JP2010153896A - Solid-state imaging device, production method of the same and semiconductor device, production method process of the same - Google Patents

Solid-state imaging device, production method of the same and semiconductor device, production method process of the same Download PDF

Info

Publication number
JP2010153896A
JP2010153896A JP2010035280A JP2010035280A JP2010153896A JP 2010153896 A JP2010153896 A JP 2010153896A JP 2010035280 A JP2010035280 A JP 2010035280A JP 2010035280 A JP2010035280 A JP 2010035280A JP 2010153896 A JP2010153896 A JP 2010153896A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
detection unit
solid
state imaging
end detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010035280A
Other languages
Japanese (ja)
Other versions
JP5115566B2 (en
Inventor
Hirobumi Sumi
博文 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010035280A priority Critical patent/JP5115566B2/en
Publication of JP2010153896A publication Critical patent/JP2010153896A/en
Application granted granted Critical
Publication of JP5115566B2 publication Critical patent/JP5115566B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state imaging device, its production method and a semiconductor device, its production method that are capable of allowing the thickness of a semiconductor substrate to be reduced without using an SOI substrate to reduce costs. <P>SOLUTION: The solid-state imaging device includes an imaging region in which pixels composed of a photoelectric conversion element and multiple MOS transistors are arrayed, peripheral circuits, and columnar termination detectors 63 extending from the surface of a semiconductor substrate 21 in the thickness direction, having a higher hardness than the semiconductor substrate 21 and formed with a material film 66 with further higher hardness on the bottom surface in the thickness direction, on the semiconductor substrate 21, and is produced by reducing the thickness of the semiconductor substrate by chemically and mechanically polishing the back surface to a position in which the termination detector 63 is exposed, by forming MOS transistors Tr1 on the top surface of the semiconductor substrate 21, and by allowing incident light to be taken in through the backside of the semiconductor substrate 21. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体基板の薄膜化を必要とした、固体撮像素子とその製造方法、並びに半導体装置とその製造方法に関する。   The present invention relates to a solid-state imaging device and a method for manufacturing the same, and a semiconductor device and a method for manufacturing the same, which require a thin semiconductor substrate.

固体撮像素子としては、X−Yアドレスを指定して読み出すCMOS固体撮像素子と、電荷転送型であるCCD固体撮像素子が代表的である。これらいずれの固体撮像素子も2次元に配置されたフォトダイオードに入射した光を光電変換し、そのうちの一方の電荷(例えば電子)を信号電荷としている。   Typical examples of the solid-state imaging device include a CMOS solid-state imaging device that reads by specifying an XY address, and a CCD solid-state imaging device that is a charge transfer type. Any of these solid-state imaging devices photoelectrically converts light incident on a two-dimensionally arranged photodiode, and one of the charges (for example, electrons) is used as a signal charge.

CMOS固体撮像素子は、半導体基板の配線層が形成された表面側より光を照射し、半導体基板に形成されたフォトダイオードで光を検知する表面照射型のCMOS固体撮像素子が一般的である。しかし、この表面照射型のCMOS固体撮像素子では、照射される光の経路、特に有効画素領域の周辺部における斜め光の光路に多層配線が存在し、この多層配線により光が蹴られるために、光の利用効率が落ち感度が低下することが知られている。このため、表面側に多層配線が形成された半導体基板の裏面側から光を照射する裏面照射型のCMOS固体撮像素子が有望である(特許文献1参照)。   The CMOS solid-state imaging device is generally a front-illuminated type CMOS solid-state imaging device that irradiates light from the surface side where the wiring layer of the semiconductor substrate is formed and detects the light with a photodiode formed on the semiconductor substrate. However, in this surface irradiation type CMOS solid-state imaging device, there is a multilayer wiring in the path of the irradiated light, particularly the oblique light path in the periphery of the effective pixel region, and light is kicked by this multilayer wiring. It is known that the light utilization efficiency is lowered and the sensitivity is lowered. For this reason, a back-illuminated CMOS solid-state imaging device that irradiates light from the back side of a semiconductor substrate having a multilayer wiring formed on the front side is promising (see Patent Document 1).

また、CCD固体撮像素子においても、素子上の層間絶縁層に光が吸収されて感度が低下することが知られており、基板裏面側から光を入射して光電変換する構造が提案されている(特許文献2参照)。   Also in CCD solid-state imaging devices, it is known that light is absorbed by the interlayer insulating layer on the device and the sensitivity is lowered, and a structure is proposed in which light is incident and photoelectrically converted from the back side of the substrate. (See Patent Document 2).

特開2003−31785号公報JP 2003-31785 A 特開平6−29506号公報JP-A-6-29506

ところで、例えばCMOS固体撮像素子においては、光を基板裏面より照射する場合、通常シリコン基板の厚さが数百μmと厚く、光を透過することができないため、シリコン基板を例えば10μm以下まで薄膜化する必要がある。薄膜化の際に、シリコン層の膜厚がばらつくと光の入射強度にばらつきが生じ、色むらとして不具合が生じる。   By the way, in a CMOS solid-state imaging device, for example, when light is irradiated from the back surface of the substrate, the thickness of the silicon substrate is usually several hundred μm and cannot transmit light, so the silicon substrate is thinned to, for example, 10 μm or less. There is a need to. When the film thickness of the silicon layer varies, the incident intensity of light varies and the color unevenness causes a problem.

一方、シリコン層の膜厚のばらつきを防ぐために、SOI(Silicon On Insulator)基板を用いる方法が考えられている。すなわち、SOI基板を用いてエッチングレートの速い機械研磨、その後のCMP(化学機械研磨)処理、その後のウェットエッチングを行い、SiO2 層で薄膜化を止めることにより、シリコン層の膜厚のばらつきを抑えるようにしている。   On the other hand, a method using an SOI (Silicon On Insulator) substrate has been considered in order to prevent variations in the thickness of the silicon layer. In other words, mechanical polishing with a high etching rate using an SOI substrate, subsequent CMP (chemical mechanical polishing) treatment, and subsequent wet etching are performed to stop the thinning of the SiO2 layer, thereby suppressing variations in the thickness of the silicon layer. I am doing so.

図17〜図19を参照してSOI基板を用いた裏面照射型のCMOS固体撮像素子の製造方法を説明する。
先ず、図17Aに示すように、シリコン基板1上にシリコン酸化膜(SiO2 膜)2を介して薄膜のシリコン層3が形成されたSOI基板4を用意する。このSOI基板4のシリコン層3の所要位置にアライメントマーク5を形成する。
次に、図17Bに示すように、シリコン層3にその表面側よりアライメントマーク5を基準にして、撮像領域の画素分離領域(図示せず)、半導体ウェル領域(図示せず)、光電変換素子となるフォトダイオードPD、HAD(Hole Accumulation Diode)構造のフォトダイオードPDと共に画素を構成する複数のMOSトランジスタTr等を形成する。さらにその上に層間絶縁層7を介して多層配線8を形成した多層配線層6を積層する。
A manufacturing method of a backside illumination type CMOS solid-state imaging device using an SOI substrate will be described with reference to FIGS.
First, as shown in FIG. 17A, an SOI substrate 4 in which a thin silicon layer 3 is formed on a silicon substrate 1 via a silicon oxide film (SiO2 film) 2 is prepared. An alignment mark 5 is formed at a required position of the silicon layer 3 of the SOI substrate 4.
Next, as shown in FIG. 17B, the pixel separation region (not shown), the semiconductor well region (not shown), the photoelectric conversion element of the imaging region with reference to the alignment mark 5 from the surface side of the silicon layer 3. A plurality of MOS transistors Tr and the like constituting the pixel are formed together with the photodiode PD and the photodiode PD having a HAD (Hole Accumulation Diode) structure. Furthermore, a multilayer wiring layer 6 in which a multilayer wiring 8 is formed via an interlayer insulating layer 7 is laminated thereon.

次に、図18Cに示すように、多層配線層6上に例えばシリコン基板などによる支持基板9を貼り合わせる。
次に、図18Dに示すように、SOI基板4を反転して、シリコン酸化膜2をストッパ膜としてシリコン基板1をバックグラインド(機械的な粗削り)及びウェットエッチングにより研磨除去する。さらにシリコン酸化膜2をウェットエッチングで除去する。
Next, as shown in FIG. 18C, a support substrate 9 made of, for example, a silicon substrate is bonded onto the multilayer wiring layer 6.
Next, as shown in FIG. 18D, the SOI substrate 4 is inverted, and the silicon substrate 1 is polished and removed by back grinding (mechanical roughing) and wet etching using the silicon oxide film 2 as a stopper film. Further, the silicon oxide film 2 is removed by wet etching.

次に、図19Eに示すように、シリコン層3の裏面にパシベーション膜となる例えばシリコン窒化膜10を形成し、シリコン窒化膜10と共にシリコン層3の一部、すなわち配線層8aから電極を導出すべき部分に選択エッチングにより、配線層8aに達する開口11を形成する。さらに、開口11の内側壁からシリコン窒化膜10の表面を覆うように、例えばシリコン酸化膜などの絶縁膜12を形成する。この開口11内の配線層8aに接続する導電体層13を形成すると共に導電体層13に接続して裏面に臨む電極パッド14を形成して、いわゆる裏面電極15を形成する。
次に、図19Fに示すように、裏面上に各画素のフォトダイオードPDに対応した位置にカラーフィルタ16及びオンチップレンズ17を形成して、裏面照射型のCMOS固体撮像素子18を得る。
Next, as shown in FIG. 19E, for example, a silicon nitride film 10 serving as a passivation film is formed on the back surface of the silicon layer 3, and an electrode is derived from a part of the silicon layer 3, that is, the wiring layer 8 a together with the silicon nitride film 10. An opening 11 reaching the wiring layer 8a is formed in the portion to be etched by selective etching. Further, an insulating film 12 such as a silicon oxide film is formed so as to cover the surface of the silicon nitride film 10 from the inner wall of the opening 11. A conductor layer 13 connected to the wiring layer 8a in the opening 11 is formed and an electrode pad 14 connected to the conductor layer 13 and facing the back surface is formed to form a so-called back electrode 15.
Next, as shown in FIG. 19F, a color filter 16 and an on-chip lens 17 are formed on the back surface at a position corresponding to the photodiode PD of each pixel to obtain a back-illuminated CMOS solid-state imaging device 18.

