JP2010152473A - Voltage detection circuit - Google Patents

Voltage detection circuit Download PDF

Info

Publication number
JP2010152473A
JP2010152473A JP2008327391A JP2008327391A JP2010152473A JP 2010152473 A JP2010152473 A JP 2010152473A JP 2008327391 A JP2008327391 A JP 2008327391A JP 2008327391 A JP2008327391 A JP 2008327391A JP 2010152473 A JP2010152473 A JP 2010152473A
Authority
JP
Japan
Prior art keywords
circuit
voltage
output
signal
enable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008327391A
Other languages
Japanese (ja)
Other versions
JP5453800B2 (en
Inventor
Shunsuke Shiodome
俊介 汐留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2008327391A priority Critical patent/JP5453800B2/en
Publication of JP2010152473A publication Critical patent/JP2010152473A/en
Application granted granted Critical
Publication of JP5453800B2 publication Critical patent/JP5453800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a voltage detection circuit having short stabilization time. <P>SOLUTION: The voltage detection circuit is started by an enable signal, and is detected by outputting a detection signal whether a measured voltage is higher than or lower than a reference voltage as a threshold. The circuit is provided with: a D-type flip flop using a power supply voltage as a D input, and using an inverted signal of the output of a comparator circuit as a clock, and using an enable inverted signal as a reset input; a detection output circuit for calculating the logical product of the Q output of the D-type flip flop and the output of the comparator circuit, and for outputting a detection signal; and an acceleration charging circuit for calculating the negative logical product of the inverted signal of the D-type flip flop Q output and the output of the comparator circuit, and for outputting a control signal to control connection from a power supply voltage to a divided voltage. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、チャージポンプの電圧制御の他、各種回路において、ある被測定電圧がある一定の電圧より大か小か検知するための発明に係り、特に基準電圧が被測定電圧と異なる電圧であるために被測定電圧を分圧する分圧回路を設けて比較しなければならない場合に用いられる回路であって、被測定電圧を接地電位との抵抗の比率により分圧した分圧電圧を設ける分圧回路と、分圧回路の出力と基準電圧とを比較する比較回路とを利用して検知結果を出力するに際して、イネーブル信号により起動し被測定電圧を閾値電圧より大か小かの検知信号を出力することにより行う電圧検知回路に関する。   The present invention relates to an invention for detecting whether a measured voltage is larger or smaller than a certain voltage in various circuits in addition to voltage control of a charge pump. In particular, the reference voltage is a voltage different from the measured voltage. For this purpose, a voltage dividing circuit that divides the voltage to be measured must be provided and compared, and the divided voltage is obtained by dividing the voltage to be measured by the ratio of the resistance to the ground potential. When the detection result is output using the circuit and the comparison circuit that compares the output of the voltage dividing circuit with the reference voltage, the detection signal is activated by the enable signal and the detected voltage is larger or smaller than the threshold voltage. It is related with the voltage detection circuit performed by doing.

従来から様々な電圧検知回路の回路構成が提案されている。図3は従来から良く用いられる電圧検知回路の例である。その回路の波形図を図4に示す。   Conventionally, various circuit configurations of voltage detection circuits have been proposed. FIG. 3 shows an example of a voltage detection circuit that has been frequently used in the past. A waveform diagram of the circuit is shown in FIG.

被測定電圧151を接地電位152との抵抗の比率により分圧した分圧回路の出力153を提供すべく設けた分圧回路111と、分圧回路の出力153と基準電圧154とを比較回路112で比較する。他方、イネーブル信号156は遅延回路113で遅延イネーブル信号157となり、この遅延イネーブル信号157と、比較回路112の比較回路出力155からAND回路114で論理積であるANDを取った結果を検知結果158とする。   A voltage dividing circuit 111 provided to provide an output 153 of a voltage dividing circuit obtained by dividing the voltage to be measured 151 by a ratio of the resistance to the ground potential 152, and an output 153 of the voltage dividing circuit and a reference voltage 154 are compared with each other. Compare with. On the other hand, the enable signal 156 becomes the delay enable signal 157 in the delay circuit 113, and the detection result 158 is obtained by taking the AND of the delay enable signal 157 and the AND circuit 114 from the comparison circuit output 155 of the comparison circuit 112. To do.

この場合、検知を停止できる様に、被測定電圧151を直接分圧回路111に直結せず、イネーブル信号によるスイッチ機能を持つ分圧入力回路115が設けられている。具体的には、イネーブ反転信号159がPMOSFETのゲート入力となっている回路からなる結果、イネーブル反転信号159が「Low」のときのみ被測定電圧151が直接分圧回路111の分圧入力電圧160となる。   In this case, a voltage dividing input circuit 115 having a switching function by an enable signal is provided so that the voltage to be measured 151 is not directly connected to the voltage dividing circuit 111 so that the detection can be stopped. Specifically, as a result of the circuit in which the enable inversion signal 159 is the gate input of the PMOSFET, the measured voltage 151 is directly divided into the divided input voltage 160 of the voltage dividing circuit 111 only when the enable inversion signal 159 is “Low”. It becomes.

さらに、比較回路112は、イネーブル信号161が「High」のときのみ働く。   Further, the comparison circuit 112 works only when the enable signal 161 is “High”.

この回路の動作波形は、図4の様な波形となる。   The operation waveform of this circuit is as shown in FIG.

すなわち、動作開始前181ではイネーブル信号が「Low」であり、そのイネーブル反転信号159が「High」の場合が初期状態なので、分圧入力回路115はOFFになっているため、直接分圧回路111により接地電位152が働き、分圧回路の出力153は低電圧になっている。また、同じイネーブル信号161が「Low」であるために比較回路112が働かず、比較回路出力155が「Low」となり、また、イネーブル信号156が「Low」であるために遅延回路113の遅延イネーブル信号157も最終的には「Low」となり、結局AND回路114から出る検知結果158も「Low」となっている。   That is, since the enable signal is “Low” before the operation is started 181 and the enable inversion signal 159 is “High” in the initial state, the voltage dividing input circuit 115 is OFF, so the voltage dividing circuit 111 directly. As a result, the ground potential 152 works, and the output 153 of the voltage dividing circuit is at a low voltage. Further, since the same enable signal 161 is “Low”, the comparison circuit 112 does not operate, the comparison circuit output 155 becomes “Low”, and since the enable signal 156 is “Low”, the delay enable of the delay circuit 113 is performed. The signal 157 is finally “Low”, and the detection result 158 output from the AND circuit 114 is also “Low”.

