JP2010151599A - Method for manufacturing pressure sensor and pressure sensor - Google Patents

Method for manufacturing pressure sensor and pressure sensor Download PDF

Info

Publication number
JP2010151599A
JP2010151599A JP2008329795A JP2008329795A JP2010151599A JP 2010151599 A JP2010151599 A JP 2010151599A JP 2008329795 A JP2008329795 A JP 2008329795A JP 2008329795 A JP2008329795 A JP 2008329795A JP 2010151599 A JP2010151599 A JP 2010151599A
Authority
JP
Japan
Prior art keywords
pressure sensor
piezoelectric element
vibration
cylindrical vibrator
insertion loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008329795A
Other languages
Japanese (ja)
Other versions
JP4975010B2 (en
Inventor
Kenji Tanaka
健司 田中
Koichi Arashida
幸一 嵐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Denshikiki Co Ltd
Original Assignee
Yokogawa Denshikiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Denshikiki Co Ltd filed Critical Yokogawa Denshikiki Co Ltd
Priority to JP2008329795A priority Critical patent/JP4975010B2/en
Publication of JP2010151599A publication Critical patent/JP2010151599A/en
Application granted granted Critical
Publication of JP4975010B2 publication Critical patent/JP4975010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a pressure sensor which uses a cylindrical vibrator which has been so far unable to be used for a pressure sensor and provide the pressure sensor. <P>SOLUTION: The method for manufacturing the pressure sensor includes a pressure sensor including a cylindrical vibrator having a characteristic frequency in accordance with the pressure of an object under measurement therewithin, an excitation piezoelectric element provided on the periphery of the cylindrical vibrator, and two facing vibration detection piezoelectric elements provided on the periphery of the cylindrical vibrator. The method includes an insertion loss measuring process for measuring the insertion losses of the excitation piezoelectric element and the vibration detection piezoelectric elements for each frequency and a vibration detection position moving process for moving at least one vibration detection position of the vibration detection piezoelectric elements in the circumferential direction of the cylindrical vibrator when the difference between the insertion losses of two adjacent characteristic vibration modes does not exceed a predetermined threshold as a result of the measurement in the insertion loss measuring process. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、気体または液体の圧力の精密計測に用いられる圧力センサの製造方法及び圧力センサに関する。   The present invention relates to a pressure sensor manufacturing method and pressure sensor used for precise measurement of gas or liquid pressure.

従来、ジェットエンジンの空燃比を決定する際の気体または液体の圧力の精密計測には、円筒振動子を用いた圧力センサが用いられている。
例えば、上記圧力センサとして、下記特許文献1には、起動時においても正確に測定を行なうことができる圧力センサが開示されている。この圧力センサは、上面が閉じられ、下面が開口された薄肉の円筒部を有する円筒振動子と、円筒振動子と同軸の円筒状であると共にその内側に円筒振動子の円筒部が嵌合されて円筒振動子との空隙が真空室を構成するハウシングと、円筒振動子の基部の外側に設けられた溝に円周方向に等間隔に取り付けられた4つの圧電素子から構成されている。4つの圧電素子の内の2つは、増幅器の入力側に接続され、残り2つの圧電素子は、増幅器の出力側に接続されている。この4つの圧電素子と、増幅回路とが発振回路を構成し、円筒振動子を自励振させる。
Conventionally, a pressure sensor using a cylindrical vibrator has been used for precise measurement of gas or liquid pressure when determining the air-fuel ratio of a jet engine.
For example, as the pressure sensor, the following Patent Document 1 discloses a pressure sensor that can accurately measure even at the time of activation. This pressure sensor has a cylindrical vibrator having a thin cylindrical portion whose upper surface is closed and whose lower surface is opened, and a cylindrical shape coaxial with the cylindrical vibrator, and the cylindrical portion of the cylindrical vibrator is fitted inside the cylindrical vibrator. Thus, the gap between the cylindrical vibrator and the cylindrical vibrator is composed of a housing, and four piezoelectric elements mounted at equal intervals in the circumferential direction in a groove provided outside the base of the cylindrical vibrator. Two of the four piezoelectric elements are connected to the input side of the amplifier, and the remaining two piezoelectric elements are connected to the output side of the amplifier. The four piezoelectric elements and the amplifier circuit constitute an oscillation circuit, and the cylindrical vibrator is self-excited.

そして、このような圧力センサにおける各圧電素子は、薄膜状の一対の電極によって圧電素子を挟み込むように積層された構成になっており、夫々が略円板状に形成されている。そして、圧力センサの円筒振動子の軸線方向の基端側には、圧力の測定対象である気体または液体(被測定物)が供給される圧力ポートが連結される。この圧力ポートから円筒振動子に供給される被測定物の圧力によって円筒部がひずみ、円筒部の受信計によって円筒振動子の固有振動数が変化する。そして、圧電素子から受信計へ入力される固有振動数信号は円筒振動子の固有振動数に伴って変化し、受信計はこの固有振動数信号に基づいて被測定物の圧力を算出する。
特開2000−352537号公報
And each piezoelectric element in such a pressure sensor is comprised so that a piezoelectric element may be pinched | interposed with a pair of thin film-like electrodes, and each is formed in the substantially disc shape. A pressure port to which a gas or a liquid (measuring object) to be measured for pressure is supplied is connected to the proximal end side in the axial direction of the cylindrical vibrator of the pressure sensor. The cylindrical portion is distorted by the pressure of the object to be measured supplied from the pressure port to the cylindrical vibrator, and the natural frequency of the cylindrical vibrator is changed by the receiver of the cylindrical portion. The natural frequency signal input from the piezoelectric element to the receiver changes with the natural frequency of the cylindrical vibrator, and the receiver calculates the pressure of the object to be measured based on this natural frequency signal.
JP 2000-352537 A

ところで、上記従来技術では、発振回路が特定の振動周波数を用いて発振を行い、当該発振によって円筒振動子を振動させている。しかしながら、上述した圧力センサにおける円筒振動子は機械的な作業によって製造される為に、全ての円筒振動子を肉厚が円周方向に均一に近いものにすることは大変困難なことである。そして、肉厚が均一ではない円筒振動子を圧力センサに用いた場合に、挿入損失の差が小さい隣り合う2つの固有振動モードが発生することがある。圧力センサでは、この2つの固有振動モードのいずれかの周波数を使用して発振を行うが、2つの周波数の内の同一の周波数を回路によって常に選択して発振する為には、その挿入損失が3dB(デシベル)以上離れている必要がある。   By the way, in the above prior art, the oscillation circuit oscillates using a specific vibration frequency, and the cylindrical vibrator is vibrated by the oscillation. However, since the cylindrical vibrators in the pressure sensor described above are manufactured by mechanical work, it is very difficult to make all the cylindrical vibrators have a thickness that is nearly uniform in the circumferential direction. When a cylindrical vibrator having a non-uniform thickness is used as a pressure sensor, two adjacent natural vibration modes with a small difference in insertion loss may occur. The pressure sensor oscillates using the frequency of either of these two natural vibration modes, but in order to oscillate by always selecting the same frequency of the two frequencies by the circuit, the insertion loss is It must be separated by 3 dB (decibel) or more.