しかし、SOI基板を用いて裏面照射型のCMOS固体撮像素子を製造する場合、SOI基板がシリコン基板に比べて高価であるために、製造コストが増大するという、問題があった。   However, when a back-illuminated CMOS solid-state imaging device is manufactured using an SOI substrate, there is a problem that the manufacturing cost increases because the SOI substrate is more expensive than a silicon substrate.

このようなSOI基板を用いた問題は、裏面照射型のCCD固体撮像素子にも起こり、さらには固体撮像素子に限らず、例えば半導体基板の表裏両面に半導体素子又は/及び多層配線を形成するようにした半導体集積回路装置においても起こり得る。   Such a problem using an SOI substrate also occurs in a back-illuminated CCD solid-state imaging device, and is not limited to a solid-state imaging device. For example, a semiconductor device or / and a multilayer wiring are formed on both front and back surfaces of a semiconductor substrate. This can also occur in the semiconductor integrated circuit device.

本発明は、上述の点に鑑み、SOI基板を用いずに半導体基板の薄膜化を可能にし、コスト低減を図った、固体撮像素子とその製造方法、並びに半導体装置とその製造方法を提供するものである。   In view of the above, the present invention provides a solid-state imaging device, a manufacturing method thereof, a semiconductor device, and a manufacturing method thereof, which can reduce the thickness of a semiconductor substrate without using an SOI substrate and reduce costs. It is.

本発明に係る固体撮像素子は、いわゆる裏面照射型であって、半導体基板に、光電変換素子と複数のMOSトランジスタとからなる画素が配列された撮像領域と、周辺回路と、前記半導体基板の表面から厚み方向に前記半導体基板より硬度が大きく且つ前記厚み方向の底面に、より硬度の大きい材料膜を形成した柱状の終端検出部とを有し、前記半導体基板が裏面からの化学機械研磨により前記終端検出部が露出する位置まで薄膜化され、前記半導体基板の表面に前記MOSトランジスタが形成され、前記半導体基板の裏面から入射光を取り込むようにして成る。   The solid-state imaging device according to the present invention is a so-called back-illuminated type, and includes an imaging region in which pixels including a photoelectric conversion element and a plurality of MOS transistors are arranged on a semiconductor substrate, a peripheral circuit, and a surface of the semiconductor substrate. And a columnar terminal detection part having a material film having a higher hardness on the bottom surface in the thickness direction and having a higher hardness than the semiconductor substrate in the thickness direction, and the semiconductor substrate is subjected to chemical mechanical polishing from the back side. The film is thinned to a position where the end detection portion is exposed, the MOS transistor is formed on the surface of the semiconductor substrate, and incident light is captured from the back surface of the semiconductor substrate.

本発明に係る固体撮像素子の製造方法は、半導体基板に、光電変換素子と半導体基板の表面に存する複数のMOSトランジスタとからなる画素が配列された撮像領域と、周辺回路と、前記半導体基板の表面から厚み方向に前記半導体基板より硬度が大きく且つ前記厚み方向の底面に、より硬度の大きい材料膜を有する柱状の終端検出部とを形成する工程と、前記半導体基板を裏面から前記終端検出部が露出する位置まで化学機械研磨して該半導体基板を薄膜化する工程とを有し、前記半導体基板の裏面を入射光を取り込む面とする。   A method for manufacturing a solid-state imaging device according to the present invention includes: an imaging region in which pixels each including a photoelectric conversion element and a plurality of MOS transistors existing on a surface of the semiconductor substrate are arranged on a semiconductor substrate; a peripheral circuit; A step of forming a columnar termination detector having a material film having a hardness higher than that of the semiconductor substrate in the thickness direction from the surface and having a higher hardness on the bottom surface in the thickness direction; and the termination detection unit from the back surface of the semiconductor substrate. And a step of thinning the semiconductor substrate by chemical mechanical polishing to a position where the semiconductor substrate is exposed, and the back surface of the semiconductor substrate is used as a surface for capturing incident light.

上記の固体撮像素子及びその製造方法において、終端検出部は、素子分離領域と兼用して形成することが望ましい。終端検出部は、素子分離領域と異なる柱状層で形成することが望ましい。
終端検出部は、光吸収により光電変換させる光電変換素子の厚みに対応した長さに形成することが望ましい。
複数の前記柱状層による終端検出部は、化学機械研磨工程での厚みむらが発生しない間隔をもって形成することが望ましい。
In the solid-state imaging device and the method for manufacturing the same, it is preferable that the termination detection unit is formed also as an element isolation region. It is desirable to form the end detection part with a columnar layer different from the element isolation region.
It is desirable that the end detection unit be formed to have a length corresponding to the thickness of the photoelectric conversion element that performs photoelectric conversion by light absorption.
It is desirable to form the end detection portions by the plurality of columnar layers at intervals that do not cause uneven thickness in the chemical mechanical polishing process.

本発明に係る半導体装置は、半導体基板と、前記半導体基板の表面から厚み方向に前記半導体基板より硬度が大きく且つ前記厚み方向の底面に、より硬度の大きい材料膜を形成した柱状の終端検出部と、裏面からの化学機械研磨により前記終端検出部が露出する位置まで薄膜化された前記半導体基板の表面及び裏面に形成された半導体装置の構成要素とを有する。   A semiconductor device according to the present invention includes a semiconductor substrate and a columnar end detection unit in which a material film having a hardness greater than that of the semiconductor substrate in the thickness direction from the surface of the semiconductor substrate and having a greater hardness on the bottom surface in the thickness direction is formed. And components of the semiconductor device formed on the front surface and the back surface of the semiconductor substrate that have been thinned to a position where the termination detector is exposed by chemical mechanical polishing from the back surface.

本発明に係る半導体装置の製造方法は、半導体基板に、表面から厚み方向に前記半導体基板より硬度が大きく且つ前記厚み方向の底面に、より硬度の大きい材料膜を有する柱状の終端検出部を形成する工程と、前記半導体基板の表面側に半導体装置の構成要素の一部を形成する工程と、前記半導体基板の表面側に支持基板を貼り合わせる工程と、前記半導体基板の裏面から化学機械研磨を行い、裏面に前記終端検出部の底面が現れた時点で化学機械研磨を自己整合的に止めて、前記半導体基板の薄膜化を行う工程と、前記半導体基板の裏面側に半導体装置の構成要素の他部を形成する工程とを有する。   In the method for manufacturing a semiconductor device according to the present invention, a columnar end detection unit having a material film having a hardness higher than that of the semiconductor substrate in the thickness direction from the surface and having a higher hardness on the bottom surface in the thickness direction is formed on the semiconductor substrate. A step of forming a part of a component of the semiconductor device on the front surface side of the semiconductor substrate, a step of attaching a support substrate to the front surface side of the semiconductor substrate, and chemical mechanical polishing from the back surface of the semiconductor substrate. Performing a process of thinning the semiconductor substrate by stopping chemical mechanical polishing in a self-aligned manner when the bottom surface of the termination detection unit appears on the back surface, and a component of the semiconductor device on the back surface side of the semiconductor substrate. Forming other parts.

上記の半導体装置及びその製造方法において、終端検出部は、素子分離領域と兼用して形成されることが望ましい。終端検出部は、素子分離領域と異なる柱状層で形成されることが望ましい。柱状層による終端検出部の間隔は、化学機械研磨工程時での厚みむらを発生させない間隔に設定されることが望ましい。   In the semiconductor device and the manufacturing method thereof, it is desirable that the termination detection unit is formed also as an element isolation region. It is desirable that the end detection unit is formed of a columnar layer different from the element isolation region. The interval between the end detection portions by the columnar layer is preferably set to an interval that does not cause unevenness in thickness during the chemical mechanical polishing process.

本発明に係る固体撮像素子によれば、SOI基板を用いずに、半導体基板に硬度が大きい終端検出部を設けて化学機械研磨で終端検出部が露出する位置まで薄膜化した半導体基板を用いて、裏面照射型構造に構成されるので、コスト低減が図られ、しかも精度のよい裏面照射型の固体撮像素子を提供することができる。化学機械研磨で薄膜化されるので、厚い半導体基板からの薄膜化が容易になる。終端検出部の底面に、より硬度の大きい材料膜が形成されるので、終端検出部としてのストッパ機能をさらに高めることができる。よって、製造プロセスを簡素化できる固体撮像素子を提供できる。   According to the solid-state imaging device of the present invention, without using an SOI substrate, a semiconductor substrate thinned to a position where the termination detection unit is exposed by chemical mechanical polishing by providing a termination detection unit with high hardness on the semiconductor substrate is used. Since the structure is a back-illuminated structure, the cost can be reduced, and a back-illuminated solid-state image sensor with high accuracy can be provided. Since the film is thinned by chemical mechanical polishing, it is easy to form a thin film from a thick semiconductor substrate. Since a harder material film is formed on the bottom surface of the end detection unit, the stopper function as the end detection unit can be further enhanced. Therefore, it is possible to provide a solid-state imaging device that can simplify the manufacturing process.

