JP2010153266A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2010153266A
JP2010153266A JP2008331677A JP2008331677A JP2010153266A JP 2010153266 A JP2010153266 A JP 2010153266A JP 2008331677 A JP2008331677 A JP 2008331677A JP 2008331677 A JP2008331677 A JP 2008331677A JP 2010153266 A JP2010153266 A JP 2010153266A
Authority
JP
Japan
Prior art keywords
hydrogen gas
gas flow
flow path
fuel cell
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008331677A
Other languages
Japanese (ja)
Inventor
Hiroki Tsukamoto
宏樹 塚本
Motohiro Otsuka
元博 大塚
Sai Hayakawa
菜 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2008331677A priority Critical patent/JP2010153266A/en
Publication of JP2010153266A publication Critical patent/JP2010153266A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent electrolyte of an air guide-in part from drying, in a type of a fuel cell equipped with a hydrogen gas flow channel of a dead-end type. <P>SOLUTION: The fuel cell is provided with an air flow channel 50 for circulating air from the first side to the second side, at the air-electrode side of the fuel cell equipped with the first side and the second side opposed to each other, as well as, a dead-end type hydrogen gas flow channel 30 at a fuel electrode side. The hydrogen gas flow channel is provided with a first hydrogen gas flow channel 31, with the second side as the hydrogen gas guide-in port; a second hydrogen gas flow channel 32 parallel with the first hydrogen gas flow channel 31; and a first bent part 31c for connecting a first side end part of the first hydrogen gas flow channel 31 and a first side-end part of the second hydrogen gas flow channel 32. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は燃料電池に関する。   The present invention relates to a fuel cell.

将来の燃料電池実用化のため、小型・低コスト化が求められる。このため、運転条件は、冷却・加湿系簡略化のために「高温・無加湿」となり、加圧ポンプ排除、小型ファン・低補機動力のために「空気常圧・低流量」となり、循環ポンプ排除のために「水素加圧デッドエンド・循環なし」になると予測される。   Small size and low cost are required for future fuel cell commercialization. For this reason, the operating conditions are “high temperature / no humidification” for simplification of the cooling / humidification system, and “air normal pressure / low flow rate” for eliminating the pressurizing pump, small fan / low auxiliary power, and circulation. It is predicted that "hydrogen pressurization dead end and no circulation" will occur due to pump elimination.

燃料電池を「高温・無加湿」にすると、電解質の乾燥によりプロトン伝導が低下し、発電特性が低下する。この対策として、アノード又はカソードに流れる水素ガスと空気との流れの向きを逆にする対向流が広く知られている。この対向流では各極のガス導入部が対極の流路末端となるため、電解質を介した水の相互移動によりMEA内を適当に湿潤できるので、空気導入部の乾燥を抑制できる。   When the fuel cell is set to “high temperature / no humidification”, proton conduction decreases due to drying of the electrolyte, and power generation characteristics deteriorate. As a countermeasure, a counterflow that reverses the direction of the flow of hydrogen gas and air flowing to the anode or cathode is widely known. In this counterflow, the gas introduction part of each electrode becomes the flow path end of the counter electrode, so that the inside of the MEA can be appropriately wetted by the mutual movement of water via the electrolyte, so that drying of the air introduction part can be suppressed.

しかしながら、特に「高温・無加湿」と 「水素加圧デッドエンド・循環なし」の組み合わせでは、上記対向流によって生じるMEA内の湿潤の効果が低下する。これは水素デッドエンド系では水蒸気キャリアとなる水素ガスの流れが流路末端で停止するためである。このため、水素デッドエンド系では流路末端に対向する空気導入部からの無加湿空気流入に伴い、該空気導入部の電解質が乾燥して発電特性が低下する。しかも、乾燥部位の発電特性低下に伴う水素消費量の減少により、水素導入側にも乾燥が進行していくという悪循環が発生する。このような状態では、MEAの一部しか発電に寄与せず、本来の発電特性が得られないという課題を見出した。   However, in particular, in the combination of “high temperature / no humidification” and “hydrogen pressurization dead end / no circulation”, the effect of wetting in the MEA caused by the counter flow is reduced. This is because in the hydrogen dead end system, the flow of hydrogen gas serving as a water vapor carrier stops at the end of the flow path. For this reason, in the hydrogen dead end system, with the inflow of non-humidified air from the air introduction part facing the end of the flow path, the electrolyte in the air introduction part dries and power generation characteristics deteriorate. In addition, a vicious cycle occurs in which drying proceeds on the hydrogen introduction side due to a decrease in the amount of hydrogen consumption accompanying a decrease in power generation characteristics at the drying site. In such a state, only a part of the MEA contributes to power generation, and the original power generation characteristics cannot be obtained.

本発明は、上記従来の課題を解決するためになされたもので、燃料極側においてデッドエンドタイプの水素ガス流路を備える燃料電池のタイプであって、空気導入部の電解質が乾燥することを防止する燃料電池を提供することを目的としている。   The present invention has been made to solve the above-described conventional problems, and is a type of a fuel cell having a dead-end type hydrogen gas flow path on the fuel electrode side, wherein the electrolyte in the air introduction part is dried. It aims at providing the fuel cell which prevents.

第1の局面の燃料電池は、
相対向する第1の辺と第2の辺を有する燃料電池の空気極側において前記第1の辺側から前記第2の辺側へ空気を流通させる空気流路を備え、燃料極側においてデッドエンドタイプの水素ガス流路を備える燃料電池であって、
前記水素ガス流路は、前記第2の辺側を水素ガス導入口とする第1の水素ガス流路と、該第1の水素ガス流路に平行な第2の水素ガス流路と、前記第1の水素ガス流路の前記第1の辺側端部と前記第2の水素ガス流路の前記第1の辺側端部とを結ぶ第1の屈曲部と、を備えてなるものである。
この燃料電池によれば、水素ガスは、第1の水素ガス流路、第1の屈曲部、第2の水素ガス流路へと流れ、水素ガス流路がデッドエンドタイプであるから、第2の水素ガス流路の末端部にて水素ガスの流れが消滅する。
一方、従来のストレートの水素ガス流路では、空気流路の導入側に対向する部位で、水素ガスの流れが停止するのに対して、第1の局面の燃料電池によれば、デッドエンドタイプの水素ガス流路であっても、第1の辺側端部の空気流路の対向部となる、別言すれば、空気流路の導入対向部に対する水素ガス量は、第1の屈曲部、第2の水素ガス流路へと流れる量によって決まる。これにより、空気導入の対向部に対する水素ガスの流れが増大して水蒸気のキャリアガスとして機能し、空気流路の導入部の乾燥を抑制できる。したがって、空気流路の導入部の乾燥に伴う発電性能の低下を防止できる。
また、第1の屈曲部は、屈曲されていれば、形状の如何は問わないが、圧力損失、幅方向の長さの増加を考慮するとU形状が好ましい。
The fuel cell of the first aspect is
The fuel cell having an opposing first side and second side includes an air flow path for circulating air from the first side to the second side on the air electrode side of the fuel cell, and dead on the fuel electrode side. A fuel cell comprising an end-type hydrogen gas flow path,
The hydrogen gas flow path includes a first hydrogen gas flow path having the second side side as a hydrogen gas inlet, a second hydrogen gas flow path parallel to the first hydrogen gas flow path, A first bent portion connecting the first side-side end of the first hydrogen gas flow path and the first side-side end of the second hydrogen gas flow path. is there.
According to this fuel cell, the hydrogen gas flows to the first hydrogen gas flow channel, the first bent portion, and the second hydrogen gas flow channel, and the hydrogen gas flow channel is a dead end type. The hydrogen gas flow disappears at the end of the hydrogen gas flow path.
On the other hand, in the conventional straight hydrogen gas flow path, the flow of hydrogen gas stops at a portion facing the introduction side of the air flow path, whereas according to the fuel cell of the first aspect, the dead end type In other words, the amount of hydrogen gas with respect to the introduction facing portion of the air flow path is the first bent portion. , Depending on the amount flowing into the second hydrogen gas flow path. Thereby, the flow of hydrogen gas with respect to the air introduction facing portion increases and functions as a water vapor carrier gas, and drying of the air flow passage introduction portion can be suppressed. Therefore, it is possible to prevent a decrease in power generation performance due to drying of the introduction portion of the air flow path.
Further, the shape of the first bent portion is not particularly limited as long as it is bent, but a U shape is preferable in consideration of pressure loss and increase in the length in the width direction.