この状態で、イネーブル信号を立ち上げると安定時間182に入り、そのイネーブル反転信号159が「Low」となり、分圧入力回路115はONになるが、直接分圧回路111が充電されるのに時間がかかり、当初分圧回路の出力153は低電圧になっている。また、同じイネーブル信号161が「High」になるために比較回路112が働きだし、比較回路出力155が「High」となるが、イネーブル信号156が「High」になっても遅延回路113の遅延イネーブル信号157は当初「Low」となり、結局AND回路114から出る検知結果158も「Low」のままとなっている。   In this state, when the enable signal is raised, the stabilization time 182 is entered, the enable inversion signal 159 becomes “Low”, and the voltage dividing input circuit 115 is turned on, but it takes time to charge the voltage dividing circuit 111 directly. The output 153 of the voltage dividing circuit is initially at a low voltage. Further, since the same enable signal 161 becomes “High”, the comparison circuit 112 is activated, and the comparison circuit output 155 becomes “High”. However, even when the enable signal 156 becomes “High”, the delay enable of the delay circuit 113 is performed. The signal 157 is initially “Low”, and the detection result 158 from the AND circuit 114 eventually remains “Low”.

そして、直接分圧回路111が充電されるのに十分な安定時間182の長さが遅延回路113の遅延時間となっている。この様に、遅延回路113の遅延時間経過後、すなわち安定時間の後検知時間となり、分圧回路の出力153は被測定電圧側抵抗171、172、173と接地側抵抗174の比率で分圧され比較時間183、184、185に入る。   The delay time of the delay circuit 113 is the length of the stable time 182 sufficient to charge the voltage dividing circuit 111 directly. In this way, after the delay time of the delay circuit 113 has elapsed, that is, after the stabilization time, the detection time is reached, and the output 153 of the voltage dividing circuit is divided by the ratio of the measured voltage side resistors 171, 172, 173 and the ground side resistor 174. Comparison times 183, 184 and 185 are entered.

もし、閾値となる基準電圧154が安定時間経過後の分圧電圧153より高い場合、すなわち比較(+)時間183、185は、比較回路112の比較回路出力155が「High」となり、遅延イネーブル信号157も「High」となっているので、結局AND回路114から出る検知結果158も「High」となる。   If the reference voltage 154 serving as the threshold is higher than the divided voltage 153 after the stabilization time has elapsed, that is, the comparison (+) time 183 and 185, the comparison circuit output 155 of the comparison circuit 112 becomes “High”, and the delay enable signal Since 157 is also “High”, the detection result 158 from the AND circuit 114 eventually becomes “High”.

他方、もし、閾値となる基準電圧154が安定時間経過後の分圧回路の出力153より低い比較(−)時間184の場合は、比較回路112の比較回路出力155も「Low」となり、遅延イネーブル信号157も「High」となっていても、結局AND回路114から出る検知結果158は「Low」となる。   On the other hand, if the reference voltage 154 serving as the threshold is the comparison (−) time 184 lower than the output 153 of the voltage dividing circuit after the stable time has elapsed, the comparison circuit output 155 of the comparison circuit 112 is also “Low”, and the delay enable Even if the signal 157 is also “High”, the detection result 158 from the AND circuit 114 eventually becomes “Low”.

最後に、イネーブル信号が「Low」になった場合、そのイネーブル反転信号159が「High」となり分圧入力回路115はOFFになるため、直接分圧回路111により接地電位152まで分圧回路の出力153が電圧降下する。他方、同じイネーブル信号161も「Low」になるため比較回路112の比較回路出力155が「Low」となる。その結果、遅延イネーブル信号157が「High」のままでも、結局AND回路114から出る検知結果158も「Low」となって比較時間を終了し、動作終了後186となる。   Finally, when the enable signal becomes “Low”, the enable inversion signal 159 becomes “High” and the voltage dividing input circuit 115 is turned OFF, so that the voltage dividing circuit 111 directly outputs the output of the voltage dividing circuit to the ground potential 152. 153 voltage drops. On the other hand, since the same enable signal 161 also becomes “Low”, the comparison circuit output 155 of the comparison circuit 112 becomes “Low”. As a result, even if the delay enable signal 157 remains “High”, the detection result 158 finally output from the AND circuit 114 also becomes “Low”, and the comparison time is ended.

ほかに、特許文献1の様な、低電圧Vcc2からVoutを生成する場合と、高電圧Vcc1からVoutを生成する場合とでチャージポンプの段数を変えることでVoutの昇圧時間を短縮する技術が示されている。   In addition, a technique for shortening the Vout boosting time by changing the number of stages of the charge pump between the case of generating Vout from the low voltage Vcc2 and the case of generating Vout from the high voltage Vcc1 as shown in Patent Document 1 is shown. Has been.

特許文献は以下の通り。
特開2007−188612号公報 特開2005−141811号公報
The patent literature is as follows.
JP 2007-188612 A JP 2005-141811 A

起動時間の短縮を外部回路を用いずに自己回路だけによって構成し、安定時間の短縮を実現するとともに、分圧回路の抵抗で消費される消費電流を最小限にすることで経済的な回路となるとともに、抵抗で消費される消費電流を最小限にすることで熱の発生を最小限に抑制することを目的とする。   The start-up time can be shortened by using only the self-circuit without using an external circuit to reduce the stabilization time, and the current consumption consumed by the resistance of the voltage divider circuit can be minimized. At the same time, an object is to minimize the generation of heat by minimizing the current consumed by the resistor.

