JP2003077495A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP2003077495A
JP2003077495A JP2001261570A JP2001261570A JP2003077495A JP 2003077495 A JP2003077495 A JP 2003077495A JP 2001261570 A JP2001261570 A JP 2001261570A JP 2001261570 A JP2001261570 A JP 2001261570A JP 2003077495 A JP2003077495 A JP 2003077495A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
fuel
connecting portion
oxidant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001261570A
Other languages
Japanese (ja)
Inventor
Koji Yasuo
耕司 安尾
Akira Hamada
陽 濱田
Hirokazu Izaki
博和 井崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001261570A priority Critical patent/JP2003077495A/en
Priority to US10/230,589 priority patent/US7276311B2/en
Priority to CNB021470375A priority patent/CN100428552C/en
Priority to KR10-2002-0051891A priority patent/KR100539114B1/en
Publication of JP2003077495A publication Critical patent/JP2003077495A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer fuel cell which has a simple structure with easily manufactured construction and in which the condensed water generated in the cell can be removed. SOLUTION: A jointing section 5 which connects a plurality of passages 2 is provided at the downstream of the middle point of the passages 2 in the air electrode side separator 1 of the cell, and a draining means 6 is connected to the lower end of this jointing section 5. The draining means 6 is made of, for example, an S shaped drain tube 6a and comprises a water sealing section 6b. Humidified oxidizer gas supplied from the supply manifold 3 is made to flow in the passages 2 and discharged to the exhaust manifold 4. However, when it passes the jointing section 5, it is decelerated, and the super-saturated steam contained in the humidified oxidizer gas is condensed and condensed water is generated. This condensed water is drained to the outside by the draining means 6. At that time, since it is gas sealed by the water sealing section 6b, discharge of the oxidizer gas is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に固体高分子型
の燃料電池に関し、電池本体内に生じる凝縮水を排除で
きるようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer type fuel cell, and more particularly to a solid polymer type fuel cell capable of eliminating condensed water generated in the cell body.

【0002】[0002]

【従来の技術】固体高分子型の燃料電池は、図7に模式
的に示すように膜状電解質A(固体高分子電解質膜)の
一方の面には燃料極B(アノード)が、他方の面には空
気極C(カソード)がそれぞれ設けられたセルHを、燃
料極側には燃料ガスの流れる流路Dを形成すると共に、
空気極側には酸化剤ガスの流れる流路Fを形成したセパ
レータJにより挟持することで構成される基本ユニット
Iを複数積層することにより形成される(図7では3セ
ルを積層)。この燃料電池の積層体の両側には、燃料ガ
ス流路Dのみを形成したプレートE、酸化剤ガス流路F
のみを形成したプレートGをそれぞれ設ける。
2. Description of the Related Art In a solid polymer fuel cell, a fuel electrode B (anode) is formed on one side of a membrane electrolyte A (solid polymer electrolyte membrane) and the other is formed on the other side, as schematically shown in FIG. A cell H provided with an air electrode C (cathode) is formed on the surface, and a flow path D through which the fuel gas flows is formed on the fuel electrode side.
On the air electrode side, it is formed by stacking a plurality of basic units I which are sandwiched by separators J each having a flow path F through which an oxidant gas flows (three cells are stacked in FIG. 7). On both sides of the stack of the fuel cell, a plate E having only a fuel gas flow channel D and an oxidant gas flow channel F are formed.
The plates G each having only a plate are provided.

【0003】上記固体高分子型の燃料電池において、燃
料極側の流路Dには燃料ガス(通常は原燃料を改質装置
により水素リッチガスに改質した改質ガス)が供給され
ると共に、空気極側の流路Fには酸化剤ガス(通常は空
気)が供給され、膜状電解質Aを介して電気化学反応が
生じることにより電気が発生し、同時に水が生成され
る。つまり、燃料電池は、改質ガス中の水素ガスと、空
気中の酸素ガスとの電気化学反応により発電することが
できる。燃料極Bでは、水素分子を水素イオン(プロト
ン)と電子に分離する反応、空気極Cでは、酸素と水素
イオンと電子から水を生成する反応がそれぞれ行われ、
燃料極Bから空気極Cに向かって外部回路を移動する電
子により電力が負荷に供給されると共に、空気極C側に
水が生成される。
In the above solid polymer type fuel cell, a fuel gas (usually a reformed gas obtained by reforming a raw fuel into a hydrogen-rich gas by a reformer) is supplied to a flow path D on the fuel electrode side. An oxidant gas (usually air) is supplied to the flow path F on the air electrode side, and an electrochemical reaction occurs through the membrane electrolyte A to generate electricity, and at the same time, water is generated. That is, the fuel cell can generate power by an electrochemical reaction between hydrogen gas in the reformed gas and oxygen gas in the air. At the fuel electrode B, a reaction of separating hydrogen molecules into hydrogen ions (protons) and electrons is performed, and at the air electrode C, a reaction of generating water from oxygen, hydrogen ions, and electrons is performed.
Electric power is supplied to the load by the electrons moving from the fuel electrode B to the air electrode C in the external circuit, and water is generated on the air electrode C side.

【0004】 燃料極:H→2H+2e 空気極:4H+O+4e→2HO 全体 :2H+O→2HFuel electrode: H 2 → 2H + + 2e Air electrode: 4H + + O 2 + 4e → 2H 2 O whole: 2H 2 + O 2 → 2H 2 O

【0005】[0005]

