JP2004146230A - Separator for fuel cell - Google Patents

Separator for fuel cell Download PDF

Info

Publication number
JP2004146230A
JP2004146230A JP2002310753A JP2002310753A JP2004146230A JP 2004146230 A JP2004146230 A JP 2004146230A JP 2002310753 A JP2002310753 A JP 2002310753A JP 2002310753 A JP2002310753 A JP 2002310753A JP 2004146230 A JP2004146230 A JP 2004146230A
Authority
JP
Japan
Prior art keywords
flow channel
channel groove
gas
sub
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002310753A
Other languages
Japanese (ja)
Inventor
Katsuzo Konakawa
粉川 勝蔵
Toshihiro Matsumoto
松本 敏宏
Takeshi Tomizawa
富澤 猛
Kazuhito Hado
羽藤 一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002310753A priority Critical patent/JP2004146230A/en
Publication of JP2004146230A publication Critical patent/JP2004146230A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent reaction concentration in an inlet side passage groove, to enhance deterioration of durability and an electrical conversion energy efficiency caused by deterioration of an electrolyte membrane or a gas diffusion electrode, and to completely prevent flooding, in a separator of a solid polymer electrolyte fuel cell. <P>SOLUTION: A passage groove 2 of the separator 1 comprises a main passage groove part 13 and a sub-passage groove part 14, the passage cross section of the sub-passage groove part 14 is made smaller than that of the main passage groove part 13, and thereby, gas passes through a gas diffusion layer 2 and flows in the sub-passage groove part 14, the complete stop of the flow in the main passage groove part 13 can be prevented, the amount of water produced in the blocked main passage groove part 13 is decreased and the main passage groove part 13 is opened again to return to normal operation, and flooding can be prevented. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子電解質型燃料電池のセパレータに関する。
【0002】
【従来の技術】
従来、この種の燃料電池は、イオン導電性が付与された固体高分子電解質膜の両面に触媒を担持したガス拡散電極を両面に重ね合わせて発電セルを構成している。そして、この発電セルは複数個を接続して所定の電圧を得る。このため、発電セル間にセパレータを介在させ発電セルを積層してスタック化する。そして、セパレータの両側にそれぞれ燃料ガス及び酸化ガスを供給してそれぞれのガス拡散電極に燃料ガス及び酸化ガスを供給すると、固体高分子電解質膜でのイオン導電と各ガス拡散電極の化学反応が進行して一対のガス拡散電極間に電圧が発生し、集電電極の機能を持つ両端側の一対のセパレータを介して外部回路に給電する。この様な発電においては、供給ガスを出来るだけ均等にガス拡散電極の電極面に供給することがガス利用率を高め、発電効率と出力性能を良くする。
【0003】
しかし、ガス拡散電極の全面に供給ガスが供給されるようにすると、セパレータとガス拡散電極との接触面積が無くなり、発生した電流の効率的な集電やガス拡散電極で発生する熱の除去が難しくなる。このため、セパレータとガス拡散電極の境界部分に、供給ガスの通流方向を規制する流路溝が設けられ、セパレータとガス拡散電極とをある割合に接触面積を保っている。セパレータ側に形成したこの流路溝部は、蛇行したサーペンタイン構成、あるいは複数本構成が記載されている(例えば、特許文献1および2参照)。
【0004】
そして、固体高分子電解質型燃料電池は、固体高分子電解質膜のイオン導電性を十分に発揮させて発電効率を高く維持するためには、供給するガスを加湿して供給ガス中の水蒸気濃度を高める必要があり、さらに、水素と酸素から水を生成する電気化学反応のエネルギーを電気量に変換するものであるため、カソード側において水が生成する。
【0005】
このため、供給ガスの流路溝には、反応上生成される水が下流側、特に出口側に多量に含有し、液体状態となってガス流路溝を塞いでしまうおそれがある(この現象をフラッディングという)。このフラッディングを防止する技術がある。図7は従来の固体高分子電解質型燃料電池の酸化ガスセパレータを示す。セパレータ1の溝部材2は、ガス拡散電極に対応した方形状でガス不透過性と導電性をして構成される。入口マニホールド3から酸化ガスが流入され、流路溝材2の溝を経た酸化ガスを出口マニホールド4より導出する。燃料ガスのセパレータはセパレータ1の裏面に構成され酸化ガスの入口マニホールド3および出口マニホールド4と互違いの位置に形成された入口マニホールド5及び出力マニホールド6より燃料ガスの流入と導出が行われる。流路溝材2の溝は、入口マニホールド3に直接に連通した入口側流路溝7と、上記出口マニホールド4に直接に連通した出口側流路溝8と、上記入口側流路溝7及び出口側流路溝8とを連通した中間流路溝9とから構成されている。入口側流路溝7と出口側流路溝8とは格子状に形成され、中間流路溝9は、複数回折返した曲折形態に形成され、複数本の直線状に延びる独立流路群9A〜9Eと、折返し部に形成された格子状溝10A〜10Dとから構成されている。すなわち、入口側流路溝7と出口側流路溝8は、縦横に整列して形成された孤立突起a以外の領域がガス流路溝であり、独立流路群9A〜9Eは長延突起b以外の領域がガス流路溝である。また、折返し部の格子状溝10A〜10Dは、孤立突起c以外の領域がガス流路溝である。
【0006】
反応生成水によるフラッディングにより供給ガスの停滞を防止するため、過去より種々のガス流路溝が工夫され、ガス流路が格子状となるタイプと、入口から出口まで1本の流路とするタイプがあるが、格子状タイプは、フラッディングに達するような水溜まりは生じないが、全体に均一となるガス拡散性能、一部が閉塞するなど排水性能に劣る。また、1本流路タイプは、拡散性が良いが、流れ抵抗が増えてガス供給装置側の元圧を高くする必要を生じ補機動力が増加してシステム効率が低下する。
【0007】
そして、図7に示す従来例に記載されたものは、供給ガスの入口側流路溝部7及び出口側流路溝部8が縦横に整列して形成された孤立突起a以外の領域がガス流路溝であり格子状をなすため、電極へのガスの接触面積が広くなると共に、ガスが自由に移動でき、時間的に速く電極と接触する。従って、入口側流路溝部7では供給ガスと電極との接触効率(面積的に広く及び時間的に速く接触)が高く入口側におけるガス拡散性の損失を回避し得る。また、出口側流路溝部8では、入口側と同様のガス拡散性の損失を回避し、かつ流路断面積が広くなるため排水性を確保してフラッディングを防止することができると記述してある(例えば、特許文献3参照。)。
【0008】
【特許文献1】
特公昭50−8777号公報
【特許文献2】
特開平7−263003号公報
【特許文献3】
特開平10−106594号公報
【0009】
【発明が解決しようとする課題】
しかしながらこの従来構成においては、入口側流路溝部ではガス拡散性を高め、この部分の反応を促進して全体の電気変換エネルギー効率を高めたため、入口側流路溝部での反応が集中し固体高分子電解質膜やガス拡散電極の触媒層の劣化が進み耐久性に課題が残った。また、出口側流路溝部では、流路断面積が広くして排水性を確保してフラッディングを防止してあるが、流路断面積が広いためガスの流れが偏在し一様でなく、流速の遅い部分では生成水が流路溝の一部を閉塞した状態を発生し、この部分にはガスが供給できなく完全にフラッディングを防止できなかった。
【0010】
本発明は、前記従来の課題を解決するもので、通路の一部が発生水で閉塞したときも入り口から出口に至る全体として反応量を均一化させて耐久信頼性の向上と全体の電気変換エネルギー効率を高め、かつフラッディングを防止して信頼性を高めた燃料電池のセパレータを提供することを目的とする。
【0011】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の燃料電池のセパレータは、固体高分子電解質膜を挟持する一対のガス拡散電極と、前記ガス拡散電極のおのおのの面に燃料ガスと酸化ガスをそれぞれの入口マニホールドから出口マニホールドに導く流路溝を形成したセパレータより構成し、前記セパレータの前記流路溝は、主流路溝部と副流路溝部とからなり、前記副流路溝部の流路断面積は前記主流路溝部の流路断面積よりも小さく構成してある。
【0012】
これによって、主流路溝部の流路断面積は副流路溝部の流路断面積よりも大きく構成してあるため、燃料ガスと酸化ガスの大部分の流量は主流路溝部を流れる。発生した生成水により主流路溝部が閉塞した時は、主流路溝部のガスの圧力が上昇し、ガスはガス拡散層を通り副流路溝部に流れる。そのため、主流路溝部の流れが完全に止まることを防止でき、運転中にガスが流れなくなって電流密度の極度の偏在による固体高分子電解質膜の破損を防止できる。また、生成水で閉塞した主流路溝部は運転を継続しながら主流路溝部に少ない流量のガスが流れるため、発生する生成水量が少なくなり開通して、正常の動作に復帰でき、このため、流路が水により閉塞するフラッディングを防止することが可能となる。
【0013】