本発明で、前記課題を解決するため、まず、請求項1では、被測定電圧を接地電位との抵抗の比率により分圧した分圧電圧を設ける分圧回路と、分圧回路の出力と基準電圧とを比較する比較回路とを利用して検知結果を出力するに際して、イネーブル信号により起動し被測定電圧を閾値とする基準電圧より大か小かの検知信号を出力することにより行う電圧検知回路において、電源電圧をD入力とし比較回路出力の反転信号をクロックとしイネーブル反転信号をリセット入力としたD型フリップフロップと、D型フリップフロップのQ出力を比較回路出力との論理積により検知信号とする検知出力回路と、D型フリップフロップQ出力の反転信号と比較回路出力との否定論理積により電源電圧から分圧電圧への接続を制御する制御信号とする加速充電回路と、を備えることを特徴とする電圧検知回路を提供するものである。   In order to solve the above-mentioned problems in the present invention, first, in claim 1, a voltage dividing circuit for providing a divided voltage obtained by dividing the voltage to be measured by the ratio of the resistance to the ground potential, an output of the voltage dividing circuit, and a reference When outputting a detection result using a comparison circuit that compares the voltage, a voltage detection circuit that is activated by an enable signal and outputs a detection signal that is larger or smaller than a reference voltage with the measured voltage as a threshold value , A D-type flip-flop having a power source voltage as a D input, an inverted signal of the comparison circuit output as a clock and an enable inverted signal as a reset input, and a Q signal of the D-type flip-flop as a detection signal And a control signal for controlling the connection from the power supply voltage to the divided voltage by the negative logical product of the inverted output signal of the D-type flip-flop Q and the output of the comparison circuit. There is provided a voltage detection circuit, characterized in that it comprises a fast charging circuit.

また、請求項2では、さらに、イネーブル信号により比較回路の動作が為されるとともに、イネーブル反転信号により分圧電圧から接地電位へ接続するスイッチをOFF信号とする放電回路と、イネーブル信号により被測定電圧から分圧回路へ接続するスイッチをON信号とする分圧入力回路と、を備えることを特徴とする請求項1記載の電圧検知回路を提供するものである。   Further, in the second aspect, the operation of the comparison circuit is performed by the enable signal, and the discharge circuit that switches off the switch that connects the divided voltage to the ground potential by the enable inversion signal, and the measurement target by the enable signal A voltage detection circuit according to claim 1, further comprising: a voltage dividing input circuit having a switch connected to the voltage dividing circuit as an ON signal.

また、請求項3では、加速充電回路と放電回路と分圧入力回路がMOSFETからなることを特徴とする請求項2記載の電圧検知回路を提供するものである。   According to a third aspect of the present invention, there is provided the voltage detection circuit according to the second aspect, wherein the acceleration charging circuit, the discharging circuit, and the voltage dividing input circuit comprise MOSFETs.

また、請求項4では、加速充電回路が、D型フリップフロップQ出力の反転信号と比較回路出力のNAND信号を発生させ、このNAND信号が電源電圧から分圧電圧へ接続するPMOSFETのゲート入力となっている回路からなり、放電回路が、イネーブル反転信号がNMOSFETのゲート入力となっている回路からなり、分圧入力回路が、イネーブル反転信号がPMOSFETのゲート入力となっている回路からなることを特徴とする請求項3記載の電圧検知回路を提供するものである。   According to a fourth aspect of the present invention, the acceleration charging circuit generates an inverted signal of the D-type flip-flop Q output and a NAND signal of the comparison circuit output, and the NAND signal is connected to the gate input of the PMOSFET connected from the power supply voltage to the divided voltage. The discharge circuit is composed of a circuit in which the enable inversion signal is the gate input of the NMOSFET, and the voltage dividing input circuit is composed of a circuit in which the enable inversion signal is the gate input of the PMOSFET. The voltage detection circuit according to claim 3 is provided.

本発明により、請求項1では起動時間の短縮を外部回路を用いずに自己回路だけによって構成し、安定時間の短縮を実現するとともに、分圧回路の抵抗で消費される消費電流を最小限にすることで経済的な回路となるとともに、抵抗で消費される消費電流を最小限にすることで熱の発生を最小限に抑制する電圧検知回路を提供することが可能になった効果がある。   According to the present invention, the start-up time is shortened only by the self-circuit without using an external circuit according to the present invention, the stabilization time is shortened, and the current consumption consumed by the resistance of the voltage dividing circuit is minimized. Thus, there is an effect that it becomes possible to provide a voltage detection circuit which becomes an economical circuit and suppresses heat generation to a minimum by minimizing the current consumed by the resistor.

また、請求項2では、動作開始時に分圧回路の出力が下がりきっておらず、残留電荷が残っており基準電圧より高い場合に発生する誤動作を防止できるとともに、起動時間のみならず、比較時間終了後の立ち下げに要する時間も短縮することができる。   According to the second aspect of the present invention, the output of the voltage dividing circuit is not lowered at the start of operation, and it is possible to prevent a malfunction that occurs when the residual charge remains and is higher than the reference voltage. The time required for the shutdown after the completion can be shortened.

さらに、請求項3では、半導体集積回路の中で設計することを可能とし、動作の速い半導体集積回路を提供することが可能になったものである。   Further, according to the third aspect of the present invention, it is possible to design in a semiconductor integrated circuit and to provide a semiconductor integrated circuit having a fast operation.

請求項4では、その具体的に実現する回路構成を提供するものである。   Claim 4 provides a circuit configuration that is specifically realized.

本発明を実施するにあたって、最良の形態を説明する。当然、特許請求の範囲内で等価な回路等で同様な効果を奏する回路に変形実施することを排除するものではない。   In carrying out the present invention, the best mode will be described. Naturally, it is not excluded to modify the circuit to have the same effect with an equivalent circuit or the like within the scope of the claims.

図1は本願発明の一つの実施の形態にかかる電圧検知回路の例であり、この回路を用いて説明する。その回路の波形図を図2に示す。   FIG. 1 shows an example of a voltage detection circuit according to an embodiment of the present invention, which will be described using this circuit. A waveform diagram of the circuit is shown in FIG.

被測定電圧51を接地電位52との抵抗の比率により分圧した分圧回路の出力53を提供すべく分圧回路11が設けられており、分圧回路の出力53と基準電圧54とを比較回路12で比較する。   A voltage dividing circuit 11 is provided to provide an output 53 of a voltage dividing circuit obtained by dividing the voltage to be measured 51 by a resistance ratio with respect to the ground potential 52, and the output 53 of the voltage dividing circuit is compared with the reference voltage 54. The circuit 12 compares.

