JP2010157029A - Coordinate input system - Google Patents

Coordinate input system Download PDF

Info

Publication number
JP2010157029A
JP2010157029A JP2008333776A JP2008333776A JP2010157029A JP 2010157029 A JP2010157029 A JP 2010157029A JP 2008333776 A JP2008333776 A JP 2008333776A JP 2008333776 A JP2008333776 A JP 2008333776A JP 2010157029 A JP2010157029 A JP 2010157029A
Authority
JP
Japan
Prior art keywords
coordinate input
coordinate
finger
input area
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008333776A
Other languages
Japanese (ja)
Other versions
JP5262703B2 (en
Inventor
Shigeru Osawa
成 大澤
Hiroichi Takayanagi
博一 高柳
Hideo Kadoi
英夫 門井
Kinichi Ozawa
欣一 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP2008333776A priority Critical patent/JP5262703B2/en
Publication of JP2010157029A publication Critical patent/JP2010157029A/en
Application granted granted Critical
Publication of JP5262703B2 publication Critical patent/JP5262703B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coordinate input system for preventing incorrect detection by contact or the like of a palm, in a coordinate input panel of resistance film type where the protective layer is made thick to improve the durability. <P>SOLUTION: In the input panel requiring high durability, a thick non-insulating resin film is sometimes used as the protective layer, but a coordinate shifted from the position specified by a finger can be input in response to influence of capacitance binding between the palm and a face resistance element. The coordinate input system has a calculating means for identifying whether the number of contact or proximity parts of a coordinate input region with a conductor such as the finger is one or two, thereby preventing incorrect detection even when the protective layer is made thick to improve the durability. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、指などの導体により指示した位置を検出する座標入力システム、特に座標入力領域を導体で接触又は近接した箇所が1箇所か2箇所かを識別する計算手段を有する座標入力システムに関する。   The present invention relates to a coordinate input system for detecting a position indicated by a conductor such as a finger, and more particularly to a coordinate input system having a calculation means for identifying whether a coordinate input region is in contact with or close to a coordinate input region by one or two locations.

座標入力システムの入力パネルは、均一な面抵抗体に該面抵抗体を取り囲む形で各辺の長さあたりの抵抗値は各辺内で一定となる長方形の抵抗性周囲電極を配設しており、4頂点に検出電極を備えている。該検出電極は前記抵抗性周囲電極と電気的に接続されている。
座標入力システムの座標検出方法は、入力パネルの面抵抗体に流入する電流の4頂点へ配分される電流値を計測するものが知られている(特許文献1参照)。指で指示した位置の座標は、面抵抗体に流入する電流の4頂点への配分値を用いて計算できるものが知られている(特許文献2参照)。また、検出点電極の数は少なくとも入力パネルの頂点に設置する必要はあるが、それ以上の検出電極を辺に設置しても良い。その場合の座標の計算方法は特願2008−251905号として出願している(特許文献3)。
The input panel of the coordinate input system is provided with a rectangular resistive surrounding electrode in which a resistance value per length of each side is constant within each side in a form surrounding the surface resistor in a uniform surface resistor. In addition, detection electrodes are provided at four vertices. The detection electrode is electrically connected to the resistive surrounding electrode.
As a coordinate detection method of the coordinate input system, a method of measuring a current value distributed to four vertices of a current flowing into a surface resistor of an input panel is known (see Patent Document 1). It is known that the coordinates of the position indicated by the finger can be calculated using the distribution values of the current flowing into the surface resistor to the four vertices (see Patent Document 2). The number of detection point electrodes needs to be set at least at the apex of the input panel, but more detection electrodes may be set on the side. The coordinate calculation method in that case has been filed as Japanese Patent Application No. 2008-251905 (Patent Document 3).

上記のような座標入力システムは、発券機やATMなど公共の場に設置されることもあり、その場合、不特定多数の人が使用することになる為、入力パネルは耐久性の高いものが求められている。 The coordinate input system as described above may be installed in public places such as ticket machines and ATMs. In that case, the input panel must be highly durable because it is used by an unspecified number of people. It has been demanded.

入力パネルの耐久性を向上させるには面抵抗体の上に保護層を設けることが考えられる。該保護層は絶縁処理したものであっても良いし、非絶縁性の樹脂膜を使用するものも知られている(特許文献4参照)。このとき、指と面抵抗体との静電容量結合により、面抵抗体に電流が流入する。また、この保護層は一般的に厚いほど耐久性は高くなる。 In order to improve the durability of the input panel, it is conceivable to provide a protective layer on the surface resistor. The protective layer may be an insulating layer or a non-insulating resin film is known (see Patent Document 4). At this time, current flows into the surface resistor due to capacitive coupling between the finger and the surface resistor. In addition, the thicker the protective layer, the higher the durability.

面抵抗体の上に保護層を設けた場合、指が保護層に接触したかどうかを判断するために、各検出電極で計測した電流量の合計値に閾値を設ける必要がある。つまり、計測した電流量の合計値が一定値未満の場合は、指が接触していないとして、座標の計算は行わないとする。静電容量結合は指と面抵抗体との距離によって変わるため、面抵抗体の上に保護層を厚めに設けた場合は、閾値の設定を低めにする必要がある。 When the protective layer is provided on the surface resistor, it is necessary to provide a threshold value for the total value of the current amounts measured by the respective detection electrodes in order to determine whether or not the finger is in contact with the protective layer. That is, when the total value of the measured current amounts is less than a certain value, it is assumed that the finger is not touching and the coordinates are not calculated. Since the capacitive coupling changes depending on the distance between the finger and the surface resistor, when the protective layer is provided thickly on the surface resistor, it is necessary to lower the threshold setting.

特開2000−132319号JP 2000-132319 A 特許第4168537号Japanese Patent No. 4168537 特願2008−251905号Japanese Patent Application No. 2008-251905 特開2003−140833号JP 2003-140833 A

静電容量結合の大きさは、人体と面抵抗体との距離や面積などで大きく変わる。つまり人体と面抵抗体との距離が近いほど静電容量結合は大きく、また、静電容量結合を受ける面積が大きいほど静電容量結合は大きくなる。つまり、保護層を厚く設けた場合、座標入力領域に指が触れた状態でも指と面抵抗体との静電容量結合は比較的小さい状態である。 このとき、操作者の指示の仕方によっては、従来は無視をすることができていた掌と面抵抗体との静電容量結合の影響を受けることがある。つまり、検出された座標は指の静電容量結合された位置なのか、指だけではなく掌も面抵抗体と静電容量結合しており、その影響で本来の指の指示した位置からずれた位置なのかを判断することができなかった。
本発明はこのような点を考慮してなされたものであり、各検出電極で計測された電流量から指示した位置の座標計算をするとともに、座標入力領域の中で静電容量結合が1箇所か2箇所なのかを識別することで、耐久性向上の為保護層を厚くしても、誤検出を防止できる座標入力システムを提供することを目的とする。
The magnitude of the capacitive coupling varies greatly depending on the distance and area between the human body and the surface resistor. In other words, the capacitive coupling increases as the distance between the human body and the surface resistor decreases, and the capacitive coupling increases as the area receiving the capacitive coupling increases. That is, when the protective layer is provided thick, the capacitive coupling between the finger and the surface resistor is relatively small even when the finger touches the coordinate input area. At this time, depending on how the operator gives an instruction, it may be affected by the capacitive coupling between the palm and the surface resistor, which could be ignored in the past. In other words, the detected coordinate is the position where the finger is capacitively coupled, or not only the finger but also the palm is capacitively coupled to the surface resistor, and as a result, it deviates from the position indicated by the original finger. I couldn't determine if it was a position.
The present invention has been made in consideration of such points, and performs coordinate calculation of the position indicated from the current amount measured by each detection electrode, and one capacitive coupling in the coordinate input area. It is an object of the present invention to provide a coordinate input system that can prevent erroneous detection even if the protective layer is thickened for the purpose of improving durability, by identifying whether there are two locations.