また、主流路溝部と副流路溝部は、ガス拡散層を介して連通しているため、一部に電流密度が高くなると生成水の発生量が増加して流れ抵抗が増加するため、逐次、主流路溝部あるいは副流路溝部にガス拡散層を介して迂回流れが生じ全体として電流密度を均一化できる。このため、耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0014】
【発明の実施の形態】
請求項1記載の発明は、固体高分子電解質膜を挟持する一対のガス拡散電極と、前記ガス拡散電極のおのおのの面に燃料ガスと酸化ガスをそれぞれの入口マニホールドから出口マニホールドに導く流路溝を形成したセパレータより構成し、前記セパレータの前記流路溝は、主流路溝部と副流路溝部とからなり、前記副流路溝部の流路断面積は前記主流路溝部の流路断面積よりも小さく構成してある。
【0015】
これによって、主流路溝部の流路断面積は副流路溝部の流路断面積よりも大きく構成してあるため、燃料ガスと酸化ガスの大部分の流量は主流路溝部を流れる。発生した生成水により主流路溝部が閉塞した時は、主流路溝部のガスの圧力が上昇し、ガスはガス拡散層を通り副流路溝部に流れる。そのため、主流路溝部の流れが完全に止まることを防止でき、運転中にガスが流れなくなって電流密度の極度の偏在による固体高分子電解質膜の破損を防止できる。また、生成水で閉塞した主流路溝部は運転を継続しながら主流路溝部に少ない流量のガスが流れるため、発生する生成水量が少なくなり開通して、正常の動作に復帰でき、このため、流路が水により閉塞するフラッディングを防止することが可能となる。そして、一般的にはフラッディングを防止するために高流速で水を吹き飛ばす設定となっていたが、流速を小さく設定して全体の損失抵抗を小さくすることが可能となるため、送風機の動力も小さくて済み、補機の動力が低減できシステム全体の効率が向上できる。
【0016】
また、主流路溝部と副流路溝部は、ガス拡散層を介して連通しているため、一部に電流密度が高くなると生成水の発生量が増加して流れ抵抗が増加するため、逐次、主流路溝部あるいは副流路溝部にガス拡散層を介して迂回流れが生じ全体として電流密度を均一化できる。このため、耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0017】
請求項2記載の発明は、特に請求項1の燃料電池のセパレータを副流路溝部は主流路溝部よりも溝深さを大きく構成したことにより、副流路溝部の通路断面積に対するガス拡散層の面積を小さくし、生成水によって副流路溝部が閉塞しにくくできる。このため、主流路溝部が発生した生成水量によって閉塞した場合もガスはガス拡散層を通り副流路溝部に流れる。
【0018】
すなわち、流路に面したガス拡散層の面積で決まる生成水の発生量と、通路の断面積で決まる生成水で通路の閉塞の相関でフラッディングの発生タイミングが決まる。副流路溝部は主流路溝部よりも溝深さを大きく構成したことにより、常に、フラッディングは副流路溝部が遅く発生する為、主流路溝部のフラッデングは副流路溝部に流れ、正常に復帰でき、さらに運転条件を広範囲にしても流路が水により閉塞するフラッディングを防止することが可能となり、システムとしての信頼性向上と耐久信頼性の向上、全体の電気変換エネルギー効率を高めることができる。また、セパレータはカーボン、または金属の薄板をプレス、射出成型等によりセパレータの一部の流路溝深さを大きく加工することは容易である。
【0019】
請求項3記載の発明は、特に請求項1の燃料電池のセパレータを副流路溝部は蛇行せず、主流路溝部は蛇行して構成したことにより、副流路溝は主流路溝部に比較して、曲がりによる流れ抵抗が無く流路長が短く出来るため全圧力損失が小さくできる為、流量が増加し流速が大きくなる。また、発生した生成水は、曲がりが無く流路長が短いため、ガスの流れに乗って排出される。すなわち、常にフラッディングは副流路溝部が遅く発生する為、主流路溝部のフラッディングは副流路溝部に流れ、正常に復帰でき、さらに運転条件を広範囲にしても流路が水により閉塞するフラッディングを防止することが可能となり、システムとしての信頼性向上と耐久信頼性の向上、全体の電気変換エネルギー効率を高めることができる。
【0020】
請求項4記載の発明は、特に請求項1〜3の燃料電池の主流路溝部と副流路溝部の少なくとも一部を連通して構成したことにより、発生した生成水により主流路溝部が閉塞した時は、この連通部を通り主流路溝部から副流路溝部にガスは流れる。また、閉塞した主流路溝部の後部では逆に副流路溝部から主流路溝部に連通部からガスが流れる。そのため、主流路溝部の流れが完全に止まることを防止でき、運転中にガスが流れなくなって電流密度の極度の偏在による固体高分子電解質膜の破損を防止できる。また、生成水で閉塞した主流路溝部は運転を継続しながら主流路溝部の多くの部分に少ない流量のガスが流れるため、早く正常の動作に復帰でき、このため、流路が水により閉塞するフラッディングを防止し正常な運転を維持することが可能となり使用性能が向上できる。また、流速を小さく設定して全体の損失抵抗を小さくすることが可能となるため、送風機の動力も小さくて済み、補機の動力が低減できシステム全体の効率が向上できる。
【0021】
また、主流路溝部と副流路溝部は連通しているため、一部に電流密度が高くなると生成水の発生量が増加して流れ抵抗が増加するため、逐次、主流路溝部あるいは副流路溝部に連通箇所を介して迂回流れが生じ全体として電流密度を均一化できる。このため、耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0022】
請求項5記載の発明は、特に請求項1〜4の燃料電池の主流路溝部と副流路溝部を交互に配置して構成したことにより、主流路溝部と副流路溝部はガス拡散層を介して全域で接する構成となる。そのため、発生した生成水により主流路溝部が閉塞した時は、主流路溝部の閉塞した場所の直前からガスはガス拡散層を通り副流路溝部に流れ、また、主流路溝部の閉塞した場所の直後にガスはガス拡散層を通り副流路溝部から主流路溝部に流れる。そのため、主流路溝部の流れが完全に止まることを防止でき、運転中にガスが流れなくなって電流密度の極度の偏在による固体高分子電解質膜の破損を防止できる。また、生成水で閉塞した主流路溝部は運転を継続しながら主流路溝部に少ない流量のガスが流れるため、発生する生成水量が少なくなり開通して、正常の動作に復帰でき、このため、流路が水により閉塞するフラッディングを防止することが可能となる。
【0023】
また、主流路溝部と副流路溝部は、ガス拡散層を介して全域で連通しているため、逐次、主流路溝部あるいは副流路溝部にガス拡散層を介して迂回流れが生じ全体として電流密度を均一化できる。このため、耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0024】
請求項6記載の発明は、特に請求項1の燃料電池のセパレータを副流路溝部は入口マニホールドと流路絞部を介して連通したことにより、副流路溝部を流れるガス量を流路絞部で低減できる。これにより、副流路溝部のガス量が低下し発電反応による生成水の量を少なくして、常に、フラッディングは副流路溝部が遅く発生させることが可能となり、全体のフラッディングを防止することが可能となり、システムとしての信頼性向上と耐久信頼性の向上、全体の電気変換エネルギー効率を高めることができる。また、ガス量を流路絞部で自由に設定できるため、実使用条件に合わせて最適に調節が可能であり、システムの信頼性が向上するものである。
【0025】
請求項7記載の発明は、燃料電池のセパレータを副流路溝部は出口マニホールドと連通したことにより、副流路溝部を流れるガス量は主流路溝部からガス拡散層を介して流れるのみとなり大幅に少ない。そのため、副流路溝部はフラッディングすることが無く、確実に通路連通を確保できる。そのため、全体のフラッディングを防止することが可能となり、システムとしての信頼性向上と耐久信頼性の向上、全体の電気変換エネルギー効率を高めることができ、流路の設計自由度が向上し、加工も容易で安価となる。
【0026】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
【0027】
(実施例1)
図1は、本発明の第1の実施例における燃料電池のセパレータの全体構成図、図2は燃料電池全体の断面図を示す。図2において、固体高分子型の燃料電池は、イオン伝導性が付与された固体高分子電解質膜11の両面に触媒を担持したガス拡散電極12を両面に重ね合わせて発電セルを構成している。そして、この発電セルは複数個を接続して所定の電圧を得る。このため、発電セル間にセパレータ1を介在させ発電セルを積層してスタック化する。そして、セパレータの両側にそれぞれ燃料ガス及び酸化ガスを供給してそれぞれのガス拡散電極12に燃料ガス及び酸化ガスを供給すると、固体高分子電解質膜11でのイオン導電と各ガス拡散電極の電気化学反応が進行して一対のガス拡散電極12間に電圧が発生し、集電電極の機能を持つ両端側の一対のセパレータ1を介して外部回路(図示せず)に給電する。この様な発電においては、供給ガスを出来るだけ均等にガス拡散電極12の電極面に供給することがガス利用率を高め、発電効率と出力性能を良くする。
【0028】
図1に示すセパレータ1は、セパレータ1の流路溝2は、ガス拡散電極12に対応した形状としガス不透過性と導電性有するカーボン、表面処理をした金属を用いて構成する。入口マニホールド3から燃料または酸化ガスが流入され、流路溝2の溝を経た前記ガスを出口マニホールド4より流出する。他方酸化ガスまたは燃料ガスのセパレータ1はこのセパレータ1の背面側に同様の流れる構成を設け入口マニホールド5及び出力マニホールド6よりガスの流入と導出が行われる。これにより、固体高分子電解質膜11を挟持する一対のガス拡散電極12のおのおのの面に燃料ガスと酸化ガスをそれぞれの入口側から出口側に導く流路溝2を形成したセパレータ1を構成している。
【0029】
そして、流路溝材2の溝は、主流路溝部13と副流路溝部14とからなり、副流路溝部14の流路断面積は主流路溝部13の流路断面積よりも小さく構成してある。主流路溝部13と副流路溝部14は、複数の溝で構成し入口マニホールド3に直接に連通し蛇行しなから出口マニホールド4に至る。
【0030】
以上のように構成された燃料電池のセパレータについて、以下その動作、作用を説明する。
【0031】
まず、入口マニホールド3から主流路溝部13に入った燃料ガスおよび酸化ガスは、主流路溝部13と副流路溝部14を流れる時、ガス拡散電極に拡散して電気化学反応を行い、水となり順次質量を減じながら出口マニホールド4に至り排出される。
【0032】
これによって、主流路溝部13の流路断面積は副流路溝部14の流路断面積よりも大きく構成してあるため、燃料ガスと酸化ガスの大部分の流量は主流路溝部を流れ、そのため、電気化学反応により発生する生成水の大部分は主流路溝部13にて起こる。発生した生成水により主流路溝部13が閉塞した時は、主流路溝部13のガスの圧力が上昇し、燃料ガスおよび酸化ガスの一部はガス拡散層12を通り副流路溝部14に流れる。そのため、主流路溝部13の流れが完全に止まることを防止でき、運転中にガスが流れなくなって電流密度の極度の偏在による固体高分子電解質膜11の破損を防止できる。また、生成水で閉塞した主流路溝部13は運転を継続しながら主流路溝部13に少ない流量のガスが流れるため、発生する生成水量が少なくなり開通して、正常の動作に復帰でき、このため、流路が水により閉塞するフラッディングを防止することが可能となる。そして、一般的にはフラッディングを防止するために高流速で水を吹き飛ばす設定となっていたが、流速を小さく設定して全体の損失抵抗を小さくすることが可能となるため、送風機の動力も小さくて済み、補機の動力が低減できシステム全体の効率が向上できる。