この場合、検知を停止できる様に、被測定電圧51を直接分圧回路11に直結せず、イネーブル信号59によるスイッチ機能を持つ分圧入力回路15が設けられいる。具体的には、イネーブル反転信号がPMOSFETのゲート入力となっている回路からなる結果、イネーブル信号が「High」のとき、すなわちイネーブル反転信号59が「Low」のときのみ被測定電圧51が直接分圧回路11の分圧入力電圧60となる。   In this case, a voltage dividing input circuit 15 having a switching function by an enable signal 59 is provided so that the voltage to be measured 51 is not directly connected to the voltage dividing circuit 11 so that detection can be stopped. Specifically, as a result of the circuit in which the enable inversion signal is the gate input of the PMOSFET, the measured voltage 51 is directly divided only when the enable signal is “High”, that is, when the enable inversion signal 59 is “Low”. The divided input voltage 60 of the voltage circuit 11 is obtained.

また、分圧電圧53は被測定電圧側抵抗71、72、73と接地側抵抗74の比率で分
圧される。
The divided voltage 53 is divided by the ratio of the measured voltage side resistors 71, 72, 73 and the ground side resistor 74.

この比較回路12の比較回路出力55は、NOT回路17にて論理反転してNOT回路出力57とした上、D型フリップフロップ13のクロックに入力される。なお、この入力Dは「High」である電源電圧68であり、リセット入力はイネーブル反転信号56である。   The comparison circuit output 55 of the comparison circuit 12 is logically inverted by the NOT circuit 17 to be a NOT circuit output 57 and then input to the clock of the D-type flip-flop 13. The input D is a power supply voltage 68 that is “High”, and the reset input is an enable inversion signal 56.

このD型フリップフロップ13のQ出力62と、比較回路12の比較回路出力55からAND回路14で論理積であるANDを取った結果を検知結果58とする。   A result obtained by ANDing the AND circuit 14 from the Q output 62 of the D-type flip-flop 13 and the comparison circuit output 55 of the comparison circuit 12 is defined as a detection result 58.

それとは別に、D型フリップフロップ13のQ出力62は、さらにNOT回路18にて論理反転したNOT回路出力63とした上、比較回路12の比較回路出力55とでNAND回路19で論理積の反転回路であるNANDを取った結果を加速充電抑制信号64とする。   Separately, the Q output 62 of the D-type flip-flop 13 is further set to a NOT circuit output 63 logically inverted by the NOT circuit 18, and the logical product is inverted by the NAND circuit 19 with the comparison circuit output 55 of the comparison circuit 12. The result of taking the NAND circuit is the acceleration charge suppression signal 64.

この場合、加速充電抑制信号64によるスイッチ機能を持つ加速充電回路21が設けられている。具体的には、加速充電抑制信号64がPMOSFETのゲート入力となっている回路からなる結果、加速充電抑制信号64が働かないときのみ「High」である電源電圧65が分圧回路の出力53に直結し、分圧回路の出力53が「High」となる。   In this case, an acceleration charging circuit 21 having a switching function based on the acceleration charge suppression signal 64 is provided. Specifically, as a result of the circuit in which the acceleration charge suppression signal 64 is the gate input of the PMOSFET, the power supply voltage 65 which is “High” only at the output 53 of the voltage divider circuit when the acceleration charge suppression signal 64 does not work. Directly connected, the output 53 of the voltage dividing circuit becomes “High”.

他方、イネーブル反転信号66によるスイッチ機能を持つ放電回路22が設けられている。具体的には、イネーブル反転信号がNMOSFETのゲート入力となっている回路からなる結果、イネーブル信号が「Low」のとき、すなわちイネーブル反転信号66が「High」のときのみ分圧回路の出力53が接地電位67に直結し、分圧回路の出力53の残留電荷が接地電位67に流れて、分圧回路の出力53が接地電位である「Low」になる。   On the other hand, a discharge circuit 22 having a switching function by an enable inversion signal 66 is provided. Specifically, as a result of the circuit in which the enable inversion signal is the gate input of the NMOSFET, the output 53 of the voltage dividing circuit is output only when the enable signal is “Low”, that is, when the enable inversion signal 66 is “High”. Directly connected to the ground potential 67, the residual charge of the output 53 of the voltage dividing circuit flows to the ground potential 67, and the output 53 of the voltage dividing circuit becomes “Low” which is the ground potential.

この回路の動作波形は、図2の様な波形となる。   The operation waveform of this circuit is as shown in FIG.

すなわち、動作開始前81ではイネーブル信号が「Low」である、すなわちイネーブル反転信号59が「High」の場合が初期状態なので、分圧入力回路15はOFFになっているため、直接分圧回路11により接地電位52が働き、分圧電圧53は低電圧になっているとともに、分圧回路の出力53が接地電位67に直結し、分圧回路の出力53の残留電荷が接地電位67に流れて、分圧回路の出力53が接地電位である低電圧になっている。   That is, since the enable signal is “Low” 81 before the operation is started, that is, when the enable inversion signal 59 is “High”, the voltage dividing input circuit 15 is OFF. Causes the ground potential 52 to work, the divided voltage 53 is low, the output 53 of the voltage dividing circuit is directly connected to the ground potential 67, and the residual charge of the output 53 of the voltage dividing circuit flows to the ground potential 67. The output 53 of the voltage dividing circuit is a low voltage that is the ground potential.

また、同じイネーブル信号61が「Low」であるために比較回路12が働かず、比較回路出力55が「Low」となり、D型フリップフロップ13のQ出力62はイネーブル反転信号56が「High」であるためにリセット入力が入っているので「Low」となり、それと比較回路12の比較回路出力55とのAND回路14での論理積であるANDの結果である検知結果58は「Low」となる。同様に、D型フリップフロップ13のQ出力62のNOT回路18による論理反転したNOT回路出力63は「High」であり、比較回路12の比較回路出力55からNAND回路14で論理積の反転であるNANDの結果である加速充電抑制信号64は「High」となる。これにより放電回路22のNMOSFETが働かず、電源電圧65から分圧回路の出力53に電荷が移動することはない。   Further, since the same enable signal 61 is “Low”, the comparison circuit 12 does not operate, the comparison circuit output 55 becomes “Low”, and the Q output 62 of the D-type flip-flop 13 has the enable inversion signal 56 “High”. For this reason, since the reset input is input, it becomes “Low”, and the detection result 58 that is the result of AND of the AND circuit 14 and the comparison circuit output 55 of the comparison circuit 12 becomes “Low”. Similarly, the NOT circuit output 63 logically inverted by the NOT circuit 18 of the Q output 62 of the D-type flip-flop 13 is “High”, and the logical product is inverted by the NAND circuit 14 from the comparison circuit output 55 of the comparison circuit 12. The acceleration charge suppression signal 64 that is a result of the NAND is “High”. As a result, the NMOSFET of the discharge circuit 22 does not work, and charge does not move from the power supply voltage 65 to the output 53 of the voltage dividing circuit.