【発明が解決しようとする課題】上記従来の固体高分子
型燃料電池は、膜状電解質Aが湿潤状態でない場合、プ
ロトン導電体として充分機能しないため、燃料ガス乃至
酸化剤ガスを加湿し、加湿燃料ガス乃至加湿酸化剤ガス
として燃料電池本体に供給し、それらのガス中に含まれ
る水分によって膜状電解質Aを適度な湿潤状態に保持す
るようにしている。しかしながら、加湿酸化剤ガスが流
路Fを流れる過程で、空気極Cで生じる生成水が水蒸気
となって加わるために流路Fを進むにつれて水分が過剰
となり、特に中間より下流側で過飽和となって水分が凝
縮する。この凝縮水が流路Fの表面に付着すると流路F
の一部を閉塞する事態が発生し、そのため流路F内にお
ける酸化剤ガスの流れ分布が偏り、酸化剤ガスの供給障
害が局部的に発生して発電性能の低下を招くという問題
があった。このような凝縮水による流路の閉塞は、生成
水の逆拡散により、前記燃料極B側の流路Dにおいても
起こり得る問題である。
The above-described conventional polymer electrolyte fuel cell does not sufficiently function as a proton conductor unless the membrane electrolyte A is in a wet state, so that the fuel gas or the oxidant gas is humidified and humidified. It is supplied to the fuel cell main body as a fuel gas or a moisturizing oxidant gas, and the moisture contained in these gases keeps the membrane electrolyte A in an appropriate wet state. However, in the process in which the humidified oxidant gas flows through the flow path F, the generated water generated at the air electrode C is added as water vapor, so that the water content becomes excessive as it progresses through the flow path F, and especially oversaturation occurs in the downstream side from the middle. And water condenses. When this condensed water adheres to the surface of the channel F, the channel F
There is a problem in that the flow distribution of the oxidant gas in the flow path F becomes uneven and a supply failure of the oxidant gas locally occurs, resulting in a decrease in power generation performance. . Such blockage of the flow path by the condensed water is a problem that can occur in the flow path D on the fuel electrode B side due to the reverse diffusion of the generated water.

【0006】この問題を解決する手段として、例えば特
開平6−89730号公報に、酸化剤ガス流路の途中に
未加湿酸化剤供給部及び吸水材からなる凝縮水除去手段
を設ける技術が開示されている。この場合、凝縮水除去
手段から供給される乾燥した酸化剤ガスが上流側からの
湿った酸化剤ガスに加わり、これにより下流の酸化剤ガ
ス中の水蒸気分圧を低下させるので、酸化剤ガスの過飽
和状態が解消され、凝縮水の蒸発が促されると共に未加
湿酸化剤供給部の上流側に接した流路の内壁面に凝縮す
る凝縮水を吸水材が吸収して流路の閉塞を防止するよう
にしている。
As means for solving this problem, for example, Japanese Unexamined Patent Publication No. 6-89730 discloses a technique of providing condensed water removing means consisting of an unhumidified oxidant supply part and a water absorbent in the middle of the oxidant gas flow path. ing. In this case, the dry oxidant gas supplied from the condensed water removing means is added to the moist oxidant gas from the upstream side, thereby reducing the water vapor partial pressure in the oxidant gas on the downstream side. The supersaturated state is eliminated, the evaporation of condensed water is promoted, and the water absorbing material absorbs condensed water condensed on the inner wall surface of the flow path that is in contact with the upstream side of the unhumidified oxidant supply unit to prevent clogging of the flow path. I am trying.

【0007】しかしながら、上記の例によると、セパレ
ータの酸化剤ガス流路の途中に未加湿酸化剤供給部及び
吸水材を設けなければならず、又加湿と未加湿の2つの
酸化剤ガス供給経路を形成しなければならないため、構
造が複雑となり加工し難くなる問題があった。そこで、
本発明は、構造が簡単で容易に加工できる構成により凝
縮水を除去できるようにした固体高分子型の燃料電池を
提供することを目的とする。
However, according to the above example, the unhumidified oxidant supply section and the water absorbing material must be provided in the middle of the oxidant gas flow path of the separator, and two oxidant gas supply paths, humidified and unhumidified, are provided. Therefore, there is a problem that the structure becomes complicated and it is difficult to process. Therefore,
An object of the present invention is to provide a polymer electrolyte fuel cell which has a simple structure and can be easily processed to remove condensed water.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの具体的手段として、本発明は、次のように構成した
ことを要旨とするものである。 (1)燃料極乃至空気極に、それぞれ燃料ガス乃至酸化
剤ガスの流路が表面に形成されたセパレータが対峙し、
燃料極と空気極との間に膜状電解質を配したセルを複数
積層してなる燃料電池において、前記酸化剤ガスの流路
又は燃料ガスの流路の中間より下流側に排液手段を設け
た構成。 (2)前記排液手段は、ガスシールとなる封水部を有す
る構成。 (3)前記排液手段は、燃料電池の冷却水経路に接続さ
れている構成。 (4)前記酸化剤ガスの流路又は燃料ガスの流路の中間
より下流側に複数の流路を連通する連結部を設け、この
連結部は前記排液手段に接続されている構成。 (5)前記連結部は、膜状電解質が燃料極及び空気極に
挟まれた燃料電池反応の領域外に設けられている構成。 (6)前記連結部は、燃料ガス、酸化剤ガス、冷却水の
いずれかの供給マニホールド領域に張り出して設ける構
成。 (7)前記連結部を流通する酸化剤ガス又は燃料ガス
と、燃料電池反応に供する前の酸化剤ガス、燃料ガス、
冷却水のいずれかとの間で熱交換させる構成。 (8)前記排液手段は、酸化剤ガス又は燃料ガスの流路
とは別に、これらのガスの排出マニホールドと前記連結
部とが通ずる経路である構成。 (9)前記ガスの排出マニホールドと前記連結部とが通
ずる経路には繊維材料が敷設されている構成。
As a concrete means for achieving the above-mentioned object, the present invention is summarized as follows. (1) The fuel electrode or air electrode is faced with a separator having a fuel gas or oxidant gas channel formed on the surface thereof,
In a fuel cell in which a plurality of cells in which a membrane electrolyte is arranged is stacked between a fuel electrode and an air electrode, drainage means is provided on the downstream side from the middle of the oxidizing gas passage or the fuel gas passage. Configuration. (2) The drainage means has a water sealing portion serving as a gas seal. (3) The drainage means is connected to the cooling water path of the fuel cell. (4) A configuration is provided in which a connecting portion that connects a plurality of passages is provided on the downstream side of the middle of the oxidizing gas passage or the fuel gas passage, and the connecting portion is connected to the drainage means. (5) The connection portion is provided outside the region of the fuel cell reaction in which the membrane electrolyte is sandwiched between the fuel electrode and the air electrode. (6) The connecting portion is provided so as to overhang the supply manifold region of any one of fuel gas, oxidant gas, and cooling water. (7) Oxidizing gas or fuel gas flowing through the connecting portion, and oxidizing gas or fuel gas before being subjected to a fuel cell reaction,
A structure that exchanges heat with any of the cooling water. (8) The drainage means is a passage, which is separate from the flow path of the oxidant gas or the fuel gas, and which connects the discharge manifold of these gases and the connecting portion. (9) A configuration in which a fibrous material is laid in a path through which the gas discharge manifold and the connecting portion communicate.

