WO2013153609A1 - Location detection device and method for controlling same, and system comprising same - Google Patents

Location detection device and method for controlling same, and system comprising same Download PDF

Info

Publication number
WO2013153609A1
WO2013153609A1 PCT/JP2012/059722 JP2012059722W WO2013153609A1 WO 2013153609 A1 WO2013153609 A1 WO 2013153609A1 JP 2012059722 W JP2012059722 W JP 2012059722W WO 2013153609 A1 WO2013153609 A1 WO 2013153609A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
nodes
position detection
axis
Prior art date
Application number
PCT/JP2012/059722
Other languages
French (fr)
Japanese (ja)
Inventor
大塚寛治
秋山豊
佐藤陽一
目黒弘一
Original Assignee
株式会社JJtech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社JJtech filed Critical 株式会社JJtech
Priority to PCT/JP2012/059722 priority Critical patent/WO2013153609A1/en
Priority to JP2014509926A priority patent/JP5776917B2/en
Publication of WO2013153609A1 publication Critical patent/WO2013153609A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0444Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single conductive element covering the whole sensing surface, e.g. by sensing the electrical current flowing at the corners

Definitions

  • the present invention relates to an electrostatic capacitance type position detection device, for example, an apparatus for extracting coordinates by contact or non-contact of an object (for example, a finger) to a panel, a control method system thereof, and a system thereof.
  • an object for example, a finger
  • devices for extracting the coordinates are collectively referred to as a “touch panel”, which includes the extraction of coordinates by non-contact means.
  • touch panels have been used as input interfaces for mobile devices such as smartphones, liquid crystal display devices, electronic boards, and the like.
  • a capacitive type (surface-capacitive) type and a resistive film type are known.
  • the electrostatic capacity type method coats a transparent conductive film on the surface of a transparent substrate such as glass or plastic, and forms a capacitance (capacitor) by touching the transparent substrate with a finger. The position (coordinates) is detected by detecting the amount of change in the weak current passed through.
  • the capacitive type method does not require a two-layer conductive film unlike the resistive film type, and can be composed of a single glass substrate on which a transparent conductive film is formed. It has the advantage of low score and high transmittance.
  • a liquid crystal module having a capacitively coupled touch panel function is configured by sandwiching liquid crystal between the first substrate and the second substrate and forming a transparent conductive film on the surface of the second substrate.
  • Patent Documents 1 and 2 In this touch panel, when a pulse voltage is applied to the four nodes at each corner of the transparent conductive film and the finger is touched, the voltage waveform appearing at the node at each corner varies depending on the finger contact position. A waveform is obtained, and the contact position (coordinate position) is detected based on these voltage waveforms.
  • Patent Document 4 discloses a memory-logic conjugate system (MLCS).
  • the MLCS is, for example, a system in which a plurality of cluster memory chips each including a cluster memory in which basic cells having memory circuits are arranged in a cluster are three-dimensionally stacked, and each of the plurality of cluster memory chips has a through via. Is provided, and the arbitrary basic cell is switched to the logic circuit by directly accessing the arbitrary basic cell through the multi-bus including the through via and writing the truth value data.
  • Patent Documents 1 to 4 JP 2008-134522 A JP 2009-1116090 A JP 2009-015492 A JP 2010-015328 A (US Patent Publication No. 2011-0255323)
  • each of Patent Documents 1 to 4 is incorporated in the present invention, and the contents disclosed by each of Patent Documents 1 to 4 are disclosed in the present specification. Part.
  • the present invention relates to a capacitance type position detection apparatus capable of accurately (highly) detecting a position where an object is in contact with a substrate or a position where an object is close to a substrate without contact, and its control.
  • a method (position detection method) and a system including a position detection device are desired.
  • the position detection device is connected to at least two points on the conductive film, the insulating film formed on the conductive film, and at least one of the X axis and the Y axis of the conductive film.
  • First and second nodes a first circuit (application circuit) for applying a clock signal to the first and second nodes, and first and second nodes obtained from the first and second nodes, respectively.
  • a second circuit extraction circuit that generates a first differential signal indicating a voltage difference between the second output signals, and at least one of the objects approaching or contacting the insulating film based on the first differential signal
  • a third circuit deriving the coordinate position of one of the axes.
  • the position detection method of the present invention applies a common clock signal to the first and second nodes on the X axis of the conductive film and the third and fourth nodes on the Y axis of the conductive film, Generating a first difference signal indicating a difference voltage between the first and second nodes on the axis, generating a second difference signal indicating a difference voltage between the third and fourth nodes on the Y axis, and Based on the first and second difference signals, the coordinates of the position at which the object approaches or contacts the XY plane of the insulating film formed on the conductive film is derived.
  • the position where the object approaches or contacts the XY plane of the insulating film formed on the conductive film by generating the differential signal indicating the voltage difference between the plurality of signals respectively corresponding to the plurality of nodes. Can be detected accurately and at high speed.
  • FIG. 1A is a cross-sectional view illustrating the configuration of the substrate of the touch panel
  • FIG. 1B is a diagram illustrating the overall configuration of the touch panel of this embodiment. It is a figure explaining the differential voltage between the nodes of the touch panel which concerns on the Example of this invention. It is a figure explaining the measurement principle of the differential voltage between the nodes A and B of a touch panel. It is a figure explaining the measurement principle of the differential voltage between nodes A and B of a touch panel, and the differential voltage between nodes A and D. It is the simulation waveform of the differential voltage seen from nodes A and B and nodes A and D. 6A shows the sensitivity characteristics of the differential voltages of the nodes A and B, and FIG.
  • FIG. 6B shows the sensitivity characteristics of the differential voltages of the nodes A and D. It is a block diagram which shows the structure of the positional information extraction part of the touchscreen which concerns on the Example of this invention. It is a figure which shows the circuit structural example of the positional information extraction part shown in FIG. It is a block diagram which shows the structural example of the position detection part of the Example of this invention. It is a figure explaining the detection method of the rough coordinate area
  • FIG. 4 is a flow of a touch detection algorithm according to an embodiment of the present invention. It is a figure which shows the measurement result of the hovering touch by the Example of this invention.
  • FIG. 1A is a cross-sectional view illustrating a schematic configuration of a substrate included in a capacitive touch panel according to the present embodiment.
  • the touch panel 10 includes a transparent substrate 12 made of glass, plastic, or other material, and a transparent conductive film 14 made of ITO (Indium Tin Oxide) or other material formed on the entire surface of the substrate 12.
  • the conductive film 14 may be covered with a thin sheet-like transparent insulating protective film 16, such as a polyester sheet.
  • the touch panel 10 is modularized or integrated with a display display (for example, a liquid crystal panel, an organic electroluminescence panel, or an electronic board) to constitute a display device having an input function.
  • the substrate 12 is configured to transmit image information generated by a liquid crystal panel or the like.
  • the “touch panel” is not limited to the case where the object touches the panel (touching), and includes a case where the object and the panel do not contact each other through a predetermined distance.
  • An example of non-contact includes a case where an object (for example, a finger) moves while hovering over the panel.
  • the substrate 12 may be rigid or flexible. That is, the touch panel 10 may be rigid or flexible corresponding to the composition characteristics of the display. Furthermore, when the touch panel 10 is integrated with a display, the substrate 12 as the touch panel 10 may be omitted.
  • FIG. 1B is a diagram showing an overall schematic configuration of the touch panel 10.
  • Nodes A, B, C, and D are formed at the X-axis and Y-axis corners on the conductive film 14, and the nodes A to D are connected to the common node N of the reference potential generation circuit 20 through the resistor R0.
  • the reference potential generation circuit 20 preferably generates a reference pulse signal having a constant frequency, for example, 1 MHz, and may further add a constant DC bias to the reference pulse signal.
  • the reference clock signals having the same phase and the same potential are simultaneously supplied to the nodes A, B, C, and D through the resistor R0.
  • a capacitive touch panel when a finger comes into contact with the conductive film 14 or approaches the conductive film 14 through the protective film 16 (hereinafter referred to as contact including such approach), the contact position P
  • the electrostatic capacitance Cs is formed (see FIG. 1B), and a weak current flows from the nodes A to D to the contact position P. Since the resistors Ra and Rb are formed according to the distance from the node A to the contact position P and the distance from the node B to the contact position P, each of the nodes A to D is determined by the time constant of the resistance and the capacitance. A current having a voltage waveform flows.
  • the position information extraction unit 30 extracts a differential voltage between the nodes A and B on the X axis, as will be described later. In addition, a process for extracting a differential voltage between the nodes A and D on the Y axis is performed.
  • the information extracted by the position information extraction unit 30 is provided to the position detection unit 40, and position detection for specifying the contact position P is performed based on the extracted position information.
  • the position information detection unit 30 and the position detection unit 40 may be configured in any form, and may be configured using hardware, software, or both hardware and software.
  • the position information detection unit 30 is configured by a circuit or the like that processes an analog signal
  • the position detection unit 40 is configured by a circuit or software that processes a digital signal.
  • the output of the position detection unit 40 is provided to a display device or a system that controls the display device.
  • two nodes A and B on the X axis and two nodes A and D on the Y axis are differential signals.
  • the contact position is detected using.
  • the nodes A and B on the X axis are connected to the resistors Ra and Rb and the capacitance Cxy as shown in FIG.
  • the voltage signals Va and Vb determined by the time constant are generated.
  • V A ⁇ V B is the difference between the voltage signals Va and Vb, and the peak value of the difference between the voltage signals Va and Vb is illustrated in the example in the figure.
  • the voltage signals Va and Vd determined by the time constants of the resistors Ra and Rd are generated in the nodes A and D on the Y axis, and the differential voltages of the voltages Va and Vd are extracted. .
  • FIG. 3 is a diagram for explaining the principle of differential voltage measurement. If the contact position P is close to the node A and away from the node B with respect to the nodes A, B, C, and D, the resistance between the contact position P and the node A is small. The influence of the contact position P appears strongly (the voltage drop is large), and conversely, the influence of the contact position P appears weakly at the node B because the resistance between the contact position P and the node B is large (the voltage drop is small). ). Therefore, when the voltage change from the node A to the node B is seen, a positive voltage change can be observed.
  • the voltage between the nodes A and B is a difference between the distance a and the distance b from the nodes A and B to the contact position P as a voltage difference. Further, since the voltage difference between the two points is observed, the GND fluctuation and the common mode noise are removed, and the difference voltage becomes 0 V at the point where the distance to the contact position P is equal, that is, on the center line.
  • a differential voltage measurement model between two nodes when a clock signal is simultaneously applied to the four nodes A, B, C, and D of the touch panel via the resistor R0 will be examined.
  • P is a contact position
  • a, b, c, and d are distances from the contact position P to each node.
  • the voltages appearing at the terminals are V (A), V (B), V (C), and V (D).
  • V BA V (B) -V (A)
  • V AB V (A) -V (B)
  • V CA V (C) ⁇ V (A)
  • V AC V (A) ⁇ V (C)
  • V DA V (D) ⁇ V (A)
  • V AD V (A) ⁇ V (D)
  • V CB V (C) ⁇ V (B)
  • V BC V (B) ⁇ V (C)
  • V DB V (D) ⁇ V (B)
  • V BD V (B) ⁇ V (D)
  • V DC V (D) ⁇ V (C)
  • V CD V (C) ⁇ V (D)
  • V BA ⁇ V AB
  • V CA ⁇ V AC
  • V DA ⁇ V AD
  • V CB ⁇ V BC
  • V DB ⁇ V BD
  • V DC ⁇ V CD
  • V CB V CA ⁇ V BA
  • V DB V DA ⁇ V BA
  • V DC V DA ⁇ V CA
  • FIG. 5 shows a simulation waveform of the differential voltage viewed from the nodes AB and AD.
  • the distance from node D to (2, 30) is equal to the distance from node B to (30, 2).
  • the voltage difference occurs because the distances to the node A are different. The greater the distance to the node A, the smaller the influence of the node A and the larger the signal amount.
  • the position detection algorithm using differential measurement is organized as follows. Reference pulse signals are simultaneously input to the four nodes A to D, and among them, the differential output between the two nodes of the X axis and the Y axis is measured. In order to measure the differential voltage, the maximum value is obtained by the magnitude relation between the resistance drawn between the two nodes and the resistance drawn. The strobe time of the maximum value of the difference voltage is different, and the maximum value has good detection sensitivity, and this is extracted.
  • the two-point measured values of the nodes A and B on the X axis and the nodes C and D, and the two-point measured values of the nodes A and D on the Y axis and the nodes B and C are used. It is desirable to cancel noise.
  • the sampling interval is set at a level of 0.01 s, and noise cancellation is performed from two-point measurement and two-time measurement on the time axis.
  • FIG. 7 is a block diagram showing a preferred configuration of the position information extraction unit.
  • the position information extraction unit 30 receives the output signals of the four nodes A to D, and selects the output signal of the two nodes selected by the selector 100 and the selector 100 that selects two output signals from among the output signals.
  • Dynamic amplifier 102 Dynamic amplifier 102, filter 104 for removing noise of the differential signal output from differential amplifier 102, peak value hold circuit 106 for extracting the peak value of the differential signal from which noise has been removed, and peak hold circuit 106
  • An A / D converter 108 that performs analog / digital conversion of the output signal, a third circuit (detection circuit) 110 that detects that a finger has been touched in response to a current flowing through each node, A flip-flop circuit 112 that switches the selection by the selector 100 when contact is detected by the circuit 3 (detection circuit) 110, and a reference voltage It receives the reference clock signal from the generating circuit 20, configured to include a supply controller 114 to each part of the various clock signals via the signal bus BUS.
  • the third circuit (detection circuit) 110 detects the presence or absence of a finger touch at a timing synchronized with the rising edge of the clock signal supplied from the controller 114. When the contact of the finger is detected, the third circuit (detection circuit) 110 supplies an enable signal to the flip-flop circuit 112 to make the flip-flop circuit 112 operable.
  • the controller 114 supplies a clock signal having a constant frequency to the flip-flop circuit 112 via the signal bus BUS, and the flip-flop circuit 112 is a signal that holds the detection state of the third circuit (detection circuit) in response to the clock signal. Is output to the selector 100.
  • the controller 114 also outputs a switching clock signal corresponding to the selected state to the selector 100 in response to the clock signal.
  • the selector 100 selects an output signal of a pair of nodes according to the selection state. For example, in the first selection state, the output signals of the nodes A and B on the X axis are selected, in the next state, the output signals of the nodes A and D on the Y axis are selected, and so on. These output combinations are repeated by selecting the correct output signal.
  • the selection cycle is appropriately selected according to the frequency of the clock signal from the controller 114.
  • the finger contact time is typically about 0.1 seconds, so that the selector 100 is at least 100 times in the meantime. It is possible to sample about a certain number of nodes.
  • the differential amplifier 102 extracts a difference voltage signal between the output signals of the two nodes (A and B or A and D) selected by the selector 100.
  • the filter 104 is preferably configured using a low-pass filter, and removes high frequency component noise superimposed on the differential voltage signal.
  • the peak value hold circuit 106 holds the peak value of the differential voltage signal during the period from the rising edge to the falling edge of the clock.
  • the A / D converter 108 receives the peak value of the difference voltage held by the peak value hold circuit 106, converts it into a digital value having a predetermined number of bits, and provides it to the position detection unit 40.
  • the position detection unit 40 detects the contact position by processing the received digital signal as described later.
  • FIG. 8 shows a specific circuit configuration of the position information extraction unit 30 shown in FIG.
  • the position information extraction unit 30 includes a differential amplifier 120, a noise filter 130, an absolute value amplifier 140, and a peak value hold circuit 150.
  • the A / D converter is not shown.
  • the differential amplifier circuit 120 receives the output signals from the two nodes selected by the selector 100, indicates the differential voltage, and outputs the differential signal.
  • the differential amplifier circuit 120 is configured using, for example, AD620 manufactured by Analog Devices.
  • the noise filter 130 receives the differential signal from the differential amplifier 120 and removes high-frequency component noise superimposed thereon.
  • the noise filter 130 is configured using, for example, a low-pass filter of LTC1063 manufactured by Linear Technology.
  • the absolute value amplifier 140 includes two operational amplifiers 140A and 140B that function as a normal amplifier or an inverting amplifier according to the polarity of the input signal.
  • the two operational amplifiers When the input voltage of the output signal VOUT from the noise filter 140 is positive, the two operational amplifiers function as normal amplifiers that amplify the input signal, and when the input voltage is negative, the two operational amplifiers are input. Functions as an inverting amplifier that inverts the signal.
  • the differential signal (differential voltage) has a positive or negative sensitivity characteristic depending on the contact position P, but the differential signal passes through the absolute value amplifier 140. By doing so, all signals are converted to a positive voltage signal.
  • the peak value hold circuit 150 is charged to the comparator 150A for inputting the output signal from the absolute value amplifier 140 and the negative feedback reference voltage of the operational amplifier 150B, the diode D connected to the output of the comparator 150A, the capacitor C, and the capacitor. And a reset circuit that discharges the charged charges.