この状態で、イネーブル信号を立ち上げるといきなり安定時間に入らず加速充電時間81になり、そのイネーブル反転信号59が「Low」となり、分圧入力回路15はONになる。それと同時にイネーブル信号が「Low」になりスイッチがOFFになり、放電回路22が閉じて分圧回路の出力53が接地電位67に電荷が移動できず、分圧回路の出力53の電位が維持される。   In this state, when the enable signal is raised, the stable charging time is not reached and the acceleration charging time 81 is reached, the enable inversion signal 59 becomes “Low”, and the voltage dividing input circuit 15 is turned on. At the same time, the enable signal becomes “Low”, the switch is turned off, the discharge circuit 22 is closed, and the output 53 of the voltage dividing circuit cannot move to the ground potential 67, and the potential of the output 53 of the voltage dividing circuit is maintained. The

また、直接分圧回路11は、当初分圧電圧53が低電圧になっているので、同じイネーブル信号61が「High」になるために比較回路12が働きだし、比較回路出力55が「High」となる。   In the direct voltage dividing circuit 11, since the divided voltage 53 is initially low, the same enable signal 61 becomes “High” so that the comparison circuit 12 is activated, and the comparison circuit output 55 is “High”. It becomes.

この比較回路12の比較回路出力55が「High」なので、NOT回路17にて論理反転したNOT回路出力57は「Low」となるので、D型フリップフロップ13のクロックに入力がなされないことになり、リセット入力もイネーブル反転信号56なので「High」であってもこのD型フリップフロップ13のQ出力62は「Low」のままとなっている。この結果、比較回路12の比較回路出力55との間でAND回路14で論理積であるANDを取った結果は「Low」のままとなり、検知結果58となる。   Since the comparison circuit output 55 of the comparison circuit 12 is “High”, the NOT circuit output 57 logically inverted by the NOT circuit 17 becomes “Low”, so that the clock of the D-type flip-flop 13 is not input. Since the reset input is also the enable inversion signal 56, the Q output 62 of the D-type flip-flop 13 remains “Low” even when “High”. As a result, a result obtained by ANDing the AND circuit 14 with the comparison circuit output 55 of the comparison circuit 12 remains “Low” and becomes a detection result 58.

他方、D型フリップフロップ13のQ出力62が「Low」であれば、さらにNOT回路18にて論理反転したNOT回路出力63として「High」となる。比較回路12の比較回路出力55も上述の様に「High」であるので、AND回路19で論理積の反転回路であるNANDを取った結果も「Low」となり加速充電抑制信号64がOFFとなる。これにより、加速充電抑制信号64がPMOSFETのゲート入力となっている加速充電回路21が働き出し、電源電圧65が分圧回路の出力53に直結し、分圧回路の出力53へ電荷が流れ出し加速充電される。   On the other hand, if the Q output 62 of the D-type flip-flop 13 is “Low”, the NOT circuit output 63 logically inverted by the NOT circuit 18 becomes “High”. Since the comparison circuit output 55 of the comparison circuit 12 is also “High” as described above, the result of taking the NAND that is the logical product inversion circuit in the AND circuit 19 is also “Low”, and the acceleration charge suppression signal 64 is turned OFF. . As a result, the acceleration charging circuit 21 in which the acceleration charge suppression signal 64 is the gate input of the PMOSFET starts to operate, the power supply voltage 65 is directly connected to the output 53 of the voltage dividing circuit, and charge flows out to the output 53 of the voltage dividing circuit and accelerates. Charged.

この結果、加速充電がされて直接分圧回路11は、分圧電圧53が基準電圧54より高電圧になると、加速充電時間82を終了し、比較回路12が働きだし、比較回路出力55が「Low」となり安定時間83が開始する。   As a result, when the acceleration charging is performed and the divided voltage 53 is higher than the reference voltage 54, the direct voltage dividing circuit 11 ends the accelerated charging time 82, the comparison circuit 12 is activated, and the comparison circuit output 55 is “ It becomes “Low” and the stabilization time 83 starts.

この結果、比較回路12の比較回路出力55も「Low」となり、NOT回路17にて論理反転したNOT回路出力57は「High」となり、D型フリップフロップ13のクロックに入力がされ、リセット入力もイネーブル反転信号56なので「High」であり、「High」である電源電圧68が入力Dであるので、D型フリップフロップ13のQ出力62は「High」となる。それでも、比較回路12の比較回路出力55とのAND回路14で論理積であるANDを取った結果は「Low」のままであり、検知結果58となる。   As a result, the comparison circuit output 55 of the comparison circuit 12 also becomes “Low”, the NOT circuit output 57 logically inverted by the NOT circuit 17 becomes “High”, the clock of the D-type flip-flop 13 is input, and the reset input also Since the enable inversion signal 56 is “High”, and the power supply voltage 68 that is “High” is the input D, the Q output 62 of the D-type flip-flop 13 becomes “High”. Nevertheless, the AND result of the logical product in the AND circuit 14 with the comparison circuit output 55 of the comparison circuit 12 remains “Low” and becomes the detection result 58.

他方、D型フリップフロップ13のQ出力62が「High」の場合は、さらにNOT回路18にて論理反転したNOT回路出力63が「Low」となり、比較回路12の比較回路出力55も「Low」になったので、NAND回路19で論理積の反転回路であるNANDを取った結果は「High」となり加速充電抑制信号64がONとなる。これにより、加速充電抑制信号64がPMOSFETのゲート入力となっている加速充電回路21が停止し、電源電圧65が分圧回路の出力53に直結しなくなり、分圧回路の出力53へ電荷が流れなくなる。   On the other hand, when the Q output 62 of the D-type flip-flop 13 is “High”, the NOT circuit output 63 logically inverted by the NOT circuit 18 becomes “Low”, and the comparison circuit output 55 of the comparison circuit 12 is also “Low”. As a result, the NAND circuit 19 takes the NAND which is the logical product inversion circuit, and the result is “High”, and the acceleration charge suppression signal 64 is turned ON. As a result, the acceleration charging circuit 21 in which the acceleration charging suppression signal 64 is the gate input of the PMOSFET is stopped, the power supply voltage 65 is not directly connected to the output 53 of the voltage dividing circuit, and charge flows to the output 53 of the voltage dividing circuit. Disappear.