第2の局面の燃料電池は、前記第2の水素ガス流路の終端が前記第2の辺側において前記水素ガス導入口と隣接している、ことが好ましい。
これにより、第2の水素ガス流路の終端が水素ガス導入口と隣接しているので、第2の水素ガス流路の長さが第1の水素ガス流路とほぼ同一となる。
したがって、空気導入の対向部に対する水素ガス量は、第2の水素ガス流路の長さにより増大するから上記第1の局面の燃料電池よりも、空気流路の導入部の乾燥をより抑制できる。
また第1と第2の水素ガス流路に各々逆向きの流れが発生するため、燃料極内において少なからず対向琉の効果が期待できる。
また、水素ガス流路は、第1の水素ガス流路と第1の屈曲部と第2の水素ガス流路とにより水素ガス流路が例えば略U形状となることから、第1及び第2の水素ガス流路により形成される投影面積を、第2の水素ガス流路の終端が第2の辺側において水素ガス導入口と離れた場合に比較して狭くできるので、コンパクト化が可能になると共に設置面積を減少できる。設置面積が同一であれば、このような水素ガス流路を多数設置できるので、空気流路の導入部の乾燥をより一層抑制できる。
In the fuel cell according to the second aspect, it is preferable that an end of the second hydrogen gas flow path is adjacent to the hydrogen gas inlet on the second side.
As a result, the end of the second hydrogen gas flow channel is adjacent to the hydrogen gas inlet, so the length of the second hydrogen gas flow channel is substantially the same as the first hydrogen gas flow channel.
Therefore, since the amount of hydrogen gas with respect to the air introduction facing portion increases with the length of the second hydrogen gas flow channel, drying of the air flow channel introduction portion can be further suppressed as compared with the fuel cell of the first aspect. .
In addition, since flows in opposite directions are respectively generated in the first and second hydrogen gas flow paths, the effect of facing soot can be expected in the fuel electrode.
In addition, the hydrogen gas flow path has, for example, a substantially U shape by the first hydrogen gas flow path, the first bent portion, and the second hydrogen gas flow path. Since the projected area formed by the hydrogen gas flow path can be made narrower than when the end of the second hydrogen gas flow path is separated from the hydrogen gas inlet on the second side, it is possible to make it compact And the installation area can be reduced. If the installation area is the same, a large number of such hydrogen gas flow paths can be installed, so that drying of the introduction part of the air flow path can be further suppressed.

第3の局面の燃料電池における前記水素ガス流路は、前記第2の水素ガス流路に平行な第3の水素ガス流路と、前記第2の水素ガス流路の前記第2の辺側端部と前記第3の水素ガス流路の前記第2の辺側端部とを結ぶ第2の屈曲部と、を更に備え、前記第3の水素ガス流路の終端は前記第1の辺側において前記第1の屈曲部に隣接している、ことが好ましい。
これにより、水素ガスは水素ガス導入口から流れて第1の水素ガス流路、第1の屈曲部、第2の水素ガス流路、第2の屈曲部、第3の水素ガス流路を流れ、この第3の水素ガス流路の末端部で水素ガスの流れが消滅する。したがって、第3の局面の燃料電池は、空気導入の対向部に対する水素ガス量が第1の屈曲部、第2の水素ガス流路に加えて、第2の屈曲部、第3の水素ガス流路へ流れる量だけ増加するから、第2の局面の燃料電池に比較して第2の屈曲部、第3の水素ガス流路を流す流量を増大できるので、空気流路の導入部の乾燥をより抑制できる。
また、第3の局面の燃料電池は、第3の水素ガス流路の終端が第1の屈曲部と隣接しているので、第3の水素ガス流路の長さが第1の水素ガス流路とほぼ同一となる。空気導入の対向部に対する水素ガス量は、水素ガス流路の長さにより増大するから空気流路の導入部の湿潤を増大できる。
In the fuel cell of the third aspect, the hydrogen gas flow path includes a third hydrogen gas flow path parallel to the second hydrogen gas flow path, and the second side of the second hydrogen gas flow path. A second bent portion connecting an end portion and the second side-side end portion of the third hydrogen gas flow path, and the terminal end of the third hydrogen gas flow path is the first side It is preferable that it is adjacent to the first bent portion on the side.
Thereby, hydrogen gas flows from the hydrogen gas inlet and flows through the first hydrogen gas flow path, the first bent portion, the second hydrogen gas flow path, the second bent portion, and the third hydrogen gas flow path. The flow of hydrogen gas disappears at the end of the third hydrogen gas flow path. Therefore, in the fuel cell of the third aspect, the amount of hydrogen gas with respect to the air introduction facing portion has the second bent portion and the third hydrogen gas flow in addition to the first bent portion and the second hydrogen gas flow path. Since the flow rate increases by the amount flowing to the road, the flow rate flowing through the second bent portion and the third hydrogen gas flow path can be increased as compared with the fuel cell of the second aspect. It can be suppressed more.
In the fuel cell of the third aspect, since the terminal end of the third hydrogen gas channel is adjacent to the first bent portion, the length of the third hydrogen gas channel is the first hydrogen gas flow. Almost the same as the road. Since the amount of hydrogen gas with respect to the air introduction facing portion increases with the length of the hydrogen gas passage, wetting of the introduction portion of the air passage can be increased.