【0033】
また、主流路溝部13と副流路溝部14は、ガス拡散層12を介して連通しているため、一部に電流密度が高くなると生成水の発生量が増加して流れ抵抗が増加するため、逐次、主流路溝部13あるいは副流路溝部14にガス拡散層を介して迂回流れが生じ全体として電流密度を均一化できる。このため、供給ガスの入口から出口に至る電気化学反応量を均一化させて各部分の電流密度を一定となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。また、発電する電気量は、実使用実態に合わせて増減コントロールする必要がある。そのため、負荷に応じて燃料ガスおよび酸化ガスのガス量を増減して調整する必要がある。電流密度の均一化と流れの損失抵抗の低減できる流路を構成できるものであり、特に、負荷に合わせて供給するガス流量を変化した場合も、この均一性は維持できるため、耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0034】
そして、副流路溝部14は主流路溝部13よりも溝深さを大きく構成したことにより、副流路溝部14の通路断面積に対するガス拡散層12の面積を小さくし、生成水によって副流路溝部14が閉塞しにくくできる。このため、主流路溝部13が発生した生成水量によって閉塞した場合もガスはガス拡散層12を通り副流路溝部14に流れる。
【0035】
すなわち、流路に面したガス拡散層12の面積で決まる生成水の発生量と、通路の断面積で決まる生成水で通路の閉塞の相関でフラッディングの発生タイミングが決まる。副流路溝部14は主流路溝部13よりも溝深さを大きく構成したことにより、常に、フラッディングは副流路溝部14が遅く発生する為、主流路溝部13のフラッデングした時ガスは副流路溝部14に流れ、正常に復帰でき、さらに運転条件を広範囲にしても流路が水により閉塞するフラッディングを防止することが可能となり、良好な運転範囲が拡大し安定性が向上しシステムとしての信頼性向上と耐久信頼性の向上、全体の電気変換エネルギー効率を高めることができる。また、セパレータはカーボン、または金属の薄板をプレス、射出成型等によりセパレータの一部の流路溝深さを大きく加工することは容易である。
【0036】
そして、フラッデングしにくいことは流れ抵抗を小さく設定できるため全体の損失抵抗を小さくすることが可能となるため、送風機の動力も小さくて済み、補機の動力が低減できシステム全体の効率が向上できる。また、このことにより、流路の設計自由度が向上し、加工も容易で安価となる。また、電気変換エネルギー効率が高いことは、セパレータを小さくできコンパクト化が可能となる。
【0037】
(実施例2)
図3は、本発明の第2の実施例における燃料電池のセパレータの全体構成を示す。実施例1と異なるところは、セパレータ1を副流路溝部14は蛇行せず、主流路溝部13は蛇行して構成してある。このことにより、副流路溝14は主流路溝部13に比較して、曲がりによる流れ抵抗が無く流路長が短く出来るため全圧力損失が小さくできる為、流量が増加し流速が大きくなる。また、発生した生成水は、曲がりが無く流路長が短いため、ガスの流れに乗って排出される。すなわち、常にフラッディングは副流路溝部14が遅く発生する為、主流路溝部13のフラッディングした時ガスは副流路溝部14に流れ、正常に復帰でき、さらに運転条件を広範囲にしても流路が水により閉塞するフラッディングを防止することが可能となり、システムとしての信頼性向上と耐久信頼性の向上、全体の電気変換エネルギー効率を高めることができる。
【0038】
(実施例3)
図4は、本発明の第3の実施例における燃料電池のセパレータの全体構成を示す。実施例1と異なるところは、燃料電池のセパレータ1を主流路溝部13と副流路溝部14の少なくとも一部を連通部15で連通して構成してある。このことにより、発生した生成水により主流路溝部13が閉塞した時は、この連通部15を通り主流路溝部13から副流路溝部14にガスは流れる。また、閉塞した主流路溝部13の後部では逆に副流路溝部14から主流路溝部13に連通部15からガスが流れる。そのため、主流路溝部13の流れが完全に止まることを防止でき、運転中にガスが流れなくなって電流密度の極度の偏在による固体高分子電解質膜の破損を防止できる。また、生成水で閉塞した主流路溝部13は運転を継続しながら主流路溝部13の多くの部分に少ない流量のガスが流れるため、早く正常の動作に復帰でき、このため、流路が水により閉塞するフラッディングを防止し正常な運転を維持することが可能となり使用性能が向上できる。また、流速を小さく設定して全体の損失抵抗を小さくすることが可能となるため、送風機の動力も小さくて済み、補機の動力が低減できシステム全体の効率が向上できる。
【0039】
また、主流路溝部13と副流路溝部14は連通しているため、一部に電流密度が高くなると生成水の発生量が増加して流れ抵抗が増加するため、逐次、主流路溝部13あるいは副流路溝部14に連通箇所を介して迂回流れが生じ全体として電流密度を均一化できる。このため、耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0040】
また、燃料電池のセパレータの主流路溝部13と副流路溝部14を交互に配置して構成したことにより、主流路溝部13と副流路溝部14はガス拡散層12を介して全域で接する構成となる。そのため、発生した生成水により主流路溝部13が閉塞した時は、主流路溝部13の閉塞した場所の直前からガスはガス拡散層12を通り副流路溝部14に流れ、また、主流路溝部13の閉塞した場所の直後にガスはガス拡散層12を通り副流路溝部14から主流路溝部13に流れる。そのため、主流路溝部13の流れが完全に止まることを防止でき、運転中にガスが流れなくなって電流密度の極度の偏在による固体高分子電解質膜の破損を防止できる。また、生成水で閉塞した主流路溝部13は運転を継続しながら主流路溝部13に少ない流量のガスが流れるため、発生する生成水量が少なくなり開通して、正常の動作に復帰でき、このため、流路が水により閉塞するフラッディングを防止することが可能となる。
【0041】
そして、主流路溝部13と副流路溝部14は、ガス拡散層12を介して全域で連通しているため、逐次、主流路溝部13あるいは副流路溝部14にガス拡散層12を介して迂回流れが生じ全体として電流密度を均一化できる。このため、耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0042】
(実施例4)
図5は、本発明の第4の実施例における燃料電池のセパレータの全体構成を示す。実施例1と異なるところは、燃料電池のセパレータ1を副流路溝部14は入口マニホールド3と流路絞部16を介して連通してある。このことにより、副流路溝部14を流れるガス量を流路絞部16で低減できる。このために、副流路溝部14を流れるガス量が低下し発電反応による生成水の量を少なくできる。このため、常に、フラッディングは副流路溝部14が遅く発生させることが可能となり、全体のフラッディングを防止することが可能となり、システムとしての信頼性向上と耐久信頼性の向上、全体の電気変換エネルギー効率を高めることができる。また、流れるガス量を流路絞部14で自由に設定できるため、実使用条件に合わせて最適に調節が可能であり、システムの信頼性が向上するものである。
【0043】
(実施例5)
図6は、本発明の第5の実施例における燃料電池のセパレータの全体構成を示す。実施例1と異なるところは、燃料電池のセパレータ1を副流路溝部14は出口マニホールド4と連通してある。(このため、副流路溝部14は入口マニホールド3とは連通していない)、このことにより、副流路溝部14を流れるガス量は主流路溝部13からガス拡散層12を介して流れるのみとなり大幅に少なくできる。そのため、副流路溝部14はフラッディングすることが無く、確実に通路連通を確保できる。そのため、全体のフラッディングを防止することが可能となり、システムとしての信頼性向上と耐久信頼性の向上、全体の電気変換エネルギー効率を高めることができ、流路の設計自由度が向上し、加工も容易で安価となる。
【0044】
【発明の効果】
本発明は、固体高分子電解質型燃料電池のセパレータにおいて、固体高分子電解質膜を挟持する一対のガス拡散電極と、前記ガス拡散電極のおのおのの面に燃料ガスと酸化ガスをそれぞれの入口マニホールドから出口マニホールドに導く流路溝を形成したセパレータより構成し、前記セパレータの前記流路溝は、主流路溝部と副流路溝部とからなり、前記副流路溝部の流路断面積は前記主流路溝部の流路断面積よりも小さく構成することにより、生成水により主流路溝部が閉塞した時は、主流路溝部のガスの圧力が上昇し、ガスはガス拡散層を通り副流路溝部に流れ、主流路溝部の流れが完全に止まることを防止でき、運転中にガスが流れなくなって電流密度の極度の偏在による固体高分子電解質の破損を防止できる。また、生成水で閉塞した主流路溝部は生成水量が少なくなり再度開通して、正常の動作に復帰できフラッディングを防止することが可能となる。そして、流速を小さく設定して全体の損失抵抗を小さくすることが可能となるため、送風機の動力も小さくて済み、補機の動力が低減できシステム全体の効率が向上できる。また、主流路溝部と副流路溝部は、逐次、主流路溝部あるいは副流路溝部にガス拡散層を介して迂回流れが生じ全体として電流密度を均一化できる。このため、耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例における燃料電池のセパレータを示す全体構成図
【図2】本発明の第1の実施例における燃料電池全体の断面図
【図3】本発明の第2の実施例における燃料電池のセパレータを示す全体構成図
【図4】本発明の第3の実施例における燃料電池のセパレータを示す全体構成図
【図5】本発明の第4の実施例における燃料電池のセパレータを示す全体構成図
【図6】本発明の第5の実施例における燃料電池のセパレータを示す全体構成図
【図7】従来の燃料電池のセパレータを示す全体構成図
【符号の説明】
1 セパレータ
2 流路溝
3 入口マニホールド
4 出口マニホールド
11 固体高分子電解質膜
12 ガス拡散電極
13 主流路溝部
14 副流路溝部
15 連通部
16 流路絞部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a separator for a polymer electrolyte fuel cell.
[0002]
[Prior art]