これ以降、D型フリップフロップ13のQ出力62が「High」になりリセット信号が入力される、すなわちイネーブル反転信号56が「Low」になるまで「High」であり続ける。   Thereafter, the Q output 62 of the D-type flip-flop 13 becomes “High” and a reset signal is input, that is, it remains “High” until the enable inversion signal 56 becomes “Low”.

この結果、最終的に分圧電圧53は被測定電圧側抵抗71、72、73と接地側抵抗74の比率で分圧される状態で安定して安定時間83が終了し、比較時間84、85、86に入る。   As a result, finally, the divided voltage 53 is stably divided in the ratio of the measured voltage-side resistors 71, 72, 73 and the ground-side resistor 74, and the stabilization time 83 ends. Enter 86.

もし、閾値である基準電圧54が安定時間経過後の分圧電圧53より高い場合、すなわち比較(+)時間84、86は、比較回路12の比較回路出力55が「High」となり、D型フリップフロップ13のQ出力62も「High」であり続けるので、結局AND回路14から出る検知結果58も「High」となる。また、D型フリップフロップ13のQ出力62はNOT回路18にて論理反転したNOT回路出力63が「Low」となり、比較回路12の比較回路出力55が「High」であっても、AND回路19で論理積の反転回路であるNANDを取った結果は「High」となり加速充電抑制信号64がONのままである。   If the reference voltage 54, which is a threshold value, is higher than the divided voltage 53 after the stabilization time has elapsed, that is, the comparison (+) time 84, 86, the comparison circuit output 55 of the comparison circuit 12 becomes "High" and the D-type flip-flop Since the Q output 62 of the group 13 continues to be “High”, the detection result 58 output from the AND circuit 14 eventually becomes “High”. Further, the Q output 62 of the D-type flip-flop 13 is AND circuit 19 even if the NOT circuit output 63 logically inverted by the NOT circuit 18 becomes “Low” and the comparison circuit output 55 of the comparison circuit 12 is “High”. The result of taking the NAND which is the logical product inversion circuit becomes “High”, and the acceleration charge suppression signal 64 remains ON.

他方、もし、閾値である基準電圧54が安定時間経過後の分圧回路の出力53より低い場合、すなわち比較(−)時間85は、比較回路12の比較回路出力55も「Low」となり、D型フリップフロップ13のQ出力62も「High」であり続けても、結局AND回路14から出る検知結果58も「Low」となる。また、NOT回路18にて論理反転したNOT回路出力63も「Low」のままなので、しかも比較回路12の比較回路出力55が「Low」なので、AND回路19で論理積の反転回路であるNANDを取った結果は「High」となり加速充電抑制信号64がONのままである。   On the other hand, if the reference voltage 54, which is a threshold value, is lower than the output 53 of the voltage dividing circuit after the stabilization time has elapsed, that is, the comparison circuit output 55 of the comparison circuit 12 becomes “Low” during the comparison (−) time 85, and D Even if the Q output 62 of the flip-flop 13 continues to be “High”, the detection result 58 output from the AND circuit 14 eventually becomes “Low”. Further, since the NOT circuit output 63 logically inverted by the NOT circuit 18 is also “Low”, and the comparison circuit output 55 of the comparison circuit 12 is “Low”, the AND circuit 19 uses the NAND that is the logical product inversion circuit. The result obtained is “High”, and the acceleration charge suppression signal 64 remains ON.

最後に、イネーブル信号が「Low」になった場合、そのイネーブル信号の反転信号59が「High」となり分圧入力回路15はOFFになるため、直接分圧回路11により接地電位52まで分圧電圧53が電圧降下すると同時に、イネーブル反転信号59が「High」になるので、分圧入力回路15はOFFになり、直接分圧回路11により接地電位52になり、分圧回路の出力53の残留電荷が接地電位52に流れることにより分圧回路の出力53が接地電位である低電圧になるとともにイネーブル反転信号66により放電回路22であるNMOSFETのゲート入力がONとなるので、分圧回路の出力53が接地電位67に直結し、分圧回路の出力53の残留電荷が接地電位67に加速に流れて放電し、分圧回路の出力53が接地電位である低電圧に加速的になる。これにより動作開始時に分圧回路の出力53が下がりきっておらず、残留電荷が残っており基準電圧54より高い場合に発生する誤動作を防止できる。   Finally, when the enable signal becomes “Low”, the inverted signal 59 of the enable signal becomes “High” and the voltage dividing input circuit 15 is turned OFF, so that the divided voltage is directly supplied to the ground potential 52 by the voltage dividing circuit 11. Since the enable inversion signal 59 becomes “High” at the same time as the voltage drop of the voltage 53, the voltage dividing input circuit 15 is turned off and directly becomes the ground potential 52 by the voltage dividing circuit 11, and the residual charge at the output 53 of the voltage dividing circuit. Flows to the ground potential 52, the output 53 of the voltage dividing circuit becomes a low voltage which is the ground potential, and the gate input of the NMOSFET which is the discharge circuit 22 is turned ON by the enable inversion signal 66, so the output 53 of the voltage dividing circuit Is directly connected to the ground potential 67, the residual charge at the output 53 of the voltage dividing circuit is accelerated to the ground potential 67 and discharged, and the output 53 of the voltage dividing circuit is grounded. Become accelerated to a low voltage is position. As a result, it is possible to prevent a malfunction that occurs when the output 53 of the voltage dividing circuit is not lowered at the start of the operation and the residual charge remains and is higher than the reference voltage 54.

また、同じイネーブル信号61が「Low」であるために比較回路12が停止し、比較回路出力55が「Low」となり、D型フリップフロップ13のD型フリップフロップ13のQ出力62もイネーブル反転信号56が「High」になりリセット入力が入って「Low」となり、それと比較回路12の比較回路出力55からAND回路14で論理積であるANDの結果である検知結果58も「Low」となって比較時間を終了し、動作終了後87となる。   Further, since the same enable signal 61 is “Low”, the comparison circuit 12 stops, the comparison circuit output 55 becomes “Low”, and the Q output 62 of the D-type flip-flop 13 of the D-type flip-flop 13 is also an enable inversion signal. 56 becomes “High”, a reset input is input and becomes “Low”, and the detection result 58 that is the result of AND that is the logical product of the AND circuit 14 from the comparison circuit output 55 of the comparison circuit 12 also becomes “Low”. The comparison time ends, and 87 is reached after the operation ends.