また、第3の局面の燃料電池は、第3の水素ガス流路の終端が第1の屈曲部と隣接しているので、第1と第3の水素ガス流路に各々逆向きの流れが発生するため、燃料極内において少なからず対向琉の効果が期待できる。また、水素ガス流路は、第1から第3の水素ガス流路により水素ガス流路が例えばU形状と逆U形状との中央のガス流路を重ねた略N形状となることから、第1から第3の水素ガス流路により形成される投影面積を狭くできるのでコンパクト化が可能になると共に、水素ガス流路の設置面積を減少できる。設置面積が同一であれば、このような水素ガス流路を多数設置できるので、空気流路の導入部の乾燥をより一層抑制できる。   Further, in the fuel cell of the third aspect, since the terminal end of the third hydrogen gas channel is adjacent to the first bent portion, there is a flow in opposite directions in the first and third hydrogen gas channels. Since this occurs, the effect of the opposing soot can be expected in the fuel electrode. In addition, the hydrogen gas flow path is substantially N-shaped by overlapping the central gas flow path of, for example, a U shape and an inverted U shape by the first to third hydrogen gas flow paths. Since the projected area formed by the first to third hydrogen gas passages can be narrowed, it is possible to reduce the size and reduce the installation area of the hydrogen gas passages. If the installation area is the same, a large number of such hydrogen gas flow paths can be installed, so that drying of the introduction part of the air flow path can be further suppressed.

第4の局面の燃料電池は、前記第1の水素ガス流路が前記第2の水素ガス流路より幅狭に形成される、ことが好ましい。
これにより、空気導入の対向部に流れる水素ガス量は、第2の水素ガス流路の幅が広くなるにつれて大きくなるが、第1の水素ガス流路の幅にはほとんど関係しない。したがって、第2の水素ガス流路の幅が第1の水素ガス流路の幅よりも広いほうが、第1の水素ガス流路と第2の水素ガス流路の幅が同一の場合に比較して、空気導入部の対向部に流れる水素ガス流量がさらに増加する。したがって、同一面積の水素ガス流路でも、第4の局面の燃料電池は、空気導入の対向部に流れる水素ガス量を増加できるので、より多くの水蒸気を空気導入の対向部に移動させることができ、空気流路の導入部の乾燥を防止できる。
In the fuel cell according to the fourth aspect, it is preferable that the first hydrogen gas channel is formed narrower than the second hydrogen gas channel.
As a result, the amount of hydrogen gas flowing through the air introduction facing portion increases as the width of the second hydrogen gas flow path increases, but has little relation to the width of the first hydrogen gas flow path. Therefore, the width of the second hydrogen gas flow path is wider than the width of the first hydrogen gas flow path compared to the case where the widths of the first hydrogen gas flow path and the second hydrogen gas flow path are the same. As a result, the flow rate of hydrogen gas flowing in the opposite part of the air introduction part further increases. Therefore, the fuel cell of the fourth aspect can increase the amount of hydrogen gas flowing to the air-introducing facing portion even in the same area of the hydrogen gas flow path, so that more water vapor can be moved to the air-introducing facing portion. It is possible to prevent drying of the introduction portion of the air flow path.

実施例1
本発明の実施形態を図1から図3によって説明する。図1は燃料電池スタックにおける単一セルの断面図、図2は図1に示す水素ガス流路部の詳細図、図3は図1に示す水素ガス流路と空気流路との関係を示す模式図である。
燃料電池は、単位ユニットUを複数接続しており、この単位ユニットUは、図1に示すように、高分子電解質膜11の両面にカソード側触媒層12a及びアノード側触媒層12bが積層されており、その外側がカソード側拡散層13及びアノード側拡散層14で挟まれ、MEA10を構成している。さらに、MEA10の両側からセパレータ16、17のリブ16a、17aで圧接されており、これによりセパレータ16、17とカソード側拡散層13及びアノード側拡散層14との間に水素ガスを流すデッドエンドタイプの水素ガス流路部20、空気を流す空気流路50が形成されている。
Example 1
An embodiment of the present invention will be described with reference to FIGS. 1 is a cross-sectional view of a single cell in a fuel cell stack, FIG. 2 is a detailed view of a hydrogen gas flow path section shown in FIG. 1, and FIG. 3 shows a relationship between the hydrogen gas flow path and the air flow path shown in FIG. It is a schematic diagram.
In the fuel cell, a plurality of unit units U are connected. As shown in FIG. 1, each unit unit U has a cathode side catalyst layer 12 a and an anode side catalyst layer 12 b laminated on both surfaces of a polymer electrolyte membrane 11. The outer side is sandwiched between the cathode side diffusion layer 13 and the anode side diffusion layer 14 to constitute the MEA 10. Furthermore, it is press-contacted by the ribs 16a and 17a of the separators 16 and 17 from both sides of the MEA 10, and thereby a dead end type in which hydrogen gas flows between the separators 16 and 17 and the cathode side diffusion layer 13 and the anode side diffusion layer 14. The hydrogen gas flow path portion 20 and the air flow path 50 through which air flows are formed.

図2及び図3に示すように、水素ガス流路部20は、MEA10に対向して多数の水素ガス流路30を有しており、N形状の水素ガス流路30は、二つのU形状部を連通して全体が略N形状と成っている。空気流路50は、MEA10の相対向する水平な第1の辺(下辺)10aと水平な第2の辺(上辺)10cに対応して、空気極側においても第1の辺10a及び第2の辺10cを有しており、第1の辺10a側から第2の辺10c側へ空気を流通させるように形成されている。   As shown in FIGS. 2 and 3, the hydrogen gas flow path unit 20 has a large number of hydrogen gas flow paths 30 facing the MEA 10, and the N-shaped hydrogen gas flow path 30 has two U shapes. The parts are communicated with each other so as to be substantially N-shaped. The air flow path 50 corresponds to the horizontal first side (lower side) 10a and the horizontal second side (upper side) 10c of the MEA 10 facing each other, and also on the air electrode side, the first side 10a and the second side The side 10c is formed so as to circulate air from the first side 10a side to the second side 10c side.

N形状の水素ガス流路30は、等間隔で設けられた同一幅でほぼ同一の長さの第1の水素ガス流路31、第2の水素ガス流路32、第3の水素ガス流路33を有しており、第1の水素ガス流路31の終端部と第2のガス流路32の始端部とが第1の屈曲部31cで連通され、第2の水素ガス流路32の終端部と第3のガス流路32の始端部とが第2の屈曲部32cで連通されており、第1の屈曲部31cがMEA10を介して空気流路50の導入部と第3の水素ガス流路33の排出部とに対向している。
さらに、N形状の水素ガス流路30は、第2の屈曲部32cが第1の水素ガス流路31の水素導入部に対向すると共に、該水素導入部とMEA10を介して空気流路50の排出部に対向している。
The N-shaped hydrogen gas flow channel 30 includes a first hydrogen gas flow channel 31, a second hydrogen gas flow channel 32, and a third hydrogen gas flow channel that are provided at equal intervals and have the same width and substantially the same length. 33, the end portion of the first hydrogen gas flow path 31 and the start end portion of the second gas flow path 32 are communicated by the first bent portion 31c, and the second hydrogen gas flow path 32 The end portion and the start end portion of the third gas flow path 32 are communicated with each other by the second bent portion 32c, and the first bent portion 31c is connected to the introduction portion of the air flow path 50 and the third hydrogen via the MEA 10. It faces the discharge part of the gas flow path 33.
Further, the N-shaped hydrogen gas flow channel 30 has a second bent portion 32c facing the hydrogen introduction portion of the first hydrogen gas flow channel 31, and the air flow channel 50 via the hydrogen introduction portion and the MEA 10. Opposite the discharge section.