しかしながら、圧力センサでは、2つの固有振動モードの挿入損失の差が3dB以下になってしまうと、2つの固有振動モードの周波数が近いこともあり、常に同じ周波数を回路によって選択することが出来なくなってしまう。圧力センサでは、常に同じ周波数を回路によって選択することが出来なくなってしまうと、発振が不安定になる為、センサとして十分に機能することが出来なくなってしまう。そして、現在、このような問題を発生させる原因となる円筒振動子は、圧力センサに使用することが出来ない為に、廃棄されている。   However, in the pressure sensor, if the difference in insertion loss between the two natural vibration modes becomes 3 dB or less, the frequencies of the two natural vibration modes may be close, and the same frequency cannot always be selected by the circuit. End up. In the pressure sensor, if the same frequency cannot always be selected by the circuit, the oscillation becomes unstable, so that it cannot function sufficiently as a sensor. Currently, the cylindrical vibrator that causes such a problem cannot be used for the pressure sensor, and is discarded.

本発明は、上述した事情を鑑みたものであり、従来使用できなかった円筒振動子を、圧力センサに使用することが出来る圧力センサの製造方法及び圧力センサを提供することを特徴とする。   The present invention has been made in view of the above-described circumstances, and provides a pressure sensor manufacturing method and a pressure sensor that can use a cylindrical vibrator that could not be used conventionally as a pressure sensor.

上記目的を達成するために、本発明では、圧力センサの製造方法に係る第1の解決手段として、内部の被測定物の圧力に応じた固有振動数を有する円筒振動子と、前記円筒振動子の外周面に設けられた加振用圧電素子と、対向するように前記円筒振動子の外周面に設けられた2つの振動検出用圧電素子と、を具備する圧力センサの製造方法であって、前記加振用圧電素子と前記振動検出用圧電素子との周波数毎の挿入損失を測定する挿入損失測定工程と、前記挿入損失測定工程の測定の結果、隣り合う2つの固有振動モードの挿入損失の差が所定のしきい値以下である場合に、前記振動検出用圧電素子の少なくとも1つの振動検出位置を前記円筒振動子の円周方向にずらす振動検出位置移動工程とを、具備するという手段を採用する。   In order to achieve the above object, according to the present invention, as a first solving means related to a pressure sensor manufacturing method, a cylindrical vibrator having a natural frequency corresponding to the pressure of an object to be measured, and the cylindrical vibrator A method of manufacturing a pressure sensor comprising: a vibrating piezoelectric element provided on an outer peripheral surface of the cylindrical vibrator; and two vibration detecting piezoelectric elements provided on an outer peripheral surface of the cylindrical vibrator so as to face each other. As a result of the insertion loss measurement step for measuring the insertion loss for each frequency of the excitation piezoelectric element and the vibration detection piezoelectric element, and the measurement of the insertion loss measurement step, the insertion loss of two adjacent natural vibration modes A vibration detection position moving step of shifting at least one vibration detection position of the vibration detection piezoelectric element in a circumferential direction of the cylindrical vibrator when the difference is equal to or less than a predetermined threshold value. adopt.

本発明では、圧力センサの製造方法に係る第2の解決手段として、上記第1の解決手段において、振動検出位置移動工程は、隣り合う2つの固有振動モードの挿入損失の差が所定のしきい値以下である場合に、前記振動検出用圧電素子の少なくとも1つの前記円筒振動子の接触側の電極を前記円筒振動子の円周方向に複数の分割電極に分割し、前記分割電極の円周方向にずれたいずれかを接触させるように前記振動検出用圧電素子を取り付けることによって、前記振動検出用圧電素子の少なくとも1つの振動検出位置を前記円筒振動子の円周方向にずらすという手段を採用する。   In the present invention, as a second solving means relating to the pressure sensor manufacturing method, in the first solving means, in the vibration detection position moving step, the difference in insertion loss between two adjacent natural vibration modes is a predetermined threshold. The electrode on the contact side of at least one of the cylindrical vibrators of the vibration detecting piezoelectric element is divided into a plurality of divided electrodes in the circumferential direction of the cylindrical vibrator, and the circumference of the divided electrodes Adopting means for shifting at least one vibration detection position of the vibration detecting piezoelectric element in the circumferential direction of the cylindrical vibrator by attaching the vibration detecting piezoelectric element so as to contact any one shifted in the direction To do.

また、本発明では、圧力センサに係る第1の解決手段として、内部の被測定物の圧力に応じた固有振動数を有する円筒振動子と、前記円筒振動子の外周面に設けられた加振用圧電素子と、対向するように前記円筒振動子の外周面に設けられた2つの振動検出用圧電素子と、を具備する圧力センサであって、前記振動検出用圧電素子の少なくとも1つの前記円筒振動子の接触側の電極が、円周方向に複数に分割された分割電極になっており、前記加振用圧電素子と前記振動検出用圧電素子との周波数毎の挿入損失を測定する挿入損失測定手段と、前記挿入損失測定手段の測定の結果、隣り合う2つの固有振動モードの挿入損失の差が所定のしきい値以下である場合に、使用する前記分割電極を円周方向にずれた前記分割電極のいずれかに切り替えることによって、振動検出位置を円周方向にずらす切替手段と、具備するという手段を採用する。   In the present invention, as a first solving means related to the pressure sensor, a cylindrical vibrator having a natural frequency corresponding to the pressure of an internal object to be measured, and an excitation provided on the outer peripheral surface of the cylindrical vibrator. A pressure sensor, and two vibration detecting piezoelectric elements provided on an outer peripheral surface of the cylindrical vibrator so as to face each other, wherein at least one cylinder of the vibration detecting piezoelectric element is provided. The electrode on the contact side of the vibrator is a divided electrode divided into a plurality of parts in the circumferential direction, and the insertion loss for measuring the insertion loss for each frequency between the excitation piezoelectric element and the vibration detection piezoelectric element. As a result of measurement by the measuring means and the insertion loss measuring means, when the difference in insertion loss between two adjacent natural vibration modes is equal to or less than a predetermined threshold, the divided electrode to be used is shifted in the circumferential direction. Switch to one of the split electrodes By Rukoto, employing switching means for shifting the vibration detecting position in the circumferential direction, a means that includes.

本発明によれば、圧力センサの製造方法が、内部の被測定物の圧力に応じた固有振動数を有する円筒振動子と、円筒振動子の外周面に設けられた加振用圧電素子と、対向するように円筒振動子の外周面に設けられた2つの振動検出用圧電素子と、を具備する圧力センサの製造方法であって、加振用圧電素子と振動検出用圧電素子との周波数毎の挿入損失を測定する挿入損失測定工程と、挿入損失測定工程の測定の結果、隣り合う2つの固有振動モードの挿入損失の差が所定のしきい値以下である場合に、振動検出用圧電素子の少なくとも1つの振動検出位置を円筒振動子の円周方向にずらす振動検出位置移動工程とを、具備する。   According to the present invention, a pressure sensor manufacturing method includes: a cylindrical vibrator having a natural frequency corresponding to the pressure of an internal object to be measured; a vibrating piezoelectric element provided on an outer peripheral surface of the cylindrical vibrator; A pressure sensor manufacturing method comprising: two vibration detection piezoelectric elements provided on an outer peripheral surface of a cylindrical vibrator so as to face each other, wherein each frequency of the vibration piezoelectric element and the vibration detection piezoelectric element is When the difference between the insertion loss of two adjacent natural vibration modes is equal to or less than a predetermined threshold as a result of the measurement in the insertion loss measurement step for measuring the insertion loss and the insertion loss measurement step, the piezoelectric element for vibration detection A vibration detection position moving step of shifting at least one of the vibration detection positions in the circumferential direction of the cylindrical vibrator.