なお動作終了後87は、D型フリップフロップ13のQ出力62のNOT回路18により論理反転したNOT回路の出力63も「High」となり、比較回路12の比較回路出力55からNAND回路19で論理積の反転であるNANDの結果である加速充電抑制信号64も「High」となり、これにより、加速充電抑制信号64がPMOSFETのゲート入力となっている加速充電回路21が働きを停止する。これにより電圧降下回路21のPMOSFETがOFFのままであり、電源電圧65から分圧回路の出力53に電荷が移動することがない。   After the operation is completed 87, the output 63 of the NOT circuit logically inverted by the NOT circuit 18 of the Q output 62 of the D-type flip-flop 13 also becomes “High”, and the NAND circuit 19 performs a logical product from the comparison circuit output 55 of the comparison circuit 12. Acceleration charge suppression signal 64, which is the result of NAND that is the inversion of, also becomes “High”, thereby stopping the operation of acceleration charge circuit 21 in which acceleration charge suppression signal 64 is the gate input of PMOSFET. As a result, the PMOSFET of the voltage drop circuit 21 remains OFF, and charges do not move from the power supply voltage 65 to the output 53 of the voltage dividing circuit.

この様に、加速充電時間82に分圧回路の出力53が閾値である基準電圧54に近い電位になるため、この電位から被測定電圧側抵抗71、72、73と接地側抵抗74の比率で分圧される状態になる安定時間83は極めて短くなる。また、加速充電時間82も十分に短いため、両方の時間を合わせても従来の回路の安定時間182より極めて短い時間で比較時間に入ることができる。また、安定したかどうかの判断も、従来の回路における遅延回路113の様に固定的に設置する必要はなく、自己回路により安定時間が終了したか
判断しているので、余裕時間を持たせる必要がなく動作を早くできるものである。
In this way, since the output 53 of the voltage dividing circuit becomes a potential close to the reference voltage 54 which is the threshold value during the acceleration charging time 82, the ratio of the measured voltage side resistors 71, 72, 73 and the ground side resistor 74 is calculated from this potential. The stabilization time 83 in which the pressure is divided is extremely short. In addition, since the accelerated charging time 82 is sufficiently short, the comparison time can be entered in a time much shorter than the stabilization time 182 of the conventional circuit even if both the times are combined. In addition, it is not necessary to determine whether or not the circuit is stable as in the case of the delay circuit 113 in the conventional circuit, and since it is determined whether or not the stabilization time has been completed by the self circuit, it is necessary to provide a margin time. There is no, it can be operated quickly.

本発明の一つの実施の形態を示す回路図である。It is a circuit diagram showing one embodiment of the present invention. 本発明に関する図1の回路のタイミングチャートである。2 is a timing chart of the circuit of FIG. 1 relating to the present invention. 従来技術を示す回路図である。It is a circuit diagram which shows a prior art. 従来技術に関する図3の回路のタイミングチャートである。It is a timing chart of the circuit of FIG. 3 regarding a prior art.

符号の説明Explanation of symbols

11 分圧回路
12 比較回路
13 D型フリップフロップ
14 AND回路
15 分圧入力回路
17 NOT回路
18 NOT回路
19 NAND回路
21 加速充電回路
22 放電回路
51 被測定電圧
52 接地電位
53 分圧回路の出力
54 基準電圧
55 比較回路出力
56 イネーブル反転信号
57 NOT回路出力
58 検知結果
59 イネーブル反転信号
60 分圧入力電圧
61 イネーブル信号
62 D型フリップフロップのQ出力
63 NOT回路出力
64 加速充電抑制信号
65 電源電圧
66 イネーブル反転信号
67 接地電位
68 電源電圧
71、72、73 被測定電圧側抵抗
74 接地側抵抗
81 動作開始前
82 加速充電時間
83 安定時間
84、86 比較(+)時間
85 比較(−)時間
87 動作終了後
111 分圧回路
112 比較回路
113 遅延回路
114 AND回路
115 分圧入力回路
151 被測定電圧
152 接地電位
153 分圧回路の出力
154 基準電圧
155 比較回路出力
156 イネーブル信号
157 遅延イネーブル信号
158 検知結果
159 イネーブル反転信号
160 分圧入力電圧
161 イネーブル信号
171、172、173 被測定電圧側抵抗
174 接地側抵抗
181 動作開始前
182 安定時間
183、185 比較(+)時間
184 比較(−)時間
186 動作終了後
DESCRIPTION OF SYMBOLS 11 Voltage divider circuit 12 Comparison circuit 13 D type flip-flop 14 AND circuit 15 Voltage divider input circuit 17 NOT circuit 18 NOT circuit 19 NAND circuit 21 Acceleration charging circuit 22 Discharge circuit 51 Voltage to be measured 52 Ground potential 53 Output of voltage divider circuit 54 Reference voltage 55 Comparison circuit output 56 Enable inversion signal 57 NOT circuit output 58 Detection result 59 Enable inversion signal 60 Divided input voltage 61 Enable signal 62 D-type flip-flop Q output 63 NOT circuit output 64 Acceleration charge suppression signal 65 Power supply voltage 66 Enable inversion signal 67 Ground potential 68 Power supply voltage 71, 72, 73 Voltage-side resistance to be measured 74 Ground-side resistance 81 Before operation 82 Accelerated charging time 83 Stabilization time 84, 86 Comparison (+) time 85 Comparison (-) time 87 Operation 111 voltage divider after completion 12 Comparison circuit 113 Delay circuit 114 AND circuit 115 Voltage division input circuit 151 Voltage to be measured 152 Ground potential 153 Voltage division circuit output 154 Reference voltage 155 Comparison circuit output 156 Enable signal 157 Delay enable signal 158 Detection result 159 Enable inversion signal 160 minutes Voltage input voltage 161 Enable signal 171, 172, 173 Measured voltage side resistance 174 Ground side resistance 181 Before operation start 182 Stabilization time 183, 185 Comparison (+) time 184 Comparison (-) time 186 After operation end