  • the comparator 150A supplies a power supply potential when the output signal from the absolute value amplifier 140 is higher than the reference voltage, so that the capacitor is charged via the diode D1.
  • the comparator 150A supplies a negative power supply potential, so that the current is cut off by the diode D, and thus the peak voltage is held by the capacitor C.
  • the reset circuit includes a transistor Tr and an FET, and a reset pulse signal is applied to the base of the transistor Tr.
  • the pulse width of the reset pulse signal is smaller than 10 ⁇ S.
  • the transistor Tr is turned on, and the FET is turned on, so that the capacitor C is discharged.
  • the peak value held by the peak value hold circuit 150 is provided to the A / D converter. Note that the circuit shown in FIG. 8 is an example, and other configurations may be used.
  • the position detection unit 40 shown in FIG. 1 (B) determines one-point contact (single touch) or multiple points contact (multi-touch) based on the data extracted by the position information extraction unit 30, and displays the determination result. Coordinate information corresponding to the detected contact position is output.
  • FIG. 9 shows a preferred configuration example of the position detection unit 40.
  • the position detection unit 40 receives the position information extracted by the position information extraction unit 30 or outputs the coordinate information of the detected contact position, and an input / output unit (I / O) 200 for performing position detection.
  • a program memory 210 storing various programs
  • a data memory 220 storing various data such as a look-up table for position detection
  • a central processing unit 230 performing various arithmetic processes by executing the programs It is comprised including.
  • a position detection method for one-point contact will be described.
  • a method for specifying the coarsest coordinate region is sign determination.
  • the differential voltage between nodes AB, CD, AD, and CB is measured, the differential voltage varies depending on the contact position. The sign polarity is different.
  • between AB is a differential voltage based on node A. If this property is used, it can be determined from the two measurement data between AB and AD that the contact position is in one quadrant, two quadrants, three quadrants or four quadrants as shown in FIG. Can be determined.
  • Each quadrant is an area with the center line of the X axis and Y axis of the touch panel as a boundary.
  • the signs of the differential voltages V BA and V DA are both positive in the first quadrant
  • the differential voltage V BA is negative and the V DA is positive in the second quadrant
  • the differential voltages V BA and V DA are positive in the third quadrant.
  • the signs of voltages V BA and V DA are both negative, and in four quadrants, differential voltage V BA is positive and V DA is negative.
  • the position detection unit 40 is based on the fact that the contact position belongs to one of the quadrants 1 to 4 based on the differential signals obtained from the two differential voltages V BA and V DA. To detect.
  • the position detection unit 40 detects a contact position with higher accuracy by referring to a lookup table.
  • the sign of the signal amount is all positive and the signal amount also shows the maximum value. Due to the symmetry of the substrate, if the reference is shifted to a region where the contact position is, the signal amount always becomes a positive value and the signal amount is also maximized. Further, by utilizing this property, the profile to be prepared (capacity of the lookup table LUT) may be prepared in 1/4 of the area of the entire touch panel, that is, in one quadrant.
  • the resolution of the coordinate specification area is limited by the touch area of the finger, and the number of coordinate points must be determined according to the size of the panel. Therefore, here, a touch panel having a 65 ⁇ 65 seat that can be handled even when a considerably large panel is considered is assumed. In this case, since the size of the coordinate profile necessary for specifying the coordinate area is only a quarter area as described above, the coordinate area is 33 ⁇ 33 as shown in FIG.
  • the coordinate area is treated as an 8-coordinate interval, and (1) the coordinate value of the coordinates (00, 16) and the extracted position data (extracted by the position information extraction unit) are the same as in the code determination method. The relationship is compared, and then (2) the size relationship between the coordinate value of the coordinate (16,000) and the extracted position data is compared.
  • the look-up table stores coordinate values at predetermined coordinates, and the coordinate values are values corresponding to the signal amount of the differential voltage at the coordinates. If both of the above determinations (1) and (2) have large extraction position data, the area indicated by the circle shown in FIG. 11 is obtained.
  • FIG. 11 shows an example in which the coordinate values (21, 29) are finally calculated.
  • FIG. 12A consider an 8 ⁇ 8 region that can be represented by 9 ⁇ 9 lattice points.
  • the grid required for comparison is represented by black circles and white circles. Black circles are data used for comparison in the Y direction, and white circles are data used for comparison in the X direction. When all of these are combined into one, it is as shown in FIG. 12B, and can be expressed by 8 ⁇ 8 by the number of these data.
  • the data required for the area comparison represented by the 33 ⁇ 33 grid points that are 1/4 of 65 ⁇ 65 only needs to be able to represent 32 ⁇ 32 grid points, and requires a 2 5 ⁇ 25 , 10-bit address space. It becomes.
  • the address bits are configured such that the X address has 5 bits and the Y address has 5 bits.
  • the distinction between the four areas of the first quadrant to the fourth quadrant is managed using a register.
  • the address setting when specifying a coarse coordinate area of 8 ⁇ 8 is as shown in FIG.
  • xxx is an arbitrary numerical value.
  • the detailed coordinate area is set to x from the left of the 0 part of the XY address.
  • the signal change value is in the range of ⁇ 2V to 2V. If the resolution is set to 1 mV and the accuracy is set to about 2 mV, 4K resolution is required, and the number of bits of the A / D converter is 12 bits.
  • the position detection of the multipoint contact can be obtained from the superposition of the single point contacts.
  • the signal amount is a value viewed from the node AB.
  • the signal amount is increased.
  • the magnitude of the signal amount is not doubled and is about 1.3 to 1.8 at the time of one-point contact.
  • the signal voltage is almost determined by a1.
  • the contact point T2 moves away from the contact point T1
  • the distance a2 increases, the signal amount due to a2 decreases, and the signal amount decreases as the contact point T2 moves.
  • the amount of signal increases.
  • This change in the signal amount becomes a value corresponding to the moving distance between the two points.
  • the two-point contact has a relatively high sensitivity because the amount of signal increases as the capacitance increases due to the contact.
  • the sensitivity of the X-axis node AB decreases, it can be detected because the Y-axis node AD complements it.
  • FIG. 15 shows differential voltage waveforms when three positions in the X-axis direction, that is, a touch between 66-12, a touch between 68-14, and a touch between 70-16 are touched.
  • FIG. 16 shows differential signal waveforms at three positions in the Y-axis direction, that is, when touching between 65-71, touching between 38-44, and touching between 11-17.
  • the distance between the two touch points is the same distance in all measurements, and the number on the coordinate axis indicates a value in the vicinity thereof.
  • the signal level is higher than that in the case of one-point touch, but a signal waveform having the same sensitivity characteristic as that of the one-point touch appears.
  • the peak position of this signal waveform is the ratio of the signal amount that increases when the touch capacitance is almost doubled to the average value of the peak position of the one-point touch that touches the points 66 and 12. It is equal to the product of the two and is represented by the center coordinates of 66 and 12 in the coordinate position. In this way, the two-point touch positioned in the horizontal direction between AB and AD is viewed as a one-point touch positioned almost at the center of the two points in terms of coordinates.
  • a positive value is indicated
  • a negative value is indicated.
  • FIG. 20 shows the detection result when the coordinates between two points near the corner are moved.
  • the distance on the Y axis is changed while the X axis is the same coordinate between the two points near the corner of the node A (the distance between the two points is 27, 81, 135). Only in this case, as described above, it can be seen that the level of the differential signal increases as the moving distance increases.
  • the position detection unit 40 compares the voltage level of the differential signal with the first threshold value, and determines that it is a two-point contact when it is greater than the first threshold value.
  • the first threshold value is set in advance to a value larger than the voltage level that would be obtained at the time of one-point contact. Further, the position detection unit 40 prepares a look-up table as in the case of one-point contact, and by referring to this, it is possible to obtain the two contact positions and the unevenness of the differential signal level. Furthermore, the position detection unit 40 can detect that the two-point contact is moving due to a change in the level of the differential signal. The change in the level of the differential signal can be determined from the amount of change in the sampled peak value.
  • the position detection method at the time of three-point contact will be described. Even in the case of three-point contact, the principle is basically the same as in the case of two-point contact, and it is detected that the capacitance increases and the level of the differential signal increases when the three-point contact is made. .
  • the position information extracted from the position information extraction unit 30 represents a one-point contact that becomes the center of gravity of the triangle formed by the three contact points.
  • 3 point contact is a combination of 1A and 2A contact, then 3A 1 point contact (Method A), or 1B and 2B contact, then 3B 1 point contact. It can be seen as the combination to be performed (Method B).
  • FIG. 22 shows a measurement result when the three-point contact shown in FIG. 21 is operated by the A method. It can be seen that the three-point touch has a higher voltage level than the one-point touch and the two-point touch.
  • FIG. 23 shows a measurement result when the three-point contact is operated by the B method. Also in this case, it is understood that the voltage level is higher in the three-point touch than in the one-point touch and the two-point touch.
  • the position detection unit 40 compares the voltage level of the differential signal with the second threshold value, and determines that it is a two-point contact when it is greater than the second threshold value.
  • the second threshold value is preset to a value that is greater than the voltage level that would be obtained during a two-point contact. Further, the position detection unit 40 prepares a lookup table as in the case of one-point contact, and can obtain the position of three-point contact by referring to this.
  • the resistance R on the diagonal line of the conductive film 14 of the touch panel is constant, for example, 6 to 7 k ⁇ .
  • the voltage waveform of the differential voltage V AB when the load resistance R0 is 1 k ⁇ , 3 k ⁇ , 5 k ⁇ , and 10 k ⁇ is shown. From these graphs, when the resistance is 5 k ⁇ , which is the same as the substrate resistance, impedance matching is performed and the maximum amplitude is obtained. For this reason, in order to improve the measurement sensitivity, it is desirable to use an additional resistance comparable to the substrate resistance.
  • FIG. 25 shows the coordinate value dependency (distance dependency in the Y-axis direction) of the differential signal voltage as viewed from the nodes A and B of the touch panel using the X coordinate as a parameter.
  • the distance dependency of the differential signal voltage has the following characteristics.
  • the capacitance coefficient ⁇ for the touch capacitance is obtained such that a value obtained by multiplying the distance dependency of the touch capacitance of 20 pF by ⁇ is equal to the dependency of 40 pF, the dependency on the arbitrary capacitance can be obtained.
  • the voltage change from the nodes A and B to the center is large, and the voltage change beyond the center is small. This feature is also true for the nodes AD, BC, and CD. Therefore, the normalized signal voltage that does not depend on the touch capacitance can be obtained by actively utilizing this property.
  • FIG. 26 shows the capacity dependency of the differential signal voltage at the representative point as seen from the node AB plane.
  • the touch capacitance is 40 pF (there is no problem whether the capacitance when calculating ⁇ is set to 20 pF or 60 pF, but it is set to 40 pF that seems to have the highest appearance frequency.
  • the capacity coefficient ⁇ at the time of the standard capacity is obtained, it is as shown in FIG.
  • the coordinate value dependency of the differential signal voltage viewed from each side of the touch panel the coordinate dependency on an arbitrary touch capacitance value can be calculated by obtaining the touch capacitance coefficient ⁇ .
  • the signal voltage for each side of the touch panel is measured.
  • the signal voltage for each side of the touch panel is measured.
  • the T1 signal voltage viewed from the AB side is V1
  • the point symmetrical to the center line of the touch panel is T2
  • the T2 signal voltage viewed from the AB side is V2
  • the following relationship holds from the symmetry of the panel.
  • T1 signal voltage viewed from the DC side V2
  • T2 signal voltage viewed from the DC side V1
  • the coordinate dependency of the normalized signal voltage obtained from the dependency of the differential signal voltage on the coordinate side as seen from the AB side and AD side of the touch panel is: (1) The linearity is improved, and a sufficient signal amount change can be secured even near the center. (2) There is no area that cannot be used to calculate coordinates with a small signal amount from the center of the panel.
  • FIG. 29 shows the coordinate dependency of the differential signal voltage at the node AB, which is converted into the coordinate dependency of the normalized signal voltage as shown in FIG.
  • FIG. 31 shows the coordinate dependency of the difference signal voltage of the node AD
  • FIG. 32 shows the coordinate dependency of the converted normalized signal voltage.
  • the capacity dependency of the normalized signal voltage viewed from the AB side is extremely small as shown in FIGS. For this reason, although it is convenient for calculation of touch coordinates, it is not possible to calculate touch capacitance, and it is necessary to use another method for calculation of touch capacitance. In order to calculate the touch capacitance, it is necessary to pay attention to a voltage change due to the capacitance. Therefore, the procedure shown in FIG. 35 is effective for calculating the touch capacitance. (1) The differential signal voltage at the touch point is measured for the four sides of the node AB, the node CD, the node BC, and the node AD (S101). (2) A normalized signal voltage is calculated from the measured differential signal voltage (S102).
  • the coordinates of the touch point are calculated using the normalized signal voltage of the touch point and a lookup table of the normalized signal voltage (S103, S104).
  • the differential signal voltage V0 at the touch point is obtained from the lookup table of the differential signal voltage when the touch capacitance is the standard capacitance (S105, S106).
  • the capacity coefficient ⁇ is calculated using the differential signal voltage V0.
  • the capacity coefficient ⁇ is a value obtained by dividing the measured voltage Vm by V0.
  • the touch capacitance is calculated from the obtained capacitance coefficient ⁇ using a lookup table that associates ⁇ with a capacitance value (S107, S108).
  • FIG. 36 shows a flow of the touch detection algorithm of the touch panel of this embodiment.
  • This algorithm is preferably controlled by a program sequence stored in program memory 210 (see FIG. 9).
  • all parameters included in the position information extraction unit 30 and the position detection unit 40 are in an initial set state (S201).
  • the position information extraction unit 30 and the position detection unit 40 acquire correction data and set parameters based on this (S202).
  • the correction data here is data necessary for calibration and the like, and is stored in advance in a nonvolatile memory or the like.
  • position information is extracted by the position information extraction unit 30, and this information is A / D converted and then output to the position detection unit 40 as a digital signal (S204). .
  • the position detection unit 40 Upon receiving the data, the position detection unit 40 performs preprocessing necessary for position detection (S205).
  • the preprocessing includes, for example, averaging processing, calculation of the normalized signal voltage, calculation of touch capacitance, and the like in order to reduce measurement errors.
  • the position detection unit 40 determines whether or not the touch capacitance is twice or more, in other words, whether or not the peak value of the differential voltage is larger than the first threshold value (S206). If it is less than the first threshold value, it is determined that the contact is a single point, and a calculation process for calculating coordinates is performed (S207). In this calculation, as described above, sign determination based on the sensitivity characteristic of the differential voltage is performed, and in addition, detailed coordinate calculation is performed with reference to a lookup table.
  • the position detection unit 40 determines that the contact is a multipoint contact, and further compares it with the second threshold value, thereby making a two-point contact or three-point contact You may make it determine.
  • the position detection unit 40 refers to a lookup table corresponding to 2-point contact or 3-point contact, and calculates a coordinate position (S208).
  • the position detection unit 40 outputs the calculated coordinate information and sets the movement flag to “1” (S209).
  • the movement detection unit 40 determines whether or not the contact point has moved (S2210). Whether or not the contact point is moved is compared with the previous coordinate output. In the case of two-point contact, since the level of the differential signal changes when the distance changes, determination may be made based on this change amount. If there is no movement, the movement flag is set to “0” (S211), and the state before the touch state occurs is returned. If it is determined that there is a movement, the processing from step S204 is continued again.
  • the touch panel of this patent has high detection sensitivity and can detect a contact point even when a finger is removed from the panel. Operationally, it is on the extension line of one-point touch and is recognized as a one-point touch with a small capacitance coefficient ⁇ . Therefore, except for the point where the measurement limit is determined by the sensitivity of the third circuit (detection circuit), the one-point touch method can be applied as it is for the detection of coordinates and the like. In the measurement of the figure, it was confirmed that detection was possible even when separated from the panel by about 5 cm, but the distance from the panel can be increased by increasing the sensitivity of the third circuit (detection circuit).
  • FPGA Field-Programmable Gate Array
  • microcontroller microcontroller
  • Position information extraction unit 40 Position detection unit 100: Selector 102: Differential amplification circuit 104: Filter 106: Peak value hold circuit 108 : A / D converter 110: Touch third circuit (detection circuit) 112: flip-flop circuit 114: controllers P, T1, T2: contact positions A, B, C, D: nodes

Abstract

An electrostatic capacitance-type touch panel (10) comprises, for example: a substrate (12) having a conductive film (14) formed on the surface thereof; nodes (A) and (B) on the X-axis of the conductive film (14), and nodes (A) and (D) on the Y-axis thereof; a reference clock generating circuit (20) for applying a clock signal to the nodes (A-D) by way of corresponding load resistors (R0); a location information extraction unit (30) for generating a differential voltage signal between the nodes (A) and (B), and between the nodes (A) and (D), for example; and a location detection unit (40) for detecting the X-axis and Y-axis coordinates on the basis of the location information generated.

