高周波コイル4から電極11に至る2本の延長管12のうち、短い方の長さをコイル外径10mmの20倍である200mmとした。 One of the two extension pipes 12 leading from the high-frequency coil 4 to the electrode 11, and the shorter the length and 200mm is 20 times the coil outer diameter of 10 mm.

プラズマガス流路6にはAr86L/min、O 2 46L/minを、原料ガス流路5にはAr10L/min、SiCl 4 0.8L/min及びSiF 4 0.7L/minを流しながら、高周波コイル4に4MHzの高周波電流を印加してプラズマ火炎8を発生させ、火炎中で合成されたフッ素ドープ石英ガラス微粒子を回転・トラバースするターゲット棒9上に堆積させ、光ファイバ用ガラス母材を合成した。 The plasma in the gas flow passage 6 Ar86L / min, the O 2 46L / min, the feed gas passage 5 Ar10L / min, while flowing SiCl 4 0.8 L / min and SiF 4 0.7 L / min, the high-frequency coil 4 by applying a 4MHz frequency current to generate a plasma flame 8, the fluorine-doped silica glass particles synthesized in the flame is deposited on the target rod 9 to rotate traversal, were synthesized for optical fiber glass preform.

光ファイバ用ガラス母材の合成を繰り返し、プラズマトーチの分解組み立てを繰り返した場合でも、プラズマ火炎9のプラズマガス流路6の軸線に対する曲がりは最大で0.8°未満であり、堆積速度のバラツキも4%以内であった。 Repeat synthesis of the glass preform for optical fibers, even when repeatedly exploded plasma torch, bending relative to the axis of the plasma gas flow passage 6 of the plasma flame 9 is less than the maximum at 0.8 °, also the variation of deposition rate 4 It was within%. なお、装置に振幅3mmの振動を繰り返し与えた場合でも外側管3が破損することはなかった。 Incidentally, the outer tube 3 even when repeatedly given vibration amplitude 3mm was never damage the device. また、外気湿度が高い場合でもコイル周辺で結露することなく、異常放電も起こらなかった。 Further, without condensation around the coil even when the outside air humidity is high, it did not occur even abnormal discharge. さらに、プレート入力電力を一定としたときの、プレート入力電力とプレート入力電流の比も一定で安定していた。 Further, when the plate input power is constant, the ratio of the plate input power and the plate input current was stable at constant.

[比較例1] [Comparative Example 1]
図1に示したプラズマトーチを用いてガラス微粒子を合成し、堆積させて光ファイバ用ガラス母材を製造した。 To synthesize glass fine particles using a plasma torch shown in FIG. 1, to produce a glass optical fiber preform by depositing.
プラズマトーチの内側管2には内径38mmの窒化珪素セラミック製パイプを用いた。 Using the silicon nitride ceramic pipe having an inner diameter of 38mm in inner tube 2 of the plasma torch. 外側管3には外径55mmの石英ガラス製パイプを用いた。 Using quartz glass pipe having an outer diameter of 55mm in outer tube 3. 高周波コイル4及び延長管12には外径10mmの銅製パイプを用い、内部に冷却水を循環させた。 The RF coil 4 and the extension tube 12 with a copper pipe having an outer diameter of 10 mm, was circulated cooling water therein. 高周波コイル4の形状は3ターン・巻き内径57mmとした。 The shape of the high-frequency coil 4 was 3 turn winding inner diameter 57 mm. 高周波コイル4と外側管3の間には、1mmの間隙があり、高周波コイル4が外側管3と接触しないように取り付けた。 Between the high-frequency coil 4 and the outer tube 3, there is a gap of 1 mm, the high-frequency coil 4 is attached so as not to contact the outer tube 3. 高周波コイル4から電極11に至る2本の延長管12のうち、短い方の長さを高周波コイル4の外径10mmの12倍である120mmとした。 One of the two extension pipes 12 leading from the high-frequency coil 4 to the electrode 11, and a 120mm is 12 times the outer diameter 10mm high-frequency coil 4 shorter length.

プラズマガス流路6にはAr86L/min、O 2 46L/minを、原料ガス流路5にはAr10L/min、SiCl 4 0.8L/min、SiF 4 0.7L/minを流しながら、高周波コイル4に4MHzの高周波電流を印加してプラズマ火炎8を発生させ、火炎中で合成されたフッ素ドープ石英ガラス微粒子を回転・トラバースするターゲット棒9上に堆積させ、光ファイバ用ガラス母材を合成した。 The plasma in the gas flow passage 6 Ar86L / min, the O 2 46L / min, the feed gas passage 5 Ar10L / min, SiCl 4 0.8L / min, while flowing SiF 4 0.7 L / min, the high-frequency coil 4 by applying a 4MHz frequency current to generate a plasma flame 8, the fluorine-doped silica glass particles synthesized in the flame is deposited on the target rod 9 to rotate traversal, were synthesized for optical fiber glass preform.

光ファイバ用ガラス母材の合成を繰り返し、プラズマトーチの分解組み立てを繰り返した場合、プラズマ火炎8の、プラズマガス流路の軸線に対する曲がりは最大で4°に達し、堆積速度のバラツキは最大で12%であった。 Repeat synthesis of the glass preform for an optical fiber, when repeatedly exploded plasma torch, the plasma flame 8, bending relative to the axis of the plasma gas flow path reaches a maximum at 4 °, the variation of the deposition rate up to 12 %Met. プラズマ火炎8の曲がりが大きい場合には、内側管2の内壁に石英ガラスが付着していた。 When bending of the plasma flame 8 is large, the quartz glass is adhered to the inner wall of the inner tube 2. さらに、プレート入力電力を一定としたときの、プレート入力電力とプレート入力電流の比には、7%のバラツキがあった。 Further, when the plate input power is constant, the ratio of the plate input power and the plate input current, there is a 7% variation.

[比較例2] [Comparative Example 2]
高周波コイル4から電極11に至る2本の延長管12のうち、短い方の長さを高周波コイル4のコイル外径10mmの12倍である120mmとした以外は、実施例1と同様の構成からなる図2に示したプラズマトーチを用いて、実施例1と同様にして光ファイバ用ガラス母材の合成を行った。 One of the two extension pipes 12 leading from the high-frequency coil 4 to the electrode 11, the shorter the length except for using 120mm is 12 times the coil outer diameter 10mm high-frequency coil 4, the same components as those in the first embodiment made using a plasma torch shown in FIG. 2, it was synthesized in a glass preform for an optical fiber in the same manner as in example 1.
装置に振幅3mmの振動を繰り返し与えたところ、外側管3にクラックが入り、そこから冷却水が噴出した。 Device was repeatedly applied vibration amplitude 3mm to, cracked the outer tube 3, the cooling water was ejected therefrom.

本発明によれば、装置の稼働率が上がり、特性の安定した固体製品が得られ、生産性の向上に寄与する。 According to the present invention, up operation rate of the apparatus, stable solid product characteristic is obtained, which contributes to the improvement of productivity.

比較例1で使用したプラズマトーチの概略を示す断面図である。 It is a cross-sectional view schematically showing a plasma torch used in Comparative Example 1. 本発明の実施例1で使用したプラズマトーチの概略を示す断面図である。 A schematic of a plasma torch used in Example 1 of the present invention is a cross-sectional view illustrating.

符号の説明 DESCRIPTION OF SYMBOLS

1. 1. 原料ガス導入部材、 The raw material gas introduction member,
2. 2. 内側管、 The inner tube,
3. 3. 外側管、 The outer tube,
4. 4. 高周波コイル、 High-frequency coil,
5. 5. 原料ガス流路、 The raw material gas flow path,
6. 6. プラズマガス流路、 Plasma gas flow path,
7. 7. 冷却水流路、 Cooling water flow path,
8. 8. プラズマ火炎、 Plasma flame,
9. 9. ターゲット棒、 Target rod,
10. 10. プラズマに向いた面、 Surface facing the plasma,
11. 11. 電極、 electrode,
12. 12. 延長管、 Extension tube,
13. 13. 絶縁体、 Insulator,
14. 14. 絶縁体、 Insulator,
15. 15. フランジ部。 Flange portion.

Claims (3)

  1. 原料ガス導入部材の外方に、冷却水流路を形成する内側管と外側管が配設され、さらに外側管の外方に高周波コイルが巻回され、前記原料ガス導入部材の中心に原料ガス流路が形成され、前記内側管と原料ガス導入部材との間にプラズマガス流路が形成されてなる高周波誘導熱プラズマトーチにおいて、前記高周波コイルとその内側の外側管との間に、絶縁体として軟質プラスチックのシートを渦巻き状に隙間の大きさに合わせて巻いたものを介在させて前記高周波コイルの径方向位置を固定し、前記高周波コイルと外側管のフランジ部との間に、絶縁体として軟質プラスチックを介在させて前記高周波コイルの軸方向位置を固定し、プラズマガス流路と高周波コイルとの位置関係が一定に保持されていることを特徴とする高周波誘導熱プラ Outside the raw material gas introduction member, the inner and outer tubes forming a cooling water passage is arranged, further a high-frequency coil is wound around the outside of the outer tube, the feed gas stream to the center of the raw material gas introduction member road is formed, in a high-frequency induction thermal plasma torch plasma gas flow passage is formed between the inner tube and the raw material gas introduction member, between the high frequency coil and the outer tube of the inner, as an insulator the soft plastic sheet with intervening ones wound in accordance with the size of the gap spiral fix the radial position of the high-frequency coil, between the flange portion of the radio frequency coil and the outer tube, as an insulator with intervening soft plastic to fix the axial position of the high-frequency coil, a high frequency induction thermal plug the positional relationship between the plasma gas flow path and the high-frequency coil, characterized in that it is held constant マトーチ。 Matochi.
  2. 前記軟質プラスチックがフッ素樹脂製のシートである請求項1に記載の高周波誘導熱プラズマトーチ。 The high-frequency induction thermal plasma torch according to claim 1 soft plastic is a sheet made of fluororesin.
  3. 前記高周波コイルが水冷金属パイプからなり、高周波コイル周囲の湿度を調整することで結露を防止している請求項1又は2に記載の高周波誘導熱プラズマトーチ。 The radio frequency coil is made of water-cooled metal pipes, high frequency induction thermal plasma torch according to claim 1 or 2 to prevent condensation by adjusting the humidity of the ambient high-frequency coil.
JP2008333760A 2008-12-26 2008-12-26 High-frequency thermal plasma torch for solid synthesis Active JP5014324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333760A JP5014324B2 (en) 2008-12-26 2008-12-26 High-frequency thermal plasma torch for solid synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333760A JP5014324B2 (en) 2008-12-26 2008-12-26 High-frequency thermal plasma torch for solid synthesis

Publications (2)

Publication Number Publication Date
JP2010157383A true JP2010157383A (en) 2010-07-15
JP5014324B2 true JP5014324B2 (en) 2012-08-29

Family

ID=42575139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333760A Active JP5014324B2 (en) 2008-12-26 2008-12-26 High-frequency thermal plasma torch for solid synthesis

Country Status (1)

Country Link
JP (1) JP5014324B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010050082B4 (en) * 2010-09-15 2017-04-27 J-Plasma Gmbh burner
CN105025649B (en) * 2015-07-06 2018-05-25 山西大学 Apparatus and method for generating an inductively coupled thermal plasma at low pressure Species

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766287A (en) * 1987-03-06 1988-08-23 The Perkin-Elmer Corporation Inductively coupled plasma torch with adjustable sample injector
JPH02135656A (en) * 1988-11-15 1990-05-24 Yokogawa Electric Corp High frequency inductive coupling plasma mass spectrometer
JPH0697116A (en) * 1992-09-17 1994-04-08 Fujitsu Ltd Fabrication system for semiconductor device
US6287435B1 (en) * 1998-05-06 2001-09-11 Tokyo Electron Limited Method and apparatus for ionized physical vapor deposition
US6523493B1 (en) * 2000-08-01 2003-02-25 Tokyo Electron Limited Ring-shaped high-density plasma source and method
JP2002088486A (en) * 2000-09-13 2002-03-27 Chubu Electric Power Co Inc High-frequency induction heat plasma apparatus
JP4317451B2 (en) * 2001-10-05 2009-08-19 テクナ・プラズマ・システムズ・インコーポレーテッド Multi-coil type induction plasma torch for solid power
JP2007048514A (en) * 2005-08-08 2007-02-22 Shin Etsu Chem Co Ltd High frequency induction heat plasma torch and method of synthesizing solid material

Also Published As

Publication number Publication date Type
JP2010157383A (en) 2010-07-15 application

Similar Documents

Publication Publication Date Title
US5734143A (en) Microwave plasma torch having discretely positioned gas injection holes and method for generating plasma
USRE30635E (en) Method of producing internally coated glass tubes for the drawing of fibre optic light conductors
US5023056A (en) Plasma generator utilizing dielectric member for carrying microwave energy
US6261525B1 (en) Process gas decomposition reactor
US5221427A (en) Plasma generating device and method of plasma processing
US5692087A (en) Optical fiber with low OH impurity and communication system using the optical fiber
US4924061A (en) Microwave plasma torch, device comprising such a torch and process for manufacturing powder by the use thereof
US4262035A (en) Modified chemical vapor deposition of an optical fiber using an rf plasma
US5399832A (en) Process and apparatus for using atmospheric-pressure plasma reactions
US5349154A (en) Diamond growth by microwave generated plasma flame
US20040245088A1 (en) System, method, and apparatus for continuous synthesis of single-walled carbon nanotubes
US4292063A (en) Manufacture of an optical fiber preform with micro-wave plasma activated deposition in a tube
US4331462A (en) Optical fiber fabrication by a plasma generator
US20030172772A1 (en) Microwave plasma chemical synthesis of ultrafine powders
US5637358A (en) Microwave plasma chemical vapor deposition process using a microwave window and movable, dielectric sheet
Alexandrov et al. Chemical Vapor Deposition Enhanced by Atmospheric Pressure Non‐thermal Non‐equilibrium Plasmas
US20070048211A1 (en) Apparatus and method for synthesizing a single-wall carbon nanotube array
US4309259A (en) High pressure plasma hydrogenation of silicon tetrachloride
US4877938A (en) Plasma activated deposition of an insulating material on the interior of a tube
US5756998A (en) Process for manufacturing coated wire composite and a corona generating device produced thereby
US4090055A (en) Apparatus for manufacturing an optical fibre with plasma activated deposition in a tube
US6065425A (en) Plasma process apparatus and plasma process method
US5597624A (en) Method and apparatus for coating dielectrics
CN101466194A (en) Preionization atmos low-temperature plasma jet generator
Alexandrov et al. Remote AP‐PECVD of Silicon Dioxide Films from Hexamethyldisiloxane (HMDSO)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150