本発明に係る固体撮像素子の製造方法によれば、半導体基板に硬度が大きい終端検出部を形成し、半導体基板の裏面から化学機械研磨を行い、裏面に終端検出部の底面が表れた時点で化学機械研磨を自己整合的に止めて半導体基板を薄膜化することにより、SOI基板を用いることなく半導体基板の薄膜化が可能になる。従って固体撮像素子の製造プロセスを簡素化し、製造コストを大幅に低減することができる。終端検出部の底面に、より硬度の大きい材料膜を形成するので、終端検出部としてのストッパ機能をさらに高めることができる。化学機械研磨により薄膜化するので、厚い半導体基板からの薄膜化も化学機械研磨のみで可能になり、更なる製造プロセスの簡素化を図ることができる。化学機械研磨は、大量のスラリーを常圧で処理を行うので、厚い半導体基板からの薄膜化に有利である。
本製造方法は、CMOS固体撮像素子の製造に適用したときには、汎用CMOSプロセス技術をそのまま活用することができる。
According to the method for manufacturing a solid-state imaging device according to the present invention, the termination detection unit having a high hardness is formed on the semiconductor substrate, the chemical mechanical polishing is performed from the back surface of the semiconductor substrate, and the bottom surface of the termination detection unit appears on the back surface. By stopping the chemical mechanical polishing in a self-aligning manner and reducing the thickness of the semiconductor substrate, the thickness of the semiconductor substrate can be reduced without using an SOI substrate. Therefore, the manufacturing process of the solid-state imaging device can be simplified and the manufacturing cost can be greatly reduced. Since the material film having higher hardness is formed on the bottom surface of the end detection unit, the stopper function as the end detection unit can be further enhanced. Since a thin film is formed by chemical mechanical polishing, a thin film from a thick semiconductor substrate can be formed only by chemical mechanical polishing, and the manufacturing process can be further simplified. Chemical mechanical polishing is advantageous for thinning a thick semiconductor substrate because a large amount of slurry is processed at normal pressure.
When this manufacturing method is applied to the manufacture of a CMOS solid-state imaging device, the general-purpose CMOS process technology can be used as it is.

終端検出部を素子分離領域を兼ねて形成することにより、構造及び製造プロセスを簡素化することができる。
終端検出部を素子分離領域と異なる柱状層で形成することにより、所望のポテンシャル深さが得られる光電変換素子を備えた裏面照射型の固体撮像素子を提供できる。
終端検出部の深さ方向の長さを、光電変換素子の厚みに対応した長さにすることにより、光電変換素子の厚みに対応した半導体薄膜基板の形成を可能にする。
柱状層による終端検出部の間隔を、化学機械研磨において厚みむらを発生させない間隔で形成することにより、全面均一な厚みの薄膜化した半導体基板が得られる。
The structure and the manufacturing process can be simplified by forming the end detection part also as the element isolation region.
By forming the end detection part with a columnar layer different from the element isolation region, it is possible to provide a back-illuminated solid-state imaging device including a photoelectric conversion element that can obtain a desired potential depth.
By making the length in the depth direction of the terminal detection part a length corresponding to the thickness of the photoelectric conversion element, it is possible to form a semiconductor thin film substrate corresponding to the thickness of the photoelectric conversion element.
By forming the interval between the end detection portions by the columnar layer at an interval that does not cause unevenness in chemical mechanical polishing, a thinned semiconductor substrate having a uniform thickness can be obtained.

本発明に係る半導体装置子によれば、SOI基板を用いずに、半導体基板に硬度が大きい終端検出部を設けて化学機械研磨で終端検出部が露出する位置まで薄膜化した半導体基板を用いて、表裏両面に構成要素を形成して構成されるので、コスト低減が図られ、しかも精度のよい半導体装置を提供することができる。化学機械研磨で薄膜化されるので、厚い半導体基板からの薄膜化が容易になる。終端検出部の底面に、より硬度の大きい材料膜が形成されるので、終端検出部としてのストッパ機能をさらに高めることができる。よって、製造プロセスを簡素化できる半導体装置を提供できる。   According to the semiconductor device according to the present invention, without using an SOI substrate, a semiconductor substrate thinned to a position where the termination detection unit is exposed by chemical mechanical polishing is provided by providing a termination detection unit with high hardness on the semiconductor substrate. Since the constituent elements are formed on both the front and back surfaces, it is possible to reduce the cost and provide a highly accurate semiconductor device. Since the film is thinned by chemical mechanical polishing, it is easy to form a thin film from a thick semiconductor substrate. Since a harder material film is formed on the bottom surface of the end detection unit, the stopper function as the end detection unit can be further enhanced. Therefore, a semiconductor device that can simplify the manufacturing process can be provided.

本発明に係る半導体装置の製造方法によれば、半導体基板に硬度が大きい終端検出部を形成し、半導体基板の裏面から化学機械研磨を行い、裏面に終端検出部の底面が表れた時点で化学機械研磨を自己整合的に止めて半導体基板を薄膜化することにより、SOI基板を用いることなく半導体基板の薄膜化が可能になる。従って半導体装置の製造プロセスを簡素化し、製造コストを大幅に低減することができる。終端検出部の底面に、より硬度の大きい材料膜を形成するので、終端検出部としてのストッパ機能をさらに高めることができる。化学機械研磨により薄膜化するので、厚い半導体基板からの薄膜化も化学機械研磨のみで可能になり、更なる製造プロセスの簡素化を図ることができる。化学機械研磨は、大量のスラリーを常圧で処理を行うので、厚い半導体基板からの薄膜化に有利である。
本製造方法は、CMOS集積回路装置の製造に適用したときには、汎用CMOSプロセス技術をそのまま活用することができる。
According to the method for manufacturing a semiconductor device of the present invention, a termination detector having high hardness is formed on a semiconductor substrate, chemical mechanical polishing is performed from the back surface of the semiconductor substrate, and the bottom surface of the termination detector appears on the back surface. By stopping the mechanical polishing in a self-aligning manner and reducing the thickness of the semiconductor substrate, it is possible to reduce the thickness of the semiconductor substrate without using an SOI substrate. Therefore, the manufacturing process of the semiconductor device can be simplified and the manufacturing cost can be greatly reduced. Since the material film having higher hardness is formed on the bottom surface of the end detection unit, the stopper function as the end detection unit can be further enhanced. Since a thin film is formed by chemical mechanical polishing, a thin film from a thick semiconductor substrate can be formed only by chemical mechanical polishing, and the manufacturing process can be further simplified. Chemical mechanical polishing is advantageous for thinning a thick semiconductor substrate because a large amount of slurry is processed at normal pressure.
When this manufacturing method is applied to the manufacture of a CMOS integrated circuit device, the general-purpose CMOS process technology can be used as it is.

終端検出部を素子分離領域を兼ねて形成することにより、構造及び製造プロセスを簡素化することができる。
終端検出部を素子分離領域と異なる柱状層で形成することにより、所望の厚みに薄膜化した半導体基板に構成要素を備えた半導体装置を提供できる。
柱状層による終端検出部の間隔を、化学機械研磨において厚みむらを発生させない間隔で形成することにより、全面均一な厚みの薄膜化した半導体基板が得られる。
The structure and the manufacturing process can be simplified by forming the end detection part also as the element isolation region.
By forming the end detection part with a columnar layer different from the element isolation region, it is possible to provide a semiconductor device including components on a semiconductor substrate thinned to a desired thickness.
By forming the interval between the end detection portions by the columnar layer at an interval that does not cause unevenness in chemical mechanical polishing, a thinned semiconductor substrate having a uniform thickness can be obtained.