【0009】本発明では、酸化剤ガスの流路又は燃料ガ
スの流路の中間より下流側に排液手段を設ける構成
(1)により、流路の上流側で発生する凝縮水の一部を
外部に排出することができる。排液手段はガスシールと
なる封水部を有する構成(2)により、流路を流れるガ
スの流出を防ぎ、又排液手段を燃料電池の冷却水経路に
接続する構成(3)により、排出した凝縮水を燃料電池
の冷却水の一部として有効利用することができる。ガス
流路の中間より下流側に複数の流路を連通する連結部を
設け、この連結部を前記排液手段に接続する構成(4)
により、連結部でガスの流速を低下させて凝縮水を生じ
易くし、且つ凝縮水を排液手段により速やかに外部に排
出することができる。この連結部は膜状電解質が燃料極
及び空気極に挟まれた燃料電池反応の領域外に設ける構
成(5)により、連結部内の水蒸気が冷却され易くなり
ドレン効果を高めることができる。又、連結部は燃料ガ
ス、酸化剤ガス、冷却水のいずれかの供給マニホールド
領域に張り出して設ける構成(6)により、冷却作用を
増大させると共に供給マニホールドに絞り流路が形成さ
れることからセル積層方向の流配(流量分布)を均一化
することが可能となる。更に、構成(7)により、連結
部を流通するガスと、燃料電池反応に供する前の酸化剤
ガス、燃料ガス、冷却水のいずれかとの間で熱交換させ
ることもできる。又、前記排液手段は酸化剤ガス又は燃
料ガスの流路とは別に、これらのガスの排出マニホール
ドと前記連結部とが通ずる経路である構成(8)によ
り、排液手段をセパレータ内に設けることができ、その
経路には繊維材料を敷設する構成(9)により凝縮水を
吸収し又は毛管現象により排出マニホールドに導くこと
ができると共に、経路内にガスが流出しないようにす
る。
According to the present invention, a part (1) of the drainage means is provided on the downstream side from the middle of the flow path of the oxidant gas or the flow path of the fuel gas so that a part of the condensed water generated on the upstream side of the flow path is removed. Can be discharged to the outside. The drainage means has a configuration (2) having a water sealing portion serving as a gas seal to prevent outflow of gas flowing through the flow path, and the drainage means is configured to connect the drainage means to the cooling water passage of the fuel cell (3) The condensed water can be effectively used as a part of the cooling water for the fuel cell. A configuration in which a connecting portion that connects a plurality of flow passages is provided on the downstream side of the middle of the gas flow passage, and the connecting portion is connected to the drainage means (4)
Thereby, the flow velocity of the gas can be reduced at the connecting portion to facilitate the generation of condensed water, and the condensed water can be quickly discharged to the outside by the liquid discharging means. With this structure (5), in which the connecting portion is provided outside the region of the fuel cell reaction in which the membrane electrolyte is sandwiched between the fuel electrode and the air electrode, the water vapor in the connecting portion is easily cooled and the drain effect can be enhanced. Further, since the connecting portion is provided so as to overhang the supply manifold region of any one of the fuel gas, the oxidant gas and the cooling water (6), the cooling action is increased and the throttle channel is formed in the supply manifold, so that the cell is formed. It is possible to make the flow distribution (flow rate distribution) in the stacking direction uniform. Furthermore, with the configuration (7), heat can be exchanged between the gas flowing through the connecting portion and any of the oxidant gas, the fuel gas, and the cooling water before being subjected to the fuel cell reaction. Further, the drainage means is provided in the separator by a structure (8) which is a path communicating with the discharge manifold for these gases and the connecting portion, separately from the flow path of the oxidant gas or the fuel gas. The structure (9) in which the fiber material is laid in the path can absorb the condensed water or guide it to the discharge manifold by the capillary phenomenon, and prevent gas from flowing out into the path.

【0010】[0010]

【発明の実施の形態】次に、本発明に係る燃料電池の実
施形態について添付図面を参照しながら説明する。図1
は本発明の第1実施形態を示すもので、図中1は空気極
側のセパレータであり、その表面に複数の凹溝状流路2
が折り返しを介して屈曲形状に形成され、始端部は酸化
剤ガスの供給マニホールド3に接続され、終端部は排出
マニホールド4に接続されている。従って、酸化剤ガス
は、供給マニホールド3から流路2に流入し、この流路
2を通過した後に排出マニホールド4から排出される。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of a fuel cell according to the present invention will be described with reference to the accompanying drawings. Figure 1
1 shows the first embodiment of the present invention, in which 1 is a separator on the side of the air electrode, and a plurality of grooved channels 2 are formed on the surface thereof.
Is formed in a bent shape through folding back, the start end is connected to the oxidizing gas supply manifold 3, and the end is connected to the discharge manifold 4. Therefore, the oxidant gas flows into the flow path 2 from the supply manifold 3, passes through the flow path 2, and is then discharged from the discharge manifold 4.

【0011】前記セパレータ1は、流路2における中間
より下流側例えば最後の折り返し部に複数の流路2を相
互に連通する連結部5を設け、この連結部5の下部に排
液手段6を設ける。この場合、排液手段6はほぼS字形
に屈曲したドレン管6aにより構成され、そのドレン管
6aの上端が連結部5の下部に連通して接続され、下端
は外部に開口している。
The separator 1 is provided with a connecting portion 5 for communicating a plurality of flow passages 2 with each other at the downstream side from the middle of the flow passage 2, for example, at the last folded portion, and draining means 6 is provided under the connecting portion 5. Set up. In this case, the drainage means 6 is composed of a drain pipe 6a that is bent in a substantially S shape, the upper end of the drain pipe 6a is connected to the lower part of the connecting portion 5 and is connected, and the lower end is open to the outside.