これにより、圧力センサでは、2つの固有振動モードの挿入損失の差が所定のしきい値以上になる為、常に同一の固有振動モードの周波数を回路によって取り出すことが出来る。その為、圧力センサは、発振を安定的に動作させることが出来る。そして、従来、発振の不安定化の原因となる肉厚が多少均一ではない円筒振動子は廃棄されていたが、本実施形態に係る圧力センサの製造方法によって、従来廃棄していた円筒振動子を圧力センサAに使用することが出来るようになる。   Thereby, in the pressure sensor, since the difference in insertion loss between the two natural vibration modes becomes equal to or greater than a predetermined threshold value, the frequency of the same natural vibration mode can always be taken out by the circuit. Therefore, the pressure sensor can stably operate the oscillation. Conventionally, cylindrical vibrators that are not uniform in thickness that cause oscillation instability have been discarded. However, the cylindrical vibrators that have been conventionally discarded by the manufacturing method of the pressure sensor according to the present embodiment are discarded. Can be used for the pressure sensor A.

以下、図面を参照して、本発明の一実施形態について説明する。本実施形態は、圧力センサの製造方法に関する。
図1は、本実施形態に係る圧力センサの製造方法の製造対象である圧力センサAの概略構成を示す図である。図1の(a)は、圧力センサAの概略構成を示す部分断面図であり、図1の(b)は、圧力センサAの概略構成を示す機能ブロック図である。
圧力センサAは、図1に示すように、円筒振動子1、ハウジング2、圧力ポート3、振動検出用圧電素子4a,4b、加振用圧電素子4c,4d及び増幅器5から構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The present embodiment relates to a method for manufacturing a pressure sensor.
FIG. 1 is a diagram illustrating a schematic configuration of a pressure sensor A which is a manufacturing target of the manufacturing method of the pressure sensor according to the present embodiment. FIG. 1A is a partial cross-sectional view showing a schematic configuration of the pressure sensor A, and FIG. 1B is a functional block diagram showing a schematic configuration of the pressure sensor A.
As shown in FIG. 1, the pressure sensor A includes a cylindrical vibrator 1, a housing 2, a pressure port 3, vibration detection piezoelectric elements 4a and 4b, excitation piezoelectric elements 4c and 4d, and an amplifier 5.

円筒振動子1は、恒弾性合金で構成され、図1の(a)に示すように、上面が閉じられた薄肉の円筒部1aと、この円筒部1aの下部にこの円筒部1aと同軸で一体に形成された円筒状の基部1bとを備えている。円筒部1aは、自身と同軸でありかつその径が基部1bの径と同一の円筒状のハウジング2の内側に嵌合されている。円筒部1aの上面がハウジング2の上部開口2aを塞ぎ、基部1bの上面がハウジング2の下部開口2bを塞ぐことによって、円筒振動子1とハウジング2との空隙である真空室6が形成される。   The cylindrical vibrator 1 is made of a constant elastic alloy, and as shown in FIG. 1A, a thin cylindrical portion 1a whose upper surface is closed, and a lower portion of the cylindrical portion 1a are coaxial with the cylindrical portion 1a. And a cylindrical base 1b formed integrally. The cylindrical portion 1a is fitted inside the cylindrical housing 2 which is coaxial with itself and whose diameter is the same as the diameter of the base portion 1b. The upper surface of the cylindrical portion 1 a closes the upper opening 2 a of the housing 2, and the upper surface of the base portion 1 b closes the lower opening 2 b of the housing 2, thereby forming a vacuum chamber 6 that is a gap between the cylindrical vibrator 1 and the housing 2. .

そして、基部1bには、円周方向に延びる略リング溝状の溝部1cが形成されている。溝部1cの内側の円周方向に沿った円周面が、円筒振動子1の振動する外周面を形成している。そして、この溝部1cの内側の円周面には、4つの圧電素子、すなわち振動検出用圧電素子4a,4b及び加振用圧電素子4c,4dが円周方向に等間隔に取り付けられている。また、円筒振動子1の基部1bの下側には、基部1bを拡径した台部1dが形成されている。この台部1dの径方向の中央部分には、圧力ポート3に連結する為の連結孔1eが軸線X方向に沿って形成されている。   The base portion 1b is formed with a substantially ring groove-shaped groove portion 1c extending in the circumferential direction. A circumferential surface along the circumferential direction inside the groove 1 c forms an outer circumferential surface of the cylindrical vibrator 1 that vibrates. Four piezoelectric elements, that is, vibration detecting piezoelectric elements 4a and 4b and exciting piezoelectric elements 4c and 4d are attached at equal intervals in the circumferential direction on the inner circumferential surface of the groove 1c. Further, a base 1d having an enlarged diameter of the base 1b is formed below the base 1b of the cylindrical vibrator 1. A connecting hole 1e for connecting to the pressure port 3 is formed in the central portion in the radial direction of the base portion 1d along the axis X direction.

ハウジング2は、略円筒状に形成されており、上面側に上部開口2aが形成されると共に下面側に下部開口2bが形成されている。そして、ハウジング2は、その内側に円筒振動子1の円筒部1aが嵌合され、円筒部1aの上面から基部1bの上面近傍までの円筒部1aの外周面を覆っている。圧力センサAでは、このように、円筒振動子1及びハウジング2によって略円筒形状が形成されている。そして、圧力センサAの略円筒形状の外形寸法は、直径がφ16mm程度、軸線X方向の高さが20〜30mm程度になっている。   The housing 2 is formed in a substantially cylindrical shape, and an upper opening 2a is formed on the upper surface side and a lower opening 2b is formed on the lower surface side. The housing 2 is fitted with the cylindrical portion 1a of the cylindrical vibrator 1 on the inner side thereof, and covers the outer peripheral surface of the cylindrical portion 1a from the upper surface of the cylindrical portion 1a to the vicinity of the upper surface of the base portion 1b. In the pressure sensor A, a substantially cylindrical shape is thus formed by the cylindrical vibrator 1 and the housing 2. The outer dimensions of the substantially cylindrical shape of the pressure sensor A are about φ16 mm in diameter and about 20 to 30 mm in height in the axis X direction.

圧力ポート3は、円筒振動子1の内部へ圧力Pを有する気体または液体(被測定物)を供給する為の円筒形状の供給口が設けられている。圧力ポート3は、その供給口が円筒振動子1の台部1dに設けられた連結孔1eに嵌合されることによって、円筒振動子1と連結している。そして、圧力ポート3は、円筒振動子1へ圧力Pを有する気体または液体を供給する。   The pressure port 3 is provided with a cylindrical supply port for supplying a gas or liquid (measurement object) having a pressure P to the inside of the cylindrical vibrator 1. The supply port of the pressure port 3 is connected to the cylindrical vibrator 1 by being fitted into a connection hole 1 e provided in the base 1 d of the cylindrical vibrator 1. The pressure port 3 supplies a gas or a liquid having a pressure P to the cylindrical vibrator 1.

振動検出用圧電素子4a,4b及び加振用圧電素子4c,4dは、円筒振動子1の基部1bに設けられた溝部1cの内側の円周面に、円周方向に沿って等間隔に取り付けられている。すなわち、振動検出用圧電素子4a,4bが、対向するように溝部1cの内側の円周面に取り付けら、また、加振用圧電素子4c,4dが、対向するように溝部1cの内側の円周面に取り付けられている。振動検出用圧電素子4a,4b及び加振用圧電素子4c,4dは、夫々が略円板状又は略円形薄膜状に形成されており、正電極、圧電体及び負電極の積層によって構成されている。そして、振動検出用圧電素子4a,4b及び加振用圧電素子4c,4dは、正電極が円筒振動子に接触するように円筒振動子に取り付けられる。例えば、この振動検出用圧電素子4a,4b及び加振用圧電素子4c,4dは、その直径がφ3.6mm程度、厚さが0.15mm程度である。   The vibration detecting piezoelectric elements 4a and 4b and the vibrating piezoelectric elements 4c and 4d are attached to the circumferential surface inside the groove 1c provided in the base 1b of the cylindrical vibrator 1 at equal intervals along the circumferential direction. It has been. That is, the vibration detecting piezoelectric elements 4a and 4b are attached to the inner circumferential surface of the groove 1c so as to face each other, and the excitation piezoelectric elements 4c and 4d are arranged on the inner circle of the groove 1c so as to face each other. It is attached to the peripheral surface. The vibration detecting piezoelectric elements 4a and 4b and the exciting piezoelectric elements 4c and 4d are each formed in a substantially disc shape or a substantially circular thin film shape, and are configured by stacking a positive electrode, a piezoelectric body, and a negative electrode. Yes. The vibration detecting piezoelectric elements 4a and 4b and the vibrating piezoelectric elements 4c and 4d are attached to the cylindrical vibrator so that the positive electrode contacts the cylindrical vibrator. For example, the vibration detecting piezoelectric elements 4a and 4b and the vibrating piezoelectric elements 4c and 4d have a diameter of about φ3.6 mm and a thickness of about 0.15 mm.

増幅器5は、図1の(b)に示すように、その入力に振動検出用圧電素子4a,4bの出力が接続される。また、増幅器5の出力は、加振用圧電素子4c,4dに接続される。この増幅器5と、振動検出用圧電素子4a,4b及び加振用圧電素子4c,4dとによって発振回路が構成され、圧力センサAの円筒振動子1を自励振させる。   As shown in FIG. 1B, the amplifier 5 has its inputs connected to the outputs of the vibration detecting piezoelectric elements 4a and 4b. The output of the amplifier 5 is connected to the excitation piezoelectric elements 4c and 4d. The amplifier 5, the vibration detecting piezoelectric elements 4a and 4b, and the exciting piezoelectric elements 4c and 4d constitute an oscillation circuit, and the cylindrical vibrator 1 of the pressure sensor A is self-excited.

そして、圧力センサAでは、図1の(b)に示すように、増幅器5によって増幅された固有振動数信号sfを受信計Bへ出力する。受信計Bでは、CPU(Central Processing Unit)が、ROM(Read Only Memory)に記憶されている制御プログラムを実行することにより、固有振動信号vsに基づいて被測定物である気体または液体の圧力Pを算出し、算出した結果を表示部に表示させる。   Then, the pressure sensor A outputs the natural frequency signal sf amplified by the amplifier 5 to the receiver B, as shown in FIG. In the receiver B, a CPU (Central Processing Unit) executes a control program stored in a ROM (Read Only Memory), whereby the pressure P of the gas or liquid that is the object to be measured based on the natural vibration signal vs. And the calculated result is displayed on the display unit.

次に、圧力センサの製造方法の工程について、上記圧力センサAを用いて説明する。図2は、本実施形態に係る圧力センサの製造方法の挿入損失測定工程のシステム構成図である。
まず、挿入損失測定工程では、図2に示すように、圧力センサAから増幅器5を取り除き、代わりにスペクトラムアナライザCを接続する。この際、スペクトラムアナライザCの入力には、振動検出用圧電素子4a,4bが接続している。また、スペクトラムアナライザCの出力には、加振用圧電素子4c,4dが接続する。そして、このスペクトラムアナライザCは、周波数毎の挿入損失を測定し、その想定結果を周波数スペクトラムとして出力する。
Next, the steps of the pressure sensor manufacturing method will be described using the pressure sensor A. FIG. 2 is a system configuration diagram of the insertion loss measurement process of the pressure sensor manufacturing method according to the present embodiment.
First, in the insertion loss measurement step, as shown in FIG. 2, the amplifier 5 is removed from the pressure sensor A, and a spectrum analyzer C is connected instead. At this time, the vibration detecting piezoelectric elements 4a and 4b are connected to the input of the spectrum analyzer C. In addition, the piezoelectric elements 4 c and 4 d for vibration are connected to the output of the spectrum analyzer C. The spectrum analyzer C measures the insertion loss for each frequency and outputs the assumed result as a frequency spectrum.

そして、圧力センサAの円筒振動子1の肉厚が円周方向に均一ではない場合に、挿入損失測定工程において、スペクトラムアナライザCが図3に示す周波数スペクトラムを出力する。図3は、本実施形態に係る圧力センサの製造方法の挿入損失測定工程において、圧力センサAの円筒振動子1の肉厚が円周方向に均一ではない場合に、スペクトラムアナライザCが出力する周波数スペクトラムを示す図である。なお、図3は、縦軸が挿入損失であり、横軸が周波数である。   When the thickness of the cylindrical vibrator 1 of the pressure sensor A is not uniform in the circumferential direction, the spectrum analyzer C outputs the frequency spectrum shown in FIG. 3 in the insertion loss measurement step. FIG. 3 shows the frequency output by the spectrum analyzer C when the thickness of the cylindrical vibrator 1 of the pressure sensor A is not uniform in the circumferential direction in the insertion loss measurement step of the pressure sensor manufacturing method according to the present embodiment. It is a figure which shows a spectrum. In FIG. 3, the vertical axis represents insertion loss and the horizontal axis represents frequency.

圧力センサAの円筒振動子1の肉厚が円周方向に均一ではない場合に、図3に示すように、周波数スペクラムに挿入損失の差が2.7dB(デシベル)である隣り合う2つのピークが出現する。この2つのピークは、圧力センサAの円筒振動子1の自励振において、振動周波数の異なる2つの固有振動モードが発生していることを示している。   When the thickness of the cylindrical vibrator 1 of the pressure sensor A is not uniform in the circumferential direction, as shown in FIG. 3, two adjacent peaks whose insertion loss difference is 2.7 dB (decibel) in the frequency spectrum. Appears. These two peaks indicate that two natural vibration modes having different vibration frequencies are generated in the self-excited vibration of the cylindrical vibrator 1 of the pressure sensor A.

そして、圧力センサAでは、2つの固有振動モードの内のいずれか一方の周波数に基づいて発振回路を動作させる必要がある為、2つの固有振動モードの内の同一の固有振動モードの周波数のみを回路によって常に取り出す必要がある。
しかしながら、圧力センサAでは、図3に示す2つの固有振動モードのように周波数が近い場合に、その挿入損失に3dB(デシベル)以上の差がないと、常に同一の固有振動モードを回路によって取り出すことが出来ずに、発振が不安定になる。そして、圧力センサAでは、振動周波数の異なる2つの固有振動モードが発生した場合に、図2に示すように、円筒振動子1の振動における2つの腹によって振動検出用圧電素子4aに圧力が加わる。
In the pressure sensor A, since it is necessary to operate the oscillation circuit based on one of the two natural vibration modes, only the frequency of the same natural vibration mode in the two natural vibration modes is obtained. It must always be taken out by the circuit.
However, in the pressure sensor A, when the frequencies are close as in the two natural vibration modes shown in FIG. 3, the same natural vibration mode is always extracted by the circuit unless there is a difference of 3 dB (decibel) or more in the insertion loss. The oscillation becomes unstable. In the pressure sensor A, when two natural vibration modes having different vibration frequencies are generated, pressure is applied to the vibration detecting piezoelectric element 4a by two antinodes in the vibration of the cylindrical vibrator 1, as shown in FIG. .

次に、振動検出位置移動工程では、挿入損失測定工程の挿入損失の測定の結果、図3に示す周波数スペクトルのように、2つの固有振動モードの挿入損失の差が3dB以下である場合に、振動検出用圧電素子4aの正電極を分割し、分割した正電極の一部を円筒振動子1に接触させるように振動検出用圧電素子4aを円筒振動子1に取り付ける。   Next, in the vibration detection position moving step, as a result of the insertion loss measurement in the insertion loss measurement step, when the difference in insertion loss between the two natural vibration modes is 3 dB or less as shown in the frequency spectrum shown in FIG. The positive electrode of the vibration detecting piezoelectric element 4 a is divided, and the vibration detecting piezoelectric element 4 a is attached to the cylindrical vibrator 1 so that a part of the divided positive electrode is in contact with the cylindrical vibrator 1.

図4は、本実施形態に係る圧力センサの製造方法の振動検出位置移動工程の振動検出用圧電素子4aの正電極の分割例を示す図である。
具体的に、振動検出位置移動工程では、図4に示すように、円筒振動子に接触する側の振動検出用圧電素子4aの正電極を、円筒振動子1の円周方向に沿って略均等に2分割すると共に円周方向の直交方向に沿って略均等に2分割することによって、略扇形状の同一形状である4つの分割電極14a‐1〜14a‐4に分割する。
FIG. 4 is a diagram showing an example of division of the positive electrode of the vibration detecting piezoelectric element 4a in the vibration detecting position moving step of the pressure sensor manufacturing method according to the present embodiment.
Specifically, in the vibration detection position moving step, as shown in FIG. 4, the positive electrode of the vibration detection piezoelectric element 4 a on the side in contact with the cylindrical vibrator is substantially uniform along the circumferential direction of the cylindrical vibrator 1. And divided into two substantially evenly along the direction orthogonal to the circumferential direction to divide into four divided electrodes 14a-1 to 14a-4 having substantially the same fan shape.

そして、振動検出用圧電素子4aの分割電極14a‐1〜14a‐4の内、図4に示す右上側に配された分割電極14a‐1(斜線部)のみを円筒振動子1に接触させて、はんだ付けによって円筒振動子1に振動検出用圧電素子4aを取り付ける。
圧力センサAでは、振動周波数の異なる2つの固有振動モードが発生した場合に、分割電極14a‐1のみを円筒振動子1に接触させることによって、円筒振動子1の振動における2つの腹によって振動検出用圧電素子4aに圧力が加えられていたものを、振動における1つの腹のみによって振動検出用圧電素子4aに圧力が加わるように、振動検出位置を円筒振動子1の円周方向にずらすことが出来る。
Then, among the divided electrodes 14a-1 to 14a-4 of the vibration detecting piezoelectric element 4a, only the divided electrode 14a-1 (shaded portion) arranged on the upper right side shown in FIG. The vibration detecting piezoelectric element 4a is attached to the cylindrical vibrator 1 by soldering.
In the pressure sensor A, when two natural vibration modes having different vibration frequencies are generated, vibration is detected by two antinodes in the vibration of the cylindrical vibrator 1 by bringing only the divided electrode 14a-1 into contact with the cylindrical vibrator 1. The vibration detection position can be shifted in the circumferential direction of the cylindrical vibrator 1 so that pressure is applied to the vibration detection piezoelectric element 4a by only one antinode of the pressure applied to the piezoelectric element 4a for vibration. I can do it.

図5は、本実施形態に係る圧力センサの製造方法の振動検出位置移動工程によって振動検出用圧電素子4aの正電極の分割電極4a‐1のみが円筒振動子1に接触するように振動検出用圧電素子4aを円筒振動子1に取り付けた場合に、スペクトラムアナライザCが出力する周波数スペクトラムを示す図である。圧力センサAでは、分割電極14a‐1のみを円筒振動子1に接触させることによって、図5に示すように、2つの固有振動モードの挿入損失の差が、7.5dBまで広がる。これにより、圧力センサAでは、2つの固有振動モードの挿入損失の差が3dB以上になる為、常に同一の固有振動モードの周波数を回路によって取り出すことが出来る。   FIG. 5 shows a vibration detection position in which only the divided electrode 4a-1 of the positive electrode of the vibration detection piezoelectric element 4a is in contact with the cylindrical vibrator 1 by the vibration detection position moving step of the pressure sensor manufacturing method according to this embodiment. FIG. 4 is a diagram showing a frequency spectrum output from a spectrum analyzer C when a piezoelectric element 4a is attached to a cylindrical vibrator 1; In the pressure sensor A, by bringing only the divided electrode 14a-1 into contact with the cylindrical vibrator 1, the difference in insertion loss between the two natural vibration modes is increased to 7.5 dB as shown in FIG. Thereby, in the pressure sensor A, since the difference in insertion loss between the two natural vibration modes is 3 dB or more, the frequency of the same natural vibration mode can always be extracted by the circuit.

以上のように、本実施形態に係る圧力センサの製造方法の挿入損失測定工程では、測定した圧力センサAの発振回路の周波数毎の挿入損失をスペクトラムアナライザCに出力させ、振動検出位置移動工程では、挿入損失測定工程の挿入損失の測定の結果、図3に示す周波数スペクトルのように2つの固有振動モードの挿入損失の差が3dB以下である場合に、図4に示すように、振動検出用圧電素子4aの正電極を略均等に4つの分割電極14a‐1〜14a‐4に分割し、分割電極14a‐1が円筒振動子1に接触するように振動検出用圧電素子4aを円筒振動子1に取り付けることによって、振動検出を円筒振動子1の円周方向にずらす。   As described above, in the insertion loss measuring step of the pressure sensor manufacturing method according to the present embodiment, the measured insertion loss for each frequency of the oscillation circuit of the pressure sensor A is output to the spectrum analyzer C, and the vibration detection position moving step is performed. As a result of the insertion loss measurement in the insertion loss measurement step, when the difference in insertion loss between the two natural vibration modes is 3 dB or less as shown in the frequency spectrum shown in FIG. 3, as shown in FIG. The positive electrode of the piezoelectric element 4a is divided approximately equally into four divided electrodes 14a-1 to 14a-4, and the vibration detecting piezoelectric element 4a is connected to the cylindrical vibrator 1 so that the divided electrode 14a-1 contacts the cylindrical vibrator 1. By attaching to 1, the vibration detection is shifted in the circumferential direction of the cylindrical vibrator 1.

これにより、圧力センサAでは、図5に示すように、2つの固有振動モードの挿入損失の差が3dB以上になる為、常に同一の固有振動モードの周波数を回路によって取り出すことが出来る。その為、圧力センサAは、発振を安定的に動作させることが出来る。そして、従来、図3に示す周波数スペクトラムが出力された場合に、その原因となる肉厚が多少均一ではない円筒振動子1は廃棄されていたが、本実施形態に係る圧力センサの製造方法によって、従来廃棄していた円筒振動子1を圧力センサAに使用することが出来るようになる。   Thereby, in the pressure sensor A, as shown in FIG. 5, since the difference in insertion loss between the two natural vibration modes is 3 dB or more, the frequency of the same natural vibration mode can always be taken out by the circuit. Therefore, the pressure sensor A can stably operate the oscillation. Conventionally, when the frequency spectrum shown in FIG. 3 is output, the cylindrical vibrator 1 whose thickness is not somewhat uniform has been discarded, but by the method of manufacturing a pressure sensor according to the present embodiment, Thus, the cylindrical vibrator 1 that has been conventionally discarded can be used for the pressure sensor A.

以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されることなく、例えば以下のような変形が考えられる。
(1)上記実施形態の圧力センサの製造方法では、振動検出位置移動工程において、図4に示すように、振動検出用圧電素子4aの正電極を4つに分割し、分割電極4a‐1を円筒振動子1に接触するように振動検出用圧電素子4aを取り付けたが、本発明はこれに限定されない。
例えば、分割電極4a‐1以外の分割電極14a‐2,14a‐3,14a‐4のいずれかを円筒振動子1に接触するように振動検出用圧電素子4aを円筒振動子1に取り付けるようにしてもよい。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, For example, the following modifications can be considered.
(1) In the pressure sensor manufacturing method of the above embodiment, in the vibration detection position moving step, as shown in FIG. 4, the positive electrode of the vibration detecting piezoelectric element 4a is divided into four, and the divided electrode 4a-1 is formed. Although the vibration detecting piezoelectric element 4a is attached so as to be in contact with the cylindrical vibrator 1, the present invention is not limited to this.
For example, the vibration detecting piezoelectric element 4a is attached to the cylindrical vibrator 1 so that any one of the divided electrodes 14a-2, 14a-3, and 14a-4 other than the divided electrode 4a-1 is in contact with the cylindrical vibrator 1. May be.

図6は、本実施形態に係る圧力センサの製造方法の振動検出位置移動工程の変形例を示す図である。図6の(a)は、振動検出用圧電素子4aの正電極の分割の変形例を示し、図6の(b)は、振動検出用圧電素子4bの正電極の分割例を示している。
また、図4に示すように振動検出用圧電素子4aの正電極を4つの略扇形状の同一形状に分割するのではなく、図6の(a)に示すように、円周方向に沿って振動検出用圧電素子4aの正電極を略均等に3つの分割電極24a‐1〜24a‐3に分割し、振動検出用圧電素子4aの分割電極24a‐1及び24a‐3のいずれかを円筒振動子1に接触するように振動検出用圧電素子4aを円筒振動子1に取り付けることによって、振動検出位置を円筒振動子1の円周方向にずらすようにしてもよい。
FIG. 6 is a diagram showing a modification of the vibration detection position moving step in the method for manufacturing the pressure sensor according to the present embodiment. 6A shows a modification of the division of the positive electrode of the vibration detecting piezoelectric element 4a, and FIG. 6B shows an example of the division of the positive electrode of the vibration detecting piezoelectric element 4b.
Also, as shown in FIG. 4, the positive electrode of the vibration detecting piezoelectric element 4a is not divided into four substantially fan-shaped identical shapes, but as shown in FIG. 6A, along the circumferential direction. The positive electrode of the vibration detecting piezoelectric element 4a is substantially equally divided into three divided electrodes 24a-1 to 24a-3, and one of the divided electrodes 24a-1 and 24a-3 of the vibration detecting piezoelectric element 4a is subjected to cylindrical vibration. The vibration detecting position may be shifted in the circumferential direction of the cylindrical vibrator 1 by attaching the vibration detecting piezoelectric element 4 a to the cylindrical vibrator 1 so as to be in contact with the child 1.

そして、振動検出用圧電素子4aだけでなく、振動検出用圧電素子4bの正電極を、図6の(b)に示すように、振動検出用圧電素子4aと同じく略扇形状の同一形状である4つの分割電極14b‐1〜14b‐4に分割する。そして、振動検出用圧電素子4aの14a‐1を円筒振動子に接触させるように円筒振動子1に振動検出用圧電素子4aを取り付けると共に振動検出用圧電素子4bの14b‐1及び14b‐2を円筒振動子1に接触させるように円筒振動子1に振動検出用圧電素子4bを取り付けるようにしてもよい。また、振動検出用圧電素子4aの14a‐1を円筒振動子に接触させるように円筒振動子1に振動検出用圧電素子4aを取り付けると共に振動検出用圧電素子4bの14b‐1を円筒振動子1に接触させるように円筒振動子1に振動検出用圧電素子4aを取り付けることによって、振動検出位置を円筒振動子1の円周方向にずらすようにしてもよい。   In addition to the vibration detecting piezoelectric element 4a, the positive electrode of the vibration detecting piezoelectric element 4b has the same substantially fan-like shape as the vibration detecting piezoelectric element 4a, as shown in FIG. 6B. Dividing into four divided electrodes 14b-1 to 14b-4. Then, the vibration detecting piezoelectric element 4a is attached to the cylindrical vibrator 1 so that 14a-1 of the vibration detecting piezoelectric element 4a is in contact with the cylindrical vibrator, and 14b-1 and 14b-2 of the vibration detecting piezoelectric element 4b are attached. The vibration detecting piezoelectric element 4b may be attached to the cylindrical vibrator 1 so as to be in contact with the cylindrical vibrator 1. The vibration detecting piezoelectric element 4a is attached to the cylindrical vibrator 1 so that the vibration detecting piezoelectric element 4a 14a-1 contacts the cylindrical vibrator, and the vibration detecting piezoelectric element 4b 14b-1 is attached to the cylindrical vibrator 1. The vibration detecting position may be shifted in the circumferential direction of the cylindrical vibrator 1 by attaching the vibration detecting piezoelectric element 4 a to the cylindrical vibrator 1 so as to be in contact with the cylindrical vibrator 1.

(2)上記実施形態の圧力センサの製造方法では、挿入損失測定工程及び振動検出位置移動工程によって、隣り合う2つの固有振動モードの挿入損失の差が所定のしきい値以下である場合に、振動検出用圧電素子の少なくとも1つの振動検出位置を円筒振動子の円周方向にずらしたが、本発明はこれに限定されない。 (2) In the pressure sensor manufacturing method of the above embodiment, when the difference in insertion loss between two adjacent natural vibration modes is equal to or less than a predetermined threshold value by the insertion loss measurement step and the vibration detection position movement step, Although at least one vibration detection position of the piezoelectric element for vibration detection is shifted in the circumferential direction of the cylindrical vibrator, the present invention is not limited to this.

例えば、圧力センサAが、電極が4つの分割電極4a‐1〜4a‐4に分割されている振動検出用圧電素子4aと、挿入損失測定手段と、切替手段とを具備し、挿入損失測定手段が、加振用圧電素子4c,4dと振動検出用圧電素子4a,4bとの周波数毎の挿入損失を測定し、切替手段が、挿入損失測定手段の測定の結果、隣り合う2つの固有振動モードの挿入損失の差が所定のしきい値以下である場合に、使用する分割電極を円周方向にずれた前記分割電極のいずれかに切り替えることによって、振動検出位置を円周方向にずらす。このように、圧力センサAが、隣り合う2つの固有振動モードの挿入損失の差が所定のしきい値以下である場合に、自動的に、振動検出位置を円周方向にずらすようにしてもよい。   For example, the pressure sensor A includes a vibration detecting piezoelectric element 4a in which an electrode is divided into four divided electrodes 4a-1 to 4a-4, an insertion loss measuring means, and a switching means, and the insertion loss measuring means. Measures the insertion loss for each frequency of the excitation piezoelectric elements 4c and 4d and the vibration detection piezoelectric elements 4a and 4b, and the switching means measures the two adjacent vibration modes as a result of the measurement by the insertion loss measurement means. When the difference in the insertion loss is equal to or less than a predetermined threshold value, the vibration detection position is shifted in the circumferential direction by switching the divided electrode to be used to one of the divided electrodes shifted in the circumferential direction. In this way, the pressure sensor A may automatically shift the vibration detection position in the circumferential direction when the difference in insertion loss between two adjacent natural vibration modes is equal to or smaller than a predetermined threshold value. Good.

本発明の一実施形態に係る圧力センサの製造方法の製造対象である圧力センサAの概略構成を示す図である。It is a figure which shows schematic structure of the pressure sensor A which is a manufacture object of the manufacturing method of the pressure sensor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る圧力センサの製造方法の挿入損失測定工程のシステム構成図である。It is a system block diagram of the insertion loss measurement process of the manufacturing method of the pressure sensor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る圧力センサの製造方法の挿入損失測定工程において、圧力センサAの円筒振動子1の肉厚が円周方向に均一ではない場合に、スペクトラムアナライザCが出力する周波数スペクトラムを示す図である。The frequency spectrum output by the spectrum analyzer C when the thickness of the cylindrical vibrator 1 of the pressure sensor A is not uniform in the circumferential direction in the insertion loss measurement step of the pressure sensor manufacturing method according to an embodiment of the present invention. FIG. 本発明の一実施形態に係る圧力センサの製造方法の振動検出位置移動工程の振動検出用圧電素子4aの正電極の分割例を示す図である。ある。It is a figure which shows the example of a division | segmentation of the positive electrode of the vibration detection piezoelectric element 4a of the vibration detection position moving process of the manufacturing method of the pressure sensor which concerns on one Embodiment of this invention. is there. 本発明の一実施形態に係る圧力センサの製造方法の振動検出位置移動工程によって振動検出用圧電素子4aの正電極の分割電極4a‐1のみが円筒振動子1に接触するように振動検出用圧電素子4aを円筒振動子1に取り付けた場合に、スペクトラムアナライザCが出力する周波数スペクトラムを示す図である。ある。The vibration detecting piezoelectric element is such that only the divided electrode 4a-1 of the positive electrode of the vibration detecting piezoelectric element 4a is in contact with the cylindrical vibrator 1 by the vibration detecting position moving step of the pressure sensor manufacturing method according to the embodiment of the present invention. FIG. 6 is a diagram showing a frequency spectrum output from the spectrum analyzer C when the element 4a is attached to the cylindrical vibrator 1. is there. 本発明の一実施形態に係る圧力センサの製造方法の振動検出位置移動工程の変形例を示す図である。It is a figure which shows the modification of the vibration detection position moving process of the manufacturing method of the pressure sensor which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

A…圧力センサ、B…受信計、C…スペクトラムアナライザ、1…円筒振動子、1a…円筒部、1b…基部、1c…溝部、1d…台部、1e…連結孔、2…ハウジング、2a…上部開口、2b…下部開口、3…圧力ポート、4a,4b…振動検出用圧電素子、4c,4d…加振用圧電素子、5…増幅器、6…真空室、14a‐1〜14a‐4…分割電極、14b‐1〜14b‐4…分割電極、24a‐1〜24a‐3…分割電極、
A ... Pressure sensor, B ... Receiver, C ... Spectrum analyzer, 1 ... Cylindrical vibrator, 1a ... Cylindrical part, 1b ... Base part, 1c ... Groove part, 1d ... Base part, 1e ... Connecting hole, 2 ... Housing, 2a ... Upper opening, 2b ... lower opening, 3 ... pressure port, 4a, 4b ... piezoelectric element for vibration detection, 4c, 4d ... piezoelectric element for vibration, 5 ... amplifier, 6 ... vacuum chamber, 14a-1 to 14a-4 ... Split electrodes, 14b-1 to 14b-4 ... split electrodes, 24a-1 to 24a-3 ... split electrodes,

Claims (3)

内部の被測定物の圧力に応じた固有振動数を有する円筒振動子と、前記円筒振動子の外周面に設けられた加振用圧電素子と、対向するように前記円筒振動子の外周面に設けられた2つの振動検出用圧電素子と、を具備する圧力センサの製造方法であって、
前記加振用圧電素子と前記振動検出用圧電素子との周波数毎の挿入損失を測定する挿入損失測定工程と、
前記挿入損失測定工程の測定の結果、隣り合う2つの固有振動モードの挿入損失の差が所定のしきい値以下である場合に、前記振動検出用圧電素子の少なくとも1つの振動検出位置を前記円筒振動子の円周方向にずらす振動検出位置移動工程とを、
具備することを特徴とする圧力センサの製造方法。
A cylindrical vibrator having a natural frequency corresponding to the pressure of the internal object to be measured, and a vibration excitation piezoelectric element provided on the outer circumferential surface of the cylindrical vibrator are arranged on the outer circumferential surface of the cylindrical vibrator so as to face each other. A method of manufacturing a pressure sensor comprising two vibration detection piezoelectric elements provided,
An insertion loss measurement step for measuring an insertion loss for each frequency of the excitation piezoelectric element and the vibration detection piezoelectric element;
If the difference in insertion loss between two adjacent natural vibration modes is equal to or less than a predetermined threshold as a result of the measurement in the insertion loss measurement step, at least one vibration detection position of the vibration detection piezoelectric element is defined as the cylinder. The vibration detection position moving step for shifting in the circumferential direction of the vibrator,
A method for manufacturing a pressure sensor, comprising:
振動検出位置移動工程は、隣り合う2つの固有振動モードの挿入損失の差が所定のしきい値以下である場合に、前記振動検出用圧電素子の少なくとも1つの前記円筒振動子の接触側の電極を前記円筒振動子の円周方向に複数の分割電極に分割し、前記分割電極の円周方向にずれたいずれかを接触させるように前記振動検出用圧電素子を取り付けることによって、前記振動検出用圧電素子の少なくとも1つの振動検出位置を前記円筒振動子の円周方向にずらすことを特徴とする請求項1に記載の圧力センサの製造方法。   The vibration detection position moving step includes a contact-side electrode of at least one of the cylindrical vibrators of the vibration detection piezoelectric element when a difference in insertion loss between two adjacent natural vibration modes is a predetermined threshold value or less. Is divided into a plurality of divided electrodes in the circumferential direction of the cylindrical vibrator, and the vibration detecting piezoelectric element is attached so as to contact any one of the divided electrodes displaced in the circumferential direction. The method for manufacturing a pressure sensor according to claim 1, wherein at least one vibration detection position of the piezoelectric element is shifted in a circumferential direction of the cylindrical vibrator. 内部の被測定物の圧力に応じた固有振動数を有する円筒振動子と、前記円筒振動子の外周面に設けられた加振用圧電素子と、対向するように前記円筒振動子の外周面に設けられた2つの振動検出用圧電素子と、を具備する圧力センサであって、
前記振動検出用圧電素子の少なくとも1つの前記円筒振動子の接触側の電極が、円周方向に複数に分割された分割電極になっており、
前記加振用圧電素子と前記振動検出用圧電素子との周波数毎の挿入損失を測定する挿入損失測定手段と、
前記挿入損失測定手段の測定の結果、隣り合う2つの固有振動モードの挿入損失の差が所定のしきい値以下である場合に、使用する前記分割電極を円周方向にずれた前記分割電極のいずれかに切り替えることによって、振動検出位置を円周方向にずらす切替手段と、
具備することを特徴とする圧力センサ。
A cylindrical vibrator having a natural frequency corresponding to the pressure of the internal object to be measured, and a vibration excitation piezoelectric element provided on the outer circumferential surface of the cylindrical vibrator are arranged on the outer circumferential surface of the cylindrical vibrator so as to face each other. A pressure sensor comprising two vibration detection piezoelectric elements provided,
The electrode on the contact side of at least one cylindrical vibrator of the vibration detecting piezoelectric element is a divided electrode divided into a plurality in the circumferential direction,
An insertion loss measuring means for measuring an insertion loss for each frequency of the excitation piezoelectric element and the vibration detection piezoelectric element;
As a result of the measurement of the insertion loss measuring means, when the difference in insertion loss between two adjacent natural vibration modes is equal to or less than a predetermined threshold value, the divided electrode to be used is shifted in the circumferential direction. Switching means for shifting the vibration detection position in the circumferential direction by switching to any one of the following:
A pressure sensor comprising:
JP2008329795A 2008-12-25 2008-12-25 Pressure sensor manufacturing method and pressure sensor Active JP4975010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329795A JP4975010B2 (en) 2008-12-25 2008-12-25 Pressure sensor manufacturing method and pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329795A JP4975010B2 (en) 2008-12-25 2008-12-25 Pressure sensor manufacturing method and pressure sensor

Publications (2)

Publication Number Publication Date
JP2010151599A true JP2010151599A (en) 2010-07-08
JP4975010B2 JP4975010B2 (en) 2012-07-11

Family

ID=42570872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329795A Active JP4975010B2 (en) 2008-12-25 2008-12-25 Pressure sensor manufacturing method and pressure sensor

Country Status (1)

Country Link
JP (1) JP4975010B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550116A (en) * 1978-10-06 1980-04-11 Yokogawa Hokushin Electric Corp Vibrating type transducer
JPS5550115A (en) * 1978-10-06 1980-04-11 Yokogawa Hokushin Electric Corp Vibrating type transducer
JPS5594127A (en) * 1979-01-11 1980-07-17 Yokogawa Hokushin Electric Corp Pressure gauge
JPS5737234A (en) * 1980-08-19 1982-03-01 Yokogawa Hokushin Electric Corp Pressure gage
JP2000019039A (en) * 1998-07-03 2000-01-21 Ishikawajima Harima Heavy Ind Co Ltd Pressure transducer
JP2000352537A (en) * 1999-06-09 2000-12-19 Yokogawa Denshikiki Co Ltd Pressure sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550116A (en) * 1978-10-06 1980-04-11 Yokogawa Hokushin Electric Corp Vibrating type transducer
JPS5550115A (en) * 1978-10-06 1980-04-11 Yokogawa Hokushin Electric Corp Vibrating type transducer
JPS5594127A (en) * 1979-01-11 1980-07-17 Yokogawa Hokushin Electric Corp Pressure gauge
JPS5737234A (en) * 1980-08-19 1982-03-01 Yokogawa Hokushin Electric Corp Pressure gage
JP2000019039A (en) * 1998-07-03 2000-01-21 Ishikawajima Harima Heavy Ind Co Ltd Pressure transducer
JP2000352537A (en) * 1999-06-09 2000-12-19 Yokogawa Denshikiki Co Ltd Pressure sensor

Also Published As

Publication number Publication date
JP4975010B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
KR960007442B1 (en) Steam trap operation detector
JP4628419B2 (en) Microstructure inspection apparatus, microstructure inspection method, and microstructure inspection program
JP2011124891A (en) Controller for capacitance type electromechanical conversion device, and method for controlling the same
JP2006084219A (en) Acceleration sensor
JP5518177B2 (en) Micromechanical system and method for manufacturing a micromechanical system
JP2011120794A (en) Electromechanical transducer
JP2002357403A (en) Signal processing device and signal processing method for touch signal probe
JP4975010B2 (en) Pressure sensor manufacturing method and pressure sensor
JP6144594B2 (en) Pressure sensor
KR20120087979A (en) Gyroscopic sensor and method for manufacturing such a sensor
JP4241404B2 (en) Liquid level detection device and dispensing device using the same
JP2007192731A (en) Method and apparatus for measuring frequency characteristic
JP5051893B2 (en) Membrane stiffness measuring device
JP5276917B2 (en) Pressure sensor and pressure sensor unit
JP5456010B2 (en) Thin plate inspection equipment
JP2011185828A (en) Acceleration sensor
Chiu et al. A ring-down technique implemented in CMOS-MEMS resonator circuits for wide-range pressure sensing applications
JP2004241706A (en) Semiconductor manufacturing apparatus
US11513102B2 (en) Sensor including deformable part
JP2016200548A (en) Detection element used on vibration gas sensor and vibration gas sensor using the same
JP5114316B2 (en) Dispensing device
JP2008082842A (en) Gas sensor element
JP2001108442A (en) Excitation method for vibration type angular velocity sensor, and vibration type angular velocity sensor
JP2010112934A (en) Apparatus and method for measuring membrane stiffness
JP2008128762A (en) Apparatus and method for measuring pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Ref document number: 4975010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250