Description

位置検出装置及びその制御方法、並びにそのシステムPOSITION DETECTION DEVICE, ITS CONTROL METHOD, AND ITS SYSTEM
 本発明は、静電容量型の位置検出装置に関連し、例えばパネルへの物体(例えば指)の接触または非接触により、その座標を抽出する装置及びその制御方法ステム、並びにそのシステムに関する。尚、本明細書において、前記座標を抽出する装置を総称して「タッチパネル」と呼ぶが、それには非接触手段による座標の抽出も含まれる。 The present invention relates to an electrostatic capacitance type position detection device, for example, an apparatus for extracting coordinates by contact or non-contact of an object (for example, a finger) to a panel, a control method system thereof, and a system thereof. In the present specification, devices for extracting the coordinates are collectively referred to as a “touch panel”, which includes the extraction of coordinates by non-contact means.
 近年、スマートフォンに代表されるようなモバイル機器や、液晶表示装置、電子ボード、等の入力インターフェースとしてタッチパネルが利用されている。タッチパネルの技術には、静電容量型方式(サーフェース・キャパシティブ)や抵抗膜方式などが知られている。静電容量型方式は、一般に、ガラスやプラスチック等の透明基板の表面に透明な導電膜をコーティングし、透明基板に指を触れることで、静電容量(コンデンサ)を形成し、静電容量を介して流された微弱電流の変化分を検出することで位置(座標)を検出している。静電容量型方式は、抵抗膜方式のように2層の導電膜を必要とせず、透明な導電膜を成膜したガラス基板1枚で構成することができるため、抵抗膜方式に比べて部品点数が少なくかつ透過率も高い利点をもつ。 In recent years, touch panels have been used as input interfaces for mobile devices such as smartphones, liquid crystal display devices, electronic boards, and the like. As a touch panel technology, a capacitive type (surface-capacitive) type and a resistive film type are known. In general, the electrostatic capacity type method coats a transparent conductive film on the surface of a transparent substrate such as glass or plastic, and forms a capacitance (capacitor) by touching the transparent substrate with a finger. The position (coordinates) is detected by detecting the amount of change in the weak current passed through. The capacitive type method does not require a two-layer conductive film unlike the resistive film type, and can be composed of a single glass substrate on which a transparent conductive film is formed. It has the advantage of low score and high transmittance.
 第1の基板と第2の基板との間に液晶を挟み、第2の基板の表面に透明導電膜を形成することで、静電容量結合方式のタッチパネル機能を備えた液晶モジュールが構成される(特許文献1、2)。このタッチパネルでは、透明導電膜の各コーナーの4点のノードにパルス電圧が印加され、指が接触されたとき、指の接触位置に応じて各コーナーのノードに現れる電圧波形は異なる時定数の電圧波形となり、これらの電圧波形に基づき接触位置(座標位置)を検出している。また、タッチパネルの対角を成す一方のコーナーにパルス電圧を印加したときの他方のコーナーに現れるパルス電圧の立ち上がり時間を計測し、次に、他方のコーナーにパルス電圧を印加したときの一方のコーナーに現れるパルス電圧の立ち上がり時間を計測し、それら2つの計測時間の時間差を利用して指の接触位置を検出するものもある(特許文献3)。 A liquid crystal module having a capacitively coupled touch panel function is configured by sandwiching liquid crystal between the first substrate and the second substrate and forming a transparent conductive film on the surface of the second substrate. (Patent Documents 1 and 2). In this touch panel, when a pulse voltage is applied to the four nodes at each corner of the transparent conductive film and the finger is touched, the voltage waveform appearing at the node at each corner varies depending on the finger contact position. A waveform is obtained, and the contact position (coordinate position) is detected based on these voltage waveforms. Also, the rise time of the pulse voltage that appears at the other corner when the pulse voltage is applied to one corner of the touch panel is measured, and then one corner when the pulse voltage is applied to the other corner There is also a technique that measures the rise time of the pulse voltage appearing at, and detects the finger contact position using the time difference between the two measurement times (Patent Document 3).
 他方、特許文献4には、メモリ・論理共役システム(MLCS:Memory-Logic Conjugate System)が開示される。MLCSは、例えば、メモリ回路を有する基本セルをクラスタ状に配置したクラスタメモリをそれぞれ含む複数のクラスタメモリチップを3次元的に積層したシステムであって、前記複数のクラスタメモリチップそれぞれには貫通ビアが設けられており、前記貫通ビアを含んで構成されるマルチバスを通して任意の基本セルに直接アクセスして真理値データを書き込むことにより、前記任意の基本セルを論理回路に切り替えること、を開示する。 On the other hand, Patent Document 4 discloses a memory-logic conjugate system (MLCS). The MLCS is, for example, a system in which a plurality of cluster memory chips each including a cluster memory in which basic cells having memory circuits are arranged in a cluster are three-dimensionally stacked, and each of the plurality of cluster memory chips has a through via. Is provided, and the arbitrary basic cell is switched to the logic circuit by directly accessing the arbitrary basic cell through the multi-bus including the through via and writing the truth value data.
特開2008-134522号公報JP 2008-134522 A 特開2009-116090号公報JP 2009-1116090 A 特開2009-015492号公報JP 2009-015492 A 特開2010-015328号公報(米国特許公開2011-0255323号) 尚、特許文献1~4のそれぞれを本発明書に盛り込み、特許文献1~4のそれぞれが開示する内容を本明細書の開示の一部とする。JP 2010-015328 A (US Patent Publication No. 2011-0255323) In addition, each of Patent Documents 1 to 4 is incorporated in the present invention, and the contents disclosed by each of Patent Documents 1 to 4 are disclosed in the present specification. Part.
 本発明は、物体が基板に接触した位置、または物体が基板に非接触に近づいた位置を、正確(高精度)にかつ高速に検出することができる静電容量型の位置検出装置及びその制御方法(位置検出方法)、並びに位置検出装置を含むシステムが望まれる。 The present invention relates to a capacitance type position detection apparatus capable of accurately (highly) detecting a position where an object is in contact with a substrate or a position where an object is close to a substrate without contact, and its control. A method (position detection method) and a system including a position detection device are desired.
 本発明に係る位置検出装置は、導電膜と、前記導電膜上に形成された絶縁膜と、前記導電膜のX軸またはY軸の少なくともいずれか一方の軸上における少なくとも2点に接続された第1および第2のノードと、前記第1および第2のノードに、クロック信号を印加する第1の回路(印加回路)と、前記第1および第2のノードからそれぞれ得られた第1および第2の出力信号の電圧差を示す第1の差分信号を生成する第2の回路(抽出回路)と、前記第1の差分信号に基づき、前記絶縁膜に物体が接近または接触した前記少なくともいずれか一方の軸の座標位置を導く第3の回路(検出回路)と、を有する。 The position detection device according to the present invention is connected to at least two points on the conductive film, the insulating film formed on the conductive film, and at least one of the X axis and the Y axis of the conductive film. First and second nodes, a first circuit (application circuit) for applying a clock signal to the first and second nodes, and first and second nodes obtained from the first and second nodes, respectively. A second circuit (extraction circuit) that generates a first differential signal indicating a voltage difference between the second output signals, and at least one of the objects approaching or contacting the insulating film based on the first differential signal And a third circuit (detection circuit) for deriving the coordinate position of one of the axes.
 本発明の位置検出方法は、導電膜のX軸上の第1および第2のノード、並びに前記導電膜上のY軸上の第3および第4のノードに共通のクロック信号を印加し、X軸上の第1及び第2のノードの差電圧を示す第1の差分信号を生成し、Y軸上の第3及び第4のノードの差電圧を示す第2の差分信号を生成し、前記第1および第2の差分信号に基づき、前記導電膜上に形成された絶縁膜のXY平面上に物体が接近または接触する位置の座標を導く。 The position detection method of the present invention applies a common clock signal to the first and second nodes on the X axis of the conductive film and the third and fourth nodes on the Y axis of the conductive film, Generating a first difference signal indicating a difference voltage between the first and second nodes on the axis, generating a second difference signal indicating a difference voltage between the third and fourth nodes on the Y axis, and Based on the first and second difference signals, the coordinates of the position at which the object approaches or contacts the XY plane of the insulating film formed on the conductive film is derived.
 本発明によれば、複数のノードにそれぞれ対応する複数の信号の電圧差を示す差分信号を生成することにより、導電膜上に形成された絶縁膜のXY平面上に物体が接近または接触する位置の座標を正確にかつ高速に検出することができる。 According to the present invention, the position where the object approaches or contacts the XY plane of the insulating film formed on the conductive film by generating the differential signal indicating the voltage difference between the plurality of signals respectively corresponding to the plurality of nodes. Can be detected accurately and at high speed.
図1(A)は、タッチパネルの基板の構成を示す断面図、図1(B)は、本実施例のタッチパネルの全体構成を示す図である。FIG. 1A is a cross-sectional view illustrating the configuration of the substrate of the touch panel, and FIG. 1B is a diagram illustrating the overall configuration of the touch panel of this embodiment. 本発明の実施例に係るタッチパネルのノード間の差分電圧を説明する図である。It is a figure explaining the differential voltage between the nodes of the touch panel which concerns on the Example of this invention. タッチパネルのノードA、B間の差動電圧の測定原理を説明する図である。It is a figure explaining the measurement principle of the differential voltage between the nodes A and B of a touch panel. タッチパネルのノードA、B間の差動電圧、およびノードA,D間の差動電圧の測定原理を説明する図である。It is a figure explaining the measurement principle of the differential voltage between nodes A and B of a touch panel, and the differential voltage between nodes A and D. ノードA、BとノードA、Dからみた差動電圧のシミュレーション波形である。It is the simulation waveform of the differential voltage seen from nodes A and B and nodes A and D. 図6(A)は、ノードA、Bの差動電圧の感度特性を示し、図6(B)は、ノードA、Dの差動電圧の感度特性を示す図である。6A shows the sensitivity characteristics of the differential voltages of the nodes A and B, and FIG. 6B shows the sensitivity characteristics of the differential voltages of the nodes A and D. 本発明の実施例に係るタッチパネルの位置情報抽出部の構成を示すブロック図である。It is a block diagram which shows the structure of the positional information extraction part of the touchscreen which concerns on the Example of this invention. 図7に示す位置情報抽出部の回路構成例を示す図である。It is a figure which shows the circuit structural example of the positional information extraction part shown in FIG. 本発明の実施例の位置検出部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the position detection part of the Example of this invention. 本発明の実施例による1点接触時の粗い座標領域の検出方法を説明する図である。It is a figure explaining the detection method of the rough coordinate area | region at the time of the 1-point contact by the Example of this invention. 本発明の実施例による詳細座標位置の検出方法を説明する図である。It is a figure explaining the detection method of the detailed coordinate position by the Example of this invention. 本発明の実施例によるルックアップテーブルによる座標検出に必要なデータ量を説明する図である。It is a figure explaining the data amount required for the coordinate detection by the look-up table by the Example of this invention. 本発明の実施例によるルックアップテーブルの構成を説明する図である。It is a figure explaining the structure of the look-up table by the Example of this invention. 本発明の実施例による2点接触の検出原理を説明する図である。It is a figure explaining the detection principle of two-point contact by the Example of this invention. ノードA、B間の代表2点の測定結果を示す図である。It is a figure which shows the measurement result of two representative points between nodes A and B. ノードA、D間の代表2点の測定結果を示す図である。It is a figure which shows the measurement result of two representative points between nodes A and D. 2点間の距離を変化させたときの検出結果である。It is a detection result when changing the distance between two points. 2点間の距離を変化させたときの検出結果である。It is a detection result when changing the distance between two points. 2点間の距離を変化させたときの検出結果である。It is a detection result when changing the distance between two points. コーナー付近での2点間の距離を移動させたとき検出結果である。This is a detection result when the distance between two points near the corner is moved. 本発明の実施例による3点接触の検出原理を説明する図である。It is a figure explaining the detection principle of the three-point contact by the Example of this invention. 1点接触、2点接触、3点接触(A法)の差動電圧波形である。It is a differential voltage waveform of 1-point contact, 2-point contact, and 3-point contact (Method A). 1点接触、2点接触、3点接触(B法)の差動電圧波形である。It is a differential voltage waveform of 1 point contact, 2 point contact, 3 point contact (B method). 差動電圧と負荷抵抗R0との関係を示すグラフである。It is a graph which shows the relationship between a differential voltage and load resistance R0. 差動信号電圧の座標依存性を示すグラフである。It is a graph which shows the coordinate dependence of a differential signal voltage. ノードA、Bから見た差動信号電圧の容量依存性を示すグラフである。6 is a graph showing the capacity dependency of a differential signal voltage viewed from nodes A and B. 容量係数αとタッチ容量との関係を示すグラフである。It is a graph which shows the relationship between capacitance coefficient (alpha) and touch capacitance. 本発明の実施例による正規化信号電圧を説明する図である。It is a figure explaining the normalized signal voltage by the Example of this invention. ノードA、Bの差動信号電圧の座標依存性を示すグラフである。It is a graph which shows the coordinate dependence of the differential signal voltage of node A and B. FIG. ノードA、Bの正規化信号電圧の座標依存性を示すグラフである。It is a graph which shows the coordinate dependence of the normalization signal voltage of nodes A and B. ノードA、Dの差動信号電圧の座標依存性を示すグラフである。It is a graph which shows the coordinate dependence of the differential signal voltage of nodes A and D. ノードA、Dの正規化信号電圧の座標依存性を示すグラフである。It is a graph which shows the coordinate dependence of the normalized signal voltage of node A, D. ノードA、Bの正規化信号電圧の容量依存性を示すグラフである。It is a graph which shows the capacity | capacitance dependence of the normalized signal voltage of node A and B. FIG. ノードA、Bの正規化信号電圧の容量依存性を示すグラフである。It is a graph which shows the capacity | capacitance dependence of the normalized signal voltage of node A and B. FIG. 本発明の実施例よるタッチ容量の算出フローを説明する図である。It is a figure explaining the calculation flow of the touch capacitance by the Example of this invention. 本発明の実施例によるタッチ検出アルゴリズムのフローである。4 is a flow of a touch detection algorithm according to an embodiment of the present invention. 本発明の実施例によるホバーリングタッチの測定結果を示す図である。It is a figure which shows the measurement result of the hovering touch by the Example of this invention.
 以下、本発明の好ましい実施形態について図面を参照して説明する。なお、図面のスケールは、発明の特徴を分かり易くするために強調されており、必ずしも実際のデバイスのスケールと同一ではないことに留意すべきである。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. It should be noted that the scale of the drawings is emphasized for easy understanding of the features of the invention and is not necessarily the same as the scale of an actual device.
 図1(A)は、本実施例に係る静電容量型のタッチパネルが含む基板の概略構成を示す断面図である。タッチパネル10は、ガラス、プラスチック、またはその他の材の透明な基板12と、基板12の全面に形成されたITO(Indium Tin Oxide) 、またはその他の材の透明な導電膜14とを含んで構成される。また、導電膜14は、薄いシート状の透明な絶縁保護膜16、例えばポリエステルシートなどによって覆われていてもよい。典型的に、タッチパネル10は、表示ディスプレイ(例えば、液晶パネル、有機エレクトロルミネッセンス(Organic Electro-Luminescence) パネル、電子ボード)とモジュール化または一体化され、入力機能を有する表示装置を構成する。例えば、基板12は、液晶パネルなどで生成された画像情報を透過するように構成される。尚、本明細書において「タッチパネル」とは、物体がパネルに接触する(タッチング)ことに限られず、物体とパネルが所定の距離を介する非接触も含まれる。非接触の例えとして、物体(例えば指)がパネル上空をホバリングしながらムービングする場合も含まれる。更に、基板12はリジットであってもフレキシブルであってもよい。つまり、タッチパネル10は、表示ディスプレイの組成特性に対応してリジットであってもフレキシブルであってもよい。更に、タッチパネル10が表示ディスプレイと一体化される場合、タッチパネル10としての基板12を省略できる場合がある。 FIG. 1A is a cross-sectional view illustrating a schematic configuration of a substrate included in a capacitive touch panel according to the present embodiment. The touch panel 10 includes a transparent substrate 12 made of glass, plastic, or other material, and a transparent conductive film 14 made of ITO (Indium Tin Oxide) or other material formed on the entire surface of the substrate 12. The The conductive film 14 may be covered with a thin sheet-like transparent insulating protective film 16, such as a polyester sheet. Typically, the touch panel 10 is modularized or integrated with a display display (for example, a liquid crystal panel, an organic electroluminescence panel, or an electronic board) to constitute a display device having an input function. For example, the substrate 12 is configured to transmit image information generated by a liquid crystal panel or the like. In the present specification, the “touch panel” is not limited to the case where the object touches the panel (touching), and includes a case where the object and the panel do not contact each other through a predetermined distance. An example of non-contact includes a case where an object (for example, a finger) moves while hovering over the panel. Further, the substrate 12 may be rigid or flexible. That is, the touch panel 10 may be rigid or flexible corresponding to the composition characteristics of the display. Furthermore, when the touch panel 10 is integrated with a display, the substrate 12 as the touch panel 10 may be omitted.
 図1(B)は、タッチパネル10の全体の概略構成を示す図である。導電膜14上のX軸およびY軸の各コーナーには、ノードA、B、C、Dが形成され、各ノードA~Dは、抵抗R0を介して基準電位発生回路20の共通ノードNに接続される。基準電位発生回路20は、好ましくは一定の周波数、例えば1MHzの基準パルス信号を生成するものであり、さらに基準パルス信号に一定の直流バイアスを付加するものであってもよい。これにより、各ノードA、B、C、Dには、抵抗R0を介して同時に、同相、同電位の基準クロック信号が供給される。 FIG. 1B is a diagram showing an overall schematic configuration of the touch panel 10. Nodes A, B, C, and D are formed at the X-axis and Y-axis corners on the conductive film 14, and the nodes A to D are connected to the common node N of the reference potential generation circuit 20 through the resistor R0. Connected. The reference potential generation circuit 20 preferably generates a reference pulse signal having a constant frequency, for example, 1 MHz, and may further add a constant DC bias to the reference pulse signal. Thus, the reference clock signals having the same phase and the same potential are simultaneously supplied to the nodes A, B, C, and D through the resistor R0.
 静電容量型のタッチパネルにおいて、指が導電膜14に接触され、あるいは保護膜16を介して導電膜14に接近されると(以下、このような接近を含めて接触という)、その接触位置P(図1(B)を参照)に静電容量Csが形成され、各ノードA~Dから接触位置Pには微弱な電流が流れる。ノードAから接触位置Pまでの距離、ノードBから接触位置Pまでの距離に応じた抵抗Ra、Rbが形成されるため、各ノードA~Dには、抵抗と静電容量の時定数で決まる電圧波形の電流が流れることになる。 In a capacitive touch panel, when a finger comes into contact with the conductive film 14 or approaches the conductive film 14 through the protective film 16 (hereinafter referred to as contact including such approach), the contact position P The electrostatic capacitance Cs is formed (see FIG. 1B), and a weak current flows from the nodes A to D to the contact position P. Since the resistors Ra and Rb are formed according to the distance from the node A to the contact position P and the distance from the node B to the contact position P, each of the nodes A to D is determined by the time constant of the resistance and the capacitance. A current having a voltage waveform flows.