【0012】このように構成されたセパレータ1におい
て、前記供給マニホールド3から加湿された酸化剤ガス
が供給されると流路2を通過して流れ、図示は省略した
が燃料極側のセパレータの流路を流れる燃料ガスと共
に、膜状電解質を介して電気化学反応により起電力が生
じる。セパレータ1の流路2は空気極(図略)が密着す
る反応領域7(破線で示す)内を酸化剤ガスが平均的に
流れ、しかも流域面積が大きくなるように設計されてい
る。
In the separator 1 thus constructed, when the humidified oxidant gas is supplied from the supply manifold 3, it flows through the flow passage 2, and although not shown, the flow of the separator on the fuel electrode side is shown. An electromotive force is generated by an electrochemical reaction through the membrane electrolyte together with the fuel gas flowing in the passage. The flow path 2 of the separator 1 is designed so that the oxidant gas flows evenly in the reaction region 7 (shown by a broken line) with which the air electrode (not shown) is in close contact, and the flow area is large.

【0013】このように、空気極側で生成された水はセ
パレータ1の流路2を流れる酸化剤ガス中に混入し、下
流に行く程酸化剤ガス中の水蒸気分圧が高くなって過飽
和状態となる。
As described above, the water generated on the air electrode side is mixed into the oxidant gas flowing through the flow path 2 of the separator 1, and the steam partial pressure in the oxidant gas increases toward the downstream side, resulting in a supersaturated state. Becomes

【0014】第1実施形態では、前記のようにセパレー
タ1の流路2の下流側に連結部5が設けられているた
め、酸化剤ガスがその連結部5に至ると流速が減少し、
過飽和状態の水蒸気が凝縮して凝縮水が発生する。この
凝縮水は、連結部5を流下して前記排液手段6のドレン
管6a内に流入し、下端の開口部から外部に排出され
る。この時、ドレン管6aのU形屈曲部が封水部6bと
なってガスシール作用をなすため、酸化剤ガスはドレン
管6aを介して外部に流出することはなく、連結部5よ
り更に下流側の流路2を通過して排出マニホールド4か
ら排出される。
In the first embodiment, since the connecting portion 5 is provided on the downstream side of the flow path 2 of the separator 1 as described above, when the oxidizing gas reaches the connecting portion 5, the flow velocity decreases,
Supersaturated water vapor condenses to produce condensed water. The condensed water flows down through the connecting portion 5, flows into the drain pipe 6a of the drainage means 6, and is discharged to the outside through the opening at the lower end. At this time, since the U-shaped bent portion of the drain pipe 6a serves as a water sealing portion 6b to perform a gas sealing action, the oxidizing gas does not flow out to the outside through the drain pipe 6a, and is further downstream from the connecting portion 5. It is discharged from the discharge manifold 4 through the side flow path 2.

【0015】このようにしてセパレータ1の上流側で生
じる凝縮水を排液手段6により外部に排出できることか
ら、下流側で凝縮水が流路2の表面に付着して閉塞する
頻度が低減される。従って、酸化剤ガスの供給が適正に
行われることから正常な電気化学反応が保たれ、燃料電
池の発電性能を低下させることがない。
In this way, since the condensed water generated on the upstream side of the separator 1 can be discharged to the outside by the drainage means 6, the frequency of the condensed water adhering to the surface of the flow path 2 and blocking it is reduced on the downstream side. . Therefore, since the oxidant gas is properly supplied, a normal electrochemical reaction is maintained and the power generation performance of the fuel cell is not deteriorated.

【0016】上記第1実施形態では、連結部5の下に排
液手段6を設けたものであるが、連結部5を設けずに排
液手段6のみで凝縮水を外部に排出することも可能であ
る。その場合には、例えば排液手段6のドレン管6aの
上端部を分岐させて複数の流路2にそれぞれ接続するよ
うに構成すると好ましい。又、ドレン管6aを安定良く
取り付けるためには、セパレータ1に凹溝を形成してそ
の凹溝内にドレン管を嵌め込むようにする。
In the first embodiment described above, the drainage means 6 is provided below the connecting portion 5, but the drainage means 6 alone may be used to discharge the condensed water to the outside without providing the connecting portion 5. It is possible. In that case, for example, it is preferable that the upper end portion of the drain pipe 6a of the drainage means 6 is branched to be connected to each of the plurality of flow paths 2. Further, in order to attach the drain pipe 6a in a stable manner, a concave groove is formed in the separator 1 and the drain pipe is fitted into the concave groove.

【0017】図2は本発明の第2実施形態を示すもので、
第1実施形態とほぼ同じであるが、排液手段6の構成が
相違している。即ち、この場合は、S字形のドレン管を
用いずに、直管6cとこの直管6cの下端部に接続した
ドレンタンク6dとから排液手段6を構成する。ドレン
タンク6dは、排出管6eをドレンタンク6dの底壁か
ら所定の高さ位置に取り付け、内部に一定量のドレン
(凝縮水)を保持し、このドレン中に直管6cの下端部
を位置させることで、ガスシールとなる封水部6fが形
成されるようにする。
FIG. 2 shows a second embodiment of the present invention.
Although it is almost the same as the first embodiment, the configuration of the drainage means 6 is different. That is, in this case, the drainage means 6 is constituted by the straight pipe 6c and the drain tank 6d connected to the lower end of the straight pipe 6c without using the S-shaped drain pipe. The drain tank 6d is provided with a discharge pipe 6e at a predetermined height position from the bottom wall of the drain tank 6d, holds a certain amount of drain (condensed water) inside, and locates the lower end of the straight pipe 6c in the drain. By doing so, the water sealing portion 6f serving as a gas seal is formed.