Conventionally, this type of fuel cell has a power generation cell in which a gas diffusion electrode carrying a catalyst on both surfaces of a solid polymer electrolyte membrane provided with ionic conductivity is superposed on both surfaces. Then, a plurality of the power generation cells are connected to obtain a predetermined voltage. For this reason, a separator is interposed between the power generation cells, and the power generation cells are stacked and stacked. When the fuel gas and the oxidizing gas are supplied to both sides of the separator and the fuel gas and the oxidizing gas are supplied to the respective gas diffusion electrodes, the ionic conduction in the solid polymer electrolyte membrane and the chemical reaction of each gas diffusion electrode progress. As a result, a voltage is generated between the pair of gas diffusion electrodes, and power is supplied to an external circuit via a pair of separators at both ends having a function of a current collecting electrode. In such power generation, supplying the supplied gas to the electrode surface of the gas diffusion electrode as evenly as possible increases the gas utilization rate and improves power generation efficiency and output performance.
[0003]
However, if the supply gas is supplied to the entire surface of the gas diffusion electrode, the contact area between the separator and the gas diffusion electrode is lost, so that the current generated efficiently and the heat generated in the gas diffusion electrode are removed. It becomes difficult. For this reason, a flow channel for regulating the flow direction of the supply gas is provided at the boundary between the separator and the gas diffusion electrode, and the contact area between the separator and the gas diffusion electrode is maintained at a certain ratio. The channel groove formed on the separator side has a meandering serpentine configuration or a plurality of configurations (for example, see Patent Documents 1 and 2).
[0004]
In order to maintain the high power generation efficiency by sufficiently exhibiting the ionic conductivity of the solid polymer electrolyte membrane, the solid polymer electrolyte fuel cell humidifies the supplied gas to reduce the water vapor concentration in the supplied gas. It is necessary to increase the energy and further convert the energy of an electrochemical reaction for generating water from hydrogen and oxygen into an electric quantity, so that water is generated on the cathode side.
[0005]
For this reason, in the flow channel of the supply gas, a large amount of water generated during the reaction is contained on the downstream side, particularly on the outlet side, and there is a possibility that the gas becomes a liquid state and blocks the gas flow channel (this phenomenon). Is called flooding). There are techniques for preventing this flooding. FIG. 7 shows an oxidizing gas separator of a conventional solid polymer electrolyte fuel cell. The groove member 2 of the separator 1 has a rectangular shape corresponding to the gas diffusion electrode and has gas impermeability and conductivity. The oxidizing gas flows from the inlet manifold 3, and the oxidizing gas having passed through the groove of the flow channel member 2 is led out from the outlet manifold 4. The fuel gas separator is formed on the back surface of the separator 1, and the fuel gas flows in and out from the inlet manifold 5 and the output manifold 6 formed at positions different from the inlet manifold 3 and the outlet manifold 4 for the oxidizing gas. The grooves of the flow channel material 2 include an inlet flow channel 7 directly connected to the inlet manifold 3, an outlet flow channel 8 directly connected to the outlet manifold 4, an inlet flow channel 7, And an intermediate flow channel 9 communicating with the outlet flow channel 8. The inlet-side channel groove 7 and the outlet-side channel groove 8 are formed in a lattice shape, and the intermediate channel groove 9 is formed in a bent shape obtained by turning a plurality of times, and a plurality of linear channels 9A extending linearly. To 9E, and lattice-shaped grooves 10A to 10D formed in the folded portion. That is, in the inlet-side channel groove 7 and the outlet-side channel groove 8, the area other than the isolated projection a formed in a vertical and horizontal alignment is a gas channel groove, and the independent channel groups 9A to 9E are elongated projections b. The other area is the gas channel groove. In addition, in the lattice-shaped grooves 10A to 10D of the folded portions, regions other than the isolated protrusions c are gas flow grooves.
[0006]
Various gas flow grooves have been devised from the past to prevent stagnation of the supply gas due to flooding with the reaction product water, and the gas flow path has a lattice shape, and the gas flow path has a single flow path from the inlet to the outlet. However, the grid type does not cause water pools to reach flooding, but is inferior in gas diffusion performance that is uniform throughout and drainage performance such as partial blockage. In addition, the single flow channel type has good diffusivity, but increases the flow resistance, which necessitates a higher original pressure on the gas supply device side, increases the power of auxiliary equipment, and lowers the system efficiency.