 各ノードA、B、C、Dに流れる信号は、位置情報抽出部30へ提供され、位置情報抽出部30は、後述するように、X軸のノードA、B間の差動電圧を抽出し、かつY軸のノードA、D間の差動電圧を抽出するような処理を行う。位置情報抽出部30によって抽出された情報は、位置検出部40へ提供され、抽出された位置情報に基づき接触位置Pを特定するための位置検出が行われる。位置情報検出部30および位置検出部40は、どのような形態によって構成されてもよく、ハードウエア、ソフトウエア、あるいはハードウエアとソフトウエアの双方を用いて構成することができる。好ましい態様では、位置情報検出部30は、アナログ信号を処理する回路等によって構成され、位置検出部40は、ディジタル信号を処理する回路やソフトウエアによって構成される。位置検出部40の出力は、表示装置、または表示装置を制御するシステムに提供される。 Signals flowing through the nodes A, B, C, and D are provided to the position information extraction unit 30. The position information extraction unit 30 extracts a differential voltage between the nodes A and B on the X axis, as will be described later. In addition, a process for extracting a differential voltage between the nodes A and D on the Y axis is performed. The information extracted by the position information extraction unit 30 is provided to the position detection unit 40, and position detection for specifying the contact position P is performed based on the extracted position information. The position information detection unit 30 and the position detection unit 40 may be configured in any form, and may be configured using hardware, software, or both hardware and software. In a preferred embodiment, the position information detection unit 30 is configured by a circuit or the like that processes an analog signal, and the position detection unit 40 is configured by a circuit or software that processes a digital signal. The output of the position detection unit 40 is provided to a display device or a system that controls the display device.
 次に、本実施例に係るタッチパネルの位置検出原理について説明する。本実施例では、図1(B)に示すように、静電容量型のタッチパネルにおいて、X軸上の2点のノードA、B、Y軸上の2点のノードA、Dの差動信号を利用して接触位置を検出する。 Next, the principle of detecting the position of the touch panel according to this embodiment will be described. In this embodiment, as shown in FIG. 1B, in the capacitive touch panel, two nodes A and B on the X axis and two nodes A and D on the Y axis are differential signals. The contact position is detected using.
 図2(A)に示すように、タッチパネル上の位置Pが接触されたとき、X軸のノードA、Bには、図2(B)に示すように、抵抗Ra、Rb、静電容量Cxyによる時定数で決まる電圧信号Va、Vbが生じる。V-Vは、電圧信号Va、Vbの差分であり、図の例では、電圧信号Va、Vbの差分のピーク値が例示されている。ここには示していないが、Y軸のノードA、Dにも同様に、抵抗Ra、Rdによる時定数で決まる電圧信号Va、Vdが生じ、この電圧Va、Vdの差動電圧が抽出される。 As shown in FIG. 2A, when the position P on the touch panel is touched, the nodes A and B on the X axis are connected to the resistors Ra and Rb and the capacitance Cxy as shown in FIG. The voltage signals Va and Vb determined by the time constant are generated. V A −V B is the difference between the voltage signals Va and Vb, and the peak value of the difference between the voltage signals Va and Vb is illustrated in the example in the figure. Although not shown here, the voltage signals Va and Vd determined by the time constants of the resistors Ra and Rd are generated in the nodes A and D on the Y axis, and the differential voltages of the voltages Va and Vd are extracted. .
 図3は、差動電圧の測定原理を説明する図である。ノードA、B、C、Dに対して、図に示すように接触位置PがノードAに近く、ノードBから離れているとすると、接触位置PとノードA間の抵抗が小さいため、ノードAには接触位置Pの影響が強く現れ(電圧の低下が大きく)、反対に、ノードBには接触位置PとノードB間の抵抗が大きいため接触位置Pの影響が弱く現れる(電圧低下が小さい)。このため、ノードAからノードBの電圧変化を見ると、正の電圧変化を観測することができる。つまり、ノードA、B間の電圧は、ノードA、Bから見た接触位置Pまでの距離aと距離bの差を電圧差として見ていることになる。また、2点間の電圧差を見るので、GNDのふらつきとコモンモードのノイズは除去され、接触位置Pまでの距離が等しい点、すなわち中心線上は、差電圧が0Vになる。 FIG. 3 is a diagram for explaining the principle of differential voltage measurement. If the contact position P is close to the node A and away from the node B with respect to the nodes A, B, C, and D, the resistance between the contact position P and the node A is small. The influence of the contact position P appears strongly (the voltage drop is large), and conversely, the influence of the contact position P appears weakly at the node B because the resistance between the contact position P and the node B is large (the voltage drop is small). ). Therefore, when the voltage change from the node A to the node B is seen, a positive voltage change can be observed. That is, the voltage between the nodes A and B is a difference between the distance a and the distance b from the nodes A and B to the contact position P as a voltage difference. Further, since the voltage difference between the two points is observed, the GND fluctuation and the common mode noise are removed, and the difference voltage becomes 0 V at the point where the distance to the contact position P is equal, that is, on the center line.
 次に、クロック信号を抵抗R0を介してタッチパネルの4つのノードA、B、C、Dに同時に印加したときの2つのノード間の差動電圧測定モデルについて検討する。図4に示すように、Pを接触位置、a、b、c、dを接触位置Pから各ノードまでの距離とする。この時、各端子に現れる電圧をV(A)、V(B)、V(C)、V(D)とする。 Next, a differential voltage measurement model between two nodes when a clock signal is simultaneously applied to the four nodes A, B, C, and D of the touch panel via the resistor R0 will be examined. As shown in FIG. 4, P is a contact position, and a, b, c, and d are distances from the contact position P to each node. At this time, the voltages appearing at the terminals are V (A), V (B), V (C), and V (D).
 ここで測定可能な差動電圧を次のように定義する。
BA=V(B)-V(A)、VAB=V(A)-V(B)、
CA=V(C)-V(A)、VAC=V(A)-V(C)、
DA=V(D)-V(A)、VAD=V(A)-V(D)、
CB=V(C)-V(B)、VBC=V(B)-V(C)、
DB=V(D)-V(B)、VBD=V(B)-V(D)、
DC=V(D)-V(C)、VCD=V(C)-V(D)
The differential voltage measurable here is defined as follows.
V BA = V (B) -V (A), V AB = V (A) -V (B),
V CA = V (C) −V (A), V AC = V (A) −V (C),
V DA = V (D) −V (A), V AD = V (A) −V (D),
V CB = V (C) −V (B), V BC = V (B) −V (C),
V DB = V (D) −V (B), V BD = V (B) −V (D),
V DC = V (D) −V (C), V CD = V (C) −V (D)
 また、これらの間には、次のような関係が成り立つ。
BA=-VAB、VCA=-VAC、VDA=-VAD
CB=-VBC、VDB=-VBD、VDC=-VCD
 また、
CB=VCA-VBA、VDB=VDA-VBA、VDC=VDA-VCAとなるから、測定可能な差動電圧の中で、他の差動電圧から求めることのできない差動電圧は、VBA、VDAの2つに集約できる。すなわち、この2つの差動電圧が分かれば、他の差動電圧は、演算操作により求めることができることを示している。
In addition, the following relationship is established between them.
V BA = −V AB , V CA = −V AC , V DA = −V AD ,
V CB = −V BC , V DB = −V BD , V DC = −V CD
Also,
Since V CB = V CA −V BA , V DB = V DA −V BA , and V DC = V DA −V CA , it cannot be obtained from other differential voltages among measurable differential voltages. The differential voltage can be aggregated into two, V BA and V DA . That is, if these two differential voltages are known, the other differential voltages can be obtained by an arithmetic operation.
 図5に、ノードA-B、ノードA-Dからみた差動電圧のシミュレーションの波形を示す。タッチパネルのX、Y座標が(0,0)~(32,32)であるとき、ノードDから(2,30)までの距離と、ノードBから(30,2)までの距離は等しい。しかし、電圧差が生じるのは、ノードAまでの距離がそれぞれ異なるためである。ノードAまでの距離が大きい方が、ノードAの影響が小さくなり、信号量が大きくなる。 FIG. 5 shows a simulation waveform of the differential voltage viewed from the nodes AB and AD. When the X and Y coordinates of the touch panel are (0, 0) to (32, 32), the distance from node D to (2, 30) is equal to the distance from node B to (30, 2). However, the voltage difference occurs because the distances to the node A are different. The greater the distance to the node A, the smaller the influence of the node A and the larger the signal amount.
 本実施例による差動測定を利用した位置検出アルゴリズムを整理すると次のようになる。
 4つのノードA~Dに同時に基準パルス信号を入力し、そのうち、X軸、Y軸の2つのノード間の差動出力を測定する。
 差動電圧を測定するため、2つのノード間において引かれる抵抗と引く抵抗との大小関係で最大値が出る。
 差電圧の最大値のストローブ時間は、それぞれで異なり、検出感度のよいのは最大値であり、これを抽出する。
 しかし、最大値に重畳するノイズの影響を避けるため、X軸のノードA、BとノードC、Dの2点測定値、Y軸のノードA、DとノードB、Cの2点測定値からノイズキャンセルを図ることが望ましい。
 サンプリング間隔を0.01sレベルで行い、2点測定と時間軸の2点測定からノイズキャンセルする。なおこのサンプリング動作ではサンプリング毎に例えば1MHzの基準クロック信号に合わせてX軸のノードA、BとノードC、Dの2点測定、Y軸のノードA、DとノードB、Cの2点測定を1つの単位としてノイズキャンセルを図るに必要な回数繰り返すことになる。
The position detection algorithm using differential measurement according to the present embodiment is organized as follows.
Reference pulse signals are simultaneously input to the four nodes A to D, and among them, the differential output between the two nodes of the X axis and the Y axis is measured.
In order to measure the differential voltage, the maximum value is obtained by the magnitude relation between the resistance drawn between the two nodes and the resistance drawn.
The strobe time of the maximum value of the difference voltage is different, and the maximum value has good detection sensitivity, and this is extracted.
However, in order to avoid the influence of noise superimposed on the maximum value, the two-point measured values of the nodes A and B on the X axis and the nodes C and D, and the two-point measured values of the nodes A and D on the Y axis and the nodes B and C are used. It is desirable to cancel noise.
The sampling interval is set at a level of 0.01 s, and noise cancellation is performed from two-point measurement and two-time measurement on the time axis. In this sampling operation, two-point measurement of nodes A and B on the X axis and nodes C and D on the X axis and two points measurement on the nodes A and D on the Y axis and nodes B and C in accordance with, for example, a 1 MHz reference clock signal. Is repeated as many times as necessary to achieve noise cancellation.
 次に、差動電圧VBA、VDAを測定すると、図6(A)、(B)に示すような其々の測定モードに特有の信号量の正負境界線(0V線)が現れる。すなわち、X軸のノードA、B間差動電圧VBAを測定した場合には、X軸と垂直方向の中心Oを通る線上は0Vであり、この0Vを境界に左側のノードAに近い領域では、差動電圧VBAの符号は、正(+)となり、右側のノードBに近い領域では、差動電圧VBAの符号は、負(-)となる。Y軸のノードA、D間の差動電圧VDAを測定した場合にも同様の特性が生じる。 Next, when the differential voltages V BA and V DA are measured, positive and negative boundary lines (0 V line) of signal amounts peculiar to the respective measurement modes as shown in FIGS. 6A and 6B appear. That is, when the differential voltage VBA between the nodes A and B on the X axis is measured, the line passing through the center O in the direction perpendicular to the X axis is 0 V, and the region close to the node A on the left side with this 0 V as a boundary Then, the sign of the differential voltage V BA is positive (+), and in the region close to the right node B, the sign of the differential voltage V BA is negative (−). Similar characteristics occur when the differential voltage VDA between nodes A and D on the Y axis is measured.
 次に、本実施例のタッチパネルの好ましい構成について説明する。図7は、位置情報抽出部の好ましい構成を示すブロック図である。位置情報抽出部30は、4つのノードA~Dの出力信号を入力し、その中から2つの出力信号を選択するセレクター100と、セレクター100によって選択された2つのノードの出力信号を入力する差動増幅器102と、差動増幅器102から出力された差動信号のノイズを除去するフィルター104と、ノイズが除去された差動信号のピーク値を抽出するピーク値ホールド回路106と、ピークホールド回路106の出力信号をアナログ/ディジタル変換するA/Dコンバータ108と、各ノードに電流が流れたことに応答して指の接触があったことを検出する第3の回路(検出回路)110と、第3の回路(検出回路)110により接触が検出されるとセレクター100による選択の切替を行うフリップフロップ回路112と、基準電位発生回路20からの基準クロック信号を受け取り、信号バスBUSを介して種々のクロック信号を各部を供給するコントローラ114とを含んで構成される。 Next, a preferred configuration of the touch panel of this embodiment will be described. FIG. 7 is a block diagram showing a preferred configuration of the position information extraction unit. The position information extraction unit 30 receives the output signals of the four nodes A to D, and selects the output signal of the two nodes selected by the selector 100 and the selector 100 that selects two output signals from among the output signals. Dynamic amplifier 102, filter 104 for removing noise of the differential signal output from differential amplifier 102, peak value hold circuit 106 for extracting the peak value of the differential signal from which noise has been removed, and peak hold circuit 106 An A / D converter 108 that performs analog / digital conversion of the output signal, a third circuit (detection circuit) 110 that detects that a finger has been touched in response to a current flowing through each node, A flip-flop circuit 112 that switches the selection by the selector 100 when contact is detected by the circuit 3 (detection circuit) 110, and a reference voltage It receives the reference clock signal from the generating circuit 20, configured to include a supply controller 114 to each part of the various clock signals via the signal bus BUS.
 第3の回路(検出回路)110は、コントローラ114から供給されるクロック信号の立ち上がりに同期するタイミングで指の接触の有無を検出する。指の接触が検出された場合には、第3の回路(検出回路)110は、フリップフロップ回路112にイネーブル信号を供給し、フリップフロップ回路112を動作可能な状態にする。コントローラ114は、フリップフロップ回路112に信号バスBUSを介して一定周波数のクロック信号を供給し、フリップフロップ回路112はクロック信号に応答して第3の回路(検出回路)の検出状態を保持する信号をセレクター100に出力する。コントローラ114はまた、クロック信号に応答して選択状態に対応した切替クロック信号をセレクター100に出力する。セレクター100は、選択状態に応じて1対のノードの出力信号を選択する。例えば、最初の選択状態のとき、X軸上のノードA、Bの出力信号を選択し、次の状態のとき、Y軸上のノードA、Dの出力信号を選択し、というように順次必要な出力信号を選択しこれらの組み合わせが繰り返される。この選択の周期は、コントローラ114からのクロック信号の周波数により適宜選択されるが、好ましくは、指の接触時間は、典型的に0.1秒程度であるので、その間にセレクター100が少なくとも100回程度のノードのサンプリングができるようにする。 The third circuit (detection circuit) 110 detects the presence or absence of a finger touch at a timing synchronized with the rising edge of the clock signal supplied from the controller 114. When the contact of the finger is detected, the third circuit (detection circuit) 110 supplies an enable signal to the flip-flop circuit 112 to make the flip-flop circuit 112 operable. The controller 114 supplies a clock signal having a constant frequency to the flip-flop circuit 112 via the signal bus BUS, and the flip-flop circuit 112 is a signal that holds the detection state of the third circuit (detection circuit) in response to the clock signal. Is output to the selector 100. The controller 114 also outputs a switching clock signal corresponding to the selected state to the selector 100 in response to the clock signal. The selector 100 selects an output signal of a pair of nodes according to the selection state. For example, in the first selection state, the output signals of the nodes A and B on the X axis are selected, in the next state, the output signals of the nodes A and D on the Y axis are selected, and so on. These output combinations are repeated by selecting the correct output signal. The selection cycle is appropriately selected according to the frequency of the clock signal from the controller 114. Preferably, the finger contact time is typically about 0.1 seconds, so that the selector 100 is at least 100 times in the meantime. It is possible to sample about a certain number of nodes.
 差動増幅器102は、セレクター100によって選択された2つのノード(AとB、またはAとD)の出力信号の差電圧信号を抽出する。フィルター104は、好ましくはローパスフィルターを用いて構成され、差電圧信号に重畳される高周波成分のノイズを除去する。ピーク値ホールド回路106は、コントローラ114からのクロック信号に応答して、クロックの立ち上がりから立下りまでの期間中の差電圧信号のピーク値を保持する。A/Dコンバータ108は、ピーク値ホールド回路106で保持された差電圧のピーク値を受け取り、これを所定のビット数のディジタル値に変換し、位置検出部40へ提供する。位置検出部40は、後述するように受け取ったディジタル信号を処理することで、接触位置を検出する。 The differential amplifier 102 extracts a difference voltage signal between the output signals of the two nodes (A and B or A and D) selected by the selector 100. The filter 104 is preferably configured using a low-pass filter, and removes high frequency component noise superimposed on the differential voltage signal. In response to the clock signal from the controller 114, the peak value hold circuit 106 holds the peak value of the differential voltage signal during the period from the rising edge to the falling edge of the clock. The A / D converter 108 receives the peak value of the difference voltage held by the peak value hold circuit 106, converts it into a digital value having a predetermined number of bits, and provides it to the position detection unit 40. The position detection unit 40 detects the contact position by processing the received digital signal as described later.
 図8は、図1(B)に示す位置情報抽出部30の具体的な回路構成を示している。位置情報抽出部30は、差動アンプ120、ノイズフィルター130、絶対値アンプ140、ピーク値ホールド回路150とを含んで構成される。なお、ここにはA/Dコンバータは示されていない。 FIG. 8 shows a specific circuit configuration of the position information extraction unit 30 shown in FIG. The position information extraction unit 30 includes a differential amplifier 120, a noise filter 130, an absolute value amplifier 140, and a peak value hold circuit 150. Here, the A / D converter is not shown.
 差動アンプ回路120は、セレクター100によって選択された2つのノードからの出力信号を受け取り、その差分電圧を示し差分信号を出力する。差動アンプ回路120は、例えばアナログデバイス社製のAD620を用いて構成される。ノイズフィルター130は、差動アンプ120からの差分信号を受け取り、そこに重畳される高周波成分のノイズを除去する。ノイズフィルター130は、例えばリニアテクノロジー社製のLTC1063のローパスフィルターを用いて構成される。 The differential amplifier circuit 120 receives the output signals from the two nodes selected by the selector 100, indicates the differential voltage, and outputs the differential signal. The differential amplifier circuit 120 is configured using, for example, AD620 manufactured by Analog Devices. The noise filter 130 receives the differential signal from the differential amplifier 120 and removes high-frequency component noise superimposed thereon. The noise filter 130 is configured using, for example, a low-pass filter of LTC1063 manufactured by Linear Technology.
 絶対値アンプ140は、公知のように、入力信号の極性に応じて正転アンプまたは反転アンプとして機能する2つのオペアンプ140A、140Bを含んで構成される。ノイズフィルター140からの出力信号VOUTの入力電圧が正の場合には、2つのオペアンプは、入力信号を増幅する正転アンプとして機能し、入力電圧が負の場合には、2つのオペアンプは、入力信号を反転する反転アンプとして機能する。図6(A)、(B)で説明したように、差分信号(差動電圧)は、接触位置Pに応じて正または負の感度特性を有するが、差分信号は、絶対値アンプ140を通過することで、全て正の電圧の信号に変換される。 As is known, the absolute value amplifier 140 includes two operational amplifiers 140A and 140B that function as a normal amplifier or an inverting amplifier according to the polarity of the input signal. When the input voltage of the output signal VOUT from the noise filter 140 is positive, the two operational amplifiers function as normal amplifiers that amplify the input signal, and when the input voltage is negative, the two operational amplifiers are input. Functions as an inverting amplifier that inverts the signal. As described with reference to FIGS. 6A and 6B, the differential signal (differential voltage) has a positive or negative sensitivity characteristic depending on the contact position P, but the differential signal passes through the absolute value amplifier 140. By doing so, all signals are converted to a positive voltage signal.