本発明の第1実施の形態に係る固体撮像素子の製造方法を示す製造工程図(その1)である。FIG. 6 is a manufacturing process diagram (part 1) illustrating the method for manufacturing the solid-state imaging element according to the first embodiment of the present invention; 本発明の第1実施の形態に係る固体撮像素子の製造方法を示す製造工程図(その2)である。It is a manufacturing process figure (the 2) which shows the manufacturing method of the solid-state image sensing device concerning a 1st embodiment of the present invention. 本発明の第1実施の形態に係る固体撮像素子の製造方法を示す製造工程図(その3)である。It is a manufacturing process figure (the 3) which shows the manufacturing method of the solid-state image sensing device concerning a 1st embodiment of the present invention. 本発明の第1実施の形態に係る固体撮像素子の製造方法を示す製造工程図(その4)である。FIG. 7 is a manufacturing process diagram (part 4) illustrating the method for manufacturing the solid-state imaging element according to the first embodiment of the present invention; 本発明の第1実施の形態に係る固体撮像素子の製造方法を示す製造工程図(その5)である。It is a manufacturing process figure (the 5) which shows the manufacturing method of the solid-state image sensor which concerns on 1st Embodiment of this invention. 本発明の第1実施の形態に係る固体撮像素子の製造方法を示す製造工程図(その6)である。It is a manufacturing process figure (the 6) which shows the manufacturing method of the solid-state image sensor which concerns on 1st Embodiment of this invention. 裏面照射型のCMOS固体撮像素子の単位画素の1例を示す断面図である。It is sectional drawing which shows one example of the unit pixel of a back irradiation type CMOS solid-state image sensor. A〜C 本発明に係る柱状層による終端検出部の一例を示す製造工程図である。FIGS. 8A to 8C are manufacturing process diagrams illustrating an example of a termination detection unit using a columnar layer according to the present invention. FIGS. A〜B 本発明に係る柱状層による終端検出部の他の例を示す製造工程図である。It is a manufacturing process figure which shows the other example of the termination | terminus detection part by the columnar layer which concerns on AB. 本発明の第2実施の形態に係る固体撮像素子の製造方法を示す製造工程図(その1)である。It is a manufacturing-process figure (the 1) which shows the manufacturing method of the solid-state image sensor which concerns on 2nd Embodiment of this invention. 本発明の第2実施の形態に係る固体撮像素子の製造方法を示す製造工程図(その2)である。It is a manufacturing-process figure (the 2) which shows the manufacturing method of the solid-state image sensor which concerns on 2nd Embodiment of this invention. 本発明の第2実施の形態に係る固体撮像素子の製造方法を示す製造工程図(その3)である。It is a manufacturing-process figure (the 3) which shows the manufacturing method of the solid-state image sensor which concerns on 2nd Embodiment of this invention. 本発明の第2実施の形態に係る固体撮像素子の製造方法を示す製造工程図(その4)である。It is a manufacturing process figure (the 4) which shows the manufacturing method of the solid-state image sensor which concerns on 2nd Embodiment of this invention. 本発明の第3実施の形態に係る固体撮像素子の要部を示す構成図である。It is a block diagram which shows the principal part of the solid-state image sensor which concerns on 3rd Embodiment of this invention. 本発明の第4実施の形態に係る固体撮像素子の要部を示す構成図である。It is a block diagram which shows the principal part of the solid-state image sensor which concerns on 4th Embodiment of this invention. 本発明の第4実施の形態に係る半導体装置の要部を示す構成図である。It is a block diagram which shows the principal part of the semiconductor device which concerns on 4th Embodiment of this invention. A〜B 比較例の裏面照射型のCMOS固体撮像素子の製造工程図(その1)である。It is a manufacturing process figure (the 1) of the back surface irradiation type CMOS solid-state image sensor of AB comparative example. C〜D 比較例の裏面照射型のCMOS固体撮像素子の製造工程図(その2)である。C to D are manufacturing process diagrams (part 2) of the backside illumination type CMOS solid-state imaging device of the comparative example. E〜F 比較例の裏面照射型のCMOS固体撮像素子の製造工程図(その3)である。EF is a manufacturing process diagram (No. 3) of the backside illumination type CMOS solid-state imaging device of the comparative example;

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図6に、本発明に係る固体撮像素子を、裏面照射型のCMOS固体撮像素子に適用した場合の第1実施の形態を示す。ここでは、裏面照射型のCMOS固体撮像素子をその製造方法と共に説明する。
本実施の形態においては、先ず図1に示すように、半導体基板(例えばシリコンウェハ)21を用意し、この半導体基板21に終端検出部を兼ねる素子分離領域22を形成する。素子分離領域22は各画素を分離するための画素分離に供される。終端検出部は半導体基板よりも硬度が大きい材料で形成するもので、例えばシリコン酸化膜、シリコン窒化膜等の絶縁体で形成することができる。従って、終端検出部を兼ねる素子分離領域22としては、シリコン酸化膜を埋め込んだトレンチ分離領域あるいはLOCOS(選択酸化)分離領域などにより形成することができる。この場合、最終的に形成する光電変換素子となるフォトダイオードPDの深さ(基板表面からの深さ)と同じレベルの深さd1 の素子分離領域22を形成する。すなわち、素子分離領域22の深さ方向の長さd1 は、フォトダイオードPDの厚みに対応した長さになる。
1 to 6 show a first embodiment in which the solid-state imaging device according to the present invention is applied to a backside illumination type CMOS solid-state imaging device. Here, a backside illumination type CMOS solid-state imaging device will be described together with a manufacturing method thereof.
In this embodiment, first, as shown in FIG. 1, a semiconductor substrate (for example, a silicon wafer) 21 is prepared, and an element isolation region 22 that also serves as a termination detection unit is formed on the semiconductor substrate 21. The element isolation region 22 is used for pixel separation for separating each pixel. The end detection unit is formed of a material having a hardness higher than that of the semiconductor substrate, and can be formed of an insulator such as a silicon oxide film or a silicon nitride film. Therefore, the element isolation region 22 also serving as the termination detection unit can be formed by a trench isolation region or a LOCOS (selective oxidation) isolation region in which a silicon oxide film is embedded. In this case, an element isolation region 22 having a depth d1 of the same level as the depth (depth from the substrate surface) of the photodiode PD that will be the finally formed photoelectric conversion element is formed. That is, the length d1 in the depth direction of the element isolation region 22 is a length corresponding to the thickness of the photodiode PD.

次に、図2に示すように、半導体基板21の素子分離領域22で区画された各単位画素領域23に、後に形成されるフォトダイオードPDからの信号電荷を読み出す複数のMOSトランジスタTrを形成する。複数のMOSトランジスタTrは基板表面側に形成する。   Next, as shown in FIG. 2, a plurality of MOS transistors Tr for reading signal charges from the photodiode PD to be formed later are formed in each unit pixel region 23 partitioned by the element isolation region 22 of the semiconductor substrate 21. . The plurality of MOS transistors Tr are formed on the substrate surface side.

複数のMOSトランジスタTrは、各種の個数で構成され、例えば電荷読出しトランジスタ、リセットトランジスタ、アンプトランジスタ、垂直選択トランジスタの4つのトランジスタで構成することもできる。フォトダイオードPDとソース・ドレイン領域24と両者間のゲート電極25とで電荷読出しトランジスタが形成され、他の対のソース・ドレイン領域24と両者間のゲート電極26とで他のトランジスタが構成される。フォトダイオードPD及びMOSトランジスタTrを形成した後、層間絶縁層27を形成し、所要の領域(例えばソース・ドレイン領域、ゲート電極等)に対応した位置にコンタクトホール28を形成する。単位画素の詳しい構成については後述する。   The plurality of MOS transistors Tr are composed of various numbers, and may be composed of four transistors, for example, a charge read transistor, a reset transistor, an amplifier transistor, and a vertical selection transistor. The photodiode PD, the source / drain region 24, and the gate electrode 25 between them form a charge readout transistor, and the other pair of source / drain regions 24 and the gate electrode 26 between them constitute another transistor. . After the photodiode PD and the MOS transistor Tr are formed, an interlayer insulating layer 27 is formed, and a contact hole 28 is formed at a position corresponding to a required region (for example, a source / drain region, a gate electrode). A detailed configuration of the unit pixel will be described later.

次に、図3に示すように、所要の領域に接続する多層配線30、層間絶縁膜27による多層配線層31を形成する。
次に、図4に示すように、多層配線層31上に例えばシリコン基板などによる支持基板33を貼り合わせる。
Next, as shown in FIG. 3, a multilayer wiring 30 connected to a required region and a multilayer wiring layer 31 composed of an interlayer insulating film 27 are formed.
Next, as shown in FIG. 4, a support substrate 33 such as a silicon substrate is bonded onto the multilayer wiring layer 31.

次に、図5に示すように、半導体基板21を反転させて半導体基板21の裏面側を化学機械研磨(CMP)法で削りとる。この場合、終端検出部を兼ねる素子分離領域22の底面が露出する位置まで研磨する。研磨される裏面のシリコンと素子分離領域22を形成しているシリコン酸化(SiO2 )層は、それぞれCMPで研磨されるときの硬度の差があり、シリコン酸化層の方が硬度が大きい。この硬度に差があることから、裏面研磨で表面に表れた素子分離領域22のシリコン酸化層がストッパーとして働き、シリコン基板22はそれ以上研磨されることなく、自己整合的にシリコン研磨面が表れる。すなわち、素子分離領域22の底面により自己整合的に研磨の終端が検出される。この素子分離領域22の底面が表れたとこで、CMPの研磨を止める。   Next, as shown in FIG. 5, the semiconductor substrate 21 is inverted and the back surface side of the semiconductor substrate 21 is shaved by a chemical mechanical polishing (CMP) method. In this case, the polishing is performed up to a position where the bottom surface of the element isolation region 22 that also serves as the termination detection unit is exposed. The silicon on the back surface to be polished and the silicon oxide (SiO2) layer forming the element isolation region 22 have a difference in hardness when polished by CMP, and the silicon oxide layer has a higher hardness. Since there is a difference in hardness, the silicon oxide layer in the element isolation region 22 that appears on the surface by backside polishing acts as a stopper, and the silicon substrate 22 appears in a self-aligned manner without further polishing. . That is, the end of polishing is detected in a self-aligned manner by the bottom surface of the element isolation region 22. When the bottom surface of the element isolation region 22 appears, the CMP polishing is stopped.

次に、図6に示すように、基板裏面からのイオン注入により、半導体基板21にフォトダイオードPDを形成する。フォトダイオードPDは素子分離領域22の深さd1 と同じ深さに形成される。なお、フォトダイオードPDは、図 Bの工程で基板表面側からのイオン注入により形成することも可能である。さらに基板表面に保護用絶縁膜35を形成し、その上にカラーフィルタ36、オンチップレンズ37を形成して、目的の裏面照射型のCMOS固体撮像素子38を得る。   Next, as shown in FIG. 6, a photodiode PD is formed on the semiconductor substrate 21 by ion implantation from the back surface of the substrate. The photodiode PD is formed to the same depth as the depth d1 of the element isolation region 22. The photodiode PD can also be formed by ion implantation from the substrate surface side in the step of FIG. Further, a protective insulating film 35 is formed on the surface of the substrate, and a color filter 36 and an on-chip lens 37 are formed thereon to obtain a target backside illuminating type CMOS solid-state imaging device 38.