N形状の水素ガス流路30は、第2の辺10c側を水素ガス導入口20aとすると共に、空気流路50に対して平行な第1の水素ガス流路31と、第1の水素ガス流路31に平行な第2の水素ガス流路32と、第1の水素ガス流路31の第1の辺側端部と第2の水素ガス流路22の第1の辺側端部とを結ぶU形状の第1の屈曲部31cを有している。   The N-shaped hydrogen gas flow path 30 has the second side 10c side as a hydrogen gas inlet 20a, a first hydrogen gas flow path 31 parallel to the air flow path 50, and a first hydrogen gas. A second hydrogen gas channel 32 parallel to the channel 31, a first side edge of the first hydrogen gas channel 31, and a first side edge of the second hydrogen gas channel 22 U-shaped first bent portion 31c is connected.

そして、N形状の水素ガス流路30は、第2の水素ガス流路32の終端が第2の辺側において水素ガス導入口30aと対向して隣接している。
さらに、N形状の水素ガス流路30は、第2の水素ガス流路32と平行な第3の水素ガス流路33及び第2の水素ガス流路32の第2の辺側端部と第3の水素ガス流路33の第2の辺側端部とを結ぶU形状の第2の屈曲部32cを有しており、第3の水素ガス流路33の終端は第1の辺側において第1の屈曲部31cに対向して隣接している。
N形状の水素ガス流路30は、第1の屈曲部31cと第2の屈曲部32cとを有するので、折り返し回数となるターン数が2回に形成されている。
The N-shaped hydrogen gas flow channel 30 is adjacent to the end of the second hydrogen gas flow channel 32 facing the hydrogen gas inlet 30a on the second side.
Further, the N-shaped hydrogen gas flow channel 30 includes a third hydrogen gas flow channel 33 parallel to the second hydrogen gas flow channel 32 and a second side end of the second hydrogen gas flow channel 32 and the second hydrogen gas flow channel 32. 3 has a U-shaped second bent portion 32c that connects the second side end of the third hydrogen gas flow path 33, and the end of the third hydrogen gas flow path 33 is located on the first side side. It is adjacent to the first bent portion 31c.
Since the N-shaped hydrogen gas flow path 30 includes the first bent portion 31c and the second bent portion 32c, the number of turns serving as the number of turns is formed twice.

<水素ガス流路部20の末端部における水素ガス量Qdの算出>
図4に示すように、水素デッドエンド系において水素ガス流路30がn回ターン(折り返す)している場合、N形状の水素ガス流路30における空気流路50の導入部に対向する部位(空気流路の導入対向部)の水素ガス量は、末端微小領域a×Wに相当する部分に流れるもので、MEA10の発電分布がないという仮定の下、図5に示す点線の枠内を水素ガス流路30を成す流路の本数倍した面積で消費される水素量に相当する。
<Calculation of the hydrogen gas amount Qd at the end of the hydrogen gas flow path unit 20>
As shown in FIG. 4, when the hydrogen gas flow path 30 is turned n times (turned back) in the hydrogen dead-end system, a portion of the N-shaped hydrogen gas flow path 30 facing the introduction portion of the air flow path 50 ( The amount of hydrogen gas in the air flow channel facing the introduction of the air flow channel flows in a portion corresponding to the terminal minute region a × W, and under the assumption that there is no power generation distribution of the MEA 10, hydrogen within the dotted frame shown in FIG. This corresponds to the amount of hydrogen consumed in the area multiplied by the number of flow paths forming the gas flow path 30.

即ち、MEA10全体の水素消費量をCH2とすると、空気流路50の導入対向部の水素ガス量QはMEA10の全面積D×Wとの比により以下の式で示される。

Figure 2010153266
ここに、D:MEA10の縦寸法、W:MEA10の横寸法、a:末端微小領域の寸法
n:水素ガス流路のターン数、n:水素ガス流路の本数(組数)
Pr:リブ幅、Pd:水素ガス流路の幅
H2:電極面積D×Wにおける水素消費量(ファラデー則)
また、水素ガス流路30の本数nは下式で示せるため
Figure 2010153266
水素ガス流路部20の末端部における水素ガス量Qは下式となる。
Figure 2010153266
空気流路50の導入対向部の水素ガス量Qは数式3によれば、水素ガス流路30の長さ方向のMEA10の形状に基づく寸法Dと、N形状の水素ガス流路30の末端部の指標とするべく設けた任意寸法である末端微小領域の長さa、及び水素ガス流路30の屈曲部31c,32cの数となるターン数nによって決定される。 That is, assuming that the total hydrogen consumption of the MEA 10 is C H2 , the hydrogen gas amount Q d at the introduction facing portion of the air flow path 50 is expressed by the following formula according to the ratio with the total area D × W of the MEA 10.
Figure 2010153266
Here, D: vertical dimension of MEA 10, W: horizontal dimension of MEA 10, a: dimension of terminal minute region n: number of turns of hydrogen gas flow path, n s : number of hydrogen gas flow paths (number of sets)
Pr: rib width, Pd: width of hydrogen gas flow path C H2 : hydrogen consumption in electrode area D × W (Faraday rule)
Further, the number n s of the hydrogen gas channel 30 for can show the following formula
Figure 2010153266
Hydrogen gas amount Q d at the distal portion of the hydrogen gas channel portion 20 becomes the following expression.
Figure 2010153266
According to Equation 3, the hydrogen gas amount Q d at the introduction facing portion of the air flow channel 50 is the dimension D based on the shape of the MEA 10 in the length direction of the hydrogen gas flow channel 30 and the end of the N-shaped hydrogen gas flow channel 30. It is determined by the length a of the terminal minute region, which is an arbitrary dimension provided as an index of the portion, and the number of turns n that is the number of the bent portions 31c, 32c of the hydrogen gas flow path 30.

<MEA全体の水素消費量に対する水素ガス量比Q/CH2
水素デッドエンド系では空気導入対向部の水素ガス量Qは、MEA10の全体の水素消費量以上にはならないため、数式3を変形し、MEA全体の水素消費量に対する空気導入の対向部の水素ガス量比Q/CH2の関係に整理すると下式となる。

Figure 2010153266
即ち、数式4によれば、水素ガス流路部20のターン数nが大きいほど末端微小領域に流れる水素ガスが多く、対向流の効果が増大することになる。
末端微小領域a=0.5cmとおいたとき、燃料電池スタックとして現実的なMEA10のD寸法5〜20cmを本式に代入すると、図6に示す結果が得られる。 <Hydrogen gas amount ratio Q d / C H2 to total MEA hydrogen consumption>
Hydrogen gas amount Q d of the air introduction opposing portions hydrogen dead end system, since not more than the total hydrogen consumption of MEA 10, by modifying the Equation 3, the hydrogen of the facing portion of the air introduced to hydrogen consumption of the whole MEA The following formula is obtained by arranging the relationship of the gas amount ratio Q d / CH 2 .
Figure 2010153266
That is, according to Equation 4, the larger the number n of turns of the hydrogen gas flow path section 20 is, the more hydrogen gas flows in the terminal minute region, and the effect of counterflow increases.
When the terminal minute region a = 0.5 cm is set, the result shown in FIG. 6 is obtained by substituting 5 to 20 cm for the D dimension of the MEA 10 that is practical as a fuel cell stack.

図6によれば、空気導入対向部の水素ガス量は、MEA10のD寸法には殆ど依存せず、N形状の水素ガス流路30のターン回数(屈曲部の数)により変化する。これは、水素ガス流路30の溝幅・溝ピッチ・長さ等の流路形状に関わらず、単純にターン回数のみのパラメータで空気流路50の導入対向部に流れる水素ガス量を決定できることを意味する。
これは、数式4の分子がnD>>aであるから、下式となることからも理解できる。

Figure 2010153266
数式5によれば、物理的には、ターン数プラス1が水素ガス流路部20の全体本数に相当し、ターン数が第1の水素ガス流路31を除く水素ガス流路の本数となる。 According to FIG. 6, the amount of hydrogen gas at the air introduction facing portion hardly depends on the D dimension of the MEA 10, and changes depending on the number of turns (number of bent portions) of the N-shaped hydrogen gas flow path 30. This is because the amount of hydrogen gas flowing into the introduction facing portion of the air flow path 50 can be determined simply by the parameter of the number of turns regardless of the flow path shape such as the groove width, groove pitch and length of the hydrogen gas flow path 30. Means.
This can also be understood from the fact that the numerator of Formula 4 is nD >> a, and thus the following formula.
Figure 2010153266
According to Equation 5, physically, the number of turns plus 1 corresponds to the total number of the hydrogen gas passages 20, and the number of turns is the number of hydrogen gas passages excluding the first hydrogen gas passage 31. .

したがって、水素ガス流路30のターン回数を増やし末端微小領域に流れる水素ガス量を多くすることで、対向流が増大できる。さらに、図6によれば、空気流路50の導入対向部におけるターン回数による水素ガス量Qの増加は、5回以下でも十分得られる。 Therefore, the counter flow can be increased by increasing the number of turns of the hydrogen gas flow path 30 and increasing the amount of hydrogen gas flowing in the terminal minute region. Furthermore, according to FIG. 6, an increase in the amount of hydrogen gas Q d due to the turn number of the introduction opposite part of the air passage 50 is sufficiently obtained even below 5 times.

一方、水素ガス流路30のターン数が多くなると、水素ガス流路30の圧力損失が増大したり、主に停止時などセル温度が下がったときに発生する凝縮水により水素ガス流路30の水詰まりなどが生じたりするおそれがある。このため、N形状の水素ガス流路30のターン数を5回以下で、3回ターンぐらいまでが好ましい。   On the other hand, when the number of turns of the hydrogen gas flow path 30 increases, the pressure loss of the hydrogen gas flow path 30 increases, or the condensed water generated when the cell temperature decreases mainly during stoppage of the hydrogen gas flow path 30 There is a risk of clogging. For this reason, the number of turns of the N-shaped hydrogen gas channel 30 is preferably 5 times or less and about 3 turns.

上記のように構成された燃料電池の動作を図1から図3、図7、図8を参照して説明する。図7は本発明の一実施例による燃料電池スタックの動作を示す断面図、図8は従来の水素ガス流路の平面図(a)、本発明の他の実施例を示す水素ガス流路の平面図(b)である。
空気流路50に空気を、水素ガス流路30に水素ガスをそれぞれ供給して負荷を接続すると、水素ガスは、第1の屈曲部31c、第2の水素ガス流路32、第2の屈曲部、第3の水素ガス流路33を流れる。N形状の水素ガス流路30に供給された水素ガス中に含まれる水素は、MEA10により水素イオンとなり、空気流路50に供給された空気中に含まれる酸素と反応し、水を生成する。
特に、図7に示すように、空気流路50の導入対向部に生成された水は、MEA10の空気流路50の導入部から排出部に流れ、MEA10を介して水素ガス流路部20に流れ、水素ガス流路部20の末端部からMEA10を介して空気流路50の導入部に流れるという循環水となる。
なお、空気流路50の導入対向部以外で生成された水も、空気流路50の排出部へと流れ、MEA10を介して水素ガス流路部20に流れ、水素ガス流路部20の末端部からMEA10を介して空気流路50の導入部に流れるという循環水となる。
The operation of the fuel cell configured as described above will be described with reference to FIGS. 1 to 3, 7, and 8. FIG. 7 is a sectional view showing the operation of the fuel cell stack according to one embodiment of the present invention, FIG. 8 is a plan view of a conventional hydrogen gas channel (a), and a hydrogen gas channel of another embodiment of the present invention. It is a top view (b).
When air is supplied to the air flow path 50 and hydrogen gas is supplied to the hydrogen gas flow path 30 and a load is connected thereto, the hydrogen gas flows into the first bent portion 31c, the second hydrogen gas flow path 32, and the second bent. Flow through the third hydrogen gas flow path 33. Hydrogen contained in the hydrogen gas supplied to the N-shaped hydrogen gas flow channel 30 becomes hydrogen ions by the MEA 10 and reacts with oxygen contained in the air supplied to the air flow channel 50 to generate water.
In particular, as shown in FIG. 7, the water generated in the introduction facing part of the air flow path 50 flows from the introduction part of the air flow path 50 of the MEA 10 to the discharge part, and enters the hydrogen gas flow path part 20 via the MEA 10. It becomes the circulating water which flows into the introduction part of the air flow path 50 through the MEA 10 from the end of the hydrogen gas flow path section 20.
In addition, the water produced | generated except the introduction opposing part of the air flow path 50 also flows into the discharge part of the air flow path 50, flows into the hydrogen gas flow path part 20 via MEA10, and the terminal of the hydrogen gas flow path part 20 Circulating water flows from the part to the introduction part of the air flow path 50 via the MEA 10.

この時、空気流路50の導入対向部における水素ガス流は、第1の屈曲部31c、第2の水素ガス流路32、第2の屈曲部32c、第3の水素ガス流路33を流れることにより生じる。図8(a)に示す従来のターン数がない真直ぐな多数のI形状の水素ガス流路130(以下、従来のストレート流路130という)では、上記第1の屈曲部31c、第2の水素ガス流路32、第3の水素ガス流路33が存在しないので、N形状の水素ガス流路30は、ストレート流路130に比較して大量の水素ガスを空気流路50の導入対向部に流すことができる。   At this time, the hydrogen gas flow in the introduction facing portion of the air flow channel 50 flows through the first bent portion 31c, the second hydrogen gas flow channel 32, the second bent portion 32c, and the third hydrogen gas flow channel 33. Caused by In the conventional straight I-shaped hydrogen gas flow path 130 (hereinafter referred to as the conventional straight flow path 130) having no number of turns shown in FIG. 8A, the first bent portion 31c, the second hydrogen gas Since the gas flow path 32 and the third hydrogen gas flow path 33 do not exist, the N-shaped hydrogen gas flow path 30 causes a larger amount of hydrogen gas to be introduced to the air flow path 50 than the straight flow path 130. It can flow.

上記のように構成されたN形状の水素ガス流路30は、空気流路50に対して平行な第1から第3の水素ガス流路31,32,33と、第1及び第2の水素ガス流路31,32との第1の辺側端部どうしを結ぶ第1の屈曲部31cと、第2の水素ガス流路32の終端が第2の辺側において水素ガス導入口30aと対向隣接しており、さらに、第2及び第3の水素ガス流路32,33の第2の辺側端部どうしを結ぶ第2の屈曲部32cを有し、第3の水素ガス流路33の終端は第1の辺側で第1の屈曲部31cに対向隣接している。
これにより、空気流路50の導入対向部における水素ガス量は、第1の屈曲部31c、第2の水素ガス流路32、第2の屈曲部32c、第3の水素ガス流路33を流れることにより、デッドエンドタイプの水素ガス流路30を備える燃料電池のタイプでも、従来のストレート流路130に比較して大量の水素ガスを空気流路50の導入対向部に流すことによりMEA10に適度な湿潤をもたらす。したがって、空気流路50の導入部の乾燥を防止できるので、発電性能の低下を防止できる。
The N-shaped hydrogen gas flow path 30 configured as described above includes first to third hydrogen gas flow paths 31, 32, 33 parallel to the air flow path 50, and first and second hydrogen gas flows. The first bent portion 31c that connects the first side-side ends of the gas flow paths 31 and 32 and the end of the second hydrogen gas flow path 32 face the hydrogen gas inlet 30a on the second side. Further, the second hydrogen gas flow path 32 has a second bent portion 32c that connects the second side end portions of the second and third hydrogen gas flow paths 32, 33. The end is opposed to and adjacent to the first bent portion 31c on the first side.
Thereby, the amount of hydrogen gas in the introduction facing portion of the air flow path 50 flows through the first bent portion 31c, the second hydrogen gas flow channel 32, the second bent portion 32c, and the third hydrogen gas flow channel 33. As a result, even in the type of fuel cell including the dead-end type hydrogen gas flow channel 30, the MEA 10 can be moderated by flowing a large amount of hydrogen gas to the introduction facing portion of the air flow channel 50 as compared with the conventional straight flow channel 130. Provides good wetting. Therefore, since the drying of the introduction part of the air flow path 50 can be prevented, a decrease in power generation performance can be prevented.

また、図8(b)に示すように、N形状の水素ガス流路30に代えて、U形状の水素ガス流路230を備えても良い。U形状の水素ガス流路230は、第2の辺10c側を水素ガス導入口とする第1の水素ガス流路31、第1の水素ガス流路31に平行な終端を有する第2の水素ガス流路32、及び第1の水素ガス流路31の第1の辺10a側端部と第2の水素ガス流路32の第1の辺10a側端部とを結ぶ第1の屈曲部31cとを備えも良い。なお、図8(b)中、図と同一符号分は、同一部分を示し説明を省略する。
このように構成されたU形状の水素ガス流路230によれば、従来のストレート流路130に比較して大量の水素ガスを空気流路50の導入対向部に流すことができると共に、水素加圧量を減少できる。したがって、空気流路50の導入部の乾燥を防止できる。
Further, as shown in FIG. 8B, a U-shaped hydrogen gas channel 230 may be provided instead of the N-shaped hydrogen gas channel 30. The U-shaped hydrogen gas flow path 230 includes a first hydrogen gas flow path 31 having a second side 10c side as a hydrogen gas inlet, and a second hydrogen having a terminal end parallel to the first hydrogen gas flow path 31. The first bent portion 31c that connects the gas channel 32 and the first side 10a side end of the first hydrogen gas channel 31 and the first side 10a side end of the second hydrogen gas channel 32. It is also good to have. In FIG. 8B, the same reference numerals as those in FIG.
According to the U-shaped hydrogen gas flow path 230 configured as described above, a large amount of hydrogen gas can be flowed to the introduction facing portion of the air flow path 50 as compared with the conventional straight flow path 130, and the hydrogen gas can be added. The pressure can be reduced. Therefore, drying of the introduction part of the air flow path 50 can be prevented.

図8(b)に示すように、第2の水素ガス流路32の終端が第2の辺10c側において水素ガス導入口と隣接していることが好ましい。
このように形成された水素ガス流路230によれば、第1と第2の水素ガス流路に各々逆向きの流れが発生するため、燃料極内において少なからず対向琉の効果が期待できる。また、水素ガス流路は略U形状となるので、同一投影面積において、多数の水素ガス流路230を設けることができる。したがって、多数のU形状の水素ガス流路230を配置して水素ガス流路部20を形成できるので、空気流の導入対向部の水素ガス量を増大して空気流路50の導入部の乾燥を適切に防止できる。
As shown in FIG. 8B, it is preferable that the end of the second hydrogen gas flow path 32 is adjacent to the hydrogen gas inlet on the second side 10c side.
According to the hydrogen gas flow path 230 formed in this way, opposite directions are generated in the first and second hydrogen gas flow paths, respectively, so that a considerable amount of counter effect can be expected in the fuel electrode. Further, since the hydrogen gas flow path has a substantially U shape, a large number of hydrogen gas flow paths 230 can be provided in the same projected area. Accordingly, the hydrogen gas flow path portion 20 can be formed by arranging a large number of U-shaped hydrogen gas flow paths 230, so that the amount of hydrogen gas at the air flow introduction facing portion is increased and the introduction of the air flow path 50 is dried. Can be prevented appropriately.

<実験結果>
次に、ターン数が異なる3種類の水素ガス流路30、130、230を用意し、実験により燃料電池スタックの電流密度対セル電圧、電流密度対セル抵抗の特性を測定することにより、空気流路50の導入部の湿潤の程度を客観的に判定するとともに、燃料電池性能の向上がみられるのを確認した。
水素ガス流路は、図8(a)に示す従来のストレートな多数のI形状の水素ガス流路130、図8(b)に示すように、1回のターン数を有するU形状の水素ガス流路230、本実施例の水素ガス流路30をそれぞれ適用し、カソード側となる空気流路50は水素ガス流路130と同形状のストレート流路を適用している。
<Experimental result>
Next, three types of hydrogen gas flow paths 30, 130, and 230 with different numbers of turns are prepared, and by measuring the characteristics of the fuel cell stack current density vs. cell voltage and current density vs. cell resistance by experiment, The degree of wetting of the introduction portion of the passage 50 was objectively determined, and it was confirmed that the fuel cell performance was improved.
The hydrogen gas flow path includes a number of conventional straight I-shaped hydrogen gas flow paths 130 shown in FIG. 8A, and a U-shaped hydrogen gas having one turn as shown in FIG. 8B. The flow path 230 and the hydrogen gas flow path 30 of this embodiment are applied, and the air flow path 50 on the cathode side is a straight flow path having the same shape as the hydrogen gas flow path 130.

発電条件は、温度:70℃、アノード:無加湿水素加圧デッドエンド(1kgf/cm2-G)
カソード:無加湿空気常圧フロー(ストイキ2相当)、 対向流
Power generation conditions are temperature: 70 ° C, anode: non-humidified hydrogen pressure dead end (1kgf / cm2-G)
Cathode: Non-humidified air normal pressure flow (equivalent to stoichiometric 2), counter flow

上記発電条件において、3種類の水素ガス流路30、130、230をそれぞれ適用した燃料電池の電流密度に対応するセル抵抗、セル電圧を測定した特性曲線図を、それぞれ図9、図10に示す。図9及び図10によれば、水素ガス流路部20のターン回数が多いほど、燃料電池スタックのセル抵抗が減少し、セル電圧が向上した。
図9によれば、特にセル抵抗は、水素ガス流路部20のターン回数が多いほど、はっきりと低下している。上記空気導入対向部の水素ガス量比Q/CH2によってセル抵抗の傾向を明確にするために、水素ガス量比Q/CH2を横軸に整理すると図11に示すように、水素ガス量比Q/CH2の値が大きいほどフル加湿(100%―RH)時のセル抵抗である4mΩ前後に収束していく傾向が見られた。したがって、水素ガス量比Q/CH2の増加に伴い、空気導入対向部の湿潤が加速することが確認できた。
即ち、水素ガス流路部20のターン回数を増やすことで、空気導入部に対向する部位の水素ガス量が増え、水蒸気のキャリアガスとして機能することで、対向部位の空気導入部の乾燥を抑制していることが実験によっても確かめられた。
FIG. 9 and FIG. 10 show characteristic curves obtained by measuring cell resistance and cell voltage corresponding to the current density of the fuel cell to which the three types of hydrogen gas flow paths 30, 130, and 230 are applied, respectively, under the above power generation conditions. . According to FIG. 9 and FIG. 10, the cell resistance of the fuel cell stack is decreased and the cell voltage is improved as the number of turns of the hydrogen gas flow path unit 20 is increased.
According to FIG. 9, in particular, the cell resistance decreases more clearly as the number of turns of the hydrogen gas flow path portion 20 increases. To clarify the tendency of cell resistance by hydrogen gas amount ratio Q d / C H2 in the air introducing face portion, and rearranging the hydrogen gas amount ratio Q d / C H2 in the horizontal axis as shown in FIG. 11, the hydrogen As the value of the gas amount ratio Q d / C H2 increases, the tendency to converge to around 4 mΩ, which is the cell resistance during full humidification (100% -RH), was observed. Therefore, it was confirmed that the wetting of the air introduction facing portion accelerated as the hydrogen gas amount ratio Q d / CH 2 increased.
That is, by increasing the number of turns of the hydrogen gas flow path section 20, the amount of hydrogen gas in the portion facing the air introduction portion increases and functions as a water vapor carrier gas, thereby suppressing drying of the air introduction portion in the facing portion. This was confirmed by experiments.

実施例2
上記実施例1では、第1の水素ガス流路31の幅と第2の水素ガス流路32の幅が同一であったが、本実施例の水素ガス流路部は、第1の水素ガス流路31が第2の水素ガス流路32より幅狭に形成されているものである。水素ガス量Qは、図5に示すように、第1の水素ガス流路31の幅にほとんど影響されないからである。
このように構成された水素ガス流路部によれば、第1の水素ガス流路31と第2の水素ガス流路32との幅が同一の場合に比較して、多数の水素ガス流路30を設けることができるので、水素ガス流路部30の全体のターン数を増加して空気流路50の空気導入部の乾燥をより一層抑制できる。
Example 2
In the first embodiment, the width of the first hydrogen gas flow path 31 and the width of the second hydrogen gas flow path 32 are the same. However, the hydrogen gas flow path portion of the present embodiment has the first hydrogen gas flow path portion. The flow path 31 is formed narrower than the second hydrogen gas flow path 32. This is because the hydrogen gas amount Qd is hardly influenced by the width of the first hydrogen gas flow path 31 as shown in FIG.
According to the hydrogen gas flow path portion configured in this way, the number of hydrogen gas flow paths is larger than that in the case where the first hydrogen gas flow path 31 and the second hydrogen gas flow path 32 have the same width. 30 can be provided, so that the total number of turns of the hydrogen gas flow path section 30 can be increased, and drying of the air introduction section of the air flow path 50 can be further suppressed.

実施形態3
上記実施形態の1の水素ガス流路30は、2回のターン数を有する略N形状であったが、本実施例における水素ガス流路330は図12に示すように、3回のターン数を有する略W形状でも良い。図12中、図3と同一符号は、同一部分を示し、説明を省略する。
図12において、略W形状の水素ガス流路330は、第3の水素ガス流路33と平行な第4の水素ガス流路334及び第3の水素ガス流路33の第1の辺10aの側端部と第4の水素ガス流路33の第2の辺側端部とを結ぶU形状の第3の屈曲部33cを有しており、第4の水素ガス流路33の終端は第2の辺10c側において第1の屈曲部31cに対向して隣接している。
このように構成された略W形状の水素ガス流路330を用いた燃料電池によれば、空気流路50の導入対向部の水素ガス量をN形状の水素ガス流路30よりも、第3の屈曲部33c、第4の水素ガス流路を流れる分増大して空気流路50の導入部の乾燥を、N形状の水素ガス流路30よりも、防止できる。
Embodiment 3
The hydrogen gas flow path 30 of 1 of the above embodiment has a substantially N shape having two turns, but the hydrogen gas flow path 330 in this example has three turns as shown in FIG. A substantially W shape having 12, the same reference numerals as those in FIG. 3 denote the same parts, and a description thereof is omitted.
In FIG. 12, the substantially W-shaped hydrogen gas flow path 330 includes a fourth hydrogen gas flow path 334 parallel to the third hydrogen gas flow path 33 and the first side 10 a of the third hydrogen gas flow path 33. It has a U-shaped third bent portion 33c that connects the side end to the second side end of the fourth hydrogen gas flow path 33, and the end of the fourth hydrogen gas flow path 33 is the end of the fourth hydrogen gas flow path 33. The second side 10c side is adjacent to the first bent portion 31c.
According to the fuel cell using the substantially W-shaped hydrogen gas flow path 330 configured as described above, the amount of hydrogen gas at the introduction facing portion of the air flow path 50 is set to be higher than that of the N-shaped hydrogen gas flow path 30. The bent portion 33c and the fourth hydrogen gas flow channel increase by the amount of flow, and the drying of the introduction portion of the air flow channel 50 can be prevented more than the N-shaped hydrogen gas flow channel 30.

この発明は、上記発明の実施例及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the embodiments of the invention and the description of the embodiments. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

本発明の一実施例を示す燃料電池スタックにおける単一セルの断面図である。It is sectional drawing of the single cell in the fuel cell stack which shows one Example of this invention. 図1に示す水素ガス流路部の詳細図である。FIG. 2 is a detailed view of a hydrogen gas channel section shown in FIG. 1. 図1に示す水素ガス流路と空気流路との関係を示す模式図である。It is a schematic diagram which shows the relationship between the hydrogen gas flow path and air flow path which are shown in FIG. 図3に示す水素ガス流路と末端微小領域との関係図である。FIG. 4 is a relationship diagram between a hydrogen gas flow path and a terminal minute region shown in FIG. 3. 水素ガス流路部の末端部における水素ガス量Qdの算出するための図4を拡大した拡大図である。FIG. 5 is an enlarged view enlarging FIG. 4 for calculating a hydrogen gas amount Qd at a terminal portion of the hydrogen gas flow path portion. 水素ガス量比率と水素ガス流路のターン数との関係を示す曲線図である。It is a curve figure which shows the relationship between hydrogen gas amount ratio and the number of turns of a hydrogen gas flow path. 本発明の一実施例による燃料電池スタックの動作を示す断面図である。It is sectional drawing which shows operation | movement of the fuel cell stack by one Example of this invention. 従来の水素ガス流路の平面図(a)、本発明の他の実施例を示す水素ガス流路の平面図(b)である。FIG. 6 is a plan view (a) of a conventional hydrogen gas flow channel and a plan view (b) of a hydrogen gas flow channel showing another embodiment of the present invention. 3種類の水素ガス流路をそれぞれ適用した燃料電池の電流密度対セル抵抗の特性曲線図である。It is a characteristic curve figure of the current density of the fuel cell which applied three types of hydrogen gas flow paths, respectively, and cell resistance. 3種類の水素ガス流路をそれぞれ適用した燃料電池の電流密度対セル電圧の特性曲線図である。It is a characteristic curve figure of the current density of the fuel cell which applied three types of hydrogen gas flow paths, respectively, and cell voltage. 3種類の水素ガス流路をそれぞれ適用した燃料電池の空気導入対向部の水素ガス量比対セル抵抗の特性曲線図である。It is a characteristic curve figure of hydrogen gas amount ratio vs. cell resistance of an air introduction facing part of a fuel cell to which each of three types of hydrogen gas flow paths is applied. 本発明の他の実施例を示す3回のターン数を有する略W形状の水素ガス流路の平面図である。It is a top view of the substantially W-shaped hydrogen gas flow path which has the number of turns of 3 times which shows the other Example of this invention.

符号の説明Explanation of symbols

30…N形状の水素ガス流路
31…第1の水素ガス流路
31c…第1の屈曲部
32…第2の水素ガス流路
32c…第2の屈曲部
33…第2の水素ガス流路
DESCRIPTION OF SYMBOLS 30 ... N-shaped hydrogen gas flow path 31 ... 1st hydrogen gas flow path 31c ... 1st bending part 32 ... 2nd hydrogen gas flow path 32c ... 2nd bending part 33 ... 2nd hydrogen gas flow path

Claims (4)

相対向する第1の辺と第2の辺を有する燃料電池の空気極側において前記第1の辺側から前記第2の辺側へ空気を流通させる空気流路を備え、燃料極側においてデッドエンドタイプの水素ガス流路を備える燃料電池であって、
前記水素ガス流路は、前記第2の辺側を水素ガス導入口とする第1の水素ガス流路と、該第1の水素ガス流路に平行な第2の水素ガス流路と、前記第1の水素ガス流路の前記第1の辺側端部と前記第2の水素ガス流路の前記第1の辺側端部とを結ぶ第1の屈曲部と、を備えてなる燃料電池。
The fuel cell having an opposing first side and second side includes an air flow path for circulating air from the first side to the second side on the air electrode side of the fuel cell, and dead on the fuel electrode side. A fuel cell comprising an end-type hydrogen gas flow path,
The hydrogen gas flow path includes a first hydrogen gas flow path having the second side side as a hydrogen gas inlet, a second hydrogen gas flow path parallel to the first hydrogen gas flow path, A fuel cell comprising: a first bent portion connecting the first side-side end portion of the first hydrogen gas flow channel and the first side-side end portion of the second hydrogen gas flow channel. .
前記第2の水素ガス流路の終端が前記第2の辺側において前記水素ガス導入口と隣接している、ことを特徴とする請求項1に記載の燃料電池。   2. The fuel cell according to claim 1, wherein an end of the second hydrogen gas flow path is adjacent to the hydrogen gas inlet on the second side. 前記水素ガス流路は、前記第2の水素ガス流路に平行な第3の水素ガス流路と、前記第2の水素ガス流路の前記第2の辺側端部と前記第3の水素ガス流路の前記第2の辺側端部とを結ぶ第2の屈曲部と、を更に備え、
前記第3の水素ガス流路の終端は前記第1の辺側において前記第1の屈曲部に隣接している、ことを特徴とする請求項1に記載の燃料電池。
The hydrogen gas flow path includes a third hydrogen gas flow path parallel to the second hydrogen gas flow path, the second side end of the second hydrogen gas flow path, and the third hydrogen gas. A second bent portion connecting the second side-side end portion of the gas flow path,
2. The fuel cell according to claim 1, wherein an end of the third hydrogen gas channel is adjacent to the first bent portion on the first side.
前記第1の水素ガス流路が前記第2の水素ガス流路より幅狭に形成される、ことを特徴とする請求項1ないし3のいずれか一項に記載の燃料電池。
4. The fuel cell according to claim 1, wherein the first hydrogen gas passage is formed to be narrower than the second hydrogen gas passage. 5.
JP2008331677A 2008-12-26 2008-12-26 Fuel cell Pending JP2010153266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008331677A JP2010153266A (en) 2008-12-26 2008-12-26 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008331677A JP2010153266A (en) 2008-12-26 2008-12-26 Fuel cell

Publications (1)

Publication Number Publication Date
JP2010153266A true JP2010153266A (en) 2010-07-08

Family

ID=42572132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008331677A Pending JP2010153266A (en) 2008-12-26 2008-12-26 Fuel cell

Country Status (1)

Country Link
JP (1) JP2010153266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459780A (en) * 2019-07-25 2019-11-15 南方科技大学 Fuel cell bipolar plate and fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459780A (en) * 2019-07-25 2019-11-15 南方科技大学 Fuel cell bipolar plate and fuel cell

Similar Documents

Publication Publication Date Title
RU2262160C2 (en) Fuel cell bank using solid polymeric electrolyte, fuel cell battery, and fuel cell bank operating process
JP5408263B2 (en) Fuel cell
KR100798451B1 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
WO2013005300A1 (en) Fuel cell
JP5096647B1 (en) Polymer electrolyte fuel cell
US6566002B2 (en) Polymer electrolyte fuel cell
KR101912183B1 (en) Electrochemical cell
JP2008103241A (en) Fuel cell
JP2009076294A (en) Fuel cell separator
JP5321086B2 (en) Fuel cell
KR100637504B1 (en) Fuel cell system and stack of the same
JP2005327532A (en) Fuel cell, separator unit kit for fuel cell, and kit for fuel cell power generation unit
US20110123896A1 (en) Fuel cell
JP3894109B2 (en) Fuel cell
JP5501237B2 (en) POLYMER ELECTROLYTE FUEL CELL AND FUEL CELL STACK HAVING THE SAME
JP2003157887A (en) Solid high polymer fuel cell
JP2004146230A (en) Separator for fuel cell
JP2003077495A (en) Fuel cell
JP2010153266A (en) Fuel cell
US20230261239A1 (en) Single cell and fuel cell stack with elastic structures for equal distribution of operating media
JP5028854B2 (en) Fuel cell system
KR101851886B1 (en) Fuel cell
JP2004047451A (en) Fuel cell
KR101304884B1 (en) Cooling path structure for reducing flooding of fuel cell
JP2006221896A (en) Fuel cell and separator for fuel cell