Claims (4)

被測定電圧を接地電位との抵抗の比率により分圧した分圧電圧を設ける分圧回路と、分圧回路の出力と基準電圧とを比較する比較回路とを利用して検知結果を出力するに際して、イネーブル信号により起動し被測定電圧を閾値とする基準電圧より大か小かの検知信号を出力することにより行う電圧検知回路において、
電源電圧をD入力とし比較回路出力の反転信号をクロックとしイネーブル反転信号をリセット入力としたD型フリップフロップと、
D型フリップフロップのQ出力を比較回路出力との論理積により検知信号とする検知出力回路と、
D型フリップフロップQ出力の反転信号と比較回路出力との否定論理積により電源電圧から分圧電圧への接続を制御する制御信号とする加速充電回路と、
を備えることを特徴とする電圧検知回路。
When outputting a detection result using a voltage dividing circuit that provides a divided voltage obtained by dividing the voltage to be measured by the ratio of the resistance to the ground potential, and a comparison circuit that compares the output of the voltage dividing circuit with a reference voltage In the voltage detection circuit that is activated by the enable signal and outputs a detection signal that is larger or smaller than the reference voltage having the measured voltage as a threshold,
A D-type flip-flop having a power supply voltage as a D input, an inverted signal of the comparison circuit output as a clock, and an enable inverted signal as a reset input;
A detection output circuit that uses the Q output of the D-type flip-flop as a detection signal by a logical product with the output of the comparison circuit;
An acceleration charging circuit that serves as a control signal for controlling connection from the power supply voltage to the divided voltage by a negative logical product of the inverted signal of the D-type flip-flop Q output and the comparison circuit output;
A voltage detection circuit comprising:
さらに、イネーブル信号により比較回路の動作が為されるとともに、イネーブル反転信号により分圧電圧から接地電位へ接続するスイッチをOFF信号とする放電回路と、
イネーブル信号により被測定電圧から分圧回路へ接続するスイッチをON信号とする分圧入力回路と、
を備えることを特徴とする請求項1記載の電圧検知回路。
Further, the operation of the comparison circuit is performed by the enable signal, and the discharge circuit that sets the switch connected to the ground potential from the divided voltage by the enable inversion signal as an OFF signal,
A voltage dividing input circuit having an ON signal as a switch connected to the voltage dividing circuit from the voltage to be measured by an enable signal;
The voltage detection circuit according to claim 1, further comprising:
加速充電回路と放電回路と分圧入力回路がMOSFETからなることを特徴とする請求項2記載の電圧検知回路。   3. The voltage detection circuit according to claim 2, wherein the acceleration charging circuit, the discharging circuit, and the voltage dividing input circuit comprise MOSFETs. 加速充電回路が、D型フリップフロップQ出力の反転信号と比較回路出力のNAND信号を発生させ、このNAND信号が電源電圧から分圧電圧へ接続するPMOSFETのゲート入力となっている回路からなり、放電回路が、イネーブル反転信号がNMOSFETのゲート入力となっている回路からなり、分圧入力回路が、イネーブル反転信号がPMOSFETのゲート入力となっている回路からなることを特徴とする請求項3記載の電圧検知回路。   The acceleration charging circuit is composed of a circuit that generates an inverted signal of the D-type flip-flop Q output and a NAND signal of the output of the comparison circuit, and this NAND signal is a gate input of the PMOSFET connected from the power supply voltage to the divided voltage, 4. The discharge circuit comprises a circuit in which an enable inversion signal is a gate input of an NMOSFET, and the voltage dividing input circuit comprises a circuit in which an enable inversion signal is a gate input of a PMOSFET. Voltage detection circuit.
JP2008327391A 2008-12-24 2008-12-24 Voltage detection circuit Active JP5453800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008327391A JP5453800B2 (en) 2008-12-24 2008-12-24 Voltage detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008327391A JP5453800B2 (en) 2008-12-24 2008-12-24 Voltage detection circuit

Publications (2)

Publication Number Publication Date
JP2010152473A true JP2010152473A (en) 2010-07-08
JP5453800B2 JP5453800B2 (en) 2014-03-26

Family

ID=42571526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008327391A Active JP5453800B2 (en) 2008-12-24 2008-12-24 Voltage detection circuit

Country Status (1)

Country Link
JP (1) JP5453800B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024502A (en) * 2003-07-03 2005-01-27 Nec Micro Systems Ltd Power-supply voltage detection circuit and semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024502A (en) * 2003-07-03 2005-01-27 Nec Micro Systems Ltd Power-supply voltage detection circuit and semiconductor integrated circuit device

Also Published As

Publication number Publication date
JP5453800B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
KR101106813B1 (en) Overcurrent protection circuit
US8193855B2 (en) Semiconductor device and power control method used for same
JP2010028424A (en) Reset signal generating circuit
JP2010178438A (en) Switching power control circuit
CN107342680B (en) DCDC converter
JP2004228713A (en) Voltage conversion circuit, semiconductor integrated circuit provided therewith, and portable terminal
JP2007243922A (en) Oscillation circuit
TW201630320A (en) Voltage conversion apparatus and power-on reset circuit and control method thereof
JP2010148162A (en) Switching power source
TWI505075B (en) Power-good signal generator and controller with power sequencingfree
US20150244352A1 (en) Power reduction device and method
JP5453800B2 (en) Voltage detection circuit
JP2007151322A (en) Power circuit and dc-dc converter
US8542047B2 (en) Electronic device and method for low power reset
JP6808444B2 (en) Semiconductor device and current consumption test method
JP6382702B2 (en) Switching power supply circuit
JP5434896B2 (en) Low voltage protection circuit
JP6019603B2 (en) Circuit device, integrated circuit, and detection device
JPWO2019116764A1 (en) Comparator and oscillator circuit using the comparator
JP5347460B2 (en) Integrated circuit device for secondary battery protection and inspection method for integrated circuit device for secondary battery protection
JP2005057973A (en) Control circuit of charge pump
JP2010015348A (en) Power supply circuit
JP2011091938A (en) Abnormality detecting circuit
JP2011083131A (en) Switching power supply device
JP2007249777A (en) Microcomputer reset circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5453800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250