[0007]
In the conventional example shown in FIG. 7, the region other than the isolated protrusion a in which the supply-side inlet groove 7 and the outlet-side groove 8 of the supply gas are aligned vertically and horizontally is a gas passage. Since the grooves are formed in a lattice shape, the contact area of the gas with the electrode is widened, and the gas can move freely and contact with the electrode quickly in time. Accordingly, in the inlet-side channel groove 7, the contact efficiency between the supply gas and the electrode (the contact is large in area and the contact time is fast) is high, and loss of gas diffusibility on the inlet side can be avoided. In addition, in the outlet side channel groove 8, it is described that the same gas diffusivity loss as in the inlet side can be avoided, and since the channel cross-sectional area is widened, drainage can be secured and flooding can be prevented. (For example, see Patent Document 3).
[0008]
[Patent Document 1]
Japanese Patent Publication No. 50-8777
[Patent Document 2]
JP-A-7-263003
[Patent Document 3]
JP-A-10-106594
[0009]
[Problems to be solved by the invention]
However, in this conventional configuration, gas diffusion is enhanced in the inlet-side channel groove, and the reaction in this portion is promoted to increase the overall electric conversion energy efficiency. Deterioration of the molecular electrolyte membrane and the catalyst layer of the gas diffusion electrode progressed, and a problem remained in durability. In addition, in the outlet-side channel groove, flooding is prevented by widening the channel cross-sectional area to ensure drainage.However, since the flow channel cross-sectional area is large, the gas flow is unevenly distributed, and the flow velocity is not uniform. In the slow part, the generated water blocked a part of the channel groove, and gas could not be supplied to this part, so that flooding could not be completely prevented.
[0010]
The present invention solves the above-mentioned conventional problems. Even when a part of the passage is blocked by generated water, the reaction amount from the entrance to the exit is made uniform as a whole, thereby improving durability reliability and overall electric conversion. An object of the present invention is to provide a fuel cell separator having improved reliability by improving energy efficiency and preventing flooding.
[0011]
[Means for Solving the Problems]
In order to solve the conventional problems, the fuel cell separator of the present invention includes a pair of gas diffusion electrodes sandwiching a solid polymer electrolyte membrane, and a fuel gas and an oxidizing gas on each surface of the gas diffusion electrodes. And a separator formed with a flow channel leading from the inlet manifold to the outlet manifold, wherein the flow channel of the separator includes a main flow channel groove and a sub flow channel groove, and a cross-sectional area of the flow channel of the sub flow channel groove. Is configured to be smaller than the flow path cross-sectional area of the main flow path groove.
[0012]
Thus, the flow path cross-sectional area of the main flow path groove is configured to be larger than the flow path cross-sectional area of the sub flow path groove, so that the flow rates of most of the fuel gas and the oxidizing gas flow through the main flow path groove. When the main flow channel groove is closed by the generated water, the pressure of the gas in the main flow channel groove increases, and the gas flows through the gas diffusion layer to the sub flow channel groove. For this reason, it is possible to prevent the flow in the main flow channel groove from completely stopping, and to prevent breakage of the solid polymer electrolyte membrane due to the extremely uneven distribution of the current density due to the gas not flowing during operation. In addition, since a small flow rate of gas flows through the main flow channel groove portion while the operation is continued in the main flow channel groove portion closed with the generated water, the amount of generated water is reduced, the gas is opened, and it can be returned to a normal operation. It is possible to prevent flooding in which the road is blocked by water.
[0013]
In addition, since the main flow channel groove and the sub flow channel groove communicate with each other via the gas diffusion layer, when the current density is partially increased, the amount of generated water increases and the flow resistance increases. A bypass flow occurs in the main flow channel groove portion or the sub flow channel groove via the gas diffusion layer, so that the current density can be made uniform as a whole. For this reason, it is possible to improve the durability reliability and the overall electric conversion energy efficiency.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 provides a pair of gas diffusion electrodes sandwiching a solid polymer electrolyte membrane, and a flow channel for guiding a fuel gas and an oxidizing gas from respective inlet manifolds to respective outlet manifolds on respective surfaces of the gas diffusion electrodes. Wherein the flow channel of the separator is composed of a main flow channel groove and a sub flow channel groove, and the flow channel cross-sectional area of the sub flow channel groove is larger than the flow channel cross-sectional area of the main flow channel groove. Is also made smaller.
[0015]
Thus, the flow path cross-sectional area of the main flow path groove is configured to be larger than the flow path cross-sectional area of the sub flow path groove, so that the flow rates of most of the fuel gas and the oxidizing gas flow through the main flow path groove. When the main flow channel groove is closed by the generated water, the pressure of the gas in the main flow channel groove increases, and the gas flows through the gas diffusion layer to the sub flow channel groove. For this reason, it is possible to prevent the flow in the main flow channel groove from completely stopping, and to prevent breakage of the solid polymer electrolyte membrane due to the extremely uneven distribution of the current density due to the gas not flowing during operation. In addition, since a small flow rate of gas flows through the main flow channel groove portion while the operation is continued in the main flow channel groove portion closed with the generated water, the amount of generated water is reduced, the gas is opened, and it can be returned to a normal operation. It is possible to prevent flooding in which the road is blocked by water. In general, water was blown off at a high flow rate to prevent flooding.However, since the flow rate can be set low to reduce the overall loss resistance, the power of the blower is also small. The power of the auxiliary equipment can be reduced and the efficiency of the entire system can be improved.
[0016]
In addition, since the main flow channel groove and the sub flow channel groove communicate with each other via the gas diffusion layer, when the current density is partially increased, the amount of generated water increases and the flow resistance increases. A bypass flow occurs in the main flow channel groove portion or the sub flow channel groove via the gas diffusion layer, so that the current density can be made uniform as a whole. For this reason, it is possible to improve the durability reliability and the overall electric conversion energy efficiency.
[0017]
According to the second aspect of the invention, the gas diffusion layer with respect to the passage cross-sectional area of the sub-flow channel groove is formed by configuring the fuel cell separator of the first invention so that the sub-flow channel groove has a greater groove depth than the main flow channel groove. Of the sub-channel groove can be made less likely to be blocked by the generated water. Therefore, even when the main channel groove is closed by the generated water amount, the gas flows through the gas diffusion layer to the sub-channel groove.
[0018]
That is, the generation timing of flooding is determined by the correlation between the amount of generated water determined by the area of the gas diffusion layer facing the flow path and the generated water determined by the cross-sectional area of the passage. Because the sub-channel groove is configured to have a greater depth than the main channel groove, flooding always occurs later in the sub-channel groove, so flooding of the main channel groove flows into the sub-channel groove and returns to normal. Even if the operating conditions are wide, it is possible to prevent flooding in which the flow path is blocked by water, thereby improving the reliability and durability of the system, and improving the overall electric conversion energy efficiency. . Further, it is easy to increase the depth of the channel groove of a part of the separator by pressing, injection molding, or the like a thin plate made of carbon or metal.
[0019]
According to the third aspect of the present invention, the fuel cell separator of the first aspect is configured such that the sub-channel groove is not meandering but the main channel groove is meandering, so that the sub-channel groove is compared with the main channel groove. As a result, there is no flow resistance due to bending, and the flow path length can be shortened, so that the total pressure loss can be reduced. In addition, the generated water is discharged along with the flow of the gas because it has no bend and has a short flow path length. In other words, the flooding always occurs in the sub-channel groove late, so that the flooding in the main channel groove flows into the sub-channel groove, and can be returned to normal. It is possible to improve the reliability and durability of the system, and to increase the overall energy efficiency of electric conversion.
[0020]
The invention according to claim 4 is configured such that at least a part of the main flow channel groove portion and the sub flow channel groove portion of the fuel cell according to claims 1 to 3 communicate with each other, so that the generated water generated closes the main flow channel groove portion. At this time, the gas flows from the main flow channel into the sub flow channel through this communicating portion. Conversely, at the rear of the closed main flow channel groove, gas flows from the sub flow channel groove to the main flow channel from the communicating portion. For this reason, it is possible to prevent the flow in the main flow channel groove from completely stopping, and to prevent breakage of the solid polymer electrolyte membrane due to the extremely uneven distribution of the current density due to the gas not flowing during operation. In addition, since a small flow rate of gas flows in many parts of the main flow channel groove while continuing operation in the main flow channel groove portion closed with the generated water, it is possible to quickly return to normal operation, and therefore, the flow channel is blocked by water. Flooding can be prevented and normal operation can be maintained, so that usage performance can be improved. Further, since it is possible to reduce the overall loss resistance by setting the flow velocity to be small, the power of the blower can be small, the power of the auxiliary equipment can be reduced, and the efficiency of the entire system can be improved.
[0021]
In addition, since the main flow channel groove portion and the sub flow channel groove portion communicate with each other, when the current density is partially increased, the amount of generated water increases and the flow resistance increases, so that the main flow channel groove portion or the sub flow channel A detour flow occurs in the groove via the communicating portion, so that the current density can be made uniform as a whole. For this reason, it is possible to improve the durability reliability and the overall electric conversion energy efficiency.
[0022]
The invention according to claim 5 is particularly configured such that the main flow channel grooves and the sub flow channel grooves of the fuel cells according to claims 1 to 4 are alternately arranged, so that the main flow channel grooves and the sub flow channel grooves form a gas diffusion layer. Through the entire area. Therefore, when the main channel groove is closed by the generated water, the gas flows through the gas diffusion layer to the sub-channel groove immediately before the location where the main channel groove is closed, and the gas flows from the location where the main channel groove is closed. Immediately thereafter, the gas flows through the gas diffusion layer from the sub flow channel to the main flow channel. For this reason, it is possible to prevent the flow in the main flow channel groove from completely stopping, and to prevent breakage of the solid polymer electrolyte membrane due to the extremely uneven distribution of the current density due to the gas not flowing during operation. In addition, since a small flow rate of gas flows through the main flow channel groove portion while the operation is continued in the main flow channel groove portion closed with the generated water, the amount of generated water is reduced, the gas is opened, and it can be returned to a normal operation. It is possible to prevent flooding in which the road is blocked by water.
[0023]
Further, since the main flow channel groove portion and the sub flow channel groove portion are in communication with each other through the gas diffusion layer, a detour flow occurs sequentially through the gas diffusion layer in the main flow channel groove portion or the sub flow channel groove portion, and the entire current flow is reduced. Density can be made uniform. For this reason, it is possible to improve the durability reliability and the overall electric conversion energy efficiency.
[0024]
In the invention according to claim 6, the fuel cell separator of claim 1 is connected to the sub-channel groove through the inlet manifold through the channel throttle to reduce the amount of gas flowing through the sub-channel groove. Part can be reduced. As a result, the amount of gas in the sub-channel groove is reduced, and the amount of water generated by the power generation reaction is reduced, so that the flooding can always occur in the sub-channel groove later, and flooding can be prevented as a whole. As a result, the reliability and durability of the system can be improved, and the overall electric conversion energy efficiency can be improved. In addition, since the gas amount can be freely set at the flow path restricting portion, it can be optimally adjusted according to actual use conditions, and the reliability of the system is improved.
[0025]
In the invention according to claim 7, since the fuel cell separator has the sub flow channel communicating with the outlet manifold, the amount of gas flowing through the sub flow channel only flows from the main flow channel via the gas diffusion layer, and greatly. Few. Therefore, the sub-channel groove does not flood, and the passage communication can be reliably ensured. Therefore, it is possible to prevent the flooding of the whole, and to improve the reliability and durability of the system as well as the energy efficiency of the entire electric conversion, and the degree of freedom in designing the flow path is improved, and the processing is also improved. Easy and cheap.
[0026]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0027]
(Example 1)
FIG. 1 is an overall configuration diagram of a fuel cell separator according to a first embodiment of the present invention, and FIG. 2 is a sectional view of the entire fuel cell. In FIG. 2, a solid polymer type fuel cell constitutes a power generation cell by stacking gas diffusion electrodes 12 carrying a catalyst on both surfaces of a solid polymer electrolyte membrane 11 provided with ion conductivity on both surfaces. . Then, a plurality of the power generation cells are connected to obtain a predetermined voltage. For this reason, the separators 1 are interposed between the power generation cells, and the power generation cells are stacked and stacked. When the fuel gas and the oxidizing gas are supplied to both sides of the separator and the fuel gas and the oxidizing gas are supplied to the respective gas diffusion electrodes 12, the ionic conduction in the solid polymer electrolyte membrane 11 and the electrochemical As the reaction proceeds, a voltage is generated between the pair of gas diffusion electrodes 12, and power is supplied to an external circuit (not shown) via the pair of separators 1 on both ends having a function of a current collecting electrode. In such power generation, supplying the supplied gas to the electrode surface of the gas diffusion electrode 12 as evenly as possible increases the gas utilization rate and improves the power generation efficiency and output performance.
[0028]
In the separator 1 shown in FIG. 1, the flow channel 2 of the separator 1 has a shape corresponding to the gas diffusion electrode 12 and is made of carbon having gas impermeability and conductivity, and surface-treated metal. Fuel or oxidizing gas flows from the inlet manifold 3, and flows out of the outlet manifold 4 through the gas of the flow channel 2. On the other hand, the oxidizing gas or fuel gas separator 1 is provided with a similar flow structure on the back side of the separator 1, and gas is introduced and discharged from the inlet manifold 5 and the output manifold 6. Thereby, the separator 1 is formed in which the flow grooves 2 for guiding the fuel gas and the oxidizing gas from the respective inlet sides to the respective outlet sides are formed on the respective surfaces of the pair of gas diffusion electrodes 12 sandwiching the solid polymer electrolyte membrane 11. ing.
[0029]
The groove of the flow channel member 2 is composed of the main flow channel groove 13 and the sub flow channel groove 14, and the cross-sectional area of the sub flow channel 14 is smaller than that of the main flow channel 13. It is. The main flow channel groove 13 and the sub flow channel groove 14 are constituted by a plurality of grooves, communicate directly with the inlet manifold 3, and extend from the meandering to the outlet manifold 4.
[0030]
The operation and operation of the fuel cell separator configured as described above will be described below.
[0031]
First, when the fuel gas and the oxidizing gas entering the main flow channel groove 13 from the inlet manifold 3 flow through the main flow channel groove 13 and the sub flow channel groove 14, they diffuse into the gas diffusion electrode to perform an electrochemical reaction, and become water. It is discharged to the outlet manifold 4 while reducing the mass.
[0032]
As a result, the cross-sectional area of the main flow channel groove 13 is configured to be larger than the cross-sectional area of the sub flow channel groove 14, so that the flow rates of most of the fuel gas and the oxidizing gas flow through the main flow channel groove. Most of the generated water generated by the electrochemical reaction occurs in the main channel groove 13. When the main flow channel groove 13 is closed by the generated water, the pressure of the gas in the main flow channel groove 13 increases, and a part of the fuel gas and the oxidizing gas flow through the gas diffusion layer 12 to the sub flow channel groove 14. Therefore, it is possible to prevent the flow in the main flow channel groove 13 from completely stopping, and to prevent the gas from flowing during the operation and damage of the solid polymer electrolyte membrane 11 due to the uneven distribution of the current density. Further, since a small flow rate of gas flows through the main flow channel groove 13 while the operation is continued in the main flow channel groove 13 closed with the generated water, the generated water amount is reduced, the gas is opened, and the operation can be returned to the normal operation. In addition, it is possible to prevent flooding in which the flow path is blocked by water. In general, water was blown off at a high flow rate to prevent flooding.However, since the flow rate can be set low to reduce the overall loss resistance, the power of the blower is also small. The power of the auxiliary equipment can be reduced and the efficiency of the entire system can be improved.
[0033]
Further, since the main flow channel groove 13 and the sub flow channel groove 14 communicate with each other via the gas diffusion layer 12, when the current density is partially high, the amount of generated water increases and the flow resistance increases. Then, a detour flow is successively generated in the main flow channel groove 13 or the sub flow channel groove 14 via the gas diffusion layer, and the current density can be made uniform as a whole. For this reason, the amount of electrochemical reaction from the inlet to the outlet of the supply gas is made uniform, the current density of each part becomes constant, and the durability reliability can be improved and the overall electric conversion energy efficiency can be increased. In addition, it is necessary to control the amount of generated electricity to increase or decrease according to the actual usage. Therefore, it is necessary to increase or decrease the amounts of the fuel gas and the oxidizing gas in accordance with the load. It is possible to configure a flow path that can make the current density uniform and reduce the flow loss resistance. In particular, this uniformity can be maintained even when the supplied gas flow rate is changed according to the load. Can improve and increase the overall electricity conversion energy efficiency.
[0034]
The sub-channel groove 14 is configured to have a greater groove depth than the main channel groove 13, so that the area of the gas diffusion layer 12 with respect to the cross-sectional area of the sub-channel groove 14 is reduced. The groove 14 can be hardly closed. For this reason, even when the main flow channel groove 13 is blocked by the generated water amount, the gas flows through the gas diffusion layer 12 to the sub flow channel groove 14.
[0035]
That is, the generation timing of flooding is determined by the correlation between the amount of generated water determined by the area of the gas diffusion layer 12 facing the flow path and the generated water determined by the cross-sectional area of the path, and the blockage of the path. Since the sub flow channel groove 14 is configured to have a greater groove depth than the main flow channel groove 13, the flooding always occurs later in the sub flow channel groove 14. It can flow into the groove 14 and return to normal, and even if the operating conditions are widened, it is possible to prevent flooding in which the flow path is blocked by water, thereby expanding the good operating range, improving stability, and improving the reliability of the system. It is possible to improve the performance and durability reliability, and to increase the overall electric conversion energy efficiency. Further, it is easy to increase the depth of the channel groove of a part of the separator by pressing, injection molding, or the like a thin plate made of carbon or metal.
[0036]
In addition, the difficulty in flooding can reduce the flow resistance because the flow resistance can be set small, so that the power of the blower can be reduced, the power of the auxiliary equipment can be reduced, and the efficiency of the entire system can be improved. . This also increases the degree of freedom in designing the flow path, and makes the processing easy and inexpensive. In addition, the high electric conversion energy efficiency allows the separator to be made smaller and compact.
[0037]
(Example 2)
FIG. 3 shows an overall configuration of a fuel cell separator according to a second embodiment of the present invention. The difference from the first embodiment is that the separator 1 is configured such that the sub-channel groove 14 does not meander, and the main channel groove 13 does not meander. As a result, as compared with the main flow channel groove portion 13, the sub flow channel groove 14 has no flow resistance due to bending and can have a short flow channel length, so that the total pressure loss can be reduced, so that the flow rate increases and the flow velocity increases. In addition, the generated water is discharged along with the flow of the gas because it has no bend and has a short flow path length. That is, since flooding always occurs late in the sub-channel groove portion 14, when the main channel groove portion 13 is flooded, the gas flows into the sub-channel groove portion 14, and can return to normal. It is possible to prevent flooding that is blocked by water, and it is possible to improve the reliability and durability of the system, and to increase the overall energy efficiency of electric conversion.
[0038]
(Example 3)
FIG. 4 shows an overall configuration of a fuel cell separator according to a third embodiment of the present invention. The difference from the first embodiment is that the separator 1 of the fuel cell is configured such that at least a part of the main flow channel groove 13 and at least a part of the sub flow channel groove 14 communicate with each other through the communication portion 15. As a result, when the main flow channel groove 13 is closed by the generated water, gas flows from the main flow channel groove 13 to the sub flow channel groove 14 through the communication portion 15. Conversely, at the rear of the closed main flow channel groove 13, gas flows from the sub flow channel groove 14 to the main flow channel groove 13 from the communication portion 15. Therefore, it is possible to prevent the flow in the main flow channel groove 13 from completely stopping, and to prevent the gas from flowing during the operation and the damage of the solid polymer electrolyte membrane due to the extremely uneven current density. In addition, since a small amount of gas flows through many portions of the main flow channel groove 13 while the operation is continued in the main flow channel groove 13 closed with the generated water, it is possible to quickly return to a normal operation. Blocking flooding can be prevented, normal operation can be maintained, and the use performance can be improved. Further, since it is possible to reduce the overall loss resistance by setting the flow velocity to be small, the power of the blower can be small, the power of the auxiliary equipment can be reduced, and the efficiency of the entire system can be improved.
[0039]
In addition, since the main flow channel groove 13 and the sub flow channel groove 14 communicate with each other, when the current density is partially increased, the amount of generated water increases and the flow resistance increases, so that the main flow channel groove 13 or A bypass flow occurs in the sub-channel groove portion 14 through the communicating portion, and the current density can be made uniform as a whole. For this reason, it is possible to improve the durability reliability and the overall electric conversion energy efficiency.
[0040]
Further, the main flow channel grooves 13 and the sub flow channel grooves 14 of the fuel cell separator are arranged alternately, so that the main flow channel grooves 13 and the sub flow channel grooves 14 are in contact with each other through the gas diffusion layer 12. It becomes. Therefore, when the main flow channel groove 13 is closed by the generated water, the gas flows through the gas diffusion layer 12 to the sub flow channel groove 14 immediately before the location where the main flow channel groove 13 is closed, and the main flow channel groove 13 is closed. Immediately after the closed position, the gas flows from the sub-channel groove 14 to the main channel groove 13 through the gas diffusion layer 12. Therefore, it is possible to prevent the flow in the main flow channel groove 13 from completely stopping, and to prevent the gas from flowing during the operation and the damage of the solid polymer electrolyte membrane due to the extremely uneven current density. Further, since a small flow rate of gas flows through the main flow channel groove 13 while the operation is continued in the main flow channel groove 13 closed with the generated water, the generated water amount is reduced, the gas is opened, and the operation can be returned to the normal operation. In addition, it is possible to prevent flooding in which the flow path is blocked by water.
[0041]
Since the main flow channel groove 13 and the sub flow channel groove 14 communicate with each other through the gas diffusion layer 12, the main flow channel groove 13 and the sub flow channel groove 14 are sequentially detoured via the gas diffusion layer 12. A flow occurs, and the current density can be made uniform as a whole. For this reason, it is possible to improve the durability reliability and the overall electric conversion energy efficiency.
[0042]
(Example 4)
FIG. 5 shows an overall configuration of a fuel cell separator according to a fourth embodiment of the present invention. The difference from the first embodiment is that the fuel cell separator 1 has the sub-channel groove 14 communicating with the inlet manifold 3 via the channel throttle 16. Thus, the amount of gas flowing through the sub-channel groove 14 can be reduced by the channel throttle 16. For this reason, the amount of gas flowing through the sub-channel groove 14 is reduced, and the amount of water generated by the power generation reaction can be reduced. For this reason, the flooding can always be generated in the sub-channel groove portion 14 at a late time, and the flooding can be prevented as a whole. Therefore, the reliability and durability of the system can be improved, and the overall electric conversion energy can be improved. Efficiency can be increased. Further, since the amount of flowing gas can be freely set by the flow path narrowing section 14, it can be optimally adjusted according to actual use conditions, and the reliability of the system is improved.
[0043]
(Example 5)
FIG. 6 shows an overall configuration of a fuel cell separator according to a fifth embodiment of the present invention. The difference from the first embodiment is that the separator 1 of the fuel cell is connected to the outlet manifold 4 at the sub-channel groove 14. (Therefore, the sub flow channel groove 14 is not in communication with the inlet manifold 3), whereby the amount of gas flowing through the sub flow channel groove 14 only flows from the main flow channel groove 13 via the gas diffusion layer 12. Can be significantly reduced. Therefore, the sub-channel groove 14 is not flooded, and the passage communication can be reliably ensured. Therefore, it is possible to prevent the flooding of the whole, and to improve the reliability and durability of the system as well as the energy efficiency of the entire electric conversion, and the degree of freedom in designing the flow path is improved, and the processing is also improved. Easy and cheap.
[0044]
【The invention's effect】
The present invention provides, in a separator of a solid polymer electrolyte fuel cell, a pair of gas diffusion electrodes sandwiching a solid polymer electrolyte membrane, and a fuel gas and an oxidizing gas on each surface of the gas diffusion electrodes from respective inlet manifolds. The separator is formed with a flow channel that leads to an outlet manifold. The flow channel of the separator is composed of a main flow channel and a sub flow channel. By configuring the channel smaller than the channel cross-sectional area, when the main channel groove is closed by the generated water, the pressure of the gas in the main channel groove increases, and the gas flows through the gas diffusion layer to the sub-channel groove. In addition, it is possible to prevent the flow in the main flow channel groove from completely stopping, and to prevent damage to the solid polymer electrolyte due to the extremely uneven distribution of the current density due to no gas flow during operation. Further, the main channel groove portion closed with the generated water has a reduced amount of the generated water and opens again, so that the normal operation can be restored and flooding can be prevented. Further, since it is possible to reduce the overall loss resistance by setting the flow velocity to be small, the power of the blower can be reduced, and the power of the auxiliary equipment can be reduced, and the efficiency of the entire system can be improved. Further, in the main channel groove portion and the sub channel groove portion, a detour flow occurs sequentially through the gas diffusion layer in the main channel groove portion or the sub channel groove portion, so that the current density can be made uniform as a whole. For this reason, it is possible to improve the durability reliability and the overall electric conversion energy efficiency.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing a fuel cell separator according to a first embodiment of the present invention.
FIG. 2 is a sectional view of the entire fuel cell according to the first embodiment of the present invention.
FIG. 3 is an overall configuration diagram showing a fuel cell separator according to a second embodiment of the present invention.
FIG. 4 is an overall configuration diagram showing a fuel cell separator according to a third embodiment of the present invention.
FIG. 5 is an overall configuration diagram showing a fuel cell separator according to a fourth embodiment of the present invention.
FIG. 6 is an overall configuration diagram showing a fuel cell separator according to a fifth embodiment of the present invention.
FIG. 7 is an overall configuration diagram showing a conventional fuel cell separator.
[Explanation of symbols]
1 separator
2 Channel groove
3 Inlet manifold
4 Exit manifold
11 Solid polymer electrolyte membrane
12 Gas diffusion electrode
13 Main channel groove
14 Sub-channel groove
15 Communication section
16 Flow path restriction

Claims (7)

固体高分子電解質膜を挟持する一対のガス拡散電極と、前記ガス拡散電極のおのおのの面に燃料ガスと酸化ガスをそれぞれの入口マニホールドから出口マニホールドに導く流路溝を形成したセパレータより構成し、少なくとも一方の前記セパレータの前記流路溝は、主流路溝部と副流路溝部とからなり、前記副流路溝部の流路断面積は前記主流路溝部の流路断面積よりも小さく構成したことを特徴とする燃料電池のセパレータ。A pair of gas diffusion electrodes sandwiching the solid polymer electrolyte membrane, and a separator formed on each surface of the gas diffusion electrodes with a flow channel that guides the fuel gas and the oxidizing gas from the respective inlet manifold to the outlet manifold, The flow channel of at least one of the separators includes a main flow channel and a sub flow channel, and the cross-sectional area of the sub flow channel is smaller than that of the main flow channel. A fuel cell separator comprising: 副流路溝部は主流路溝部よりも溝深さを大きく構成したことを特徴とする請求項1記載の燃料電池のセパレータ。2. The fuel cell separator according to claim 1, wherein the sub-channel groove has a greater depth than the main channel groove. 副流路溝部は蛇行せず、主流路溝部は蛇行して構成したことを特徴とする請求項1記載の燃料電池のセパレータ。2. The fuel cell separator according to claim 1, wherein the sub flow channel groove is not meandering, and the main flow channel groove is meandering. 主流路溝部と副流路溝部の少なくとも一部を連通して構成したことを特徴とする請求項1〜3のいずれか1項に記載の燃料電池のセパレータ。The fuel cell separator according to any one of claims 1 to 3, wherein at least a part of the main flow channel groove and the sub flow channel groove communicate with each other. 主流路溝部と副流路溝部を交互に配置して構成したことを特徴とする請求項1〜4のいずれか1項に記載の燃料電池のセパレータ。The fuel cell separator according to any one of claims 1 to 4, wherein the main flow channel grooves and the sub flow channel grooves are alternately arranged. 副流路溝部は入口マニホールドと流路絞部を介して連通したことを特徴とする請求項1記載の燃料電池のセパレータ。2. The fuel cell separator according to claim 1, wherein the sub-channel groove communicates with the inlet manifold via a channel throttle. 副流路溝部は出口マニホールドと連通したことを特徴とする請求項1記載の燃料電池のセパレータ。2. The fuel cell separator according to claim 1, wherein the sub-channel groove communicates with the outlet manifold.
JP2002310753A 2002-10-25 2002-10-25 Separator for fuel cell Withdrawn JP2004146230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310753A JP2004146230A (en) 2002-10-25 2002-10-25 Separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310753A JP2004146230A (en) 2002-10-25 2002-10-25 Separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2004146230A true JP2004146230A (en) 2004-05-20

Family

ID=32456169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310753A Withdrawn JP2004146230A (en) 2002-10-25 2002-10-25 Separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2004146230A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088832A1 (en) * 2006-02-02 2007-08-09 Matsushita Electric Industrial Co., Ltd. Separator plate and fuel cell
KR100884936B1 (en) 2007-12-21 2009-02-23 한국에너지기술연구원 Bipolar plate using a secondary flow channel for a pem fuel cell
WO2010064366A1 (en) * 2008-12-02 2010-06-10 パナソニック株式会社 Fuel cell
EP2278647A1 (en) * 2008-05-19 2011-01-26 Panasonic Corporation Separator for fuel cell and fuel cell provided with same
JP2011530141A (en) * 2008-08-01 2011-12-15 トプサー・フューエル・セル・アクチエゼルスカベット FUEL CELL INTERCONNECTOR AND METHOD FOR PRODUCING FUEL CELL INTERCONNECTOR
JP4868095B1 (en) * 2011-01-28 2012-02-01 トヨタ自動車株式会社 Fuel cell system
CN102341945A (en) * 2009-03-04 2012-02-01 松下电器产业株式会社 Separator for fuel cell, and fuel cell comprising same
JP4868094B1 (en) * 2011-01-28 2012-02-01 トヨタ自動車株式会社 Fuel cell system
US8568941B2 (en) 2009-03-04 2013-10-29 Panasonic Corporation Fuel cell separator and fuel cell including same
CN111668515A (en) * 2020-07-14 2020-09-15 中国第一汽车股份有限公司 Method for removing water in gas diffusion layer of fuel cell
JP7466095B2 (en) 2020-05-14 2024-04-12 パナソニックIpマネジメント株式会社 Fuel cell, fuel cell, and method for manufacturing fuel cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790324B2 (en) 2006-02-02 2010-09-07 Panasonic Corporation Separator plate and fuel cell
WO2007088832A1 (en) * 2006-02-02 2007-08-09 Matsushita Electric Industrial Co., Ltd. Separator plate and fuel cell
KR100884936B1 (en) 2007-12-21 2009-02-23 한국에너지기술연구원 Bipolar plate using a secondary flow channel for a pem fuel cell
EP2278647A4 (en) * 2008-05-19 2014-03-05 Panasonic Corp Separator for fuel cell and fuel cell provided with same
EP2278647A1 (en) * 2008-05-19 2011-01-26 Panasonic Corporation Separator for fuel cell and fuel cell provided with same
JP2011530141A (en) * 2008-08-01 2011-12-15 トプサー・フューエル・セル・アクチエゼルスカベット FUEL CELL INTERCONNECTOR AND METHOD FOR PRODUCING FUEL CELL INTERCONNECTOR
JPWO2010064366A1 (en) * 2008-12-02 2012-05-10 パナソニック株式会社 Fuel cell
US9153825B2 (en) 2008-12-02 2015-10-06 Panasonic Intellectual Property Management Co., Ltd. Fuel cell
WO2010064366A1 (en) * 2008-12-02 2010-06-10 パナソニック株式会社 Fuel cell
JP4559539B2 (en) * 2008-12-02 2010-10-06 パナソニック株式会社 Fuel cell
US8568941B2 (en) 2009-03-04 2013-10-29 Panasonic Corporation Fuel cell separator and fuel cell including same
CN102341945A (en) * 2009-03-04 2012-02-01 松下电器产业株式会社 Separator for fuel cell, and fuel cell comprising same
JP4868094B1 (en) * 2011-01-28 2012-02-01 トヨタ自動車株式会社 Fuel cell system
WO2012101818A1 (en) * 2011-01-28 2012-08-02 トヨタ自動車株式会社 Fuel cell system
WO2012101819A1 (en) * 2011-01-28 2012-08-02 トヨタ自動車株式会社 Fuel cell system
KR101423853B1 (en) 2011-01-28 2014-07-25 도요타 지도샤(주) Fuel cell system
JP4868095B1 (en) * 2011-01-28 2012-02-01 トヨタ自動車株式会社 Fuel cell system
US10003093B2 (en) 2011-01-28 2018-06-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system including a fuel cell and a controller for controlling water vapor amount or average flow rate of a fuel gas
JP7466095B2 (en) 2020-05-14 2024-04-12 パナソニックIpマネジメント株式会社 Fuel cell, fuel cell, and method for manufacturing fuel cell
CN111668515A (en) * 2020-07-14 2020-09-15 中国第一汽车股份有限公司 Method for removing water in gas diffusion layer of fuel cell

Similar Documents

Publication Publication Date Title
KR100831463B1 (en) Flow Field Plate for Use in Fuel Cells
JP3713912B2 (en) Fuel cell gas passage plate
US9761889B2 (en) Fuel cell flow field channel with partially closed end
KR100798451B1 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US6303245B1 (en) Fuel cell channeled distribution of hydration water
US20050255367A1 (en) Fuel cell, separator unit kit for fuel cell, and fuel cell generating unit kit
CN112786913B (en) Bipolar plate and fuel cell comprising same
JP2010045035A (en) Fuel cell
JP2008010179A (en) Fuel cell separator
JP2004146230A (en) Separator for fuel cell
JP2006114387A (en) Fuel cell
KR100700073B1 (en) Fuel cell with drain structure of condensate
US20040265675A1 (en) Fuel Cell Flow Field Design
JP2004247289A (en) Fuel cell and its operation method
JP4601893B2 (en) Fuel cell separator
JP5056637B2 (en) Fuel cell separator
CN114759208B (en) Fuel cell bipolar plate and fuel cell with same
KR101486168B1 (en) Bipolar plat of fuel cell and fuel cell stack comprising the same
KR20130076118A (en) Fuelcell stack using branched channel
JP2007504601A (en) Gas supply panel for fuel cell and fuel cell having gas supply panel
Li et al. Performance evaluation of a blocked regulated lateral release channel for proton exchange membrane fuel cell based on entropy generation analysis
JP4340417B2 (en) Polymer electrolyte fuel cell
JP2011210398A (en) Fuel cell
WO2008019503A1 (en) Method for operating a fuel cell and a fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051114

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070613