【0018】図3は本発明の第3実施形態を示すもの
で、上記第2の実施形態を更に発展させ、ドレンタンク
6dから排出されるドレン(凝縮水)を燃料電池の冷却
水の一部として有効利用することを意図したものであ
る。固体高分子型の燃料電池は、前記のように電気化学
反応は発熱反応のために温度が上昇する。このため、冷
却水を供給することにより、燃料電池を適正温度例えば
80℃に保持することが行われている。
FIG. 3 shows a third embodiment of the present invention, which is a further development of the second embodiment, in which drain (condensed water) discharged from the drain tank 6d is part of cooling water for the fuel cell. It is intended to be effectively used as. As described above, in the polymer electrolyte fuel cell, the temperature rises because the electrochemical reaction is an exothermic reaction. Therefore, the cooling water is supplied to keep the fuel cell at an appropriate temperature, for example, 80 ° C.

【0019】上記の意図に基づき、前記ドレンタンク6
dを冷却水経路8に接続する構成がとられている。ドレ
ンタンク6dの排出管6eから排出されるドレン(凝縮
水)は、冷却水としてポンプ8aにより燃料電池の冷却
部に送り込まれ、冷却部から排出された冷却水はドレン
タンク6dに戻される。燃料電池の冷却部は、通常各セ
ルのセパレータの背面側に設けられた冷却水の流路(図
略)により構成されている。
Based on the above intention, the drain tank 6 is
The configuration is adopted in which d is connected to the cooling water path 8. The drain (condensed water) discharged from the drain pipe 6e of the drain tank 6d is sent as cooling water to the cooling section of the fuel cell by the pump 8a, and the cooling water discharged from the cooling section is returned to the drain tank 6d. The cooling unit of the fuel cell is usually constituted by a cooling water flow path (not shown) provided on the back side of the separator of each cell.

【0020】このようにすれば、凝縮水をドレンタンク
6dから外部に捨てずに燃料電池を冷却するための冷却
水として有効利用することができる。又、ドレンタンク
6dは従来の水タンクとして兼用することができる。冷
却水の不足分はドレンタンク6dに市水を供給すること
で補給する。
In this way, the condensed water can be effectively used as cooling water for cooling the fuel cell without discarding the condensed water from the drain tank 6d to the outside. Further, the drain tank 6d can also be used as a conventional water tank. The shortage of the cooling water is supplied by supplying city water to the drain tank 6d.

【0021】図4は本発明の第4実施形態を示すもの
で、上記第2実施例とほぼ同じであるが、連結部5を前
記燃料電池の反応領域7外に位置させて設けた構成が相
違している。即ち、連結部5は膜状電解質が燃料極及び
空気極に挟まれた反応領域7の外側、具体的には前記供
給マニホールド3の下方部に設けられている。
FIG. 4 shows a fourth embodiment of the present invention, which is almost the same as the second embodiment, except that the connecting portion 5 is provided outside the reaction region 7 of the fuel cell. It's different. That is, the connecting portion 5 is provided outside the reaction region 7 in which the membrane electrolyte is sandwiched between the fuel electrode and the air electrode, specifically, below the supply manifold 3.

【0022】燃料電池の反応領域7内では、発熱反応を
起こして高温となっているが、反応領域7外では低い温
度であるため、連結部5内の水蒸気が冷却されて凝縮化
し易くなる。このため、連結部5を反応領域7内に設け
た場合に比して冷却作用が高まることにより凝縮水が多
量に発生し、その凝縮水は前記排液手段6によりドレン
タンク6d内に排出される。
In the reaction region 7 of the fuel cell, an exothermic reaction occurs and the temperature is high, but outside the reaction region 7, the temperature is low, so that the water vapor in the connecting portion 5 is easily cooled and condensed. Therefore, a large amount of condensed water is generated due to the enhanced cooling effect as compared with the case where the connecting portion 5 is provided in the reaction region 7, and the condensed water is discharged into the drain tank 6d by the drainage means 6. It

【0023】図5は本発明の第5実施形態を示すもの
で、上記第4実施形態を発展させたもので、連結部5を
供給マニホールド3に関連させた構成に特徴を有する。
即ち、連結部5は、供給マニホールド3の領域に張り出
して設け、供給マニホールド3に絞り通路3aが形成さ
れるように構成する。供給マニホールド3は、上記第1
〜第4実施形態のものより長寸に形成され、下端部の導
入口3bから酸化剤ガスが流入すると共に、絞り通路3
aを通って上方部に至り流路2内に供給できるようにし
てある。
FIG. 5 shows a fifth embodiment of the present invention, which is a development of the fourth embodiment and is characterized by the structure in which the connecting portion 5 is associated with the supply manifold 3.
That is, the connecting portion 5 is provided so as to project in the region of the supply manifold 3, and the throttle passage 3 a is formed in the supply manifold 3. The supply manifold 3 is the first
~ It is formed to be longer than that of the fourth embodiment, the oxidant gas flows in from the inlet 3b at the lower end, and the throttle passage 3 is formed.
It can be supplied to the inside of the flow path 2 through a.

【0024】この場合、供給マニホールド3の導入口3
bからは燃料電池反応に供する前の酸化剤ガスが流入す
ることから、前記連結部5を通る酸化剤ガスより低温で
あり、供給マニホールド3の絞り通路3aと連結部5と
は隣接状態にあるため、連結部5を通る酸化剤ガスは絞
り通路3aを通る低温の酸化剤ガスによって冷却され
る。つまり、連結部5を流れる酸化剤ガスと、燃料電池
反応に供する前の酸化剤ガスとの間で熱交換が行われ
る。これにより、第4実施形態に比して連結部5での冷
却作用が向上し、ドレン効果を更に高めることができ
る。
In this case, the inlet 3 of the supply manifold 3
Since the oxidant gas before being subjected to the fuel cell reaction flows in from b, the temperature is lower than that of the oxidant gas passing through the connecting portion 5, and the throttle passage 3a of the supply manifold 3 and the connecting portion 5 are adjacent to each other. Therefore, the oxidant gas passing through the connecting portion 5 is cooled by the low temperature oxidant gas passing through the throttle passage 3a. That is, heat exchange is performed between the oxidant gas flowing through the connecting portion 5 and the oxidant gas before being subjected to the fuel cell reaction. As a result, the cooling effect at the connecting portion 5 is improved as compared with the fourth embodiment, and the drain effect can be further enhanced.

【0025】前記供給マニホールド3は、燃料電池のセ
ル積層方向に連通しており、通常酸化剤ガスは燃料電池
の端部つまり再外側のセパレータの導入口3bから供給
される。導入された酸化剤ガスは、前記絞り通路3aを
通って上方部に至り各セパレータ1の流路2に供給され
るが、絞り通路3aによってセル積層方向の流配が均一
化される。このため、各セパレータ1の流路2には酸化
剤ガスがほぼ均一量供給されることとなり、その結果各
セルにおいて電池反応にばらつきが生じることなく、効
率の良い発電が行われる。各セルにおいて、反応領域7
で未反応に終わった酸化剤ガスは、前記排出マニホール
ド4に排出され、セル積層方向に連通するこの排出マニ
ホールド4を通って燃料電池の外部に排気される。
The supply manifold 3 is communicated with the cell stacking direction of the fuel cell, and the oxidant gas is usually supplied from the end portion of the fuel cell, that is, the inlet 3b of the outer separator. The introduced oxidant gas reaches the upper part through the throttle passage 3a and is supplied to the flow passage 2 of each separator 1. The throttle passage 3a makes the flow distribution in the cell stacking direction uniform. Therefore, the oxidant gas is supplied to the flow path 2 of each separator 1 in a substantially uniform amount, and as a result, the cell reaction does not vary in each cell, and efficient power generation is performed. Reaction area 7 in each cell
The unreacted oxidant gas is discharged to the discharge manifold 4, and is discharged to the outside of the fuel cell through the discharge manifold 4 communicating in the cell stacking direction.

【0026】図6は本発明の第6実施形態を示すもの
で、排液手段6をセパレータ1内に設ける構成に特徴を
有するものである。即ち、酸化剤ガスの流路2とは別
に、当該ガスの出口である排出マニホールド4と連結部
5とが通ずる経路6gを排液手段6とする。この経路6
gはセパレータ1の表面下端部に凹溝を形成することで
容易に構成することができる。この経路6gには、例え
ば吸水性の不織布や毛管現象による吸水機能の優れた織
布等の繊維材料(図略)を敷設することが好ましい。
FIG. 6 shows a sixth embodiment of the present invention, which is characterized in that the drainage means 6 is provided in the separator 1. That is, in addition to the flow path 2 for the oxidant gas, the path 6g through which the discharge manifold 4 that is the outlet of the gas and the connecting portion 5 communicate is used as the drainage means 6. This route 6
g can be easily formed by forming a groove on the lower end of the surface of the separator 1. It is preferable to lay a fibrous material (not shown) such as a water-absorbent non-woven fabric or a woven fabric having an excellent water-absorbing function due to a capillary phenomenon in the path 6g.

【0027】この場合、連結部5で生じた凝縮水は、排
液手段6である経路6g内に流入すると共に、この経路
を経て排出マニホールド4に排出される。排出マニホー
ルド4に排出された凝縮水は、燃料電池のセル積層方向
に連通するこの排出マニホールド4を経て酸化剤ガスと
共に外部に排出される。経路内には前記のように繊維材
料が敷設され凝縮水が充満しているため、酸化剤ガスが
経路6g中に流出するのを阻止することができる。
In this case, the condensed water generated at the connecting portion 5 flows into the passage 6g which is the drainage means 6 and is discharged to the discharge manifold 4 through this passage. The condensed water discharged to the discharge manifold 4 is discharged to the outside together with the oxidant gas through the discharge manifold 4 communicating with the cell stacking direction of the fuel cell. Since the fibrous material is laid inside the passage and filled with condensed water as described above, it is possible to prevent the oxidant gas from flowing out into the passage 6g.

【0028】上記実施形態はいずれも空気極側における
セパレータ1の流路2に加湿酸化剤ガスが供給される例
に関するものであったが、燃料極側においてセパレータ
の流路に加湿燃料ガスが供給される例についても、上記
実施形態をいずれも適用することが可能である。
Although the above embodiments are all related to the case where the humidified oxidant gas is supplied to the flow path 2 of the separator 1 on the air electrode side, the humidified fuel gas is supplied to the flow path of the separator on the fuel electrode side. The above-described embodiments can be applied to the example described above.

【0029】又、前記のように連結部5を酸化剤ガスの
供給マニホールド領域に張り出して設けるが、燃料電池
の冷却部に設ける冷却水の供給マニホールド(図略)に
隣接させて設け、連結部5を通る酸化剤ガスと冷却水と
の間で熱交換させるように構成することができる。更
に、図示は省略したが燃料極側に適用する場合は、連結
部を燃料ガスの供給マニホールド領域に張り出して設け
るが、この場合も燃料電池の冷却部に設ける冷却水の供
給マニホールド(図略)に隣接させて設けることによ
り、連結部を通る燃料ガスと冷却水との間で熱交換させ
ることも可能である。尚、上記実施形態では、セパレー
タの流路は折り返しを有する屈曲形状のもので説明した
が、これに限定されずに直線状その他任意形状の流路に
も充分適用することができる。
Further, although the connecting portion 5 is provided so as to overhang the oxidant gas supply manifold region as described above, it is provided adjacent to the cooling water supply manifold (not shown) provided in the cooling portion of the fuel cell. It can be configured to exchange heat between the oxidant gas passing through 5 and the cooling water. Further, although not shown, in the case of applying to the fuel electrode side, the connecting portion is provided so as to project to the fuel gas supply manifold region. In this case as well, the cooling water supply manifold (not shown) provided in the cooling portion of the fuel cell It is also possible to perform heat exchange between the fuel gas passing through the connecting portion and the cooling water by being provided adjacent to. In the above-described embodiment, the separator has been described as having a bent flow path having a folded portion, but the present invention is not limited to this, and the present invention can be applied to a linear flow path or any other flow path.

【0030】[0030]

【発明の効果】以上説明したように、本発明は、燃料電
池の酸化剤ガス又は燃料ガスの流路の中間より下流側に
排液手段を設けたので、セルの上流側で生じる凝縮水の
一部を排出することができるため、下流側における凝縮
水による流路の閉塞の頻度を低減できる。又、連結部を
設けることでガスの流速を低下させ、凝縮水を生じ易く
することにより、更に多くの凝縮水を排液手段に導くこ
とができる。更に、連結部を電池反応領域の外側に設
け、或は酸化剤ガス又は燃料ガスの供給マニホールド領
域に張り出して設けることで冷却効率を上げると共に、
熱交換させることができる。本発明によれば、構造が簡
単で容易に加工できる構成により凝縮水を除去できるよ
うにした固体高分子型燃料電池を提供することができ、
これにより凝縮水に起因する発電性能の低下を防ぎ、燃
料電池の発電を効率良く行える効果を奏する。
As described above, in the present invention, since the drainage means is provided on the downstream side of the middle of the flow path of the oxidant gas or the fuel gas of the fuel cell, the condensed water generated on the upstream side of the cell is discharged. Since a part can be discharged, the frequency of clogging of the flow path on the downstream side by condensed water can be reduced. Further, by providing the connecting portion, the flow velocity of the gas is reduced and condensed water is easily generated, so that a larger amount of condensed water can be guided to the drainage means. Further, the cooling efficiency can be improved by providing the connecting portion outside the cell reaction region or by providing the connection portion overhanging the supply manifold region for the oxidant gas or the fuel gas.
Heat can be exchanged. According to the present invention, it is possible to provide a polymer electrolyte fuel cell capable of removing condensed water with a structure having a simple structure and easily processed,
As a result, it is possible to prevent a decrease in power generation performance due to condensed water and to efficiently generate power in the fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態を示す模式的略図FIG. 1 is a schematic diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施形態を示す模式的略図FIG. 2 is a schematic diagram showing a second embodiment of the present invention.

【図3】本発明の第3実施形態を示す模式的略図FIG. 3 is a schematic diagram showing a third embodiment of the present invention.

【図4】本発明の第4実施形態を示す模式的略図FIG. 4 is a schematic diagram showing a fourth embodiment of the present invention.

【図5】本発明の第4実施形態を示す模式的略図FIG. 5 is a schematic diagram showing a fourth embodiment of the present invention.

【図6】本発明の第4実施形態を示す模式的略図FIG. 6 is a schematic diagram showing a fourth embodiment of the present invention.

【図7】固体高分子型燃料電池のセル構造の一例を示す
説明図
FIG. 7 is an explanatory view showing an example of a cell structure of a polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1…セパレータ 2…流路 3…供給マニホールド 4…排出マニホールド 5…連結部 6…排液手段 6a…ドレン管 6b…封水部 6c…直管 6d…ドレンタンク 6e…排出管 6f…封水部 6g…経路 7…反応領域 8…冷却水経路 1 ... Separator 2 ... Channel 3 ... Supply manifold 4 ... Discharge manifold 5 ... Connection part 6 ... drainage means 6a ... Drain pipe 6b ... Sealing part 6c ... Straight pipe 6d ... Drain tank 6e ... Discharge pipe 6f ... water seal 6g ... route 7 ... Reaction area 8 ... Cooling water path

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井崎 博和 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H026 AA06 CC03 CC08 CX02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hirokazu Izaki             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F-term (reference) 5H026 AA06 CC03 CC08 CX02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】燃料極乃至空気極に、それぞれ燃料ガス乃
至酸化剤ガスの流路が表面に形成されたセパレータが対
峙し、燃料極と空気極との間に膜状電解質を配したセル
を複数積層してなる燃料電池において、前記酸化剤ガス
の流路又は燃料ガスの流路の中間より下流側に排液手段
を設けたことを特徴とする燃料電池。
1. A cell comprising a fuel electrode or an air electrode and a separator having a flow path for a fuel gas or an oxidant gas formed on the surface thereof, which faces each other, and a membranous electrolyte disposed between the fuel electrode and the air electrode. In a fuel cell formed by stacking a plurality of layers, a drainage means is provided on the downstream side from the middle of the flow path of the oxidant gas or the flow path of the fuel gas.
【請求項2】前記排液手段は、ガスシールとなる封水部
を有する請求項1記載の燃料電池。
2. The fuel cell according to claim 1, wherein the drainage means has a water sealing portion serving as a gas seal.
【請求項3】前記排液手段は、燃料電池の冷却水経路に
接続されている請求項1又は2記載の燃料電池。
3. The fuel cell according to claim 1, wherein the drainage means is connected to a cooling water path of the fuel cell.
【請求項4】前記酸化剤ガスの流路又は燃料ガスの流路
の中間より下流側に複数の流路を連通する連結部を設
け、この連結部は前記排液手段に接続されている請求項
1、2又は3記載の燃料電池。
4. A connecting portion that connects a plurality of flow passages is provided on the downstream side of the middle of the oxidizing gas passage or the fuel gas passage, and the connecting portion is connected to the drainage means. The fuel cell according to item 1, 2 or 3.
【請求項5】前記連結部は、膜状電解質が燃料極及び空
気極に挟まれた燃料電池反応の領域外に設けられている
請求項1、2、3又は4記載の燃料電池。
5. The fuel cell according to claim 1, wherein the connecting portion is provided outside the region of the fuel cell reaction in which the membrane electrolyte is sandwiched between the fuel electrode and the air electrode.
【請求項6】前記連結部は、燃料ガス、酸化剤ガス、冷
却水のいずれかの供給マニホールド領域に張り出して設
ける請求項1、2、3、4又は5記載の燃料電池。
6. The fuel cell according to claim 1, wherein the connecting portion is provided so as to project in a supply manifold region of any one of fuel gas, oxidant gas and cooling water.
【請求項7】前記連結部を流通する酸化剤ガス又は燃料
ガスと、燃料電池反応に供する前の酸化剤ガス、燃料ガ
ス、冷却水のいずれかとの間で熱交換させる請求項1、
2、3、4、5又は6記載の燃料電池。
7. The heat exchange between the oxidant gas or fuel gas flowing through the connecting portion and any one of the oxidant gas, fuel gas and cooling water before being subjected to the fuel cell reaction.
The fuel cell according to 2, 3, 4, 5 or 6.
【請求項8】前記排液手段は、酸化剤ガス又は燃料ガス
の流路とは別に、これらのガスの排出マニホールドと前
記連結部とが通ずる経路である請求項1記載の燃料電
池。
8. The fuel cell according to claim 1, wherein the draining means is a passage, which is separate from the flow path for the oxidant gas or the fuel gas, and which connects the discharge manifold for these gases and the connecting portion.
【請求項9】前記ガスの排出マニホールドと前記連結部
とが通ずる経路には繊維材料が敷設されている請求項8
記載の燃料電池。
9. A fiber material is laid in a path through which the gas discharge manifold and the connecting portion communicate with each other.
The fuel cell described.
JP2001261570A 2001-08-30 2001-08-30 Fuel cell Pending JP2003077495A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001261570A JP2003077495A (en) 2001-08-30 2001-08-30 Fuel cell
US10/230,589 US7276311B2 (en) 2001-08-30 2002-08-29 Fuel cell having temperature adjustment means for reaction gas
CNB021470375A CN100428552C (en) 2001-08-30 2002-08-30 Fuel battery
KR10-2002-0051891A KR100539114B1 (en) 2001-08-30 2002-08-30 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261570A JP2003077495A (en) 2001-08-30 2001-08-30 Fuel cell

Publications (1)

Publication Number Publication Date
JP2003077495A true JP2003077495A (en) 2003-03-14

Family

ID=19088596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261570A Pending JP2003077495A (en) 2001-08-30 2001-08-30 Fuel cell

Country Status (1)

Country Link
JP (1) JP2003077495A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038826A (en) * 2003-07-14 2005-02-10 Asia Pacific Fuel Cell Technology Ltd Flowing field structure of fuel cell electrode
JP2006156411A (en) * 2003-06-24 2006-06-15 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2006236851A (en) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp Polymer electrolyte fuel cell
JP2007227276A (en) * 2006-02-27 2007-09-06 Equos Research Co Ltd Fuel cell system
JP2007250311A (en) * 2006-03-15 2007-09-27 Ihi Corp Anti-freeze-blocking and freeze-block releasing method as well as system of drain exhaust pipe in solid polymer fuel cell generator
JP2008010350A (en) * 2006-06-30 2008-01-17 Matsushita Electric Ind Co Ltd Single cell for polymer electrolyte fuel battery
JP2010073564A (en) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd Fuel cell and separator for fuel cell
JP2010073565A (en) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd Fuel cell and separator for fuel cell
US7901826B2 (en) 2005-03-25 2011-03-08 Honda Motor Co., Ltd. Fuel cell
US8722219B2 (en) 2005-11-16 2014-05-13 Honda Motor Co., Ltd. Fuel cell stack having gas discharge passage and drainage passage joined at one end of the stack
US9960434B2 (en) 2016-01-06 2018-05-01 Hyundai Motor Company Fuel cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156411A (en) * 2003-06-24 2006-06-15 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP4599300B2 (en) * 2003-06-24 2010-12-15 パナソニック株式会社 Polymer electrolyte fuel cell
JP2005038826A (en) * 2003-07-14 2005-02-10 Asia Pacific Fuel Cell Technology Ltd Flowing field structure of fuel cell electrode
JP2006236851A (en) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp Polymer electrolyte fuel cell
US7901826B2 (en) 2005-03-25 2011-03-08 Honda Motor Co., Ltd. Fuel cell
US8722219B2 (en) 2005-11-16 2014-05-13 Honda Motor Co., Ltd. Fuel cell stack having gas discharge passage and drainage passage joined at one end of the stack
JP2007227276A (en) * 2006-02-27 2007-09-06 Equos Research Co Ltd Fuel cell system
JP2007250311A (en) * 2006-03-15 2007-09-27 Ihi Corp Anti-freeze-blocking and freeze-block releasing method as well as system of drain exhaust pipe in solid polymer fuel cell generator
JP2008010350A (en) * 2006-06-30 2008-01-17 Matsushita Electric Ind Co Ltd Single cell for polymer electrolyte fuel battery
JP2010073564A (en) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd Fuel cell and separator for fuel cell
JP2010073565A (en) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd Fuel cell and separator for fuel cell
US9960434B2 (en) 2016-01-06 2018-05-01 Hyundai Motor Company Fuel cell

Similar Documents

Publication Publication Date Title
JP3632468B2 (en) Gas separator for fuel cell and fuel cell using the gas separator for fuel cell
JP4623795B2 (en) Fuel cell stack
JP4456188B2 (en) Fuel cell stack
KR100619509B1 (en) Fuel battery
KR100539114B1 (en) Fuel cell
KR100798451B1 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
JP4295847B2 (en) Polymer electrolyte fuel cell system
JP2001118596A (en) Fuel cell stack
JP2008103241A (en) Fuel cell
JP3389551B2 (en) Polymer electrolyte fuel cell
JPH10284096A (en) Solid high polymer electrolyte fuel cell
JP2003077495A (en) Fuel cell
JP2004327089A (en) Fuel cell stack
JP2000082482A (en) Gas separator for fuel cell and the fuel cell, and gas distributing method for fuel cell
JP3894109B2 (en) Fuel cell
JP2002170584A (en) Solid polymer type fuel battery
KR100700073B1 (en) Fuel cell with drain structure of condensate
JP2002343382A (en) Fuel cell
JPH0689730A (en) Fuel cell with high polymer solid electrolyte
JP2010129482A (en) Fuel cell separator, fuel cell stack, and fuel cell system
EP1422775B1 (en) Fuel cell with separator plates having comb-shaped gas passages
JPH11176457A (en) Solid high polymer electrolyte fuel cell
JP2008243540A (en) Polymer electrolyte fuel cell power-generating device
JP2007087742A (en) Solid polymer fuel cell
JP4085668B2 (en) Fuel cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040713