本発明は、絶縁基材に形成された面抵抗体の周囲又は内部に各辺の長さあたりの抵抗値は各辺内で一定となる長方形の抵抗性周囲電極を、全ての辺が前記面抵抗体と電気的に接触する様に設けると共に、該抵抗性周囲電極の内部を座標入力領域とする座標入力システムであって、前記座標入力領域を指などの導体で接触又は近接したときに、前記抵抗性周囲電極の少なくとも全ての頂点に流れる電流を計測する検出電極と、該検出電極が計測する電流値から前記導体で接触又は近接した前記座標入力領域の位置を計算する座標計算手段と、前記検出電極が計測する電流値から前記座標入力領域を前記導体で接触又は近接した箇所が1箇所か2箇所かを識別する識別計算手段を有することを特徴とする座標入力システムを要旨とする。   The present invention provides a rectangular resistive surrounding electrode in which the resistance value per length of each side is constant within each side around or inside a surface resistor formed on an insulating substrate, and all sides are said surfaces. A coordinate input system that is provided so as to be in electrical contact with a resistor, and the inside of the resistive surrounding electrode is a coordinate input area, and when the coordinate input area is in contact with or close to a conductor such as a finger, A detection electrode for measuring the current flowing through at least all the vertices of the resistive surrounding electrode; and a coordinate calculation means for calculating the position of the coordinate input region in contact with or close to the conductor from the current value measured by the detection electrode; The gist of the present invention is a coordinate input system having identification calculation means for identifying whether the coordinate input region is in contact with or close to the coordinate input region from the current value measured by the detection electrode.

本発明に係る座標入力システムにおいては、耐久性向上の為、保護層を厚くしても掌の影響を受けて座標が指の位置からずれているかどうか識別することができる。従って、本発明に係る座標入力システムを用いる券売機などの装置は、掌の影響を受けていない場合はそのまま座標を利用し、掌の影響を受けている場合はエラーとして操作者に再度入力を促すメッセージを出すなどすることによって、誤検出を回避することができる。 In the coordinate input system according to the present invention, it is possible to identify whether or not the coordinates are deviated from the position of the finger due to the influence of the palm even if the protective layer is thickened in order to improve durability. Therefore, a device such as a ticket vending machine using the coordinate input system according to the present invention uses coordinates as it is when it is not affected by the palm, and inputs it to the operator again as an error when it is affected by the palm. By issuing a prompting message, it is possible to avoid false detection.

不特定多数の人が使う座標入力システムの場合、指からの静電容量結合を受けているのか、受けていないのかを識別する閾値を低めに設定しておくことで、軽く触った場合でも反応できる利便性の高いタッチパネルになる。この場合においても、誤検出を回避することができる。 In the case of a coordinate input system used by an unspecified number of people, it is possible to react even when touched lightly by setting a low threshold to identify whether or not it is receiving capacitive coupling from fingers. It becomes a highly convenient touch panel that can be used. Even in this case, erroneous detection can be avoided.

座標入力領域の中で静電容量結合が1箇所か2箇所なのかを識別することで、操作している指が1本なのか、2本なのか識別することができるため、例えば、2本で操作した場合は無効にしたり、ダブルクリックなどの機能に割り当てることで、利便性を高めることができる。ただし、2本の指で操作しても、座標は1点に計算されるので、そのような操作を機能に割り当てる場合には、座標値の取り扱いに注意する必要がある。 By identifying whether there is one or two capacitive couplings in the coordinate input area, it is possible to identify whether one finger is operating or two fingers. If you operate with, you can disable it or assign it to a function such as double-clicking to improve convenience. However, even if the operation is performed with two fingers, the coordinates are calculated as one point. Therefore, when assigning such an operation to a function, it is necessary to pay attention to the handling of the coordinate values.

以下、添付図面に従って、本発明に係る座標入力システムの好ましい実施の形態について詳説する。
図1は、座標入力システムの一例を示す構成図である。指7が入力パネルの座標入力領域12内で指示した位置(X,Y座標)を検出する座標入力システムの構成図である。面抵抗体1は、透明なガラス、樹脂、または不透明な絶縁基材の片面に塗布、蒸着等によりITO膜やNESA膜などを均一に形成したものである。面抵抗体1の表面は、耐久性を向上させる為、保護層を設け、保護層は指7が面抵抗体1に直接触れない様に絶縁処理することによって、指7と面抵抗体1との静電容量結合による信号伝達をさせるようにしてもよいし、保護層を特許文献4に記載のものにしてもよいし、保護層を設けず、指7と面抵抗体1の直接的な電気的接触による信号伝達をさせるようにしてもよい。ここでは、面抵抗体1表面に絶縁処理をした保護層を設けた場合を説明する。
均一な面抵抗体1の周囲又は内部に、抵抗性周囲電極2を密着配設し、抵抗性周囲電極2の内部を座標入力領域12とする。抵抗性周囲電極2上において、座標入力領域の4隅の位置に検出電極3〜6を設置し、そこにそれぞれ1本ずつ引き出し線8〜11を接続する。引き出し線8〜11をアナログ信号処理部15内の振動電圧印加回路16に接続する。
Hereinafter, preferred embodiments of a coordinate input system according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a configuration diagram illustrating an example of a coordinate input system. It is a block diagram of the coordinate input system which detects the position (X, Y coordinate) which the finger | toe 7 pointed in the coordinate input area 12 of the input panel. The surface resistor 1 is formed by uniformly forming an ITO film, a NESA film, or the like on one side of a transparent glass, resin, or opaque insulating substrate by coating, vapor deposition, or the like. In order to improve durability, the surface of the surface resistor 1 is provided with a protective layer, and the protective layer is insulated so that the finger 7 does not touch the surface resistor 1 directly. The signal may be transmitted by capacitive coupling, the protective layer may be as described in Patent Document 4, or the protective layer is not provided and the finger 7 and the surface resistor 1 are directly connected. You may make it transmit the signal by electrical contact. Here, the case where the protective layer which performed the insulation process on the surface resistor 1 surface is provided is demonstrated.
The resistive surrounding electrode 2 is closely arranged around or inside the uniform surface resistor 1, and the inside of the resistive surrounding electrode 2 is used as a coordinate input area 12. On the resistive surrounding electrode 2, the detection electrodes 3 to 6 are installed at the four corner positions of the coordinate input area, and the lead wires 8 to 11 are connected to the detection electrodes 3 to 11, respectively. The lead wires 8 to 11 are connected to the oscillating voltage application circuit 16 in the analog signal processing unit 15.