 ピーク値ホールド回路150は、絶対値アンプ140からの出力信号とオペアンプ150Bの負帰還された基準電圧とを入力するコンパレータ150A、コンパレータ150Aの出力に接続されたダイオードD、コンデンサC、コンデンサに充電された電荷を放電するリセット回路を含んで構成される。コンパレータ150Aは、絶対値アンプ140からの出力信号が基準電圧よりも高いとき、電源電位を供給するため、ダイオードD1を介してコンデンサが充電される。他方、出力信号が基準電位よりも小さくなると、コンパレータ150Aは、負の電源電位を供給するため、ダイオードDにより電流が遮断され、こうして、ピーク時の電圧がコンデンサCにより保持される。また、リセット回路は、トランジスタTrと、FETとを含み、トランジスタTrのベースにはリセットパルス信号が印加される。例えば、リセットパルス信号のパルス幅は、10μSよりも小さい。リセットパルス信号がローアクティブになるとトランジスタTrがオンし、FETがオンすることでコンデンサCの電荷が放電される。こうして、ピーク値ホールド回路150で保持されたピーク値は、A/D変換器へ提供される。なお、図8に示す回路は一例であって、これ以外の構成であってもよい。 The peak value hold circuit 150 is charged to the comparator 150A for inputting the output signal from the absolute value amplifier 140 and the negative feedback reference voltage of the operational amplifier 150B, the diode D connected to the output of the comparator 150A, the capacitor C, and the capacitor. And a reset circuit that discharges the charged charges. The comparator 150A supplies a power supply potential when the output signal from the absolute value amplifier 140 is higher than the reference voltage, so that the capacitor is charged via the diode D1. On the other hand, when the output signal becomes smaller than the reference potential, the comparator 150A supplies a negative power supply potential, so that the current is cut off by the diode D, and thus the peak voltage is held by the capacitor C. The reset circuit includes a transistor Tr and an FET, and a reset pulse signal is applied to the base of the transistor Tr. For example, the pulse width of the reset pulse signal is smaller than 10 μS. When the reset pulse signal becomes low active, the transistor Tr is turned on, and the FET is turned on, so that the capacitor C is discharged. Thus, the peak value held by the peak value hold circuit 150 is provided to the A / D converter. Note that the circuit shown in FIG. 8 is an example, and other configurations may be used.
 次に、本実施例の位置検出部について説明する。図1(B)に示す位置検出部40は、位置情報抽出部30により抽出されたデータに基づき、1点接触(シングルタッチ)、複数点接触(マルチタッチ)の判定を行い、その判定結果に基づき検出した接触位置に該当する座標情報を出力する。 Next, the position detection unit of this embodiment will be described. The position detection unit 40 shown in FIG. 1 (B) determines one-point contact (single touch) or multiple points contact (multi-touch) based on the data extracted by the position information extraction unit 30, and displays the determination result. Coordinate information corresponding to the detected contact position is output.
 図9は、位置検出部40の好ましい構成例を示している。位置検出部40は、位置情報抽出部30で抽出された位置情報を受け取ったり、あるいは検出された接触位置の座標情報を出力する入出力部(I/O)200と、位置検出を行うための種々のプログラムを格納したプログラムメモリ210と、位置検出のためのルックアップテーブル等の種々のデータを格納するデータメモリ220と、プログラムを実行することで種々の演算処理などを行う中央処理部230とを含んで構成される。 FIG. 9 shows a preferred configuration example of the position detection unit 40. The position detection unit 40 receives the position information extracted by the position information extraction unit 30 or outputs the coordinate information of the detected contact position, and an input / output unit (I / O) 200 for performing position detection. A program memory 210 storing various programs, a data memory 220 storing various data such as a look-up table for position detection, and a central processing unit 230 performing various arithmetic processes by executing the programs It is comprised including.
 1点接触(シングルタッチ)の位置検出方法について説明する。
 1点接触において、最も粗い座標領域の特定方法は、符号判定である。図6の感度特性において説明したように、ノードA-B間、C-D間、A-D間、C-B間の差動電圧の測定を行うと、接触位置に応じて差動電圧の符号の極性が異なる。但し、ここでのA-B間とは、ノードAを基準にした差動電圧である。この性質を利用すると、A-B間、A-D間の2つの測定データから、図10に示すように、接触位置が1象限、2象限、3象限、4象限のどの領域にあるかを判別することができる。各象限は、タッチパネルのX軸およびY軸の中心線を境界にした領域である。図に示すように、1象限では、差動電圧VBA、VDAの符号がともに正であり、2象限では、差動電圧VBAが負、VDAが正となり、3象限では、差動電圧VBA、VDAの符号がともに負であり、4象限では、差動電圧VBAが正、VDAが負となる。位置検出部40は、検出精度が粗くてもよい場合には、2つの差動電圧VBA、VDAから得られた差動信号に基づき接触位置が1象限ないし4象限のいずれに属するからを検出する。
A position detection method for one-point contact (single touch) will be described.
In one-point contact, a method for specifying the coarsest coordinate region is sign determination. As described in the sensitivity characteristics of FIG. 6, when the differential voltage between nodes AB, CD, AD, and CB is measured, the differential voltage varies depending on the contact position. The sign polarity is different. However, between AB here is a differential voltage based on node A. If this property is used, it can be determined from the two measurement data between AB and AD that the contact position is in one quadrant, two quadrants, three quadrants or four quadrants as shown in FIG. Can be determined. Each quadrant is an area with the center line of the X axis and Y axis of the touch panel as a boundary. As shown in the figure, the signs of the differential voltages V BA and V DA are both positive in the first quadrant, the differential voltage V BA is negative and the V DA is positive in the second quadrant, and the differential voltages V BA and V DA are positive in the third quadrant. The signs of voltages V BA and V DA are both negative, and in four quadrants, differential voltage V BA is positive and V DA is negative. In the case where the detection accuracy may be rough, the position detection unit 40 is based on the fact that the contact position belongs to one of the quadrants 1 to 4 based on the differential signals obtained from the two differential voltages V BA and V DA. To detect.
 次に、位置検出部40が、ルックアップテーブルを参照して、より精度の高い接触位置を検出する方法について説明する。図10に示すように、1象限に接触点がある場合は、信号量の符号が全て正の値になり、信号量も最大値を示す。基板の対称性から、接触位置がある領域に基準を移せば、常に信号量は正の値になり、かつ信号量も最大になる。また、この性質を利用することで、準備するプロファイル(ルックアップテーブルLUTの容量)は、タッチパネル全体の面積の1/4、つまり1つの象限で用意すればよい。 Next, a method in which the position detection unit 40 detects a contact position with higher accuracy by referring to a lookup table will be described. As shown in FIG. 10, when there is a contact point in one quadrant, the sign of the signal amount is all positive and the signal amount also shows the maximum value. Due to the symmetry of the substrate, if the reference is shifted to a region where the contact position is, the signal amount always becomes a positive value and the signal amount is also maximized. Further, by utilizing this property, the profile to be prepared (capacity of the lookup table LUT) may be prepared in 1/4 of the area of the entire touch panel, that is, in one quadrant.
 指によるタッチを想定した場合、指のタッチ面積により、座標指定領域の分解能に制約があり、パネルのサイズに合わせて座標点の数を決める必要がある。そこで、ここでは相当大きいパネルを考慮しても対応できる65×65の座表を有するタッチパネルを想定する。この場合、座標領域の特定に必要な座標プロファイルの大きさは、上記したように1/4の領域で済むので、図11に示すように、33×33の座標領域になる。 When assuming touch with a finger, the resolution of the coordinate specification area is limited by the touch area of the finger, and the number of coordinate points must be determined according to the size of the panel. Therefore, here, a touch panel having a 65 × 65 seat that can be handled even when a considerably large panel is considered is assumed. In this case, since the size of the coordinate profile necessary for specifying the coordinate area is only a quarter area as described above, the coordinate area is 33 × 33 as shown in FIG.
 座標領域として扱うのは、8座標間隔とし、符号判定法と同じように、(1)座標(00,16)の座標値と抽出位置データ(位置情報抽出部により抽出されたもの)との大小関係を比較し、次いで、(2)座標(16,00)の座標値と抽出位置データとの大小関係を比較する。ルックアップテーブルには、所定の座標における座標値が格納されるが、座標値は、当該座標における差動電圧の信号量に対応した値である。仮に、上記の判定(1)、(2)の両方とも抽出位置データが大きかった場合には、図11に示す丸で示された領域が求められたことになる。 The coordinate area is treated as an 8-coordinate interval, and (1) the coordinate value of the coordinates (00, 16) and the extracted position data (extracted by the position information extraction unit) are the same as in the code determination method. The relationship is compared, and then (2) the size relationship between the coordinate value of the coordinate (16,000) and the extracted position data is compared. The look-up table stores coordinate values at predetermined coordinates, and the coordinate values are values corresponding to the signal amount of the differential voltage at the coordinates. If both of the above determinations (1) and (2) have large extraction position data, the area indicated by the circle shown in FIG. 11 is obtained.
 接触位置の検出の精度をさらに向上させる場合には、図11に示す粗い座標領域を特定した後、その領域に対応する倍精度のルックアップテーブルを用いて、さらに座標領域を詳細に特定し、この領域が特定できたところで、さらに倍精度のルックアップテーブルを用いてさらに座標領域を特定する。このような判定を繰り返すことで、最終的な座標を求めることができる。図11の例では、最終的に座標値(21,29)が算出された例を示している。 In order to further improve the accuracy of detection of the contact position, after specifying the coarse coordinate area shown in FIG. 11, using a double precision lookup table corresponding to that area, further specify the coordinate area in detail, When this area has been identified, a coordinate area is further identified using a double-precision lookup table. By repeating such determination, the final coordinates can be obtained. The example of FIG. 11 shows an example in which the coordinate values (21, 29) are finally calculated.
 次に、座標判定を行うためにルックアップテーブルに用意される必要なデータについて説明する。図12(A)に示すように、9×9の格子点で表すことのできる8×8の領域について考える。比較に必要な格子を黒丸と白丸で表す。黒丸は、Y方向の比較に使用するデータであり、白丸は、X方向の比較に使用するデータである。これを全部1つにまとめると図12(B)に示すようになり、これらのデータ数で8×8で表現できる。 Next, the necessary data prepared in the lookup table for coordinate determination will be described. As shown in FIG. 12A, consider an 8 × 8 region that can be represented by 9 × 9 lattice points. The grid required for comparison is represented by black circles and white circles. Black circles are data used for comparison in the Y direction, and white circles are data used for comparison in the X direction. When all of these are combined into one, it is as shown in FIG. 12B, and can be expressed by 8 × 8 by the number of these data.
 次に、ルックアップテーブルの構成について説明する。65×65の1/4の33×33の格子点で表される領域比較に必要なデータは、32×32の格子点が表現できればよく、2×2の10ビットのアドレス空間が必要となる。アドレスビットの構成は、図13(A)に示すように、Xアドレスが5ビット、Yアドレスが5ビットとなる。なお、1象限ないし4象限の4つの領域の区別は、レジスタを用いて管理する。 Next, the configuration of the lookup table will be described. The data required for the area comparison represented by the 33 × 33 grid points that are 1/4 of 65 × 65 only needs to be able to represent 32 × 32 grid points, and requires a 2 5 × 25 , 10-bit address space. It becomes. As shown in FIG. 13A, the address bits are configured such that the X address has 5 bits and the Y address has 5 bits. The distinction between the four areas of the first quadrant to the fourth quadrant is managed using a register.
 8×8の粗い座標領域を特定する時のアドレス設定は、図13(B)のようになる。ここで、xxxは、任意の数値である。詳細座標領域の設定は、XYアドレスの0の部分の左からxに設定する操作になる。 The address setting when specifying a coarse coordinate area of 8 × 8 is as shown in FIG. Here, xxx is an arbitrary numerical value. The detailed coordinate area is set to x from the left of the 0 part of the XY address.
 ルックアップテーブルのビット構成は、差動方式を用いるので、信号変化の値は、-2V~2Vの範囲になる。分解能を1mV、精度を2mV程度に設定すると、4Kの分解能が必要となり、A/D変換器のビット数は12ビットになる。 Since the bit structure of the lookup table uses a differential method, the signal change value is in the range of −2V to 2V. If the resolution is set to 1 mV and the accuracy is set to about 2 mV, 4K resolution is required, and the number of bits of the A / D converter is 12 bits.
 次に、複数点接触(マルチタッチ)の位置検出方法について説明する。
 複数点接触の位置検出は、1点接触の重ね合わせから求めることができる。
図14に示すように、接触点T2が接触店T1と重なったときを考える。ただし、信号量はノードA-Bから見た値とする。この場合、接触による静電容量がほぼ2倍になるため、信号量が増加する。但し、信号量の大きさは2倍にはならず、1点接触のときの1.3~1.8程度である。接触点T2が接触点T1から離れてゆくと、図の例では、b2の抵抗変化は少ないが、a2の抵抗が大きく変化する。接触点T1の距離a1がノードAの近傍にあり、b1はノードBから離れているため、信号電圧はほとんどa1で決まる。接触点T2が接触点T1から離れると、距離a2が大きくなり、a2による信号量が低下し、接触点T2の移動により信号量が小さくなる。a2がよりノードAに近づくと、逆に信号量が大きくなる。この信号量の変化は、2点間の移動距離に対応した値になる。これが、2点接触の検出原理である。2点接触では、接触により静電容量が増加することにより信号量も増加するので、比較的感度が高い。他方、X軸のノードA-Bの感度が低下しても、Y軸のノードA-Dがそれを補完するため、検出することが可能である。
Next, a method for detecting the position of multi-point contact (multi-touch) will be described.
The position detection of the multipoint contact can be obtained from the superposition of the single point contacts.
As shown in FIG. 14, the case where the contact point T2 overlaps the contact store T1 is considered. However, the signal amount is a value viewed from the node AB. In this case, since the electrostatic capacitance due to the contact is almost doubled, the signal amount is increased. However, the magnitude of the signal amount is not doubled and is about 1.3 to 1.8 at the time of one-point contact. When the contact point T2 moves away from the contact point T1, the resistance change of b2 is small in the example in the figure, but the resistance of a2 changes greatly. Since the distance a1 of the contact point T1 is in the vicinity of the node A and b1 is away from the node B, the signal voltage is almost determined by a1. When the contact point T2 moves away from the contact point T1, the distance a2 increases, the signal amount due to a2 decreases, and the signal amount decreases as the contact point T2 moves. As a2 gets closer to node A, the amount of signal increases. This change in the signal amount becomes a value corresponding to the moving distance between the two points. This is the detection principle of two-point contact. The two-point contact has a relatively high sensitivity because the amount of signal increases as the capacitance increases due to the contact. On the other hand, even if the sensitivity of the X-axis node AB decreases, it can be detected because the Y-axis node AD complements it.
 次に、複数点接触の代表的な2点の測定結果を図15、図16に示す。図15は、X軸方向の3つの位置、すなわち、66-12間タッチ、68-14間タッチ、70-16間タッチしたときの差動電圧波形を示している。図16は、Y軸方向の3つの位置、すなわち、65-71間タッチ、38-44間タッチ、11-17間タッチしたときの差動信号の波形を示している。この2点タッチ間の距離は、全ての測定に於いて等距離とし、座標軸の数字はその近傍の値を示している。2点タッチによる場合も、1点タッチのときよりも信号レベルは高くなるが、1点タッチと同様の感度特性の信号波形が現れている。この信号波形のピーク位置は例えば66-12間タッチの場合は66と12の点に接触した1点タッチのピーク位置の平均値にタッチ容量がほぼ2倍になった時に増加ずる信号量の比率を乗じたものに等しく、座標位置で示すとほぼ66と12の中心座標になる。このようにA-B間あるいはA-D間に水平な方向に位置する2点タッチは座標で見ると2点のほぼ中心に位置する1点タッチのように見える。 Next, the representative two-point measurement results of multi-point contact are shown in FIGS. FIG. 15 shows differential voltage waveforms when three positions in the X-axis direction, that is, a touch between 66-12, a touch between 68-14, and a touch between 70-16 are touched. FIG. 16 shows differential signal waveforms at three positions in the Y-axis direction, that is, when touching between 65-71, touching between 38-44, and touching between 11-17. The distance between the two touch points is the same distance in all measurements, and the number on the coordinate axis indicates a value in the vicinity thereof. Even in the case of two-point touch, the signal level is higher than that in the case of one-point touch, but a signal waveform having the same sensitivity characteristic as that of the one-point touch appears. For example, in the case of touch between 66-12, the peak position of this signal waveform is the ratio of the signal amount that increases when the touch capacitance is almost doubled to the average value of the peak position of the one-point touch that touches the points 66 and 12. It is equal to the product of the two and is represented by the center coordinates of 66 and 12 in the coordinate position. In this way, the two-point touch positioned in the horizontal direction between AB and AD is viewed as a one-point touch positioned almost at the center of the two points in terms of coordinates.
 次に、2点間の移動座標の検出について説明する。図17、図18、図19は、座標1、2、3において、2点間の距離を変化させたときの検出結果を示している。これらはいずれもA-B間に垂直な方向に移動した場合に現れる現象で、A-Dに垂直に移動する場合も同様な結果が得られる。
座標1では、(28-46)、(19-55)、(10-64)となるように間隔を広げる。
座標2では、(29-47)、(20-56)、(11-65)となるように間隔を広げる。
座標3では、(30-48)、(21-57)、(12-66)となるように間隔を広げる。
これらのグラフから判るように、2点間の移動距離が大きくなるほど、差動信号のレベルが大きくなることがわかる。これはA-B面に垂直な方向にのみ現れる性質で移動距離にたいする差動信号レベルの平均変化率を表している。これはA-B面に垂直な方向の座標変化にたいする差動信号レベルの増加の傾きを示している。差動信号レベルの増加の傾きが座標変化に対し下に凸のときは正の値、上に凸のときは負の値を示す。例では、下に凸であったため正の値となり広がりを示しているが上に凸の場所では負の値になり縮小を示すことになる。これは、場所による差動信号レベルの変化の凹凸を把握すれば測定した差動信号レベルの変化により拡大縮小を検出できることを示している。
Next, detection of moving coordinates between two points will be described. 17, 18, and 19 show detection results when the distance between two points is changed in coordinates 1, 2, and 3. FIG. These are phenomena that appear when moving in the direction perpendicular to AB, and the same result can be obtained when moving vertically to AD.
At coordinate 1, the interval is widened to be (28-46), (19-55), (10-64).
At coordinate 2, the interval is widened to be (29-47), (20-56), (11-65).
At coordinate 3, the interval is widened to be (30-48), (21-57), and (12-66).
As can be seen from these graphs, the level of the differential signal increases as the moving distance between the two points increases. This is a property that appears only in the direction perpendicular to the AB plane and represents the average rate of change of the differential signal level with respect to the moving distance. This shows the gradient of the increase in the differential signal level with respect to the coordinate change in the direction perpendicular to the AB plane. When the slope of the increase in the differential signal level is convex downward with respect to the coordinate change, a positive value is indicated, and when the slope is upward, a negative value is indicated. In the example, since it is convex downward, it becomes a positive value and indicates a spread, but at an upward convex location, it becomes a negative value and indicates reduction. This indicates that if the unevenness of the change in the differential signal level depending on the location is grasped, the enlargement / reduction can be detected by the change in the measured differential signal level.
 図20は、コーナー付近での2点間の座標を移動させたときの検出結果を示すものである。ここでは、ノードAのコーナー付近で2点間を、X軸は同一座標としつつ、Y軸上の距離を変化させている(2点間距離は、27、81、135)。この場合のみ、上記と同様に、移動距離が大きくなるほど、差動信号のレベルは大きくなることがわかる。 FIG. 20 shows the detection result when the coordinates between two points near the corner are moved. Here, the distance on the Y axis is changed while the X axis is the same coordinate between the two points near the corner of the node A (the distance between the two points is 27, 81, 135). Only in this case, as described above, it can be seen that the level of the differential signal increases as the moving distance increases.
 位置検出部40は、差動信号の電圧レベルが第1のしきい値と比較し、第1のしきい値よりも大きい場合には、2点接触であると判定する。第1のしきい値は、1点接触のときに得られるであろう電圧レベルよりも大きな値に予め設定される。また、位置検出部40は、1点接触のときと同様に、ルックアップテーブルを用意し、これを参照することで2つの接触位置と差動信号レベルの凹凸を求めることができる。さらに、位置検出部40は、差動信号のレベルの変化により、2点接触が移動していることを検出することができる。差動信号のレベルの変化は、サンプリングされたピーク値の変化量から判定することができる。 The position detection unit 40 compares the voltage level of the differential signal with the first threshold value, and determines that it is a two-point contact when it is greater than the first threshold value. The first threshold value is set in advance to a value larger than the voltage level that would be obtained at the time of one-point contact. Further, the position detection unit 40 prepares a look-up table as in the case of one-point contact, and by referring to this, it is possible to obtain the two contact positions and the unevenness of the differential signal level. Furthermore, the position detection unit 40 can detect that the two-point contact is moving due to a change in the level of the differential signal. The change in the level of the differential signal can be determined from the amount of change in the sampled peak value.
 次に、3点接触のときの位置検出方法について説明する。3点接触の場合にも、基本的には、2点接触の場合と同様の原理であり、3点接触されたときに静電容量が増加し、差動信号のレベルが大きくなること検出する。3点接触されたとき、図21に示すように、位置情報抽出部30から抽出された位置情報は、3つの接触点で形成される三角形の重心となる1点接触を表すことになる。3点接触は、1Aと2Aの2点接触が行われ、次いで3Aの1点接触が行われる組合せ(A法)、または1Bと2Bの2点接触が行われ、次いで3Bの1点接触が行われる組合せ(B法)と見ることができる。 Next, the position detection method at the time of three-point contact will be described. Even in the case of three-point contact, the principle is basically the same as in the case of two-point contact, and it is detected that the capacitance increases and the level of the differential signal increases when the three-point contact is made. . When three points are touched, as shown in FIG. 21, the position information extracted from the position information extraction unit 30 represents a one-point contact that becomes the center of gravity of the triangle formed by the three contact points. 3 point contact is a combination of 1A and 2A contact, then 3A 1 point contact (Method A), or 1B and 2B contact, then 3B 1 point contact. It can be seen as the combination to be performed (Method B).
 図22は、図21に示す3点接触をA法で操作したときの測定結果を示している。3点タッチは、1点タッチ、2点タッチよりも電圧レベルが高くなることがわかる。また、図23は、3点接触をB法で操作したときの測定結果を示している。この場合にも、3点タッチは、1点タッチ、2点タッチよりも電圧レベルが高くなることがわかる。 FIG. 22 shows a measurement result when the three-point contact shown in FIG. 21 is operated by the A method. It can be seen that the three-point touch has a higher voltage level than the one-point touch and the two-point touch. FIG. 23 shows a measurement result when the three-point contact is operated by the B method. Also in this case, it is understood that the voltage level is higher in the three-point touch than in the one-point touch and the two-point touch.
 位置検出部40は、差動信号の電圧レベルが第2のしきい値と比較し、第2のしきい値よりも大きい場合には、2点接触であると判定する。第2のしきい値は、2点接触のときに得られるであろう電圧レベルよりも大きな値に予め設定される。また、位置検出部40は、1点接触のときと同様に、ルックアップテーブルを用意し、これを参照することで3点接触の位置を求めることができる。 The position detection unit 40 compares the voltage level of the differential signal with the second threshold value, and determines that it is a two-point contact when it is greater than the second threshold value. The second threshold value is preset to a value that is greater than the voltage level that would be obtained during a two-point contact. Further, the position detection unit 40 prepares a lookup table as in the case of one-point contact, and can obtain the position of three-point contact by referring to this.
 次に、図1(B)に示す付加抵抗R0の最適化について説明する。タッチパネルの導電膜14の対角線上の抵抗Rは一定であり、例えば、6~7kΩである。図24に示すように、負荷抵抗R0を、1kΩ、3kΩ、5kΩ、10kΩとしたときの差動電圧VABの電圧波形を示している。これらのグラフから、基板抵抗と同程度の5kΩの付加抵抗であるとき、インピーダンスマッチングし、最大振幅となっている。このため、測定感度を良くするためには、基板抵抗と同程度の付加抵抗を用いることが望ましい。 Next, optimization of the additional resistor R0 shown in FIG. The resistance R on the diagonal line of the conductive film 14 of the touch panel is constant, for example, 6 to 7 kΩ. As shown in FIG. 24, the voltage waveform of the differential voltage V AB when the load resistance R0 is 1 kΩ, 3 kΩ, 5 kΩ, and 10 kΩ is shown. From these graphs, when the resistance is 5 kΩ, which is the same as the substrate resistance, impedance matching is performed and the maximum amplitude is obtained. For this reason, in order to improve the measurement sensitivity, it is desirable to use an additional resistance comparable to the substrate resistance.
 次に、タッチパネルの校正方法について説明する。図25は、X座標をパラメータとした、タッチパネルのノードA、Bから見た差動信号電圧の座標値依存性(Y軸方向の距離依存性)である。図から明らかなように、差動信号電圧の距離依存性には次のような特徴がある。 Next, the touch panel calibration method will be described. FIG. 25 shows the coordinate value dependency (distance dependency in the Y-axis direction) of the differential signal voltage as viewed from the nodes A and B of the touch panel using the X coordinate as a parameter. As is apparent from the figure, the distance dependency of the differential signal voltage has the following characteristics.
(1)タッチ容量が20pFの距離依存性をα倍したものが40pFの依存性に等しくなるというようにタッチ容量に対する容量係数αを求めれば任意の容量に対する依存性を求めることができる。
(2)ノードA、Bから中心までの電圧変化が大きく、中心より先の電圧変化が小さい。
この特徴は、ノードA-D、ノードB-C、ノードC-Dについても成り立つ。そこで、この性質を積極的に利用することでタッチ容量に依存しない正規化信号電圧を求めることができる。
(1) If the capacitance coefficient α for the touch capacitance is obtained such that a value obtained by multiplying the distance dependency of the touch capacitance of 20 pF by α is equal to the dependency of 40 pF, the dependency on the arbitrary capacitance can be obtained.
(2) The voltage change from the nodes A and B to the center is large, and the voltage change beyond the center is small.
This feature is also true for the nodes AD, BC, and CD. Therefore, the normalized signal voltage that does not depend on the touch capacitance can be obtained by actively utilizing this property.
 ノードA-B面から見た代表点の差動信号電圧の容量依存性を図26に示す。このような差動信号電圧の容量依存性に対しタッチ容量40pF(αを算出する場合の容量を20pFにしようと60pFにしようと問題ないが、最も出現頻度の大きそうな40pFとし、この容量を標準容量と呼ぶことにする)の時の容量係数αを求めると図27のようになる。 FIG. 26 shows the capacity dependency of the differential signal voltage at the representative point as seen from the node AB plane. With respect to the capacitance dependency of the differential signal voltage, the touch capacitance is 40 pF (there is no problem whether the capacitance when calculating α is set to 20 pF or 60 pF, but it is set to 40 pF that seems to have the highest appearance frequency. When the capacity coefficient α at the time of the standard capacity is obtained, it is as shown in FIG.
 タッチパネルの各辺から見た差動信号電圧の座標値依存性は、タッチ容量係数αを求めれば任意のタッチ容量値に対する座標依存性を算出することができる。しかし、このαを求めるのは容易ではない。そこで、タッチ容量値に依存しない正規化信号電圧を導入する。 As for the coordinate value dependency of the differential signal voltage viewed from each side of the touch panel, the coordinate dependency on an arbitrary touch capacitance value can be calculated by obtaining the touch capacitance coefficient α. However, it is not easy to obtain this α. Therefore, a normalized signal voltage that does not depend on the touch capacitance value is introduced.
 タッチ位置を求める時、タッチパネルの各辺に対する信号電圧を測定する。この時、例えばノードAB辺とCD辺について見ると、図28(A)の丸T1、T2で示したように必ず、パネルの中心に対して対称な2点の測定値が得られる。AB辺から見たT1の信号電圧をV1、タッチパネルの中心線に対称な点をT2とし、AB辺から見たT2の信号電圧をV2とすると、パネルの対称性から次の関係が成り立つ。
DC辺から見たT1の信号電圧=V2、
DC辺から見たT2の信号電圧=V1
この2点の測定値の小さい方の値で大きい方の値で割った値を正規化信号電圧と定義すると、図28(C)の式に示すように、容量係数αが消えタッチ容量に依存しない値となる。
When determining the touch position, the signal voltage for each side of the touch panel is measured. At this time, for example, when viewing the node AB side and the CD side, as shown by circles T1 and T2 in FIG. 28A, measurement values at two points symmetrical with respect to the center of the panel are always obtained. When the T1 signal voltage viewed from the AB side is V1, the point symmetrical to the center line of the touch panel is T2, and the T2 signal voltage viewed from the AB side is V2, the following relationship holds from the symmetry of the panel.
T1 signal voltage viewed from the DC side = V2,
T2 signal voltage viewed from the DC side = V1
When the value obtained by dividing the measured value of the two points by the smaller value and the larger value is defined as the normalized signal voltage, the capacitance coefficient α disappears and depends on the touch capacitance as shown in the equation of FIG. It is a value that does not.
 タッチパネルのAB辺とAD辺から見た差動信号電圧の座標値依存性から求めた正規化信号電圧の座標依存性は、
(1)直線性が改善され、中心付近でも十分な信号量の変化が確保できる。
(2)パネルの中心から先の信号量の小さい座標算出に使えない領域がなくなる。
 図29は、ノードABにおける差動信号電圧の座標依存性を示し、これが、図30に示すような正規化信号電圧の座標依存性に変換される。図31は、ノードADの差増信号電圧の座標依存性、図32は、変換された正規化信号電圧の座標依存性を示している。
The coordinate dependency of the normalized signal voltage obtained from the dependency of the differential signal voltage on the coordinate side as seen from the AB side and AD side of the touch panel is:
(1) The linearity is improved, and a sufficient signal amount change can be secured even near the center.
(2) There is no area that cannot be used to calculate coordinates with a small signal amount from the center of the panel.
FIG. 29 shows the coordinate dependency of the differential signal voltage at the node AB, which is converted into the coordinate dependency of the normalized signal voltage as shown in FIG. FIG. 31 shows the coordinate dependency of the difference signal voltage of the node AD, and FIG. 32 shows the coordinate dependency of the converted normalized signal voltage.
 AB辺から見た正規化信号電圧の容量依存性は、図33、図34に示すように極めて小さい。このためタッチ座標の算出には好都合であるが、タッチ容量の算出はできず、タッチ容量の算出には別の方法を用いる必要がある。タッチ容量を算出するには、容量による電圧変化に着目する必要がある。このため、タッチ容量を算出するには、図35に示す手順が効果的である。
(1)タッチ点の差動信号電圧をノードAB、ノードCD、ノードBC、ノードADの4辺について測定する(S101)。
(2)測定した差動信号電圧から正規化信号電圧を算出する(S102)。
(3)タッチ点の正規化信号電圧と正規化信号電圧のルックアップテーブルを用いてタッチ点の座標を算出する(S103、S104)。
(4)次に、タッチ容量が標準容量のときの差動信号電圧のルックアップテーブルからタッチ点の差動信号電圧V0を求める(S105、S106)。
(5)差動信号電圧V0を用いて容量係数αを算出する。容量係数αは測定電圧VmをV0で割った値である。
(6)求めた容量係数αからαと容量値を関係付けたルックアップテーブルを用いてタッチ容量を算出する(S107、S108)。
The capacity dependency of the normalized signal voltage viewed from the AB side is extremely small as shown in FIGS. For this reason, although it is convenient for calculation of touch coordinates, it is not possible to calculate touch capacitance, and it is necessary to use another method for calculation of touch capacitance. In order to calculate the touch capacitance, it is necessary to pay attention to a voltage change due to the capacitance. Therefore, the procedure shown in FIG. 35 is effective for calculating the touch capacitance.
(1) The differential signal voltage at the touch point is measured for the four sides of the node AB, the node CD, the node BC, and the node AD (S101).
(2) A normalized signal voltage is calculated from the measured differential signal voltage (S102).
(3) The coordinates of the touch point are calculated using the normalized signal voltage of the touch point and a lookup table of the normalized signal voltage (S103, S104).
(4) Next, the differential signal voltage V0 at the touch point is obtained from the lookup table of the differential signal voltage when the touch capacitance is the standard capacitance (S105, S106).
(5) The capacity coefficient α is calculated using the differential signal voltage V0. The capacity coefficient α is a value obtained by dividing the measured voltage Vm by V0.
(6) The touch capacitance is calculated from the obtained capacitance coefficient α using a lookup table that associates α with a capacitance value (S107, S108).
 次に、本実施例のタッチパネルのタッチ検出アルゴリズムのフローを図36に示す。このアルゴリズムは、好ましくは、プログラムメモリ210(図9を参照)に格納されたプログラムシーケンスによって制御される。先ず、位置情報抽出部30や位置検出部40に含まれる全てのパラメータが初期設定された状態におかれている(S201)。次に、タッチパネルへの電源が投入されると、位置情報抽出部30および位置検出部40は、補正データを取得し、これに基づきパラメータの設定を行う(S202)。ここでの補正データとは、校正などに必要なデータであり、予め不揮発性メモリなどに格納されている。 Next, FIG. 36 shows a flow of the touch detection algorithm of the touch panel of this embodiment. This algorithm is preferably controlled by a program sequence stored in program memory 210 (see FIG. 9). First, all parameters included in the position information extraction unit 30 and the position detection unit 40 are in an initial set state (S201). Next, when the power to the touch panel is turned on, the position information extraction unit 30 and the position detection unit 40 acquire correction data and set parameters based on this (S202). The correction data here is data necessary for calibration and the like, and is stored in advance in a nonvolatile memory or the like.
 次に、タッチ状態が発生すると(S203)、位置情報抽出部30により位置情報が抽出され、この情報は、A/D変換された後、ディジタル信号として位置検出部40へ出力される(S204)。位置検出部40は、データを受け取ると、位置検出に必要な前処理を行う(S205)。前処理は、例えば、測定誤差を少なくするために平均化処理、上記した正規化信号電圧の算出、タッチ容量の算出などを含む。 Next, when a touch state occurs (S203), position information is extracted by the position information extraction unit 30, and this information is A / D converted and then output to the position detection unit 40 as a digital signal (S204). . Upon receiving the data, the position detection unit 40 performs preprocessing necessary for position detection (S205). The preprocessing includes, for example, averaging processing, calculation of the normalized signal voltage, calculation of touch capacitance, and the like in order to reduce measurement errors.
 次に、位置検出部40は、タッチ容量が2倍以上であるか否か、言い換えれば、差動電圧のピーク値が第1のしきい値より大きいか否かを判定する(S206)。第1のしきい値未満であれば、1点接触であると判定し、座標を算出する演算処理を行う(S207)。この演算では、上記したように、差動電圧の感度特性による符号判定や、これに加えてルックアップテーブルを参照して詳細な座標算出が行われる。一方、第1のしきい値以上である場合には、位置検出部40は、複数点接触であると判定し、さらに第2のしきい値と比較することで、2点接触か3点接触かを判定するようにしてもよい。位置検出部40は、2点接触または3点接触に対応したルックアップテーブルを参照し、座標位置を算出する(S208)。 Next, the position detection unit 40 determines whether or not the touch capacitance is twice or more, in other words, whether or not the peak value of the differential voltage is larger than the first threshold value (S206). If it is less than the first threshold value, it is determined that the contact is a single point, and a calculation process for calculating coordinates is performed (S207). In this calculation, as described above, sign determination based on the sensitivity characteristic of the differential voltage is performed, and in addition, detailed coordinate calculation is performed with reference to a lookup table. On the other hand, if the value is equal to or greater than the first threshold value, the position detection unit 40 determines that the contact is a multipoint contact, and further compares it with the second threshold value, thereby making a two-point contact or three-point contact You may make it determine. The position detection unit 40 refers to a lookup table corresponding to 2-point contact or 3-point contact, and calculates a coordinate position (S208).
 次に、位置検出部40は、算出された座標情報を出力するとともに、移動フラグを“1”に設定する(S209)。次に、移動検出部40は、接触点の移動の有無を判定する(S2210)。接触点が移動しているか否かは、前回の座標出力と比較すること行われる。また、2点接触の場合、距離が変化すると差動信号のレベルが変化するので、この変化量に基づき判定してもよい。移動がない場合には、移動フラグは“0”に設定され(S211)、タッチ状態発生前の状態に戻る。移動があると判定されたには、再び、ステップS204からの処理が続行される。 Next, the position detection unit 40 outputs the calculated coordinate information and sets the movement flag to “1” (S209). Next, the movement detection unit 40 determines whether or not the contact point has moved (S2210). Whether or not the contact point is moved is compared with the previous coordinate output. In the case of two-point contact, since the level of the differential signal changes when the distance changes, determination may be made based on this change amount. If there is no movement, the movement flag is set to “0” (S211), and the state before the touch state occurs is returned. If it is determined that there is a movement, the processing from step S204 is continued again.
 次に、ホバーリングタッチの測定結果を図37に示す。本特許のタッチパネルは検出感度が高く、パネルから指を離しても接触点の検出が可能である。動作的には1点タッチの延長線上にあり、容量係数αの小さい1点タッチとして認識される。このため、第3の回路(検出回路)の感度により、測定限界が決まる点を除き、座標の検出等については1点タッチの手法がそのまま適用できる。図の測定ではパネルから5cm程度離しても検出できることが確認できたが第3の回路(検出回路)の感度をより高くすることにより、パネルからの距離をより大きくすることができる。 Next, the measurement result of the hovering touch is shown in FIG. The touch panel of this patent has high detection sensitivity and can detect a contact point even when a finger is removed from the panel. Operationally, it is on the extension line of one-point touch and is recognized as a one-point touch with a small capacitance coefficient α. Therefore, except for the point where the measurement limit is determined by the sensitivity of the third circuit (detection circuit), the one-point touch method can be applied as it is for the detection of coordinates and the like. In the measurement of the figure, it was confirmed that detection was possible even when separated from the panel by about 5 cm, but the distance from the panel can be increased by increasing the sensitivity of the third circuit (detection circuit).
 以上、本発明の好ましい実施の形態について詳述したが、本発明は、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。例えば、位置検出部40(図9)をメモリ・論理共役システム(MLCS:Memory-Logic Conjugate System)で実現すれば、ダイナミックリコンフィギュレーションが可能なクラスタメモリをルックアップテーブル(データメモリ220)として構成でき、中央処理部230による複数のステップで実現される演算処理の短縮化が実現できる。これは、中央処理部230の高速化の実現と、中央処理部230及びデータメモリ220のサイズ縮小化が実現でき、FPGA(Field-Programmable Gate Array)やマイクロコントローラ(micro controller)よりもコストパフォーマンスが向上する。 The preferred embodiment of the present invention has been described in detail above, but the present invention is not limited to the specific embodiment, and various modifications can be made within the scope of the present invention described in the claims. Deformation / change is possible. For example, if the position detection unit 40 (FIG. 9) is realized by a memory-logic conjugate system (MLCS), a cluster memory capable of dynamic reconfiguration is configured as a lookup table (data memory 220). In addition, the arithmetic processing realized by the central processing unit 230 in a plurality of steps can be shortened. This realizes speeding up of the central processing unit 230 and size reduction of the central processing unit 230 and the data memory 220, and is more cost-effective than an FPGA (Field-Programmable Gate Array) or a microcontroller (micro controller). improves.
10:タッチパネル
12:基板
14:導電膜
16:保護膜
20:基準電位発生回路
30:位置情報抽出部
40:位置検出部
100:セレクター
102:差増増幅回路
104:フィルター
106:ピーク値ホールド回路
108:A/D変換器
110:タッチ第3の回路(検出回路)
112:フリップフロップ回路
114:コントローラ
P、T1、T2:接触位置
A、B、C、D:ノード
10: Touch panel 12: Substrate 14: Conductive film 16: Protective film 20: Reference potential generation circuit 30: Position information extraction unit 40: Position detection unit 100: Selector 102: Differential amplification circuit 104: Filter 106: Peak value hold circuit 108 : A / D converter 110: Touch third circuit (detection circuit)
112: flip-flop circuit 114: controllers P, T1, T2: contact positions A, B, C, D: nodes

Claims (20)

  1. 導電膜と、
    前記導電膜上に形成された絶縁膜と、
     前記導電膜のX軸またはY軸の少なくともいずれか一方の軸上における少なくとも2点に接続された第1および第2のノードと、
     前記第1および第2のノードに、クロック信号を印加する第1の回路(印加回路)と、
     前記第1および第2のノードからそれぞれ得られた第1および第2の出力信号の電圧差を示す第1の差分信号を生成する第2の回路(抽出回路)と、
     前記第1の差分信号に基づき、前記絶縁膜に物体が接近または接触した前記少なくともいずれか一方の軸の座標位置を導く第3の回路(検出回路)と、
    を有する位置検出装置。
    A conductive film;
    An insulating film formed on the conductive film;
    First and second nodes connected to at least two points on at least one of the X-axis and Y-axis of the conductive film;
    A first circuit (application circuit) for applying a clock signal to the first and second nodes;
    A second circuit (extraction circuit) that generates a first difference signal indicating a voltage difference between the first and second output signals obtained from the first and second nodes, respectively;
    A third circuit (detection circuit) for deriving a coordinate position of the at least one axis where an object approaches or contacts the insulating film based on the first differential signal;
    A position detecting device.
  2. 位置検出装置はさらに、前記第1および第2のノードとは異なるX軸またはY軸の少なくともいずれか他方の軸上の少なくとも2点に接続された、前記クロック信号が印加された第3および第4のノードを含み、
     前記第2の回路(抽出回路)は、前記第3および第4のノードからそれぞれ得られた第3および第4の出力信号の電圧差を示す第2の差分信号を生成し、
     前記第3の回路(検出回路)は、前記第1および第2の差分信号に基づき前記絶縁膜に物体が接近または接触したXY平面上の座標位置を導く、請求項1に記載の位置検出装置。
    The position detecting device is further connected to at least two points on at least one other axis of the X axis or the Y axis different from the first and second nodes, and the third and second to which the clock signal is applied. Contains 4 nodes,
    The second circuit (extraction circuit) generates a second difference signal indicating a voltage difference between the third and fourth output signals obtained from the third and fourth nodes, respectively.
    The position detection device according to claim 1, wherein the third circuit (detection circuit) derives a coordinate position on an XY plane where an object approaches or contacts the insulating film based on the first and second difference signals. .
  3. 前記第3の回路(検出回路)は、前記第1の差分信号と第1のしきい値とを比較し、前記第1の差分信号が第1のしきい値以下であるとき接近または接触位置は1つであると判定し、前記第1の差分信号が第1のしきい値より大きいとき前記接近または接触位置は少なくとも2つであると判定する判定部を含む、請求項1に記載の位置検出装置。 The third circuit (detection circuit) compares the first difference signal with a first threshold value, and approaches or touches when the first difference signal is equal to or less than the first threshold value. 2. The determination unit according to claim 1, further comprising: a determination unit that determines that the number of approaching or touching positions is at least two when the first difference signal is greater than a first threshold value. Position detection device.
  4. 前記判定部は、前記接近または接触位置が少なくとも2つであると判定した場合に、一定期間内における第1の差分信号が増加又は減少に対応して、2つの接触位置が広がっている又は狭まっていると判定する、請求項3に記載の位置検出装置。 When the determination unit determines that there are at least two approaches or contact positions, the two contact positions are widened or narrowed corresponding to an increase or decrease in the first difference signal within a certain period. The position detection device according to claim 3, wherein the position detection device determines that the
  5. 前記判定部は、前記第1の差分信号が第1のしきい値よりも大きい第2のしきい値以上であるとき、前記接近または接触位置は少なくとも3つであると判定する、請求項3に記載の位置検出装置。 The determination unit determines that the approach or contact position is at least three when the first differential signal is equal to or greater than a second threshold value that is greater than a first threshold value. The position detection apparatus described in 1.
  6. 前記第3の回路(検出回路)は、前記第1の差分信号によって表される第1の符号と前記第2の差分信号によって表される第2の符号との組合せに基づき前記接近または接触位置の座標を導く、請求項2に記載の位置検出装置。 The third circuit (detection circuit) has the approach or contact position based on a combination of a first code represented by the first difference signal and a second code represented by the second difference signal. The position detection device according to claim 2, wherein the coordinates are derived.
  7. 前記第3の回路(検出回路)はさらに、前記第1及び第2の符号によって特定される領域の座標と、前記第1および第2の差分信号に対応する信号値と、の関係を規定したテーブルを含み、前記第3の回路(検出回路)は、前記テーブルを参照し、前記生成された第1および第2の差分信号と前記信号値とを比較することにより前記接近または接触位置の座標を導く、請求項6に記載の位置検出装置。 The third circuit (detection circuit) further defines a relationship between the coordinates of the region specified by the first and second codes and the signal value corresponding to the first and second difference signals. The third circuit (detection circuit) includes a table, and refers to the table, and compares the generated first and second difference signals with the signal value to determine the coordinates of the approach or contact position. The position detection device according to claim 6 which guides.
  8. 前記第2の回路(抽出回路)は、前記第1および第2の出力信号、または前記第3および第4の出力信号を選択する選択回路を含む、請求項2に記載の位置検出装置。 The position detection device according to claim 2, wherein the second circuit (extraction circuit) includes a selection circuit that selects the first and second output signals or the third and fourth output signals.
  9. 前記第2の回路(抽出回路)は、前記第1および第2の出力信号を入力して前記第1の差分信号を出力する差動増幅回路と、前記差動増幅回路から出力された第1の差分信号のピーク値を保持するピークホールド回路と、前記ピークホールド回路によって保持されたピーク値をディジタル信号に変換して前記第3の回路(検出回路)へ供給するアナログ/ディジタル変換回路とを含む、請求項1に記載の位置検出装置。 The second circuit (extraction circuit) receives the first and second output signals and outputs the first differential signal, and a first output from the differential amplifier circuit A peak hold circuit that holds a peak value of the difference signal of the signal, and an analog / digital conversion circuit that converts the peak value held by the peak hold circuit into a digital signal and supplies the digital signal to the third circuit (detection circuit). The position detection device according to claim 1, further comprising:
  10. 前記第2の回路(抽出回路)は、前記差増増幅回路から出力された信号のノイズを除去するフィルターを含む、請求項9に記載の位置検出装置。 The position detection device according to claim 9, wherein the second circuit (extraction circuit) includes a filter that removes noise of a signal output from the differential amplification circuit.
  11. 前記第3の回路(検出回路)は、前記第2の回路(抽出回路)から提供された一定期間内の複数の前記第1の差分信号に対応するディジタル信号を平均化する処理部を含む、請求項1に記載の位置検出装置。 The third circuit (detection circuit) includes a processing unit that averages digital signals corresponding to a plurality of the first difference signals within a certain period provided from the second circuit (extraction circuit). The position detection device according to claim 1.
  12. 位置検出装置はさらに、前記第1および第2の差分信号を正規化する正規化部を含む、請求項2に記載の位置検出装置。 The position detection apparatus according to claim 2, further comprising a normalization unit that normalizes the first and second difference signals.
  13. 前記正規化部は、前記X軸および前記Y軸の平面のX軸方向の中心線に関し、前記接近または接触位置が対称となる位置の第3の差分信号と第1の差分信号との比に基づき正規化された第1の差分信号を求め、かつY軸方向中心線に関し対象となる位置の第4の差分信号と第2の差分信号との比に基づき正規化された第2の差分信号を求める、請求項12に記載の位置検出装置。 The normalizing unit has a ratio between a third difference signal and a first difference signal at a position where the approach or contact position is symmetric with respect to a center line in the X-axis direction of the plane of the X-axis and the Y-axis. A first difference signal normalized based on the second difference signal normalized based on a ratio of the fourth difference signal and the second difference signal at a target position with respect to the center line in the Y-axis direction The position detection device according to claim 12, wherein:
  14. 請求項1ないし13いずれか1つに記載の位置検出装置を含む表示装置。 A display device comprising the position detection device according to claim 1.
  15. 導電膜のX軸上の第1および第2のノード、並びに前記導電膜上のY軸上の第3および第4のノードに共通のクロック信号を印加し、
     X軸上の第1及び第2のノードの差電圧を示す第1の差分信号を生成し、
     Y軸上の第3及び第4のノードの差電圧を示す第2の差分信号を生成し、
     前記第1および第2の差分信号に基づき、前記導電膜上に形成された絶縁膜のXY平面上に物体が接近または接触する位置の座標を導く、位置検出方法。
    Applying a common clock signal to the first and second nodes on the X axis of the conductive film and the third and fourth nodes on the Y axis of the conductive film;
    Generating a first differential signal indicative of a voltage difference between the first and second nodes on the X axis;
    Generating a second differential signal indicative of the differential voltage of the third and fourth nodes on the Y axis;
    A position detection method for deriving coordinates of a position where an object approaches or contacts an XY plane of an insulating film formed on the conductive film based on the first and second differential signals.
  16. 位置検出方法はさらに、
     前記第1および第2の差分信号の少なくとも一方と第1のしきい値とを比較し、
     前記第1のしきい値以下であるとき前記接近または接触位置は1つであると判定し、第1のしきい値より大きいとき前記接近または接触位置は少なくとも2つであると判定する、請求項15に記載の位置検出方法。
    The position detection method
    Comparing at least one of the first and second difference signals with a first threshold;
    The approach or contact position is determined to be one when it is less than or equal to the first threshold value, and the approach or contact position is determined to be at least two when greater than the first threshold value. Item 16. The position detection method according to Item 15.
  17. 前記接近または接触位置が2つであると判定した場合に、一定期間内における前記第1の差分信号が増加又は減少に対応して、2つの前記接近または接触位置が広がっている又は狭まっていると判定する、請求項15に記載の位置検出方法。 When it is determined that there are two approach or contact positions, the two approach or contact positions are widened or narrowed corresponding to an increase or decrease in the first differential signal within a certain period. The position detection method according to claim 15, wherein the position detection method is determined.
  18. 前記第1の差分信号が第1のしきい値よりも大きい第2のしきい値以上であるとき、前記接近または接触位置は少なくとも3つであると判定する、請求項15に記載の位置検出方法。 The position detection according to claim 15, wherein when the first difference signal is equal to or greater than a second threshold value that is greater than the first threshold value, the approach or contact position is determined to be at least three. Method.
  19. 前記第1の差分信号によって表される符号と前記第2の差分信号によって表される符号との組合せに基づき位置を検出する、請求項15に記載の位置検出方法。 The position detection method according to claim 15, wherein the position is detected based on a combination of a code represented by the first difference signal and a code represented by the second difference signal.
  20. 前記第1及び第2の符号によって特定される領域内の座標と、前記第1および第2の差分信号に対応する信号値と、の関係を規定した座標テーブルを参照する、請求項19に記載の位置検出方法。 The coordinate table defining the relationship between the coordinates in the region specified by the first and second codes and the signal values corresponding to the first and second difference signals is referred to. Position detection method.
PCT/JP2012/059722 2012-04-09 2012-04-09 Location detection device and method for controlling same, and system comprising same WO2013153609A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/059722 WO2013153609A1 (en) 2012-04-09 2012-04-09 Location detection device and method for controlling same, and system comprising same
JP2014509926A JP5776917B2 (en) 2012-04-09 2012-04-09 POSITION DETECTION DEVICE, ITS CONTROL METHOD, AND ITS SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/059722 WO2013153609A1 (en) 2012-04-09 2012-04-09 Location detection device and method for controlling same, and system comprising same

Publications (1)

Publication Number Publication Date
WO2013153609A1 true WO2013153609A1 (en) 2013-10-17

Family

ID=49327219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059722 WO2013153609A1 (en) 2012-04-09 2012-04-09 Location detection device and method for controlling same, and system comprising same

Country Status (2)

Country Link
JP (1) JP5776917B2 (en)
WO (1) WO2013153609A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185775A1 (en) * 2015-05-20 2016-11-24 コニカミノルタ株式会社 Organic electroluminescent module, smart device, and illumination apparatus
WO2016189932A1 (en) * 2015-05-26 2016-12-01 コニカミノルタ株式会社 Organic electroluminescence module, smart device, and lighting apparatus
WO2016208233A1 (en) * 2015-06-22 2016-12-29 コニカミノルタ株式会社 Organic electroluminescence module, smart device, and illumination device
WO2016208234A1 (en) * 2015-06-22 2016-12-29 コニカミノルタ株式会社 Organic electroluminescence module, smart device, and illumination device
JP2018198051A (en) * 2017-05-23 2018-12-13 東洋アルミニウム株式会社 Position detection system, position detection method, and position detector
WO2019064858A1 (en) * 2017-09-29 2019-04-04 アルプスアルパイン株式会社 Operation input device and door handle
CN110036362A (en) * 2017-07-18 2019-07-19 深圳市汇顶科技股份有限公司 Touch detecting method and touch detecting apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836456A (en) * 1994-04-06 1996-02-06 Fujitsu Ltd Stylus location digitizer using sound wave
JP2007207124A (en) * 2006-02-03 2007-08-16 Sharp Corp Coordinate detector, display device and coordinate detection method
JP2010157029A (en) * 2008-12-26 2010-07-15 Pentel Corp Coordinate input system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836456A (en) * 1994-04-06 1996-02-06 Fujitsu Ltd Stylus location digitizer using sound wave
JP2007207124A (en) * 2006-02-03 2007-08-16 Sharp Corp Coordinate detector, display device and coordinate detection method
JP2010157029A (en) * 2008-12-26 2010-07-15 Pentel Corp Coordinate input system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185775A1 (en) * 2015-05-20 2016-11-24 コニカミノルタ株式会社 Organic electroluminescent module, smart device, and illumination apparatus
JPWO2016185775A1 (en) * 2015-05-20 2018-03-08 コニカミノルタ株式会社 Organic electroluminescence module, smart device, and lighting device
WO2016189932A1 (en) * 2015-05-26 2016-12-01 コニカミノルタ株式会社 Organic electroluminescence module, smart device, and lighting apparatus
JPWO2016189932A1 (en) * 2015-05-26 2018-04-05 コニカミノルタ株式会社 Organic electroluminescence module, smart device, and lighting device
WO2016208233A1 (en) * 2015-06-22 2016-12-29 コニカミノルタ株式会社 Organic electroluminescence module, smart device, and illumination device
WO2016208234A1 (en) * 2015-06-22 2016-12-29 コニカミノルタ株式会社 Organic electroluminescence module, smart device, and illumination device
JPWO2016208234A1 (en) * 2015-06-22 2018-04-05 コニカミノルタ株式会社 Organic electroluminescence module, smart device, and lighting device
JPWO2016208233A1 (en) * 2015-06-22 2018-04-05 コニカミノルタ株式会社 Organic electroluminescence module, smart device, and lighting device
JP2018198051A (en) * 2017-05-23 2018-12-13 東洋アルミニウム株式会社 Position detection system, position detection method, and position detector
JP7007984B2 (en) 2017-05-23 2022-01-25 東洋アルミニウム株式会社 Position detection system, position detection method and position detection device
CN110036362A (en) * 2017-07-18 2019-07-19 深圳市汇顶科技股份有限公司 Touch detecting method and touch detecting apparatus
CN110036362B (en) * 2017-07-18 2022-07-05 深圳市汇顶科技股份有限公司 Touch detection method and touch detection device
WO2019064858A1 (en) * 2017-09-29 2019-04-04 アルプスアルパイン株式会社 Operation input device and door handle
JPWO2019064858A1 (en) * 2017-09-29 2020-07-30 アルプスアルパイン株式会社 Operation input device and door handle
EP3690913A4 (en) * 2017-09-29 2021-06-23 Alps Alpine Co., Ltd. Operation input device and door handle
US11511605B2 (en) 2017-09-29 2022-11-29 Alps Alpine Co., Ltd. Operation input device and door handle

Also Published As

Publication number Publication date
JPWO2013153609A1 (en) 2015-12-17
JP5776917B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5776917B2 (en) POSITION DETECTION DEVICE, ITS CONTROL METHOD, AND ITS SYSTEM
US10852873B2 (en) Pressure-sensitive detection apparatus, electronic device, and touch display screen
EP2184666B1 (en) Multipoint sensing method applicable to capacitive touch panel
US11481066B2 (en) Providing a baseline capacitance for a capacitance sensing channel
US10168825B2 (en) Capacitive touch systems and methods using differential signal techniques
US9762234B2 (en) Input device interference determination
US9933882B2 (en) Systems and methods for determining types of user input
US20150248177A1 (en) Barrier electrode driven by an excitation signal
US20160026295A1 (en) Generating a baseline compensation signal based on a capacitive circuit
US8692802B1 (en) Method and apparatus for calculating coordinates with high noise immunity in touch applications
US9417741B2 (en) Capacitance sensing apparatus and touchscreen apparatus
WO2014143112A1 (en) Attenuator circuit of a capacitance-sensing circuit
US9310953B1 (en) Full-wave synchronous rectification for self-capacitance sensing
US9030429B2 (en) Touchscreen having a capacitance sensing apparatus
JP2010282462A (en) Capacity type touch panel
WO2010059216A1 (en) Method and system for measuring position on surface capacitance touch panel using a flying capacitor
JP6028946B2 (en) POSITION DETECTION DEVICE, ITS CONTROL METHOD, AND ITS SYSTEM
US9098157B2 (en) Touch sensing apparatus
US20100328241A1 (en) Method and system for measuring position on surface capacitance touch panel using a flying capacitor
KR20140010788A (en) Touch detecting apparatus for minimizing deadzone and method
KR101649750B1 (en) Proximate Object Detection Method , Proximate Object Detection Apparatus using the same, Touch Detection Method and Touch Detection Apparatus using the Same
US11126304B2 (en) Capacitance sensor, method for controlling the same, and program
US9436337B2 (en) Switched capacitance techniques for input sensing
CN103412699B (en) Method for two-point control gesture recognition of four-wire resistance touch screen
JP5936919B2 (en) POSITION DETECTION DEVICE, ITS CONTROL METHOD, AND ITS SYSTEM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014509926

Country of ref document: JP

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/04/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12873922

Country of ref document: EP

Kind code of ref document: A1