なお、終端検出部は、素子分離領域上、スクライブライン上などに形成することができる。   Note that the termination detection unit can be formed on an element isolation region, a scribe line, or the like.

図7に、フォトダイオードPDと複数のMOSトランジスタTrからなる単位画素の一例を示す。この単位画素は、例えば、n型半導体基板21の素子分離領域22で囲まれた領域にp型半導体ウェル領域41にn+ソース・ドレイン領域42、ゲート絶縁膜43及びゲート電極44からなる複数のMOSトランジスタTrを形成し、基板裏面から表面に至ように且つMOSトランジスタTrが形成されたp型半導体ウェル領域41の下まで延長するように、フォトダイオードPDを形成して構成される。フォトダイオードPDは、n+電荷蓄積領域46及びn半導体領域47と、表裏両面に形成した暗電流を抑制するためのアキューミュレーション層となるp+半導体領域48、49とにより形成される。   FIG. 7 shows an example of a unit pixel composed of a photodiode PD and a plurality of MOS transistors Tr. The unit pixel includes, for example, a plurality of MOS transistors including a p-type semiconductor well region 41, an n + source / drain region 42, a gate insulating film 43, and a gate electrode 44 in a region surrounded by the element isolation region 22 of the n-type semiconductor substrate 21. A transistor Tr is formed, and a photodiode PD is formed so as to extend from the back surface of the substrate to the front surface and to extend under the p-type semiconductor well region 41 in which the MOS transistor Tr is formed. The photodiode PD is formed by an n + charge storage region 46 and an n semiconductor region 47, and p + semiconductor regions 48 and 49 serving as accumulation layers for suppressing dark current formed on both the front and back surfaces.

終端検出部となる素子分離領域22をトレンチ分離領域で形成する場合の一例は、図8に示すように、シリコン基板21に溝(トレンチ)51を形成した(図A)後、溝51内に埋め込むように例えばCVD(化学気相成長)によるシリコン酸化膜52を形成し(図B)、次いでシリコン酸化膜52をエッチバックして溝51内のみにシリコン酸化膜52を残す。このようにして、トレンチ分離領域221を形成する。   An example of the case where the element isolation region 22 serving as the termination detection portion is formed in the trench isolation region is as shown in FIG. 8, after forming a groove (trench) 51 in the silicon substrate 21 (FIG. A), For example, a silicon oxide film 52 is formed by CVD (chemical vapor deposition) so as to be buried (FIG. B), and then the silicon oxide film 52 is etched back to leave the silicon oxide film 52 only in the trench 51. In this way, the trench isolation region 221 is formed.

終端検出部となる素子分離領域22をトレンチ分離領域で形成する場合の他の例は、図9に示すように、シリコン基板21に溝(トレンチ)51を形成した後、溝の内壁面及び基板表面を覆うように例えばCVDによるシリコン窒化膜53を形成し(図A参照)、次いで溝51内に埋め込むように例えばCVDによるシリコン酸化膜52を形成し、その後、シリコン酸化膜52及びシリコン窒化膜53をエッチバックして溝51内のみにシリコン窒化膜53及びシリコン酸化膜52を残す(図B参照)。このようにして、溝51の底面にシリコン窒化膜53が形成されたトレンチ分離領域222を形成する。このトレンチ分離領域222では、シリコン窒化膜53はシリコン酸化膜52よりも硬度が大きいので、終端検出部としてより適している。   As shown in FIG. 9, another example of the case where the element isolation region 22 serving as the end detection portion is formed in the trench isolation region is as follows. After forming a groove (trench) 51 in the silicon substrate 21, the inner wall surface of the groove and the substrate are formed. A silicon nitride film 53 is formed by CVD, for example, so as to cover the surface (see FIG. A), and then a silicon oxide film 52 is formed by CVD, for example, so as to be embedded in the trench 51. Thereafter, the silicon oxide film 52 and the silicon nitride film are formed. The silicon nitride film 53 and the silicon oxide film 52 are left only in the trench 51 by etching back 53 (see FIG. B). In this manner, a trench isolation region 222 in which the silicon nitride film 53 is formed on the bottom surface of the groove 51 is formed. In the trench isolation region 222, the silicon nitride film 53 has a higher hardness than the silicon oxide film 52, so that it is more suitable as a termination detection unit.

終端検出部となる素子分離領域22をLOCOS分離領域で形成する場合は、図示しないが、通常のようにシリコン基板上にパターニングしたシリコン窒化膜、あるいはシリコン窒化膜とポリシリコン膜の2層膜構造を形成した後、酸化処理してシリコン窒化膜が形成されていない基板表面にシリコン酸化(SiO2 )層を形成し、その後シリコン窒化膜を除去してシリコン酸化膜によるLOCOS分離領域を形成する。   When the element isolation region 22 serving as the termination detection unit is formed in the LOCOS isolation region, although not shown, a silicon nitride film patterned on a silicon substrate or a two-layer film structure of a silicon nitride film and a polysilicon film as usual After forming, a silicon oxide (SiO2) layer is formed on the surface of the substrate on which the silicon nitride film is not formed, and then the silicon nitride film is removed to form a LOCOS isolation region by the silicon oxide film.

上述した第1実施の形態に係る裏面照射型のCMOS固体撮像素子38によれば、SOI基板を用いずに、シリコン基板21に設けた終端検出部を兼ねる素子分離領域によって薄膜化したシリコン基板を用いて、固体撮像素子の各構成要素を形成して構成されるので、安価にしかも精度の良い裏面照射型のCMOS固体撮像素子を提供することができる。
第1実施の形態の製造方法によれば、SOI基板が必要なく製造プロセスの簡素化が可能になるので、製造コストを大幅に低減することができる。汎用CMOSプロセス技術をそのまま活用することができる。
According to the back-illuminated CMOS solid-state imaging device 38 according to the first embodiment described above, a silicon substrate that is thinned by an element isolation region that also serves as a termination detection unit provided on the silicon substrate 21 without using an SOI substrate. Since each component of the solid-state imaging device is formed and configured, it is possible to provide a backside illumination type CMOS solid-state imaging device that is inexpensive and accurate.
According to the manufacturing method of the first embodiment, an SOI substrate is not required and the manufacturing process can be simplified, so that the manufacturing cost can be greatly reduced. General-purpose CMOS process technology can be used as it is.

終端検出部が素子分離領域で形成されるので、半導体基板21の化学機械研磨による薄膜化に際して、半導体基板の膜厚が局部的にばらつくいわゆる膜厚の面内ばらつきを防ぐことができ、半導体基板の全域にわたって均一の薄膜化することができる。化学研磨を用いるので、薄膜化処理時間を短縮できるなど半導体基板の薄膜化が容易となる。   Since the end detection portion is formed in the element isolation region, when the semiconductor substrate 21 is thinned by chemical mechanical polishing, it is possible to prevent so-called in-plane variation of the film thickness in which the thickness of the semiconductor substrate varies locally. A uniform thin film can be formed over the entire area. Since chemical polishing is used, it is easy to reduce the thickness of the semiconductor substrate, such as shortening the time for thinning.

図10〜図13に、本発明に係る固体撮像素子を、裏面照射型のCMOS固体撮像素子に適用した場合の第2実施の形態を示す。ここでも、裏面照射型のCMOS固体撮像素子をその製造方法と共に説明する。
本実施の形態においては、先ず図10に示すように、半導体基板(例えばシリコンウェハ)21を用意し、この半導体基板21に各画素を分離するための素子分離領域62を形成する。さらに、この半導体基板21に基板表面から所要深さにわたって柱状層からなる終端検出部63を形成する。素子分離領域62は、前述と同様にシリコン酸化膜を埋め込んだトレンチ分離領域あるいはLOCOS(選択酸化)分離領域などにより形成することができる。終端検出部63は、素子分離領域62より深く形成し、前述した同様に半導体基板21よりも硬度が大きい材料で形成する。終端検出部62は、例えばシリコン酸化膜、シリコン窒化膜で形成することができる。終端検出部63は、最終的に形成する光電変換素子となるフォトダイオードPDの深さ(基板表面からの深さ)と同じ深さd1 に形成する。すなわち、終端検出部63の深さ方向の長さd1 は、フォトダイオードPDの厚みに対応した長さになる。
10 to 13 show a second embodiment in which the solid-state imaging device according to the present invention is applied to a back-illuminated CMOS solid-state imaging device. Here again, a back-illuminated CMOS solid-state imaging device will be described together with its manufacturing method.
In this embodiment, first, as shown in FIG. 10, a semiconductor substrate (for example, a silicon wafer) 21 is prepared, and an element isolation region 62 for separating each pixel is formed on the semiconductor substrate 21. Further, a termination detecting portion 63 made of a columnar layer is formed on the semiconductor substrate 21 from the substrate surface to a required depth. The element isolation region 62 can be formed by a trench isolation region or a LOCOS (selective oxidation) isolation region in which a silicon oxide film is embedded as described above. The end detection unit 63 is formed deeper than the element isolation region 62 and is formed of a material having a hardness higher than that of the semiconductor substrate 21 as described above. The end detection unit 62 can be formed of, for example, a silicon oxide film or a silicon nitride film. The end detection unit 63 is formed at a depth d1 that is the same as the depth (depth from the substrate surface) of the photodiode PD to be finally formed as a photoelectric conversion element. That is, the length d1 of the end detection unit 63 in the depth direction is a length corresponding to the thickness of the photodiode PD.

この終端検出部63は、半導体基板21に複数形成し、その隣合う終端検出部63の間隔w1 は、後述するCMP法による裏面研磨での局部的な厚みむらを発生させない間隔に設定する。終端検出部63は、半導体基板21の何れに形成することも可能であるが、各固体撮像チップで厚みむらを発生させないためには、固体撮像チップとなる領域内に形成することが望ましい。図示の場合は、説明を理解するために、単位画素を区画する素子分離領域62の外側に形成したが、裏面研磨のときに厚みむらを与えない範囲で形成すればよい。画素の微細化、高集積化を考えたときには、撮像領域(画素領域)、周辺回路部などが形成された固体撮像素子の場合、撮像領域の外側(画素に影響を与えない外側)に設けることが好ましい。   A plurality of the end detection units 63 are formed on the semiconductor substrate 21, and the interval w1 between the adjacent end detection units 63 is set to an interval that does not cause local thickness unevenness in back surface polishing by the CMP method described later. The end detection unit 63 can be formed on any of the semiconductor substrates 21, but it is desirable to form the end detection unit 63 in a region to be a solid-state imaging chip in order to prevent unevenness in thickness of each solid-state imaging chip. In the case of illustration, in order to understand the explanation, it is formed outside the element isolation region 62 that divides the unit pixel, but it may be formed in a range that does not give thickness unevenness during back surface polishing. When miniaturization and high integration of pixels are considered, in the case of a solid-state image sensor in which an imaging region (pixel region), a peripheral circuit portion, and the like are formed, the pixel is provided outside the imaging region (outside that does not affect the pixel). Is preferred.

柱状層による終端検出部63は、半導体基板21に溝(トレンチ)を形成し、溝内をシリコン酸化膜(図8参照)、あるいはシリコン窒化膜、あるいは図9で説明したと同様のシリコン窒化膜とシリコン酸化膜で埋め込んで形成することができる。   The end detection unit 63 using a columnar layer forms a trench in the semiconductor substrate 21, and a silicon oxide film (see FIG. 8), a silicon nitride film, or a silicon nitride film similar to that described in FIG. And embedded with a silicon oxide film.

次に、図11に示すように、前述と同様に半導体基板21の素子分離領域62で区画された各単位画素領域の基板表面側に、画素を構成する複数のMOSトランジスタTr、例えば電荷読出しトランジスタ、リセットトランジスタ、アンプトランジスタ、垂直選択トランジスタの4つのトランジスタを形成する。次いで、層間絶縁膜27及び多層配線30からなる多層配線層31を形成した後、多層配線層31上に例えばシリコン基板などによる支持基板33を貼り合わせる。   Next, as shown in FIG. 11, a plurality of MOS transistors Tr, such as charge readout transistors, constituting the pixel are formed on the substrate surface side of each unit pixel region partitioned by the element isolation region 62 of the semiconductor substrate 21 as described above. , Four transistors of a reset transistor, an amplifier transistor, and a vertical selection transistor are formed. Next, after forming the multilayer wiring layer 31 including the interlayer insulating film 27 and the multilayer wiring 30, a support substrate 33 made of, for example, a silicon substrate is bonded onto the multilayer wiring layer 31.

次に、図12に示すように、半導体基板21を反転させて半導体基板21の裏面側をCMP法で削りとる。この場合、終端検出部63の底面が露出する位置まで研磨し、終端検出部63と半導体基板21との硬度差で、終端検出部63が露出した時点で研磨の終端が検出され、研磨を止める。   Next, as shown in FIG. 12, the semiconductor substrate 21 is inverted and the back side of the semiconductor substrate 21 is scraped off by CMP. In this case, the polishing is performed until the bottom surface of the end detection unit 63 is exposed, and the polishing end is detected when the end detection unit 63 is exposed due to the hardness difference between the end detection unit 63 and the semiconductor substrate 21, and the polishing is stopped. .

次に、図13に示すように、基板裏面からのイオン注入により、半導体基板21にフォトダイオードPDを形成する。フォトダイオードPDは素子分離領域22の深さd1 と同じ深さに形成される。なお、フォトダイオードPDは、図11の工程で基板表面側からのイオン注入により形成することも可能である。絶縁体による素子分離領域62下には半導体素子分領域65を形成することができる。さらに基板表面に保護用絶縁膜35を形成し、その上にカラーフィルタ36、オンチップレンズ37を形成して、目的の裏面照射型のCMOS固体撮像素子64を得る。本実施の形態の単位画素の構成は、前述した図7の構成と同様である。   Next, as shown in FIG. 13, a photodiode PD is formed on the semiconductor substrate 21 by ion implantation from the back surface of the substrate. The photodiode PD is formed to the same depth as the depth d1 of the element isolation region 22. Note that the photodiode PD can also be formed by ion implantation from the substrate surface side in the step of FIG. A semiconductor element dividing region 65 can be formed under the element isolation region 62 by the insulator. Further, a protective insulating film 35 is formed on the surface of the substrate, and a color filter 36 and an on-chip lens 37 are formed thereon to obtain a target backside illumination type CMOS solid-state imaging device 64. The unit pixel configuration of the present embodiment is the same as the configuration of FIG. 7 described above.

上述した第2実施の形態によれば、素子分離領域62とは別に化学機械研磨(CMP)での研磨ストッパとなる柱状層による終端研磨部63を適切に複数、配置形成することにより、CMPの際にシリコン基板21が削られ過ぎても、厚みむらを発生させることなく、CMP制御を可能にする。その他、前述した第1実施の形態と同様の効果を奏する。   According to the second embodiment described above, by properly arranging a plurality of terminal polishing portions 63 by columnar layers serving as polishing stoppers in chemical mechanical polishing (CMP) separately from the element isolation regions 62, the CMP process is performed. At this time, even if the silicon substrate 21 is excessively shaved, CMP control can be performed without causing uneven thickness. In addition, the same effects as those of the first embodiment described above are obtained.

図14は、本発明に係る裏面照射型のCMOS固体撮像素子の第3実施の形態を示す。本実施の形態は、前述した図13の終端検出部63の構成に、さらに終端検出部63が密に集まった領域63Bを部分的に形成する。すなわち、柱状層による終端検出部63として、終端検出部63の集密度が小さい疎な領域63Aを均一に形成した状態で、部分的に終端検出部63の集密度が大きい密な領域63Bを形成する。その他の構成は図 と同様であるので、対応する部分に同一符号を付して重複説明を省略する。   FIG. 14 shows a third embodiment of a backside illumination type CMOS solid-state imaging device according to the present invention. In the present embodiment, a region 63B where the end detection units 63 are densely gathered is partially formed in the configuration of the end detection unit 63 shown in FIG. That is, as the end detection unit 63 using a columnar layer, a dense region 63B in which the end detection unit 63 has a high density is partially formed in a state where a sparse region 63A in which the end detection unit 63 has a low concentration is uniformly formed. To do. Since other configurations are the same as those in the figure, the corresponding parts are denoted by the same reference numerals and redundant description is omitted.

この第3実施の形態によれば、終端検出部63の密な領域63Bを形成することにより、よりCMPの精度を増すことができる。すなわち、より均一な膜厚で半導体基板21のCMPによる薄膜化を可能にする。その他、第2実施の形態と同様の効果を奏する。 According to the third embodiment, by forming the dense region 63B of the end detection unit 63, the accuracy of CMP can be further increased. That is, the semiconductor substrate 21 can be thinned by CMP with a more uniform film thickness. In addition, the same effects as those of the second embodiment are obtained.

図15は、本発明に係る裏面照射型のCMOS固体撮像素子の第4実施の形態を示す。本実施の形態は、前述した図13の柱状層による終端検出部63の構成として、特に柱状層の底面、すなわち基板裏面に露出する底面にシリコン基板21に対してシリコン窒化膜(SiN膜)等の選択性の高い(硬度の大きい)材料膜66を形成して構成する。材料膜66としては、SiNの他、例えばポリシリコン,タングステン(W),SiW,Ti,TiSi,TiN,NSi,CoSi,他の金属シリサイドなどの膜を用いることができる。材料膜66の膜厚t1 は、終端検出部63の深さd1 の10分の1〜20分の1の範囲(d1 /10〜d1 /20=t1)で設定することができる。   FIG. 15 shows a fourth embodiment of a back-illuminated CMOS solid-state imaging device according to the present invention. In the present embodiment, as the configuration of the termination detection unit 63 by the columnar layer of FIG. 13 described above, a silicon nitride film (SiN film) or the like with respect to the silicon substrate 21 is particularly formed on the bottom surface of the columnar layer, that is, the bottom surface exposed on the substrate backside. The material film 66 having high selectivity (high hardness) is formed. As the material film 66, for example, polysilicon, tungsten (W), SiW, Ti, TiSi, TiN, NSi, CoSi, and other metal silicide films can be used in addition to SiN. The film thickness t1 of the material film 66 can be set in a range of 1/10 to 1 / 20th of the depth d1 of the end detection part 63 (d1 / 10 to d1 / 20 = t1).

例えば、シリコン酸化膜67とシリコン窒化膜66で終端検出部63を形成することができる。この場合は、トレンチを形成した後、トレンチ内壁面を含む基板全面にシリコン窒化膜66を成膜し、トレンチ内に埋め込むようにシリコン酸化膜67を基板全面に成膜し、シリコン窒化膜66及びシリコン酸化膜67の全体を基板表面までエッチバックすることにより、終端検出部63を形成することができる。その他の構成は、前述の第1実施の形態と同様であるので、対応する部分には同一符号を付して重複説明を省略する。   For example, the termination detector 63 can be formed of the silicon oxide film 67 and the silicon nitride film 66. In this case, after forming the trench, a silicon nitride film 66 is formed on the entire surface of the substrate including the inner wall surface of the trench, and a silicon oxide film 67 is formed on the entire surface of the substrate so as to be embedded in the trench. By etching back the entire silicon oxide film 67 to the substrate surface, the end detection unit 63 can be formed. Other configurations are the same as those of the first embodiment described above, and corresponding portions are denoted by the same reference numerals and redundant description is omitted.

この第4実施の形態によれば、終端検出部63の底面により硬度の大きい材料膜66を形成することにより、終端検出部63としてのストッパ機能をさらに高めることができる。その他、第2実施の形態と同様の効果を奏する。   According to the fourth embodiment, by forming the material film 66 having a high hardness on the bottom surface of the end detection unit 63, the stopper function as the end detection unit 63 can be further enhanced. In addition, the same effects as those of the second embodiment are obtained.

なお、終端検出部63の幅w1 は固体撮像素子の最小線幅以上とすることができる。因みに、裏面照射での半導体基板への光入射距離は、例えば、青色光の場合は0.5μm程度、緑色光の場合は3μm程度、赤色光の場合は5μm程度、赤外光の場合は10μm程度である。従って、赤、緑、青のカラー固体撮像素子では、終端検出部22、63の深さ方向の長さd1 を5.0μm程度に設定することができる。また、赤外光まで必要なときは、終端検出部22、63の深さ方向の長さd1 を10μm程度に設定することができる。   Note that the width w1 of the end detection unit 63 can be greater than or equal to the minimum line width of the solid-state imaging device. Incidentally, the light incident distance to the semiconductor substrate by backside illumination is, for example, about 0.5 μm for blue light, about 3 μm for green light, about 5 μm for red light, and 10 μm for infrared light. Degree. Therefore, in the red, green, and blue color solid-state imaging devices, the length d1 of the end detection units 22 and 63 in the depth direction can be set to about 5.0 μm. When the infrared light is required, the length d1 of the end detection units 22 and 63 in the depth direction can be set to about 10 .mu.m.

上述の実施の形態では、本発明を裏面照射型のCMOS固体撮像素子に適用したが、その他の固体撮像素子、例えば裏面照射型のCCD固体撮像素子に適用することもできる。   In the above-described embodiment, the present invention is applied to the back-illuminated CMOS solid-state image sensor. However, the present invention can also be applied to other solid-state image sensors, for example, a back-illuminated CCD solid-state image sensor.

図16に、本発明を半導体装置、すなわち半導体集積回路装置に適用した場合の第5実施の形態を示す。本実施の形態に係る半導体集積回路装置71は、前述したと同様にして設けた素子分離領域を兼ねる、あるいは素子分離領域とは異なる終端検出部、本例では素子分離領域を兼ねる終端検出部72を用い、化学機械研磨法により終端検出部72の底面が露出する位置まで研磨して薄膜化したシリコン基板73の表面側に、ゲート電極75を有するMOSトランジスタ群Tr21及び層間絶縁膜76を介して多層配線77を配置した多層配線層78を形成し、この多層配線層78上に例えばシリコン基板による支持基板79を貼り合わせ、また、シリコン基板73の裏面側にゲート電極81を有するMOSトランジスタ群Tr22及び層間絶縁膜82を介して多層配線83を配した多層配線層84を形成して構成される。85はパシベーション膜である。   FIG. 16 shows a fifth embodiment in which the present invention is applied to a semiconductor device, that is, a semiconductor integrated circuit device. The semiconductor integrated circuit device 71 according to the present embodiment serves as an element isolation region provided in the same manner as described above, or a termination detection unit different from the element isolation region, in this example, a termination detection unit 72 also serving as an element isolation region. Is used, and the surface of the silicon substrate 73 is thinned by polishing to a position where the bottom surface of the end detection unit 72 is exposed by a chemical mechanical polishing method, via a MOS transistor group Tr21 having a gate electrode 75 and an interlayer insulating film 76. A multilayer wiring layer 78 having a multilayer wiring 77 is formed, a support substrate 79 made of, for example, a silicon substrate is bonded to the multilayer wiring layer 78, and a MOS transistor group Tr22 having a gate electrode 81 on the back side of the silicon substrate 73. In addition, a multilayer wiring layer 84 in which a multilayer wiring 83 is disposed is formed through an interlayer insulating film 82. Reference numeral 85 denotes a passivation film.

図16の例では、シリコン基板73の両面のそれぞれにMOSトランジスタ群Tr21,Tr22及び多層配線層78、84を形成した構成の半導体集積回路装置に適用したが、その他、シリコン基板73の一方の面側にMOSトランジスタあるいは他の半導体素子を形成し、他方の面側に配線層を形成するなど、種々の形態の半導体装置集積回路装置にも適用できる。   In the example of FIG. 16, the present invention is applied to a semiconductor integrated circuit device having a configuration in which MOS transistor groups Tr 21 and Tr 22 and multilayer wiring layers 78 and 84 are formed on both surfaces of the silicon substrate 73. The present invention can also be applied to various forms of semiconductor device integrated circuit devices such as forming a MOS transistor or other semiconductor element on the side and forming a wiring layer on the other side.

かかる半導体集積回路装置及びその製造方法においても、SOI基板を用いる必要がなく、製造プロセスも簡素化することができ、製造コストを大幅に低減することができる、など前述した固体撮像素子の場合と同様の作用・効果を奏するものである。   Also in the semiconductor integrated circuit device and the manufacturing method thereof, it is not necessary to use an SOI substrate, the manufacturing process can be simplified, and the manufacturing cost can be greatly reduced. It has the same action and effect.

21・・半導体基板、22・・素子分離領域を兼ねる終端検出部、23・・単位画素領域、24・・ソース・ドレイン領域、25、26・・ゲート電極、27・・層間絶縁膜、30・・多層配線、31・・多層配線層、PD・・フォトダイオード、35・・保護用絶縁膜、36・・カラーフィルタ、37・・オンチップレンズ、38、64、・・裏面照射型のCMOS固体撮像素子、62・・素子分離領域、63・・柱状層による終端検出部、63A・・終端検出部の疎な領域、63B・・終端検出部の密な領域、71・・半導体集積回路装置、72・・終端検出部、73・・半導体基板、Tr21,Tr22・・MOSトランジスタ、75、81・・ゲート電極、76、82・・層間絶縁膜、77、83・・多層配線、78、84・・多層配線層、85・・パシベーション膜   21 .. Semiconductor substrate, 22.. Termination detection part that also serves as element isolation region, 23... Unit pixel region, 24... Source and drain region, 25, 26.・ Multi-layer wiring 31 ・ ・ Multi-layer wiring layer, PD ・ ・ Photodiode 35 ・ ・ Protective insulating film 36 ・ ・ Color filter 37 ・ ・ On-chip lens 38, 64 ・ ・ Back-illuminated CMOS solid Image sensor 62... Element isolation region 63.. Termination detector by columnar layer 63 A.. Sparse region of termination detector 63 B... Dense region of termination detector 71. ··· Termination detector, 73 ·· Semiconductor substrate, Tr21, Tr22 ·· MOS transistor, 75, 81 ·· Gate electrode, 76, 82 ·· Interlayer insulating film, 77, 83 ·· Multilayer wiring, 78, 84 ·・ Multilayer wiring layer , 85 ... Passivation membrane

Claims (18)

半導体基板に、
光電変換素子と複数のMOSトランジスタとからなる画素が配列された撮像領域と、
周辺回路と、
前記半導体基板の表面から厚み方向に前記半導体基板より硬度が大きく且つ前記厚み方向の底面に、より硬度の大きい材料膜を形成した柱状の終端検出部とを有し、
前記半導体基板が裏面からの化学機械研磨により前記終端検出部が露出する位置まで薄膜化され、
前記半導体基板の表面に前記MOSトランジスタが形成され、前記半導体基板の裏面から入射光を取り込むようにして成る
固体撮像素子。
On the semiconductor substrate,
An imaging region in which pixels each including a photoelectric conversion element and a plurality of MOS transistors are arranged;
Peripheral circuits,
A columnar end detection unit having a hardness greater than that of the semiconductor substrate in the thickness direction from the surface of the semiconductor substrate and a material film having a higher hardness formed on the bottom surface in the thickness direction;
The semiconductor substrate is thinned to a position where the end detection unit is exposed by chemical mechanical polishing from the back surface,
A solid-state imaging device, wherein the MOS transistor is formed on a surface of the semiconductor substrate, and incident light is captured from a back surface of the semiconductor substrate.
前記終端検出部が、素子分離領域と兼用して形成されて成る
請求項1記載の固体撮像素子。
The solid-state imaging device according to claim 1, wherein the end detection unit is formed to also serve as an element isolation region.
前記終端検出部が、素子分離領域と異なる柱状層で形成されて成る
請求項1記載の固体撮像素子。
The solid-state imaging device according to claim 1, wherein the end detection unit is formed of a columnar layer different from the element isolation region.
前記終端検出部の深さ方向の長さが、光吸収により光電変換させる光電変換素子の厚みに対応した長さである
請求項1記載の固体撮像素子。
The solid-state imaging device according to claim 1, wherein a length in a depth direction of the end detection unit is a length corresponding to a thickness of a photoelectric conversion device that performs photoelectric conversion by light absorption.
前記柱状層による終端検出部の間隔が、化学機械研磨において厚みむらを発生させない間隔に設定されて成る
請求項3記載の固体撮像素子。
The solid-state imaging device according to claim 3, wherein an interval between the end detection portions by the columnar layer is set to an interval that does not cause thickness unevenness in chemical mechanical polishing.
半導体基板に、光電変換素子と半導体基板の表面に存する複数のMOSトランジスタとからなる画素が配列された撮像領域と、周辺回路と、前記半導体基板の表面から厚み方向に前記半導体基板より硬度が大きく且つ前記厚み方向の底面に、より硬度の大きい材料膜を有する柱状の終端検出部とを形成する工程と、
前記半導体基板の表面側に支持基板を貼り合わせる工程と、
前記半導体基板を裏面から前記終端検出部が露出する位置まで化学機械研磨して該半導体基板を薄膜化する工程と
を有し、
前記半導体基板の裏面を入射光を取り込む面とする
固体撮像素子の製造方法。
An imaging region in which pixels comprising a photoelectric conversion element and a plurality of MOS transistors existing on the surface of the semiconductor substrate are arranged on a semiconductor substrate, a peripheral circuit, and a hardness greater than that of the semiconductor substrate in the thickness direction from the surface of the semiconductor substrate And forming a columnar terminal end detection portion having a material film with higher hardness on the bottom surface in the thickness direction;
Bonding a support substrate to the surface side of the semiconductor substrate;
A step of chemically mechanically polishing the semiconductor substrate from a back surface to a position where the termination detection unit is exposed, and thinning the semiconductor substrate.
A method for manufacturing a solid-state imaging device, wherein the back surface of the semiconductor substrate is a surface that captures incident light.
前記終端検出部を素子分離領域と兼用して形成する
請求項6記載の固体撮像素子の製造方法。
The method for manufacturing a solid-state imaging device according to claim 6, wherein the end detection unit is also used as an element isolation region.
前記終端検出部を素子分離領域と異なる柱状層で形成する
請求項6記載の固体撮像素子の製造方法。
The method for manufacturing a solid-state imaging element according to claim 6, wherein the end detection unit is formed of a columnar layer different from the element isolation region.
前記終端検出部を、光吸収により光電変換させる光電変換素子の厚みに対応した長さに形成する
請求項6記載の固体撮像素子の製造方法。
The method for manufacturing a solid-state imaging element according to claim 6, wherein the end detection unit is formed to have a length corresponding to a thickness of a photoelectric conversion element that performs photoelectric conversion by light absorption.
複数の前記柱状層による終端検出部を、化学機械研磨での厚みむらが発生しない間隔をもって形成する
請求項8記載の固体撮像素子の製造方法。
The method for manufacturing a solid-state imaging device according to claim 8, wherein the end detection portions formed by the plurality of columnar layers are formed with an interval that does not cause thickness unevenness in chemical mechanical polishing.
半導体基板と、
前記半導体基板の表面から厚み方向に前記半導体基板より硬度が大きく且つ前記厚み方向の底面に、より硬度の大きい材料膜を形成した柱状の終端検出部と、
裏面からの化学機械研磨により前記終端検出部が露出する位置まで薄膜化された前記半導体基板の表面及び裏面に形成された半導体装置の構成要素と
を有する半導体装置。
A semiconductor substrate;
A columnar terminal end detection unit in which a hardness is larger than that of the semiconductor substrate in the thickness direction from the surface of the semiconductor substrate and a material film having a higher hardness is formed on the bottom surface in the thickness direction;
A semiconductor device comprising: components of the semiconductor device formed on the front surface and the back surface of the semiconductor substrate that are thinned to a position where the termination detector is exposed by chemical mechanical polishing from the back surface.
前記終端検出部が、素子分離領域と兼用して形成されて成る
請求項11記載の半導体装置。
The semiconductor device according to claim 11, wherein the termination detection unit is formed also as an element isolation region.
前記終端検出部が、素子分離領域と異なる柱状層で形成されて成る
請求項11記載の半導体装置。
The semiconductor device according to claim 11, wherein the termination detection unit is formed of a columnar layer different from the element isolation region.
前記柱状層によるエッチングストッパ層の間隔が、化学機械研磨工程時での厚みむらを発生させない間隔に設定されて成る
請求項13記載の半導体装置。
The semiconductor device according to claim 13, wherein an interval between the etching stopper layers by the columnar layer is set to an interval that does not cause unevenness in thickness during the chemical mechanical polishing process.
半導体基板に、表面から厚み方向に前記半導体基板より硬度が大きく且つ前記厚み方向の底面に、より硬度の大きい材料膜を有する柱状の終端検出部を形成する工程と、
前記半導体基板の表面側に半導体装置の構成要素の一部を形成する工程と、
前記半導体基板の表面側に支持基板を貼り合わせる工程と、
前記半導体基板の裏面から前記終端検出部が露出する位置まで化学機械研磨して前記半導体基板の薄膜化を行う工程と、
前記半導体基板の裏面側に半導体装置の構成要素の他部を形成する工程と
を有する半導体装置の製造方法。
A step of forming a columnar terminal end detection unit having a material film having a hardness higher than that of the semiconductor substrate in the thickness direction from the surface and on the bottom surface of the thickness direction on the semiconductor substrate;
Forming a part of the components of the semiconductor device on the surface side of the semiconductor substrate;
Bonding a support substrate to the surface side of the semiconductor substrate;
A step of thinning the semiconductor substrate by chemical mechanical polishing from the back surface of the semiconductor substrate to a position where the termination detector is exposed;
Forming another part of the components of the semiconductor device on the back side of the semiconductor substrate.
前記終端検出部を素子分離領域と兼用して形成する
請求項15記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 15, wherein the termination detection unit is also used as an element isolation region.
前記終端検出部を素子分離領域と異なる柱状層で形成する
請求項15記載の半導体装置の製造方法。
The method of manufacturing a semiconductor device according to claim 15, wherein the termination detection unit is formed of a columnar layer different from the element isolation region.
複数の前記柱状層による終端検出部を、化学機械研磨での厚みむらが発生しない間隔をもって形成する
請求項17記載の半導体装置の製造方法。
The method of manufacturing a semiconductor device according to claim 17, wherein the end detection portions formed by the plurality of columnar layers are formed with an interval that does not cause uneven thickness in chemical mechanical polishing.
JP2010035280A 2010-02-19 2010-02-19 Solid-state imaging device and manufacturing method thereof, and semiconductor device and manufacturing method thereof Expired - Fee Related JP5115566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035280A JP5115566B2 (en) 2010-02-19 2010-02-19 Solid-state imaging device and manufacturing method thereof, and semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010035280A JP5115566B2 (en) 2010-02-19 2010-02-19 Solid-state imaging device and manufacturing method thereof, and semiconductor device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004314340A Division JP4501633B2 (en) 2004-10-28 2004-10-28 Solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010153896A true JP2010153896A (en) 2010-07-08
JP5115566B2 JP5115566B2 (en) 2013-01-09

Family

ID=42572540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035280A Expired - Fee Related JP5115566B2 (en) 2010-02-19 2010-02-19 Solid-state imaging device and manufacturing method thereof, and semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5115566B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369265A (en) * 1986-09-10 1988-03-29 Nec Corp Solid-state image sensor
JPH0437020A (en) * 1990-05-31 1992-02-07 Kyushu Electron Metal Co Ltd Preparation of thermocompression bonding wafer
JP2002057310A (en) * 2000-08-08 2002-02-22 Sony Corp Method of forming soi substrate
JP2003115581A (en) * 2001-10-03 2003-04-18 Sony Corp Solid state image sensor and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369265A (en) * 1986-09-10 1988-03-29 Nec Corp Solid-state image sensor
JPH0437020A (en) * 1990-05-31 1992-02-07 Kyushu Electron Metal Co Ltd Preparation of thermocompression bonding wafer
JP2002057310A (en) * 2000-08-08 2002-02-22 Sony Corp Method of forming soi substrate
JP2003115581A (en) * 2001-10-03 2003-04-18 Sony Corp Solid state image sensor and its manufacturing method

Also Published As

Publication number Publication date
JP5115566B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP4501633B2 (en) Solid-state imaging device and manufacturing method thereof
JP4816768B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JP4792821B2 (en) Solid-state imaging device and manufacturing method thereof
JP4935838B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JP2008182142A (en) Solid-state image sensor, method of manufacturing the same, and imaging device
TW201222802A (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic apparatus
US11658192B2 (en) Image sensor and image-capturing device
JP5353965B2 (en) Method for manufacturing solid-state imaging device
JP2005217439A (en) Manufacturing method of solid-state image sensing element
JP2005353996A (en) Solid-state imaging element and its manufacturing method, and semiconductor device and its manufacturing method
JP5246304B2 (en) Method for manufacturing solid-state imaging device
JP6163511B2 (en) Solid-state imaging device and electronic apparatus
JP5115567B2 (en) Solid-state imaging device and manufacturing method thereof, and semiconductor device and manufacturing method thereof
JP5087888B2 (en) Solid-state imaging device and manufacturing method thereof
JP4858367B2 (en) Manufacturing method of solid-state imaging device
JP5229354B2 (en) Solid-state imaging device
JP4987749B2 (en) Manufacturing method of solid-state imaging device
JP5115566B2 (en) Solid-state imaging device and manufacturing method thereof, and semiconductor device and manufacturing method thereof
WO2020189472A1 (en) Semiconductor device and semiconductor device manufacturing method
JP5943025B2 (en) Solid-state imaging device and electronic apparatus
JP5534081B2 (en) Manufacturing method of solid-state imaging device
JP5519827B2 (en) Solid-state imaging device and electronic device
JP2010062437A (en) Solid-state imaging device and manufacturing method thereof
JP5316667B2 (en) Manufacturing method of solid-state imaging device
JP4987748B2 (en) XY address type solid-state imaging device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees