JP2010153339A - High-pressure discharge lamp - Google Patents

High-pressure discharge lamp Download PDF

Info

Publication number
JP2010153339A
JP2010153339A JP2008333245A JP2008333245A JP2010153339A JP 2010153339 A JP2010153339 A JP 2010153339A JP 2008333245 A JP2008333245 A JP 2008333245A JP 2008333245 A JP2008333245 A JP 2008333245A JP 2010153339 A JP2010153339 A JP 2010153339A
Authority
JP
Japan
Prior art keywords
electrode
oxide
emitter
pressure discharge
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008333245A
Other languages
Japanese (ja)
Other versions
JP5413798B2 (en
Inventor
Yuji Oda
祐司 小田
Hidemi Orito
日出海 折戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2008333245A priority Critical patent/JP5413798B2/en
Publication of JP2010153339A publication Critical patent/JP2010153339A/en
Application granted granted Critical
Publication of JP5413798B2 publication Critical patent/JP5413798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Lamp (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the scatter in an early period of an emitter supported in an electrode coil surface, and maintain high ultraviolet luminance over a long period in a high-pressure discharge lamp in which a metal additive and an inert gas are sealed inside a silica glass light-emitting tube, an electrode having tungsten as the body at both ends of the light-emitting tube is sealed and adhered, and an electrode part becomes high temperature when lighted. <P>SOLUTION: The electrode is constituted of an electrode core rod and an electrode coil by having tungsten as the body. An electron emission material (emitter) is coated on the electrode coil by a binary compound oxide which is constituted of yttrium oxide and aluminum oxide, and in which molar percentage of yttrium oxide to the whole is 60% or more and 90% or less. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、電極および電極に塗布する電子放射物質に改良が施された、高圧放電ランプ、特に紫外線放射を主体とする高圧放電ランプに関する。 The present invention relates to a high-pressure discharge lamp, particularly a high-pressure discharge lamp mainly composed of ultraviolet radiation, in which an electrode and an electron emitting material applied to the electrode are improved.

一般に、高圧放電ランプの電極にはタングステンなどの高融点金属が用いられ、前記電極に主に金属酸化物からなる電子放射性物質(以下、エミッターという)を塗布することで、良好な始動性が得られると共に、点灯中の電極材料のスパッタリングによる発光管内壁の黒化が抑制され、高い放射照度維持率が達成されることは既によく知られている。 In general, a high-melting point metal such as tungsten is used for the electrode of the high-pressure discharge lamp, and a good startability can be obtained by applying an electron-emitting material (hereinafter referred to as an emitter) mainly made of a metal oxide to the electrode. In addition, it is already well known that blackening of the inner wall of the arc tube due to sputtering of the electrode material during lighting is suppressed and a high irradiance maintenance rate is achieved.

また、前記電極の構造は、一般的には、電極芯棒と電極コイルとから構成され、電極コイル部は、電極芯棒に対して2層の巻き付け構造が取られ、内側コイルは空隙を有する“とばし巻き”で形成され、外側コイルは“密巻き”で形成され、内側コイルの前記空隙にはエミッターが保持されている。このエミッターとしては、多くの場合、仕事関数の低い、バリウム、カルシウムを含むタングステン酸化合物(BaCaWO、以下、タングステートという)、あるいは酸化イットリウムや酸化スカンジウムなどの高融点金属酸化物が用いられている。 The electrode structure is generally composed of an electrode core rod and an electrode coil. The electrode coil portion has a two-layer winding structure around the electrode core rod, and the inner coil has a gap. The outer coil is formed by “tight winding”, and the emitter is held in the gap of the inner coil. As the emitter, a tungstic acid compound containing low barium and calcium (Ba 2 CaWO 6 , hereinafter referred to as tungstate), or a refractory metal oxide such as yttrium oxide or scandium oxide is often used as the emitter. It has been.

ところで、紫外線放射を主体とする高圧放電ランプは、半導体や印刷分野などの産業用用途に用いられているが、近年、被処理物の大型化や処理スピードの高速化などが進む中で、高負荷・大電力のランプが求められてきており、ランプ電力の増大に伴なって電極に流れる電流も高くなってきている。そこで、エミッターにタングステートを使用したランプの場合、点灯時の電極の先端温度、すなわち動作温度、がタングステートの融点を超えるような高温となるため、短時間のうちにタングステートが電極の空隙から消失・飛散してしまい、その結果、ランプが始動不良となるばかりでなく、タングステート自体が発光管内壁に付着するために、紫外線照度の低下を引き起こし、短寿命の原因となるという問題があった。 By the way, high-pressure discharge lamps mainly composed of ultraviolet radiation are used for industrial applications such as semiconductors and printing fields. However, in recent years, as the size of workpieces and processing speed increase, There has been a demand for lamps with high load and high power, and as the lamp power increases, the current flowing through the electrodes also increases. Therefore, in the case of a lamp using a tongue state as the emitter, the tip temperature of the electrode at the time of lighting, that is, the operating temperature, becomes a high temperature that exceeds the melting point of the tongue state. As a result, not only does the lamp fail to start, but the tongue state itself adheres to the inner wall of the arc tube, causing a decrease in UV illuminance and short life. there were.

一方、金属ハロゲン化物を発光物質として発光管内に封入した、いわゆるメタルハライドランプにおいては、タングステートに含まれるバリウムやカルシウムといったアルカリ土類金属が封入されたハロゲン化物と反応してしまうので、エミッターとして、タングステートの代わりに、高融点でかつ比較的仕事関数の低い金属酸化物、例えば酸化イットリウムや酸化スカンジウムなどを使用したランプが広く用いられている(特許文献1参照)。 On the other hand, in a so-called metal halide lamp in which a metal halide is enclosed in the arc tube as a luminescent substance, an alkaline earth metal such as barium or calcium contained in the tungstate reacts with the halide, so as an emitter, Instead of the tungstate, a lamp using a metal oxide having a high melting point and a relatively low work function, such as yttrium oxide or scandium oxide, is widely used (see Patent Document 1).

しかしながら、酸化イットリウムや酸化スカンジウムは、融点が2500〜2700℃であり、前述のような高温による空隙からの飛散という問題は起こりにくいものの、高融点であるが故に、多孔質状態で電極コイル空隙に保持されることになるため、製造プロセスの中で不純ガスを吸着する要因となり、結果として安定したランプ特性が得られないという問題がある。このような問題を解決するためには、エミッターを塗布した電極をエミッターの融点以上の高温になるよう加熱し、空隙の少ない緻密な焼結体を形成させる必要があるが、そのような環境を実現するためには高価な焼成炉が必要になるという難点があり、更には加熱の際に電極を構成するタングステンの再結晶化が促進されるため、電極の脆化、すなわち強度低下が引き起こされる危険性がある。
特開平7−153421号公報
However, yttrium oxide and scandium oxide have a melting point of 2500 to 2700 ° C., and the problem of scattering from the gap due to high temperature as described above hardly occurs. Therefore, the impure gas is adsorbed in the manufacturing process, and as a result, there is a problem that stable lamp characteristics cannot be obtained. In order to solve such problems, it is necessary to heat the electrode coated with the emitter to a temperature higher than the melting point of the emitter to form a dense sintered body with few voids. In order to realize this, there is a problem that an expensive firing furnace is required, and further, recrystallization of tungsten constituting the electrode is promoted during heating, so that the electrode becomes brittle, that is, the strength is reduced. There is a risk.
JP-A-7-153421

本発明は、上記の問題点を解決するために創出されたものであり、早期にエミッターが飛散することを抑制し、従って長時間にわたって高い紫外線照度が維持される高圧放電ランプを簡便な方法で提供することを課題とする。 The present invention was created in order to solve the above-described problems. A high-pressure discharge lamp that suppresses the early scattering of the emitter and thus maintains a high ultraviolet illuminance over a long period of time can be obtained by a simple method. The issue is to provide.

上記の問題点を解決するために、本発明は次の構成とする。すなわち、請求項1に記載の高圧放電ランプは、石英ガラス製発光管の内部に金属添加物と不活性ガスを封入し、前記発光管の両端にタングステンを主体とする電極を封着してなる高圧放電ランプにおいて、前記電極は電極芯棒と電極コイルとから構成され、前記電極コイル表面には、酸化イットリウムと酸化アルミニウムとから構成される二元系複合酸化物よりなる電子放射性物質(エミッター)が塗着され、前記二元系複合酸化物全体に占める酸化イットリウムのモル百分率は60%以上かつ90%以下であることを特徴とする。 In order to solve the above problems, the present invention has the following configuration. That is, the high-pressure discharge lamp according to claim 1 is formed by enclosing a metal additive and an inert gas inside a quartz glass arc tube, and sealing electrodes mainly composed of tungsten at both ends of the arc tube. In the high-pressure discharge lamp, the electrode is composed of an electrode core rod and an electrode coil, and an electron emitting substance (emitter) made of a binary complex oxide composed of yttrium oxide and aluminum oxide is formed on the surface of the electrode coil. The mole percentage of yttrium oxide in the entire binary composite oxide is 60% or more and 90% or less.

請求項2に記載の高圧放電ランプは、請求項1に記載の高圧放電ランプにおいて、前記電極芯棒に流れる単位断面積当たりの電流が1.0A/mm以上かつ10A/mm以下であることを特徴とする。 The high-pressure discharge lamp according to claim 2 is the high-pressure discharge lamp according to claim 1, wherein a current per unit cross-sectional area flowing through the electrode core is 1.0 A / mm 2 or more and 10 A / mm 2 or less. It is characterized by that.

請求項1に記載の高圧放電ランプは、電極コイルに固着させるエミッターとして、酸化イットリウムのモル百分率が前記範囲内にある、酸化イットリウムと酸化アルミニウムからなる二元系複合酸化物を用いているので、通常用いられる電気炉で実現可能な温度で溶融することが可能であり、不純ガス吸着の要因となる多孔質状態を内部に形成されない一様な固相状態で電極コイル上に固着させることができ、また電極の脆化も起こらず、従って長時間にわたって安定した特性が維持されるという効果を発揮する。 Since the high-pressure discharge lamp according to claim 1 uses a binary complex oxide composed of yttrium oxide and aluminum oxide, in which the molar percentage of yttrium oxide is within the above range, as the emitter fixed to the electrode coil. It can be melted at a temperature that can be realized by a commonly used electric furnace, and the porous state that causes impure gas adsorption can be fixed on the electrode coil in a uniform solid state that is not formed inside. In addition, the electrode is not embrittled, and thus exhibits an effect that stable characteristics are maintained for a long time.

請求項2に記載の高圧放電ランプは、電極芯棒に流れる単位断面積当たりの電流が前記範囲内に制限されているので、電極コイル部分の温度をエミッターの融点未満に抑えることができ、寿命中のエミッターの消耗が少なく、長時間にわたって高い紫外線照度維持率が保たれるという効果を発揮する。 In the high-pressure discharge lamp according to claim 2, since the current per unit cross-sectional area flowing through the electrode core rod is limited within the above range, the temperature of the electrode coil portion can be suppressed below the melting point of the emitter, and the lifetime There is little consumption of the emitter inside, and the effect of maintaining a high UV illuminance maintenance rate for a long time is exhibited.

以下、本発明の作用及び最良の実施形態を、図表を用いながら例を挙げて説明する。
主な金属酸化物の仕事関数と融点を表1に示す。酸化イットリウムは、酸化バリウムや酸化カルシウムなどといったアルカリ土類金属酸化物に次いで仕事関数が低い、すなわち電子放射性が高い酸化物であるが、融点が約2700℃と非常に高いという性質を持つ。
Hereinafter, the operation and the best embodiment of the present invention will be described by way of examples with reference to diagrams.
Table 1 shows the work functions and melting points of main metal oxides. Yttrium oxide is an oxide having the second lowest work function after alkaline earth metal oxides such as barium oxide and calcium oxide, that is, high electron emission property, but has a very high melting point of about 2700 ° C.

Figure 2010153339
Figure 2010153339

この酸化イットリウムに酸化アルミニウムを添加した二元系複合酸化物は、それぞれの金属酸化物のモル百分率によって3種類の結晶構造、すなわち、3Al・5Y(ガーネット構造)、Y・Al(ペロブスカイト構造)、及び2Y・Al(単斜晶構造)を取ることが知られている。図4の状態図に示されているように、Al−Y二元系複合酸化物の融点は、酸化アルミニウムの添加量によって、およそ1800℃から2400℃までの範囲で任意に調整することが可能である。更には、この二元系複合酸化物全体に占める酸化イットリウムのモル百分率を60%以上かつ90%以下とした場合、その融点は1800℃から2000℃程度となり、一般的な真空加熱炉や高周波誘導加熱装置において昇温可能な温度領域となる。 This binary complex oxide obtained by adding aluminum oxide to yttrium oxide has three crystal structures, that is, 3Al 2 O 3 .5Y 2 O 3 (garnet structure), Y 2 depending on the mole percentage of each metal oxide. It is known to take O 3 · Al 2 O 3 (perovskite structure) and 2Y 2 O 3 · Al 2 O 3 (monoclinic structure). As shown in the phase diagram of FIG. 4, the melting point of the Al 2 O 3 —Y 2 O 3 binary composite oxide can be arbitrarily set within a range of approximately 1800 ° C. to 2400 ° C. depending on the amount of aluminum oxide added. It is possible to adjust to. Furthermore, when the mole percentage of yttrium oxide in the binary complex oxide is 60% or more and 90% or less, the melting point is about 1800 ° C. to 2000 ° C. It becomes a temperature range in which the temperature can be raised in the heating device.

そこで、本発明では、酸化イットリウムの高い電子放射特性を生かすと共に、エミッターの融点を電極コイル上への固着作業が容易な温度へ低減させるために、酸化イットリウムに酸化アルミニウムを添加すると共に、全体に占める酸化イットリウムのモル百分率が60%以上かつ90%以下(図4で斜線で示す領域)であるAl−Y二元系複合酸化物をエミッターとして使用する。 Therefore, in the present invention, in order to take advantage of the high electron emission characteristics of yttrium oxide and to reduce the melting point of the emitter to a temperature at which the fixing work on the electrode coil can be easily performed, aluminum oxide is added to yttrium oxide and Al 2 O 3 —Y 2 O 3 binary composite oxide having a mole percentage of yttrium oxide in the range of 60% or more and 90% or less (a region indicated by hatching in FIG. 4) is used as the emitter.

前記モル百分率が60%より小さい場合には、エミッターとしての機能を担う酸化イットリウムの量が少なくなるため電子放射性を改善する効果が低下し、また、融点の低い酸化アルミニウムが相対的に多く含まれることになるため、寿命中に酸化アルミニウムがスパッタすることにより照度低下が引き起こされるという弊害を招き、好ましくない。一方、前記モル百分率が90%より大きくなると、図4にも示されているように、二元系複合酸化物の融点が顕著に増加するため、より高温での加熱が必要となり、更には僅かな組成比率の変動が融点を大きく変化させる領域であり、製造プロセスにおける種々の要素のバラツキを考慮した場合、特性の安定性の確保という点では劣るので、大量生産には適さない。 When the mole percentage is less than 60%, the amount of yttrium oxide that functions as an emitter decreases, so that the effect of improving electron emission is reduced, and a relatively high amount of aluminum oxide having a low melting point is contained. Therefore, the aluminum oxide is sputtered during the lifetime, which causes a harmful effect of causing a decrease in illuminance, which is not preferable. On the other hand, when the mole percentage is larger than 90%, as shown in FIG. 4, the melting point of the binary composite oxide is remarkably increased, so that heating at a higher temperature is required. The variation of the composition ratio is a region where the melting point is greatly changed, and considering the variation of various elements in the manufacturing process, it is inferior in terms of ensuring the stability of characteristics, and is not suitable for mass production.

次に、本発明では、電極芯棒に流れる単位断面積当たりの電流(電流密度)は、1.0A/mm以上かつ10A/mm以下であることが好ましい。電流密度が10A/mmを超えるような大電流が電極芯棒に流れると、電極の先端温度のみならず、エミッターを担持している電極コイル部分の温度も非常に高温になり、エミッターの融点を超えるほど高くなるので、寿命中のエミッターの消耗が顕著になり、長時間にわたって高い紫外線照度維持率を得ることが困難になる。なお、電流密度は、1.0A/mm未満になると、大電流が流れる場合とは反対に、電極温度が上がらず、エミッターの拡散、すなわち電極先端へのエミッターの供給が阻害される為、電極を構成する材料であるタングステンのスパッタリングが引き起こされ、やはり同様に長時間にわたって高い紫外線照度維持率を得ることが困難になるので、好ましくない。 Next, in the present invention, the current per unit cross-sectional area (current density) flowing through the electrode core is preferably 1.0 A / mm 2 or more and 10 A / mm 2 or less. When a large current with a current density exceeding 10 A / mm 2 flows through the electrode rod, not only the electrode tip temperature but also the temperature of the electrode coil portion carrying the emitter becomes very high, and the melting point of the emitter Therefore, it becomes difficult to obtain a high UV illuminance maintenance rate over a long period of time. Note that when the current density is less than 1.0 A / mm 2 , the electrode temperature does not rise, contrary to the case where a large current flows, and the diffusion of the emitter, that is, the supply of the emitter to the electrode tip is hindered. Sputtering of tungsten, which is a material constituting the electrode, is caused, and similarly, it is difficult to obtain a high ultraviolet illuminance maintenance rate for a long time.

本発明の実施例について説明する。図3は、下記に説明する過程を経て作製された電極1が組み込まれた本発明の実施例の高圧放電ランプの外観形状を示す図である。なお、本発明は、ランプの形態については、図3に示したものに限定される訳ではなく、様々な形態、例えば発光管が概略球状のショートアークタイプのランプ等にも応用が可能である。 Examples of the present invention will be described. FIG. 3 is a diagram showing the external shape of a high-pressure discharge lamp of an embodiment of the present invention in which an electrode 1 manufactured through the process described below is incorporated. Note that the present invention is not limited to the form of the lamp shown in FIG. 3, and can be applied to various forms, for example, a short arc type lamp having a generally spherical arc tube. .

図1、図2は、本発明に係る高圧放電ランプの電極コイルへのエミッターの固着過程を説明するための図であって、電極部の概略断面図で示したものである。電極1は、タングステン製電極芯棒2の外周に接して、粗に巻回した内巻きコイル3aと密に巻回した外巻きコイル3bから構成されるタングステン製単コイル3が配設されている。前記二元系複合酸化物エミッターを電極コイル上に固着するには、まず、粉末状の酸化イットリウムと酸化アルミニウムを、酸化イットリウムの酸化アルミニウムに対するモル百分率が60%以上かつ90%以下となるように混合し、水、あるいは有機溶媒などのバインダーを加えた後に、十分に攪拌して懸濁液とし、真空含浸機によって前記懸濁液を電極コイル内に含浸させる。こうして、図1に示すように、内巻きコイル3aと外巻きコイル3bとで囲まれた空隙にエミッター懸濁液4が導入される。その後、この電極を乾燥させ、窒素雰囲気中で高周波加熱装置を用いて1800℃〜2000℃程度に加熱することでエミッターを溶融し、電極芯棒およびコイルを構成するタングステン表面にエミッターを均一に固着させる。図2は、電極芯棒2および内巻きコイル3a、外巻きコイル3bの表面にエミッター5が固着された様子を示している。 1 and 2 are views for explaining a process of fixing an emitter to an electrode coil of a high-pressure discharge lamp according to the present invention, which is a schematic cross-sectional view of an electrode portion. The electrode 1 is in contact with the outer periphery of the tungsten electrode core 2 and is provided with a single tungsten coil 3 composed of a roughly wound inner coil 3a and a densely wound outer coil 3b. . In order to fix the binary complex oxide emitter on the electrode coil, first, powdery yttrium oxide and aluminum oxide are mixed so that the molar percentage of yttrium oxide to aluminum oxide is 60% or more and 90% or less. After mixing and adding a binder such as water or an organic solvent, the mixture is sufficiently stirred to form a suspension, and the suspension is impregnated into the electrode coil by a vacuum impregnation machine. Thus, as shown in FIG. 1, the emitter suspension 4 is introduced into the gap surrounded by the inner winding coil 3a and the outer winding coil 3b. Then, this electrode is dried, and the emitter is melted by heating to about 1800 ° C. to 2000 ° C. in a nitrogen atmosphere using a high-frequency heating device, and the emitter is uniformly fixed to the tungsten surface constituting the electrode core rod and coil. Let FIG. 2 shows a state in which the emitter 5 is fixed to the surfaces of the electrode core bar 2, the inner winding coil 3a, and the outer winding coil 3b.

次に、こうして作製した高圧放電ランプの諸特性に関する実験結果について説明する。表2は、上記の方法で作製した電極を組み込んだ、発光長が60mm、定格電力が400Wの高圧水銀ランプについて、点滅試験(点灯4.75時間、消灯0.25時間のサイクル)を実施し、500時間点灯させた後に測定した紫外線照度維持率を示したものであり、前記エミッターを構成する二元系複合酸化物における酸化イットリウムのモル百分率を60%、80%、90%(酸化イットリウムと酸化アルミニウムの相対モル比率を6:4、8:2、9:1)の3通りに変化させた実験を行った(実施例A〜実施例C)。電極芯棒に流れる単位断面積当たりの電流は、いずれの場合も2〜3A/mmであった。 Next, experimental results relating to various characteristics of the high-pressure discharge lamp thus produced will be described. Table 2 shows a flashing test (cycle of 4.75 hours on, 0.25 hours off) for a high-pressure mercury lamp incorporating the electrode produced by the above method and having a light emission length of 60 mm and a rated power of 400 W. , The ultraviolet illuminance maintenance rate measured after lighting for 500 hours, and the molar percentage of yttrium oxide in the binary complex oxide constituting the emitter is 60%, 80%, 90% (with yttrium oxide) Experiments were performed in which the relative molar ratio of aluminum oxide was changed in three ways: 6: 4, 8: 2, 9: 1 (Example A to Example C). The current per unit cross-sectional area flowing through the electrode core was 2 to 3 A / mm 2 in all cases.

その結果、酸化イットリウムのモル百分率が60%、80%、90%の場合で、それぞれ86%、87%、94%であった。これに対して、従来のタングステートをエミッターとして用いた電極を組み込んだ同じ構造の高圧水銀ランプの場合は、同様に試験を実施した結果、紫外線照度維持率は71%であり、本発明の実施により大幅な動程の改善が実現されたことが示された。 As a result, when the molar percentage of yttrium oxide was 60%, 80%, and 90%, they were 86%, 87%, and 94%, respectively. On the other hand, in the case of a high-pressure mercury lamp having the same structure in which an electrode using a conventional tongue state as an emitter is incorporated, the test result is the same, and as a result, the ultraviolet illuminance maintenance rate is 71%. It was shown that a significant improvement in the travel was realized.

Figure 2010153339
Figure 2010153339

なお、上記試験で500時間点灯時点におけるランプの外観を観察すると、従来のタングステートを電極とするランプの場合は、発光管両端の内表面にバリウム、カルシウム、およびタングステンの付着によると見られる黒化が認められ、更には発光管の発光領域の内表面にも、バリウムやカルシウムの飛散によりこれらのアルカリ金属の酸化物が核となり促進されたガラスの結晶化に伴なう失透が生じているのが確認された。これに対して、酸化イットリウム−酸化アルミニウム複合酸化物をエミッターに用いた電極を組み込んだ本発明のランプの場合は、電極周囲の発光管内表面に少量のアルミニウムが付着していたにとどまっていた。 In addition, when the appearance of the lamp at the time of lighting for 500 hours is observed in the above test, in the case of a lamp having a conventional tongue state as an electrode, black that appears to be due to the adhesion of barium, calcium, and tungsten to the inner surfaces of both ends of the arc tube. Furthermore, devitrification accompanied by crystallization of glass promoted by the oxide of these alkali metals as nuclei caused by scattering of barium and calcium on the inner surface of the light emitting region of the arc tube. It was confirmed that On the other hand, in the lamp of the present invention in which an electrode using an yttrium oxide-aluminum oxide composite oxide as an emitter was incorporated, only a small amount of aluminum adhered to the inner surface of the arc tube around the electrode.

本発明は、半導体や印刷分野などの産業用用途に用いられる、高負荷、大電力の紫外線放射を主体とする高圧放電ランプに好適に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be suitably used for a high-pressure discharge lamp mainly composed of high-load, high-power ultraviolet radiation used for industrial applications such as semiconductor and printing fields.

本発明に係る高圧放電ランプの電極の作製過程(エミッター材料の含浸)の説明のための図である。It is a figure for demonstrating the preparation process (impregnation of emitter material) of the electrode of the high pressure discharge lamp which concerns on this invention. 本発明に係る高圧放電ランプの電極の作製過程(エミッターの固着)の説明のための図である。It is a figure for demonstrating the preparation process (attachment of an emitter) of the electrode of the high voltage | pressure discharge lamp which concerns on this invention. 本発明に係る高圧放電ランプの実施例の外観を示す略図である。1 is a schematic view showing the appearance of an embodiment of a high-pressure discharge lamp according to the present invention. Al−Y二元系複合酸化物の状態図である。It is a state diagram of Al 2 O 3 -Y 2 O 3 binary complex oxide.

符号の説明Explanation of symbols

1…電極
2…電極芯棒
3…単コイル、3a…内巻きコイル、3b…外巻きコイル
4…エミッター懸濁液
5…電子放射性物質(エミッター)
6…発光管
7…封止部
8…口金
DESCRIPTION OF SYMBOLS 1 ... Electrode 2 ... Electrode core rod 3 ... Single coil, 3a ... Inner winding coil, 3b ... Outer winding coil 4 ... Emitter suspension 5 ... Electron radioactive substance (emitter)
6 ... arc tube 7 ... sealing part 8 ... base

Claims (2)

石英ガラス製発光管の内部に金属添加物と不活性ガスを封入し、前記発光管の両端にタングステンを主体とする電極を封着してなる高圧放電ランプにおいて、前記電極は電極芯棒と電極コイルとから構成され、前記電極コイル表面には、酸化イットリウムと酸化アルミニウムとから構成される二元系複合酸化物よりなる電子放射性物質が塗着され、前記二元系複合酸化物全体に占める酸化イットリウムのモル百分率は60%以上かつ90%以下であることを特徴とする高圧放電ランプ。 In a high pressure discharge lamp in which a metal additive and an inert gas are sealed inside a quartz glass arc tube, and an electrode mainly composed of tungsten is sealed at both ends of the arc tube, the electrode includes an electrode core rod and an electrode. An electron-emitting material made of a binary complex oxide composed of yttrium oxide and aluminum oxide is applied to the surface of the electrode coil, and oxidation is occupied in the entire binary complex oxide. A high-pressure discharge lamp characterized in that the molar percentage of yttrium is 60% or more and 90% or less. 前記高圧放電ランプは、前記電極芯棒に流れる単位断面積当たりの電流が1.0A/mm以上かつ10A/mm以下であることを特徴とする請求項1に記載の高圧放電ランプ。 2. The high-pressure discharge lamp according to claim 1, wherein a current per unit cross-sectional area flowing through the electrode core bar is 1.0 A / mm 2 or more and 10 A / mm 2 or less.
JP2008333245A 2008-12-26 2008-12-26 High pressure discharge lamp Active JP5413798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333245A JP5413798B2 (en) 2008-12-26 2008-12-26 High pressure discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333245A JP5413798B2 (en) 2008-12-26 2008-12-26 High pressure discharge lamp

Publications (2)

Publication Number Publication Date
JP2010153339A true JP2010153339A (en) 2010-07-08
JP5413798B2 JP5413798B2 (en) 2014-02-12

Family

ID=42572190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333245A Active JP5413798B2 (en) 2008-12-26 2008-12-26 High pressure discharge lamp

Country Status (1)

Country Link
JP (1) JP5413798B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208392A1 (en) * 2013-06-24 2014-12-31 ウシオ電機株式会社 Discharge lamp
JP2015008058A (en) * 2013-06-25 2015-01-15 ウシオ電機株式会社 Cathode for discharge lamp and discharge lamp
JP2015026554A (en) * 2013-07-29 2015-02-05 ウシオ電機株式会社 Discharge lamp
JP5672573B1 (en) * 2013-11-22 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672584B1 (en) * 2014-05-26 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672585B1 (en) * 2014-06-06 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672581B1 (en) * 2014-03-18 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672576B1 (en) * 2014-01-29 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672577B1 (en) * 2014-02-17 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672580B1 (en) * 2014-03-07 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672578B1 (en) * 2014-02-17 2015-02-18 ウシオ電機株式会社 Discharge lamp

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159483A (en) * 1974-11-22 1976-05-24 Hitachi Ltd KINZOKUJOKIHODENTO
JPH07272678A (en) * 1994-03-30 1995-10-20 Toshiba Lighting & Technol Corp Metal halide lamp and illumination device using it
JPH08273594A (en) * 1995-03-30 1996-10-18 Toray Ind Inc Light-emitting tube, multiple tube type discharge lamp, and photochemical reaction device
JPH1069883A (en) * 1996-08-28 1998-03-10 Iwasaki Electric Co Ltd Metallic vapor discharge lamp
JP2001342553A (en) * 2000-06-02 2001-12-14 Osaka Gas Co Ltd Method for forming alloy protection coating
JP2003217438A (en) * 2002-01-24 2003-07-31 New Japan Radio Co Ltd Cathode and its manufacturing method
JP2007103155A (en) * 2005-10-04 2007-04-19 Ushio Inc Extra-high-pressure mercury lamp

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159483A (en) * 1974-11-22 1976-05-24 Hitachi Ltd KINZOKUJOKIHODENTO
JPH07272678A (en) * 1994-03-30 1995-10-20 Toshiba Lighting & Technol Corp Metal halide lamp and illumination device using it
JPH08273594A (en) * 1995-03-30 1996-10-18 Toray Ind Inc Light-emitting tube, multiple tube type discharge lamp, and photochemical reaction device
JPH1069883A (en) * 1996-08-28 1998-03-10 Iwasaki Electric Co Ltd Metallic vapor discharge lamp
JP2001342553A (en) * 2000-06-02 2001-12-14 Osaka Gas Co Ltd Method for forming alloy protection coating
JP2003217438A (en) * 2002-01-24 2003-07-31 New Japan Radio Co Ltd Cathode and its manufacturing method
JP2007103155A (en) * 2005-10-04 2007-04-19 Ushio Inc Extra-high-pressure mercury lamp

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208392A1 (en) * 2013-06-24 2014-12-31 ウシオ電機株式会社 Discharge lamp
TWI570770B (en) * 2013-06-24 2017-02-11 Ushio Electric Inc Discharge lamp
US9548196B2 (en) 2013-06-24 2017-01-17 Ushio Denki Kabushiki Kaisha Discharge lamp
JP2015008058A (en) * 2013-06-25 2015-01-15 ウシオ電機株式会社 Cathode for discharge lamp and discharge lamp
JP2015026554A (en) * 2013-07-29 2015-02-05 ウシオ電機株式会社 Discharge lamp
JP5672573B1 (en) * 2013-11-22 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672576B1 (en) * 2014-01-29 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672578B1 (en) * 2014-02-17 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672577B1 (en) * 2014-02-17 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672580B1 (en) * 2014-03-07 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672581B1 (en) * 2014-03-18 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672584B1 (en) * 2014-05-26 2015-02-18 ウシオ電機株式会社 Discharge lamp
JP5672585B1 (en) * 2014-06-06 2015-02-18 ウシオ電機株式会社 Discharge lamp

Also Published As

Publication number Publication date
JP5413798B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5413798B2 (en) High pressure discharge lamp
JP5138606B2 (en) Ceramic metal halide lamp
JP4262968B2 (en) Ceramic metal halide lamp
US6809478B2 (en) Metal halide lamp for automobile headlight
JP5293172B2 (en) Discharge lamp
US20060290285A1 (en) Rapid Warm-up Ceramic Metal Halide Lamp
CN1278371C (en) High voltage discharge lamp and high voltage discharge lamp system using said discharge lamp
US20070138964A1 (en) Mercury-free high-pressure discharge lamp and luminaire using the same
WO2014208392A1 (en) Discharge lamp
TWI437610B (en) High pressure discharge lamp
JP2001513255A (en) High pressure metal halide discharge lamp
JP2011103240A (en) Tungsten electrode and discharge lamp using the same
JP2006221928A (en) High-pressure discharge lamp
JPH10233188A (en) Low pressure discharge lamp
KR101934146B1 (en) Long-arc type discharge lamp
JPS5975554A (en) Metal vapor discharge lamp
JP2007115615A (en) Discharge lamp
JP5672030B2 (en) Long arc metal halide lamp and metal halide lamp lighting device
JP2014072112A (en) Fluorescent lamp and lighting device using the same
JPH04137350A (en) Metal halide lamp
JP2015230861A (en) Discharge lamp
JP2008234871A (en) High-pressure discharge lamp and lighting fixture
JP2001243911A (en) High-pressure discharge lamp and illumination device
JP2014072113A (en) Fluorescent lamp and lighting device using the same
JPH04308643A (en) Low pressure discharge lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5413798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131103

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350