座標を検出する際、AC信号源としての振動電圧発生器17は、振動電圧印加回路16に振動電圧を与え、振動電圧印加回路16は対応する検出電極3〜6を低インピーダンスで電圧振動させ、且つ、アナログマルチプレクサ18に検出電極から流入した電流を出力する。簡単な例としては、トランジスタのベースをAC信号で振動させ、エミッタを検出電極と接続して、コレクタから電流出力するものがある。   When detecting the coordinates, the oscillating voltage generator 17 serving as an AC signal source applies an oscillating voltage to the oscillating voltage applying circuit 16, and the oscillating voltage applying circuit 16 vibrates the corresponding detection electrodes 3 to 6 with low impedance, In addition, the current flowing from the detection electrode is output to the analog multiplexer 18. As a simple example, a transistor base is vibrated by an AC signal, an emitter is connected to a detection electrode, and a current is output from a collector.

AC信号源としての振動電圧発生器17によって、面抵抗体1は、全面が電圧振動する。人体は、従来から知られているように、AC信号に対して接地効果を持っており、人体の指7が面抵抗体1に接触または近接すると、静電容量結合により、指先を通して面抵抗体1との間にAC信号電流が流れる。検出電極3〜6は、アナログマルチプレクサ18を通してA/Dコンバータ(アナログ/デジタル変換器)19に接続しており、各検出電極に流れる電流に比例した電圧がA/Dコンバータ19に印加されるため、指先から面抵抗体1を通して流れ、検出電極3〜4へ配分される電流値を、電圧値としてデジタル値で得ることができる。CPU20は、アナログマルチプレクサ18を順番に切り替え、A/Dコンバータ19が出力するデジタル値を入力し、指7の指示位置の座標を計算する。また、計測された電流量は指示をした指7から流れてきたものか、他の導体の影響を受けたものかを識別する計算を行う。   The vibration resistance generator 17 serving as an AC signal source causes voltage oscillation of the entire surface resistor 1. As is known in the art, the human body has a grounding effect on the AC signal. When the human finger 7 contacts or approaches the surface resistor 1, the surface resistor is passed through the fingertip by capacitive coupling. AC signal current flows between 1 and 1. The detection electrodes 3 to 6 are connected to an A / D converter (analog / digital converter) 19 through an analog multiplexer 18, and a voltage proportional to the current flowing through each detection electrode is applied to the A / D converter 19. The current value flowing from the fingertip through the surface resistor 1 and distributed to the detection electrodes 3 to 4 can be obtained as a digital value as a voltage value. The CPU 20 switches the analog multiplexer 18 in order, inputs the digital value output from the A / D converter 19, and calculates the coordinates of the designated position of the finger 7. In addition, a calculation is performed to identify whether the measured current amount flows from the instructed finger 7 or is influenced by another conductor.

指の位置の座標計算方法については、特許文献2に開示されている通りであり、各検出電極の計測レベルの比に基づいて計算しているため、静電容量の結合量が大きく変わっても、指のパネル部上の座標が高精度に検出される。CPU20は計算した座標を出力し、座標は後段の装置によって利用される。 The coordinate calculation method of the finger position is as disclosed in Patent Document 2 and is calculated based on the ratio of the measurement levels of each detection electrode, so even if the coupling amount of capacitance changes greatly. The coordinates on the finger panel are detected with high accuracy. The CPU 20 outputs the calculated coordinates, and the coordinates are used by a subsequent apparatus.

操作をするときに掌の位置が座標入力領域12に近い位置にある場合、座標入力領域12上で指と掌の2箇所で静電容量結合をする場合がある。このとき、検出電極3〜6には静電容量結合された2箇所の合計の電流量が流れる。前述のように座標は各検出電極の比から計算するため、指と掌の間の座標が計算される。
つまり、座標計算式だけでは掌の影響を受けて、計算された座標が指の指示した位置とは違っていても、それを識別することができない。
If the palm position is close to the coordinate input area 12 when operating, there are cases where capacitive coupling is performed at two locations on the coordinate input area 12, the finger and the palm. At this time, a total amount of current flowing through the detection electrodes 3 to 6 is capacitively coupled. As described above, since the coordinates are calculated from the ratio of each detection electrode, the coordinates between the finger and the palm are calculated.
That is, even if the coordinate calculation formula alone is affected by the palm and the calculated coordinate is different from the position indicated by the finger, it cannot be identified.

このため座標の計算とは別に掌の影響を受けているのか、つまり座標入力領域12内で、静電容量結合が1箇所で行われているのか、2箇所で行われているのかを識別する方法が必要となる。
例えば、図1の座標入力領域の頂点にある検出電極3〜6で計測さされた電流量をそれぞれI、I、I、Iとすると特許文献2に基づいて計算すると数式1が成り立つことが分かった。
For this reason, whether it is influenced by the palm separately from the calculation of coordinates, that is, whether the capacitive coupling is performed at one place or two places in the coordinate input area 12 is identified. A method is needed.
For example, if the current amounts measured by the detection electrodes 3 to 6 at the apexes of the coordinate input area in FIG. 1 are I A , I B , I C , and I D , respectively, Equation 1 is calculated based on Patent Document 2. I understood that it was true.

Figure 2010157029
Figure 2010157029

しかし、数式1は指のみ、つまり座標入力領域12内に1箇所で静電容量結合をしている状態の時に成り立つ式であって、掌の影響、つまり座標入力領域12内に2箇所で静電容量結合を受けている場合は成立しないことが分かった。
したがって、座標入力領域の頂点にある検出電極の電流量の関係から、数式2で定義されるSの値によって、座標入力領域12内に1箇所で静電容量結合をしている状態か2箇所で静電容量結合をしている状態かを識別することが出来る。ここで、Iは各検出電極の総和である。
However, Formula 1 is an equation that holds when there is only a finger, that is, in a state where capacitive coupling is performed at one location in the coordinate input area 12. It has been found that it does not hold when receiving capacitive coupling.
Therefore, the current amount of the relationship of the detection electrode in the apex of the coordinate input region, the value of S 1 defined by the equation 2, or a state in which the capacitive coupling at one point on the coordinate input region 12 2 It is possible to identify whether the capacitive coupling is in place. Here, I is the total sum of the detection electrodes.

Figure 2010157029
Figure 2010157029

この数式2のSは静電容量結合を受けている2点の位置関係で符号が異なり、2点間の距離が離れているほど絶対値が大きく、また、2点の静電容量の結合量の比が1:1に近いほど絶対値が大きくなる。但し、2点の位置関係がY軸に平行又は、X軸に平行になった場合はSの値が0になる。
数式2の識別計算を行うことで、Sの値が0の場合は座標入力領域12の中で静電容量結合が1箇所ある。また、Sの値が0以外の場合は座標入力領域12の中で静電容量結合が2箇所あると識別することができる。このとき、ノイズなどの影響で静電容量結合が1箇所の場合でもSの値が0にならない場合がある。Sの値には例えば±0.01以下は0と見なすなどの閾値の設定が必要である。
S 1 in Equation 2 has a different sign depending on the positional relationship between the two points that are subjected to capacitive coupling, and the absolute value increases as the distance between the two points increases. The closer the quantity ratio is to 1: 1, the greater the absolute value. However, the parallel position relationship between the two points on the Y-axis or, if it becomes parallel to the X axis to a value of S 1 is 0.
By performing identification calculation of Formula 2, when the value of S 1 is 0, there is one capacitive coupling in the coordinate input area 12. If the value of S 1 is other than 0, it can be identified that there are two capacitive couplings in the coordinate input area 12. At this time, there is a case where the value of S 1 capacitive coupling even when the one place under the influence of such noise is not zero. The, for example ± 0.01 below the value of S 1 it is necessary threshold setting, such as 0 and regarded.

しかし、数式2だけでは2点の位置関係、つまり手と掌の位置関係がY軸に対して平行又は、X軸に対して平行な位置の場合は、Sの値が0に近い値になってしまい、静電容量結合が1箇所の場合と識別がしにくい状態になる。この場合、Sの値の閾値を小さくすることで識別することができるが、Sの値の閾値を小さくし過ぎると、例えば掌と座標入力領域12との静電容量結合が座標の精度に問題にならないくらい小さい場合(実質的に1箇所の入力動作時)でも2箇所で静電容量結合あると判断されるため、使いにくいシステムになってしまう。
このことから、この識別計算方法のみで識別をする場合は、X軸、Y軸方向と平行な位置は識別できなくても問題にならないようなシステム構成にするか、この計算方法とは異なった識別計算やこれを併用して判断する必要がある。
However, with the formula 2 alone, when the positional relationship between the two points, that is, the positional relationship between the hand and the palm is parallel to the Y axis or parallel to the X axis, the value of S 1 is close to 0. Thus, it becomes difficult to distinguish from the case where there is one capacitive coupling. In this case, can be identified by reducing the threshold value S 1, is too small a threshold value S 1, for example, capacitive coupling between the palm and the coordinate input region 12 is coordinate precision Even if it is small enough not to cause a problem (substantially at the time of one input operation), it is determined that there is capacitive coupling at two locations, so that the system becomes difficult to use.
For this reason, when discriminating only with this discrimination calculation method, the system configuration is such that it does not matter even if the position parallel to the X-axis and Y-axis directions cannot be discriminated, or different from this calculation method. It is necessary to make a judgment by using identification calculation and this together.

検出電極の数は座標を計算するために、少なくても抵抗性周囲電極の全ての頂点に設置する必要があるが、それ以上の数を設置しても良い。例えば、図2のように4頂点に検出電極3〜6を設置する以外に各辺の中点に検出電極21〜24を設置した8点の検出電極がある入力パネルの場合、座標を計算する上では、8角形の入力パネルの場合と同じと考えることが出来るため、特許文献3の記載の計算方法で座標を計算することが出来る。
また、辺上の検出電極21〜24の計測された電流量をそれぞれ、I、I、I、Iとすると、各辺あたりの抵抗値は一定であることから数式2は数式3のように定義できる。
In order to calculate the coordinates, the number of detection electrodes needs to be set at least at all apexes of the resistive surrounding electrode, but more than that may be set. For example, in the case of an input panel having 8 detection electrodes in which the detection electrodes 21 to 24 are installed at the midpoints of the sides in addition to the detection electrodes 3 to 6 at the four vertices as shown in FIG. 2, the coordinates are calculated. In the above, since it can be considered to be the same as the case of the octagonal input panel, the coordinates can be calculated by the calculation method described in Patent Document 3.
Also, assuming that the measured current amounts of the detection electrodes 21 to 24 on the sides are I E , I F , I G , and I H , respectively, since the resistance value per side is constant, Equation 2 is expressed by Equation 3 Can be defined as

Figure 2010157029
Figure 2010157029

次に、前記の方法とは異なった識別計算手段の計算式について説明する。
図2の辺上にある検出電極21〜24の電流量と、検出電極のある辺から導体の触れた位置までの距離とが、直線的な関係式になっていないことが分かった。例えば、検出電極21で計測された電流量Iと、座標入力領域の中心線の位置での検出電極21から指までの距離との関係を図3に示す。流入点41〜45からは同じ量の電流量が流れるとし、座標入力領域の中心線の位置で検出電極21から最も遠い位置を流入点41、最も近い位置を流入点45とすると、流入点が検出電極21に近いほど電流量Iは大きくなるが、その関係式は直線的ではない。
このことは2箇所から静電容量結合を受けた状態で、検出電極21で検出される電流量Iと、2箇所から静電容量結合を受けたときに計算された座標の位置の1箇所で静電容量結合をしたときに検出電極21で検出される電流量Iとが、異なることを意味している。
この現象を利用して検出された座標が2箇所から静電容量結合を受けたのか、1箇所から静電容量結合を受けたのか識別することができる。
Next, a calculation formula of the identification calculation means different from the above method will be described.
It has been found that the current amount of the detection electrodes 21 to 24 on the side of FIG. 2 and the distance from the side where the detection electrode is located to the position where the conductor touches are not in a linear relational expression. For example, FIG. 3 shows the relationship between the current amount IE measured by the detection electrode 21 and the distance from the detection electrode 21 to the finger at the position of the center line of the coordinate input area. Assuming that the same amount of current flows from the inflow points 41 to 45, assuming that the position farthest from the detection electrode 21 at the center line position of the coordinate input area is the inflow point 41 and the closest position is the inflow point 45, the inflow point is The closer to the detection electrode 21, the larger the current amount IE , but the relational expression is not linear.
This is because the current amount IE detected by the detection electrode 21 in a state where the capacitive coupling is received from two places, and one position of the coordinates calculated when the capacitive coupling is received from the two places. This means that the amount of current IE detected by the detection electrode 21 when capacitive coupling is performed is different.
Using this phenomenon, it is possible to identify whether the detected coordinates have received capacitive coupling from two locations or whether they have received capacitive coupling from one location.

座標入力領域全域において、1箇所で静電容量結合した場合の検出電極に流れる電流量を予めCPU20に記録させておき、座標計算するときに、この検出電極に流れる電流量を比較することで、2箇所で静電容量結合したのか、1箇所で静電容量結合なのか識別することができる。
しかし、この辺上の検出電極の電流量だけでは、特に抵抗性周囲電極の頂点付近の位置では、近くの頂点にある検出電極に多くの電流量が流れる為、識別することがほとんど不可能となる。このことから、検出電極21を基準にすると例えば数式4で定義されるSの値によって、座標入力領域内に1箇所で静電容量結合をしている状態か2箇所で静電容量結合をしている状態かを識別することが出来る。
In the entire coordinate input region, the amount of current flowing through the detection electrode when capacitively coupled at one location is recorded in advance by the CPU 20, and when the coordinates are calculated, the amount of current flowing through the detection electrode is compared, It can be identified whether the capacitive coupling is performed at two locations or the capacitive coupling is performed at one location.
However, it is almost impossible to discriminate only with the current amount of the detection electrode on this side, particularly at a position near the apex of the resistive surrounding electrode, because a large amount of current flows through the detection electrode at the nearby apex. . Therefore, the value of the referenced to the detection electrode 21 for example S 2 defined by the equation 4, the capacitive coupling in a state or two places that the capacitive coupling at one point on the coordinate input region Can be identified.

Figure 2010157029
Figure 2010157029

数式4は辺上の検出電極で計測された電流量を、その辺の両端にある検出電極で計測された電流量でそれぞれ割ったものを足している形であり、検出電極21のある辺の全域で有効な識別ができる。
また、数式4は検出電極21のある辺の近い位置では大きく、その反対側の検出電極23のある辺に近い位置では小さい値になるため、小さい値の位置では識別することが難しくなる。各辺上の検出電極で同様のことが言えるため、座標入力領域全域で識別を可能にするには、座標入力領域の辺上にある検出電極の電流量の関係から、数式5で定義されるSの値を用いればよい。
Formula 4 is a form in which the amount of current measured by the detection electrode on the side divided by the amount of current measured by the detection electrode at both ends of the side is added. Effective identification is possible in the entire area.
In addition, Formula 4 is large at a position near a certain side of the detection electrode 21 and is small at a position near the certain side of the detection electrode 23 on the opposite side, so that it is difficult to identify the position at a small value. Since the same can be said for the detection electrodes on each side, in order to enable identification in the entire coordinate input region, it is defined by Equation 5 from the relationship between the current amounts of the detection electrodes on the sides of the coordinate input region. it may be used a value of S 2.

Figure 2010157029
Figure 2010157029

1箇所で静電容量結合した場合の数式5のSの値を予めCPU20に記録させておき、座標計算をするときに、数式5を計算して、予め記録してある計算された座標のSの値を比較することで識別することができる。
つまり、座標の計算と同時に識別計算を行い、計算された座標から、その座標値のSの値をCPU20から読み出し、識別計算結果のSの値とCPU20のSの値を比較することで、同じ値の場合は座標入力領域の中で静電容量結合が1箇所ある。違う値の場合は、座標入力領域の中で静電容量結合が2箇所あると識別することができる。このとき、ノイズなどの影響で静電容量結合が1箇所の場合でも同じ値にならない場合があるので、例えば±0.1以下は同じ値とするなどの閾値の設定が必要である。
The value of S 2 Equation 5 when combined capacitance in one place is previously recorded in the CPU 20, when the coordinate calculations, to calculate the equation 5, the coordinates of which are calculated are prerecorded it can be identified by comparing the value of S 2.
In other words, performed simultaneously identification calculation and the calculation of coordinates, from the calculated coordinates, that the read value of S 2 of the coordinate values from the CPU 20, compares the value of S 2 value of S 2 identification calculation result and CPU 20 In the case of the same value, there is one capacitive coupling in the coordinate input area. When the values are different, it can be identified that there are two capacitive couplings in the coordinate input area. At this time, even if there is one capacitive coupling due to the influence of noise or the like, the same value may not be obtained. Therefore, for example, it is necessary to set a threshold value such that ± 0.1 or less is the same value.

また、数式5は座標入力領域内を正規化したときにパネルの真ん中を中心に上下左右同じ値を示すので、予め記録させておく範囲は座標入力領域の1/4の領域で良いことになる。さらに記憶させておく位置は例えば座標入力領域の10mm間隔などで良く、その間の座標が検出されたときの1箇所の静電容量結合時のSの値は、付近の座標のSの値から計算してよい。Sは電流量の比であるので、結合の強さによっては変化せず、従って、記憶すべき1箇所の静電容量結合時のSは、記憶させる位置について一種類でよい。 In addition, since Formula 5 shows the same value in the vertical and horizontal directions centered on the center of the panel when the coordinate input area is normalized, the range to be recorded in advance may be a quarter of the coordinate input area. . Further positions allowed to store may like 10mm intervals, for example the coordinate input region, the value of S 2 when the capacitance coupling at one location when it is detected during the coordinates, the coordinates of the S 2 value of around You may calculate from Since S 2 is the ratio of the current amount, not changed by the strength of the bond, therefore, S 2 during capacitive coupling one place to be stored may be a single type for the position to be stored.

この数式5のSの1箇所の場合から2箇所の場合の差をとると、2点の位置関係で符号が異なり、2点間の距離が離れているほど絶対値が大きくなり、また、2点の静電容量の結合量の比が1:1に近いほど絶対値が大きくなる。但し、2点の位置関係が長方形の座標入力領域の対角線と平行な同一直線上である場合は、静電容量結合が1箇所の場合と2箇所の場合とでは非常に近い値になってしまい静識別がつきにくい状態になるが、数式2の場合と同様にSの値の閾値の調整や、この方向に識別できなくても問題にならないようなシステム構成にすることで、数式5のみでも識別することができる。 Taking the difference between the case of two locations from the case of one portion of S 2 in the formula 5, different signs in a positional relationship of the two points, as the distance between two points is away absolute value becomes large, The absolute value increases as the ratio of the coupling amounts of the two capacitances approaches 1: 1. However, when the positional relationship between the two points is on the same straight line parallel to the diagonal line of the rectangular coordinate input area, the capacitance coupling is very close to the case of one place and the case of two places. It becomes a difficult state attaches static identification, threshold adjustment of the same manner as in the case of S 2 value equation 2, by a not without such a system configuration be indistinguishable in this direction issue, only equation 5 But it can be identified.

また、検出電極が8点あり、各辺の中点の位置に検出電極がある場合、例えば識別計算式の数式3のSと数式5のSを併用することで、それぞれが識別しにくい2点の位置関係を補うことができるので、座標入力領域を指などの導体で接触又は近接した箇所が1箇所か2箇所かをより正確に識別することができる。 Also, there detecting electrode 8 points, when there is a detection electrode at a position of the midpoint of each side, for example, by a combination of S 2 of S 1 and Equation 5 Equation 3 identified formula, difficult to identify each Since the positional relationship between the two points can be supplemented, it is possible to more accurately identify whether the coordinate input area is in one or two places that are in contact with or close to each other with a conductor such as a finger.

数式5の計算をすることで、座標入力領域全域で静電容量結合が1箇所の場合と2箇所の場合の識別を行うことが出来るが、システムの構成上、例えば座標入力領域の上部だけ識別をしたい場合は、上部の辺のみに検出電極を設置し、検出電極が5点又は、左右にも設置したとして検出電極が7点の構成であってもよい。
また、辺上の検出電極も辺の中心におく必要はないが、パネル全体の識別精度を考慮すると、辺の中点に設置したほうが望ましい。
By calculating Equation 5, it is possible to discriminate between one and two capacitive couplings in the entire coordinate input area. However, for example, only the upper part of the coordinate input area is identified due to the system configuration. For example, the detection electrode may be provided only on the upper side, and five detection electrodes may be provided, or the detection electrode may be provided on the left and right.
In addition, the detection electrode on the side does not need to be placed at the center of the side, but in consideration of the identification accuracy of the entire panel, it is desirable to install it at the midpoint of the side.

図4のように辺上の検出点が等間隔で2箇所づつ、つまり合計して12箇所の検出電極を設置している場合、4隅にある検出電極3〜6の計測さされた電流量をそれぞれ、I、IB、I、I、辺上の検出電極31〜38の計測された電流量をそれぞれ、I、I、I、I、I、I、I、Iとすると、数式5は数式6のように定義できる。 As shown in FIG. 4, when the detection points on the side are two at equal intervals, that is, a total of 12 detection electrodes are installed, the measured current amounts of the detection electrodes 3 to 6 at the four corners , I A , I B , I C , I D , and measured current amounts of the detection electrodes 31 to 38 on the sides, respectively, I E , I F , I G , I H , I I , I J , Assuming that I K and I L , Equation 5 can be defined as Equation 6.

Figure 2010157029
Figure 2010157029

数式6も数式5と同様に数式3と併用して識別計算を行うことによって静電容量結合が1箇所の場合と2箇所の場合を識別することができる。このとき数式3は辺上の検出電極の位置に合わせて、辺上の検出電極の電流量の係数を変えるとよい。
また、数式6のSの値の1箇所と2箇所の差は、数式5の1箇所と2箇所の差より大きな値が得られるので、数式5よりもノイズなどの外乱の影響を受けにくいといえるが、検出電極が多くなってしまうことからコストアップに繋がる。
Similarly to Expression 5, Expression 6 can also be used in combination with Expression 3 to perform identification calculation, whereby the case of one capacitive coupling and the case of two places can be identified. At this time, it is preferable that Equation 3 changes the coefficient of the current amount of the detection electrode on the side in accordance with the position of the detection electrode on the side.
The difference between one location and two locations of the values of S 2 Equation 6, since a value greater than the difference between one location and two locations Equation 5 is obtained, hardly affected by disturbance such as noise from Equation 5 However, the number of detection electrodes increases, leading to an increase in cost.

本発明は長方形の座標入力システムについて説明を行ったが、必ずしも長方形である必要はなく、例えば辺上の検出電極の位置で僅かに角度をつけて8角形の形状をしても、識別する精度が悪くなるが、前記した識別計算を使用することができる。 Although the present invention has been described with respect to a rectangular coordinate input system, it does not necessarily have to be a rectangle. For example, even if an octagon is formed at a slight angle at the position of the detection electrode on the side, the identification accuracy However, the discrimination calculation described above can be used.

以下、実施例及び比較例により、本発明を説明する。本発明は、以下の実施例に限定されるものでなく、本発明の技術範囲において、種々の変形例を含むものである。 Hereinafter, the present invention will be described with reference to examples and comparative examples. The present invention is not limited to the following examples, and includes various modifications within the technical scope of the present invention.

(実施例1)
本実施例の座標入力システムは、四角いガラス基材の上にITO膜を形成した面抵抗体1をパソコンのディスプレイの上に置き、面抵抗体1を取り囲む用に設けた抵抗性周囲電極2は、銀カーボンインクのスクリーン印刷によって形成した。また、耐久性をあげる為、面抵抗体1の上に0.5mmの厚さのガラス系コーティング剤で保護層を設けた。検出電極を抵抗性周囲電極2の4つの頂点と各辺の中点に設け、引き出し線を接続し、図1に示した構成図のように作成したハードウエアに接続した。ただし、振動電圧印加回路16は8個使用し、8個の入力を処理できるアナログマルチプレクサ18を使用して、CPU20が入力チャネルを切り替えられるようにした。
パソコンから座標入力領域内に直径20mmのボタンを複数個ディスプレイ内に表示し、操作者の指や掌が座標入力領域に接触又は近接すると、CPU20は特許文献2の方法で入力座標を計算する。
操作者がボタンを押すときに、押し方によっては、指だけでなく掌も面抵抗体と静電容量結合することがある。つまり、押し方によっては座標入力領域中で静電容量結合が2箇所あり、本来の指で指示した位置からずれた座標が計算されてしまう場合がある。
本実施例では、数式3によるSと数式5によるSを併用して行い、Sの閾値を±0.01、Sの閾値を±0.5と設定した。閾値を超えた場合は、正確な座標でないと判断して、操作者に入力の注意点(入力されなかった理由や正しい入力方法)の説明と再度入力を促すメッセージを出すことにより、以降、正確に入力されるようにした。
また、閾値以下の場合には、正確な座標と判断して、シリアル通信によってパソコンに座標を送る。パソコンは送られてきた座標がディスプレイ上のボタンの座標領域の中に入っている場合はボタンが押されたと認識して、ボタンに割り当てられた機能、例えば明かりを点けるなどの動作を行う。送られてきた座標がボタンの座標領域の中に入っていない場合は、ボタンが押されたと認識しないものとする。
Example 1
In the coordinate input system of this embodiment, a sheet resistor 1 having an ITO film formed on a square glass substrate is placed on a personal computer display, and a resistive peripheral electrode 2 provided to surround the sheet resistor 1 is And formed by screen printing of silver carbon ink. In order to increase durability, a protective layer was provided on the surface resistor 1 with a glass coating agent having a thickness of 0.5 mm. The detection electrodes were provided at the four apexes of the resistive surrounding electrode 2 and the midpoints of the respective sides, the lead wires were connected, and the detection electrodes were connected to the hardware created as shown in the configuration diagram shown in FIG. However, eight oscillation voltage application circuits 16 are used, and the analog multiplexer 18 capable of processing eight inputs is used so that the CPU 20 can switch the input channel.
When a plurality of buttons having a diameter of 20 mm are displayed in the coordinate input area from the personal computer and the operator's finger or palm touches or approaches the coordinate input area, the CPU 20 calculates the input coordinates by the method of Patent Document 2.
When the operator presses the button, depending on the pressing method, not only the finger but also the palm may be capacitively coupled to the surface resistor. That is, depending on how the button is pressed, there are two capacitive couplings in the coordinate input area, and coordinates that deviate from the position designated by the original finger may be calculated.
In this example, S 1 according to Equation 3 and S 2 according to Equation 5 were used in combination, and the threshold of S 1 was set to ± 0.01 and the threshold of S 2 was set to ± 0.5. If the threshold value is exceeded, it is determined that the coordinates are not accurate, and the operator is given accurate explanations by explaining the points to be noted (why they were not entered and the correct input method) and prompting them again. To be entered.
If it is below the threshold value, it is determined that the coordinates are accurate, and the coordinates are sent to the personal computer by serial communication. When the sent coordinates are within the coordinate area of the button on the display, the personal computer recognizes that the button has been pressed, and performs a function assigned to the button, such as turning on a light. If the sent coordinates are not within the coordinate area of the button, it is not recognized that the button has been pressed.

複数の操作者がランダムに複数箇のボタン領域内を指で押し、どの程度正しく入力されたか評価する為に、認識率(ボタンが押されたと認識された回数/操作者がボタンを押した回数)を計測した。その結果、認識率は80%程度あった。   In order to evaluate how correctly multiple operators randomly pressed the multiple button areas with their fingers and input them correctly, the recognition rate (number of times the button was recognized / number of times the operator pressed the button ) Was measured. As a result, the recognition rate was about 80%.

(実施例2)
座標入力システムの抵抗性周囲電極上にある検出電極は図5のように4つの頂点に検出電極3〜6と、上辺に等間隔で2箇所の検出電極31、32の合計7箇所設置する。このときのCPU20の識別計算式は、検出電極3〜6の計測さされた電流量をそれぞれI、I、I、I、検出電極31、32をそれぞれI、Iとすると数式7と数式8が定義できる。それ以外は実施例1と同じ構成とする。
(Example 2)
As shown in FIG. 5, the detection electrodes on the resistive surrounding electrodes of the coordinate input system are installed in a total of seven locations, that is, detection electrodes 3 to 6 at four vertices and two detection electrodes 31 and 32 at equal intervals on the upper side. The identification calculation formula of the CPU 20 at this time is as follows: the measured current amounts of the detection electrodes 3 to 6 are I A , I B , I C , I D , and the detection electrodes 31 and 32 are I E and I F , respectively. Equations 7 and 8 can be defined. Otherwise, the configuration is the same as that of the first embodiment.

Figure 2010157029
Figure 2010157029

Figure 2010157029
Figure 2010157029

上記の実施例2のシステムを用いて、実施例1と同様の計測を行った。その結果、認識率は座標入力領域の上部に配置されたボタンを押した場合と下部に配置されたボタンを押した場合とで差があり、上部では80%程度、下部では30%程度であった。下部に配置されたボタンを押した場合は、掌の影響を受けて座標がずれた場合でも、S及びSの閾値を満足するため、正確な座標でないと判断されない。一方、パソコンは送られてきた座標がボタンの座標領域の中に入っていないので、ボタンが押されたと認識しない。にもかかわらずメッセージが表示されなかった為、操作者はその状況に気がつかず、何度もボタンを押した結果、認識率が低くなったことが判明した。 The same measurement as in Example 1 was performed using the system in Example 2 described above. As a result, the recognition rate differs between when the button placed at the top of the coordinate input area is pressed and when the button placed at the bottom is pressed, about 80% at the top and about 30% at the bottom. It was. When the button arranged at the lower part is pressed, even if the coordinates are shifted due to the influence of the palm, the thresholds of S 1 and S 2 are satisfied, so that the coordinates are not determined to be accurate. On the other hand, the personal computer does not recognize that the button has been pressed because the coordinates received are not within the coordinate area of the button. However, since the message was not displayed, the operator was unaware of the situation, and it turned out that the recognition rate was low as a result of pressing the button many times.

(実施例3)
座標入力システムの抵抗性周囲電極上にある検出電極は4つの頂点だけとし、またCPU20の識別計算は数式2のみとする。それ以外は実施例1と同じ構成とする。
上記の比較例1のシステムを用いて、実施例1と同様の計測を行った。その結果、認識率はボタンの配置された位置によって差があり、70%〜30%程度であった。これは、数式2によるSだけの識別では2点の位置関係、つまり手と掌の位置関係がY軸に対して平行又は、X軸に対して平行な位置の場合は、Sの値が0に近い値になってしまい、静電容量結合が1箇所の場合と2箇所の場合とが識別しにくい状態になるためである。
(Example 3)
Only four vertices are detected on the resistive peripheral electrode of the coordinate input system, and the identification calculation of the CPU 20 is only Expression 2. Otherwise, the configuration is the same as that of the first embodiment.
Using the system of Comparative Example 1 above, the same measurement as in Example 1 was performed. As a result, the recognition rate varies depending on the position where the buttons are arranged, and is about 70% to 30%. This positional relationship between the two points in the identification of only S 1 by Equation 2, i.e. parallel positional relationship of the hand and the palm is the Y-axis or, in the case of position parallel to the X axis, the S 1 value This is because it becomes a value close to 0, and it is difficult to distinguish between the case of one capacitive coupling and the case of two capacitive couplings.

(比較例1)
座標入力システムの抵抗性周囲電極上にある検出電極は4つの頂点だけとし、またCPU20は識別計算を行わずに入力座標をパソコンに送る。それ以外は実施例1と同じ構成とする。
上記の比較例1のシステムを用いて、実施例1と同様の計測を行った。その結果、認識率は20%程度あった。これは、実施例2の下部に配置しているボタンと同じで、掌の影響を受けて座標がずれた場合でも、正確な座標でないと判断されなかった為、操作者は何度もボタンを押した結果、認識率が低くなったことが判明した。また、操作者が指示したボタンと違うボタンが反応したなどのトラブルも起こった。
(Comparative Example 1)
The detection electrodes on the resistive surrounding electrodes of the coordinate input system have only four vertices, and the CPU 20 sends the input coordinates to the personal computer without performing identification calculation. Otherwise, the configuration is the same as that of the first embodiment.
Using the system of Comparative Example 1 above, the same measurement as in Example 1 was performed. As a result, the recognition rate was about 20%. This is the same as the button arranged at the bottom of the second embodiment. Even when the coordinates are shifted due to the influence of the palm, it is not determined that the coordinates are accurate, so the operator repeatedly presses the button. As a result, it was found that the recognition rate was low. In addition, troubles such as the response of a button different from the button indicated by the operator occurred.

(比較例2)
座標入力システムの抵抗性周囲電極上にある検出電極は4つの頂点だけとし、またCPU20は識別計算を行わずに入力座標をパソコンに送る。かつ、面抵抗体1上の保護層は設けないものとする。それ以外は実施例1と同じ構成とする。
上記の比較例1のシステムを用いて、実施例1と同様の計測を行った。その結果、認識率は最初のうちは90%程度あったが、徐々に下がり続けて10%程度まで下がった。これは、使用中に面抵抗体1上のITO膜の指の触れた部分が傷ついてしまい、その周囲で均一な面抵抗体にならなくなり、その部分の座標が正確に検知できてなかったことが判明した。
(Comparative Example 2)
The detection electrodes on the resistive surrounding electrodes of the coordinate input system have only four vertices, and the CPU 20 sends the input coordinates to the personal computer without performing identification calculation. And the protective layer on the surface resistor 1 shall not be provided. Otherwise, the configuration is the same as that of the first embodiment.
Using the system of Comparative Example 1 above, the same measurement as in Example 1 was performed. As a result, the recognition rate was about 90% at first, but continued to fall gradually to about 10%. This is because the portion of the ITO film on the surface resistor 1 touched by the finger was damaged during use, and the surface resistor did not become a uniform surface resistor, and the coordinates of that portion could not be detected accurately. There was found.

実施例1のシステムは、座標入力領域全域で認識率も耐久性も良いシステムであり、ボタンが上部にしか配置されない場合は実施例2のシステム、ボタンの配置位置によっては実施例3のシステムでも認識率も耐久性も良いシステムといえる。
それに比較して、比較例1のシステムは、耐久性は良いものの認識率が悪く、また違うボタンが押されるなどの誤検出が発生したシステムであり、比較例2のシステムは、認識率は良いものの、耐久性が悪いシステムである。以上のことから、本発明は有効であることが確認された。
The system according to the first embodiment is a system that has good recognition rate and durability over the entire coordinate input area. If the buttons are arranged only on the upper part, the system according to the second embodiment may be used. It can be said that the system has good recognition rate and durability.
In comparison, the system of Comparative Example 1 is a system that has good durability but a low recognition rate, and has a false detection such as pressing a different button. The system of Comparative Example 2 has a good recognition rate. However, it is a system with poor durability. From the above, it was confirmed that the present invention is effective.

座標入力システムの一例を示す構成図Configuration diagram showing an example of a coordinate input system 検出電極が8点の場合の設置位置の一例を示す構成図Configuration diagram showing an example of installation positions when there are 8 detection electrodes 電流の流入点の位置と辺上の検出電極の電流量の検出量を示す図The figure which shows the amount of detection of the amount of current of the detection electrode on the side and the position of the current inflow point 検出電極が12点の場合の設置位置の一例を示す構成図The block diagram which shows an example of the installation position in case a detection electrode is 12 points | pieces 実施例2の検出電極の位置を示す図The figure which shows the position of the detection electrode of Example 2.

符号の説明Explanation of symbols

1 面抵抗体
2 抵抗性周囲電極
3、4、5、6 検出電極
7 指
8、9、10、11 引き出し線
12 座標入力領域
15 アナログ信号処理部
16 振動電圧印加回路
17 振動電圧発生器
18 アナログマルチプレクサ
19 A/Dコンバータ
20 CPU
21、22、23、24 検出電極
31、32、33、34、35、36、37、38 検出電極
41、42、43、44、45 電流の流入点
DESCRIPTION OF SYMBOLS 1 Surface resistor 2 Resistive surrounding electrode 3, 4, 5, 6 Detection electrode 7 Finger 8, 9, 10, 11 Lead line 12 Coordinate input area 15 Analog signal processing part 16 Vibration voltage application circuit 17 Vibration voltage generator 18 Analog Multiplexer 19 A / D converter 20 CPU
21, 22, 23, 24 Detection electrode 31, 32, 33, 34, 35, 36, 37, 38 Detection electrode 41, 42, 43, 44, 45 Current inflow point

Claims (1)

絶縁基材に形成された面抵抗体の周囲又は内部に各辺の長さあたりの抵抗値は各辺内で一定となる長方形の抵抗性周囲電極を、全ての辺が前記面抵抗体と電気的に接触する様に設けると共に、該抵抗性周囲電極の内部を座標入力領域とする座標入力システムであって、前記座標入力領域を指などの導体で接触又は近接したときに、前記抵抗性周囲電極の少なくとも全ての頂点に流れる電流を計測する検出電極と、該検出電極が計測する電流値から前記導体で接触又は近接した前記座標入力領域の位置を計算する座標計算手段と、前記検出電極が計測する電流値から前記座標入力領域を前記導体で接触又は近接した箇所が1箇所か2箇所かを識別する識別計算手段を有することを特徴とする座標入力システム。 A rectangular resistive surrounding electrode in which the resistance value per length of each side is constant within each side around or inside the surface resistor formed on the insulating substrate, and all sides are electrically connected to the above-mentioned surface resistor. A coordinate input system in which the inside of the resistive surrounding electrode is a coordinate input area, and the resistive surrounding when the coordinate input area is in contact with or close to a conductor such as a finger. A detection electrode for measuring a current flowing through at least all the vertices of the electrode; a coordinate calculation means for calculating a position of the coordinate input area in contact with or close to the conductor from a current value measured by the detection electrode; and A coordinate input system comprising: an identification calculation means for identifying whether the coordinate input area is in contact with or close to the coordinate input area with the conductor from one or two positions based on a measured current value.
JP2008333776A 2008-12-26 2008-12-26 Coordinate input system Expired - Fee Related JP5262703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333776A JP5262703B2 (en) 2008-12-26 2008-12-26 Coordinate input system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333776A JP5262703B2 (en) 2008-12-26 2008-12-26 Coordinate input system

Publications (2)

Publication Number Publication Date
JP2010157029A true JP2010157029A (en) 2010-07-15
JP5262703B2 JP5262703B2 (en) 2013-08-14

Family

ID=42574937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333776A Expired - Fee Related JP5262703B2 (en) 2008-12-26 2008-12-26 Coordinate input system

Country Status (1)

Country Link
JP (1) JP5262703B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153609A1 (en) * 2012-04-09 2013-10-17 株式会社JJtech Location detection device and method for controlling same, and system comprising same
JP2013250642A (en) * 2012-05-30 2013-12-12 Disco Abrasive Syst Ltd Position detection device and its control method and its system
JP2015143967A (en) * 2013-12-24 2015-08-06 Nltテクノロジー株式会社 Touch sensor apparatus, electronic device, and touch gesture detection program
US9882560B2 (en) 2012-04-23 2018-01-30 Fujitsu Component Limited Touch panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083251A (en) * 1996-09-06 1998-03-31 Fujitsu Takamizawa Component Kk Coordinate detecting device
JP2000250710A (en) * 1999-02-26 2000-09-14 Pentel Corp Touch panel device
JP2001043002A (en) * 1999-07-30 2001-02-16 Pentel Corp Diagonal type coordinate detecting device
JP2005505065A (en) * 2001-10-03 2005-02-17 スリーエム イノベイティブ プロパティズ カンパニー Touch panel system and method for distinguishing between multiple touch inputs
JP2006026167A (en) * 2004-07-16 2006-02-02 Aruze Corp Game machine and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083251A (en) * 1996-09-06 1998-03-31 Fujitsu Takamizawa Component Kk Coordinate detecting device
JP2000250710A (en) * 1999-02-26 2000-09-14 Pentel Corp Touch panel device
JP2001043002A (en) * 1999-07-30 2001-02-16 Pentel Corp Diagonal type coordinate detecting device
JP2005505065A (en) * 2001-10-03 2005-02-17 スリーエム イノベイティブ プロパティズ カンパニー Touch panel system and method for distinguishing between multiple touch inputs
JP2006026167A (en) * 2004-07-16 2006-02-02 Aruze Corp Game machine and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153609A1 (en) * 2012-04-09 2013-10-17 株式会社JJtech Location detection device and method for controlling same, and system comprising same
US9882560B2 (en) 2012-04-23 2018-01-30 Fujitsu Component Limited Touch panel
JP2013250642A (en) * 2012-05-30 2013-12-12 Disco Abrasive Syst Ltd Position detection device and its control method and its system
JP2015143967A (en) * 2013-12-24 2015-08-06 Nltテクノロジー株式会社 Touch sensor apparatus, electronic device, and touch gesture detection program
US9904464B2 (en) 2013-12-24 2018-02-27 Nlt Technologies, Ltd. Touch sensor device and electronic device

Also Published As

Publication number Publication date
JP5262703B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
KR101077854B1 (en) Method and apparatus for sensing multiple touch-inputs
JP5554517B2 (en) Touch panel position detection method and touch panel device
US7355592B2 (en) Digital resistive type touch panel and fabrication method thereof
EP2638458B1 (en) Touch device for determining real coordinates of multiple touch points and method thereof
US6970160B2 (en) Lattice touch-sensing system
JP5345336B2 (en) Input device and display device including the same
KR101085776B1 (en) Touch panel and device for recognizing input using the touch panel
CN104798009B (en) System and method for determining user&#39;s input type
JP6369805B2 (en) Touch sensor device, electronic device, and touch gesture detection program
US8981242B2 (en) Inductive touch sensor and detecting method
JP2010055612A (en) Multi-point touch-sensitive system
JP2010055613A (en) Operation method for multi-point touch-sensitive system
JP2010272143A (en) Dural sensor touch screen using projective-capacitive sensor and pressure-sensitive touch sensor
TWI597641B (en) Conductor pattern structure of capacitive touch panel and construction method thereof
US20130222337A1 (en) Terminal and method for detecting a touch position
US20110227870A1 (en) Touch screen system and method for obtaining coordinate thereof
JP5262703B2 (en) Coordinate input system
JP2014095968A (en) Touch panel device
US20130063397A1 (en) Touch panel with unbalanced conductive patterns, and touch-controlled apparatus and method for determining multi-touch thereof
TWI484395B (en) Self-capacitive touch panel
JP2994155B2 (en) Resistive tablet
TWI470521B (en) Self-capacitive touch control apparatus and control method thereof
CN108985019B (en) Touch control human-computer interface device and operation method thereof
WO2014002315A1 (en) Operation device
JP7221501B1 (en) Coordinate calculation device, touch panel, and coordinate calculation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5262703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees