JP2010151496A - 方位検出装置 - Google Patents

方位検出装置 Download PDF

Info

Publication number
JP2010151496A
JP2010151496A JP2008327562A JP2008327562A JP2010151496A JP 2010151496 A JP2010151496 A JP 2010151496A JP 2008327562 A JP2008327562 A JP 2008327562A JP 2008327562 A JP2008327562 A JP 2008327562A JP 2010151496 A JP2010151496 A JP 2010151496A
Authority
JP
Japan
Prior art keywords
receiving
detection
receiving elements
azimuth
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008327562A
Other languages
English (en)
Inventor
Keiko Akiyama
啓子 秋山
Mitsuyasu Matsuura
充保 松浦
Toshiki Isogai
俊樹 磯貝
Hiromi Ariyoshi
博海 有吉
Yasuyuki Okuda
泰行 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2008327562A priority Critical patent/JP2010151496A/ja
Publication of JP2010151496A publication Critical patent/JP2010151496A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

【課題】2個の受信素子の配置間隔を探査波の波長に比べて短くする。
【解決手段】検出部1の台座2を傾斜させたものとし、受信素子4a、4bの受信面が対向する方向に傾斜させた配置とする。受信素子4a、4bの受信面の中心間距離dを超音波の波長(λ)から半波長(λ/2)の範囲に設定できる。送信素子3から超音波を出力し、物体で反射した反射波を2個の受信素子で受信し、それらの位相差を検出する。この位相差と方位の関係により検出基準方位kに対する物体の存在方位θを一意に検出できる範囲を得ることができる。
【選択図】図2

Description

本発明は、物体の存在方位を検出する方位検出装置に関する。
物体の存在方位を検出するための構成として、例えば、2個の受信素子を平面的に並べて配置し、超音波信号を前方に向けて発し、その反射波を受信してそれらの受信信号の位相差から基準方位である正面方向からのずれの角度を検出して存在方向を検出する構成のものがある(特許文献1参照)。2個の受信素子間の中心間距離が、使用する超音波の半波長以上である場合には、理論上、得られた位相差の値に基づいて求められる物体の存在方向の解が複数存在し、実際の存在方向を一意に特定できない角度範囲が存在することが分かっている。しかしながら、一般的な超音波受信素子の多くは、有底筒状ケースの底面を振動板とし、振動板の内面に圧電素子を接合させた構造であり、それらを超音波の周波数で共振させるために、振動板のサイズは超音波の波長以上となっている。そのため、2個の受信素子を平面的に並べて配置した構成では、受信素子間の中心間距離を、超音波の波長未満に配置することが物理的に困難である。
上記の不具合を解決するものとして、たとえば特許文献2に示されるものがある。これは、対象物となる物体に対して発する超音波を異なる周波数で切り替えて送受信し、第1周波数と第2周波数とで得られる位相差φ1、φ2の差Δφ(=φ1−φ2)の値を求めることで、その位相差の差Δφの値が存在方位と1対1の関係で対応させることができるという原理に基づいて検出するようにしたものである。
特開2006−343309号公報 特開2008−076095号公報
しかしながら、上記のような従来のものでは、2つの周波数に対応して検出した位相差φ1、φ2の差Δφを求めて方位を特定するようにした検出原理であるから、受信素子はそれら複数の周波数の超音波を受信可能なものとする必要がある。また、この原理に基づく検出動作では、正確な方位を検出するために、第1周波数と第2周波数との差を大きく設定しておく必要がある。ところが、一般的な受信素子は、共振を利用する構成のものであるため、周波数の差が大きい超音波を同等に受信することが原理的に難しいという事情がある。
本発明は上記事情を考慮してなされたもので、その目的は、簡単な構成を採用しながら正確に物体の存在方向を検出することができるようにした方位検出装置を提供することにある。
請求項1に記載の方位検出装置によれば、送信素子により送信した探査波が物体に当たって戻る反射波を2個の受信素子を備えた検出部により検出する場合に、2個の受信素子の配置を、反射波を受ける受信面が検出基準方位に対して互いに向かい合う方向もしくは互いに背け合う方向に所定角度だけ傾斜した状態に配置するので、2個の受信素子の受信面の中心間距離を探査波の波長未満の間隔とすることができる。これによって、2個の受信素子の受信面の中心間距離の大きさに応じて検出基準方位を中心とした所定範囲内に限った場合には、2個の受信素子の受信信号の位相差を検出することで、理論計算上においても検出方位が複数発生しないようにすることができ、簡単且つ確実に対象物の方位を検出することができる。
この場合において、一般に共振を利用した構成の受信素子のサイズは、受信可能な超音波の波長λ以上である。このため、2個の受信素子を平面的に並べて配置した場合には、両者の中心間距離dを探査波の波長λに比べて短くなるように配置することは難しい。このため、2個の受信素子の受信面の中心間距離dが探査波の波長λ以上に広い場合には、受信した信号の位相差を算出すると相補的な位相関係にある値も得られるため、検出方位が一意に定められなくなる。
この点で、請求項1の発明においては、2個の受信素子の配置間隔が探査波の波長λからλ/2程度まで小さくできるので、複数の検出方位が発生する範囲を少なく絞ることができるようになる。また、これによって、複数の検出方位から正しい検出方位を決定するための複雑な回路構成や、検出部の構成を採用する必要がないので、簡単且つ且つ安価に方位検出の動作を行うことができるようになる。
請求項2の発明によれば、検出部の2個の受信素子を傾斜して配置することで、両受信面の中心間距離を探査波の波長の半分以下となるように配置するので、2個の受信素子が受信する反射波の位相差が最大でも探査波の半波長以下となるので、位相差の値が同じとなる別の検出方位が発生することを回避でき、これによって、簡単且つ確実に検出基準方位から±90度の範囲で方位を検出することができるようになる。
請求項3の発明によれば、上記発明において、検出部に2個の受信素子とは異なる他の2個の受信素子を設け、一方の2個の受信素子を前記反射波を受ける受信面が前記検出基準方位に対して互いに向かい合う方向に所定角度だけ傾斜した状態に配置し、他方の2個の受信素子を前記反射波を受ける受信面が前記検出基準方位に対して互いに背け合う方向に所定角度だけ傾斜した状態に配置するので、一方の2個の受信素子により検出可能な第1の方位と他方の2個の受信素子により検出可能な第2の方位とで独立して検出できるので、これによって、物体の存在方位の検出を3次元的に行うことができるようになる。
請求項4の発明によれば、請求項1の発明において、検出部の構成を2個の受信素子と並べて少なくとも1個の他の受信素子を設けた3個以上のアレイ受信素子から構成し、それらアレイ受信素子の受信面を隣接するアレイ受信素子との傾斜方向が互いに向かい合う方向もしくは互いに背け合う方向となるように傾斜した状態に配置するので、複数のアレイ受信素子により受信する信号の重みづけを行う演算等の処理を行うことで受信する反射波の検出方向を絞ることができ、これによって検出感度の向上を図ることができるようになる。
請求項5の発明によれば、上記各発明において、検出部に設ける受信素子について、検出基準方位に対して傾けて配置することで受信面が検出基準方位からずれた方向に指向するのに対して、各受信素子の指向性を検出基準方位に指向するようにさせた構成とするので、受信素子の受信面を所定角度だけ傾斜した状態に配置する場合でも、それぞれの受信素子の検出動作の指向性がばらばらになるのを防止して検出基準方位に揃えたものとすることができ、これによって、検出基準方位を中心とした検出方向範囲に対して感度を高めたものとすることができる。
(第1の実施形態)
以下、本発明の第1の実施形態について、図1、図2、及び図3を参照しながら説明する。
図2は検出部1の外観を示すもので、扁平な円筒状の台座2の上面に送信素子である円形をなす超音波発信器3が設けられると共に、受信素子としての2個の超音波マイクロホン4a、4bが設けられている。
超音波発信器3は、たとえば40kHz程度の周波数の超音波を出力するもので、台座2の軸方向すなわち検出基準方位kに送信面が指向するように配置されている。超音波を送信する部分には、円板状をなす振動体に圧電素子が配置され、送信信号が圧電素子に入力されると振動体を振動させて空気の疎密波を生成して超音波を出力する。超音波の発信周波数は40kHzに限らず、超音波として利用できる周波数であれば20kHz程度から100kHz程度の範囲で適宜に設定されたものを使用することができる。
超音波マイクロホン4a、4bは、受信面には円板状をなす受音体と圧電素子が配置され、受音体が共振する振動数(周波数)の超音波により圧電素子を振動させて電気信号を発生する。この超音波マイクロホン4a、4bは、受信面の法線方向である指向する方向A、Bが検出基準方位kではなく互いに対向するように同じ傾斜角度αだけ傾けた状態に設けられている。これにより、両者の中心間の距離dは、受信面が傾斜した分だけ小さくすることができる。傾斜させる前の受信面の直径rに相当する距離は傾斜後に、
r×cosαにすることができる。
すなわち、超音波マイクロホン4a、4bを傾斜させると、その傾斜角度αが大きくなる程、受音面の中心の間隔を
r×(1−cosα)
だけ近接させることができる。この傾斜角度αを適宜に設定することで、超音波マイクロホン4a、4b間の配置間隔dを超音波発信器3から送信する超音波の波長λの半分程度に設定することも可能である。
なお、上記のように超音波マイクロホン4a、4bを検出基準方位kに対して受信面を傾斜させる配置とするので、受信感度が指向する方向(指向性)が傾斜方向にシフトすることになる。しかし、超音波マイクロホン4a、4bの指向性を傾斜させたものとする技術があり、これによって、受信感度が高くなる方向を検出基準方位kに沿う方向に指向させることができるようになる。例えば、このような技術としては、特開平10−70784号公報に示されるようなものがある。
図1は方位検出装置全体のブロック構成を示すもので、上記した検出部1を構成している超音波発信器3は、信号生成部5から探査波としての超音波を出力するための駆動信号が与えられ、検出基準方向kを中心とした前方に向けて超音波信号を出力する。前方から到達する反射波を受信する超音波マイクロホン4a、4bは、それぞれ検出信号を検出回路6に入力する。
検出回路6は、復調部7a、7b、閾値判定部8、位相算出部9、方位算出部10から構成されている。復調部7a、7bは、超音波マイクロホン4a、4bからの検出信号をアナログ/デジタル変換処理し、この後、変換されたデジタル信号を直交復調処理すると共にLPF(ローパスフィルタ)を介して高周波成分をカットする処理を行って同相成分と直交成分とを抽出して直交復調信号を得る。
閾値判定部8は、復調部7a、7bから直交復調信号が入力されると、直交復調信号から振幅を算出し、算出された振幅レベルがあらかじめ設定されている閾値レベルよりも大きいか否かを判断し、閾値レベルよりも大きい振幅レベルの信号が入力されたときに対象物からの反射波を受信したことを判定する。
位相算出部9は、閾値判定部8により反射波であると判定された復調部7a、7bからの各直交復調信号の位相差Δφを算出する。この位相差Δφは、探査波である超音波の波長λと、超音波マイクロホン4a、4bの受音面の中心間隔を基準として算出するもので、反射波が到来する方位θの値に依存している。方位算出部10は、位相算出部9からの位相差Δφの信号に基づいて反射波の到来方向θを算出し、これにより探査波を反射した対象物の存在する方位θを検出することができる。
次に、上記構成による方位検出原理について簡単に説明する。図3は位相差Δφを算出する際の反射波の到来方向θとの関係を示す図である。2個の超音波マイクロホン4a、4bは、受信面を上に向け、且つ指向する方向が検出基準方位kに対して対向する方向に傾斜角度αだけ傾けた状態で配置されている。検出基準方位kは、超音波マイクロホン4a、4bの受信面の各中心位置A、Bの間を結ぶ線分ABの中線と同じ方向である。超音波マイクロホン4a、4bの受信面は直径がrで、それらの中心位置の間の距離はdである。図では両者の配置の間にスペースを大きく存した状態で示しているが、実際には制約がない限り近づけた位置となるように配置される。そして、距離dは、超音波発信器3から出力する超音波の波長λに対してこれよりも小さい距離で好ましくは半波長(λ/2)程度となるように設定されている。
図示しない超音波発信器3から検出基準方位kを中心とした広い角度範囲に出力した超音波が検出対象である対象物に当たって発生する反射波は、検出基準方位kから角度θだけ傾いた到来方向から到達したと仮定する。つまり、検出基準方位kから角度θだけ傾いた方位Sに照射された超音波の反射波が到来しているのである。2個の超音波マイクロホン4a、4bに到達する反射波は、先に超音波マイクロホン4bに到達し、その後反射波が距離RAだけ進行すると超音波マイクロホン4aに到達する。
このときの到達距離の差である距離RAは、
距離RA=d×sinθ …(1)
として算出することができる。この距離RAの差に起因して発生する位相差Δφは、超音波の波長λの関数となり、
位相差Δφ=2π×距離RA/λ
=2π/λ×d×sinθ …(2)
として得られる。また、位相差Δφは、2π以下の位相差φoに2nπを加えた値として次式のように示すことができる。
位相差Δφ=φo+2nπ(nは整数) …(3)
したがって、nの値がとり得る範囲で検出方位θは複数の値が検出されることになる。この結果、式(2)に式(3)を代入すると、
Δφ=2π/λ×d×sinθ=2π/λ×d×sinθo+2nπ
となり、
sinθ=sinθo+nλ/d …(4)
という関係となる。ここで、θoは実際の反射波が入射する方位であり、θは検出方位である。
上式において、左辺の値は−1から1の間の値であるから、右辺の値が−1から+1の範囲となる条件を考えると、(nλ/d)の値がとり得る条件としては、距離dがλ/2以下に設定されている場合には、nの値は「0」以外にとり得ないので、検出方位θは一意に算出される。
一方、dがλ/2以上でλ以下の範囲の値になると、検出方位θの値が大きい場合に2個の方位が算出されることがある。しかし、ここで、たとえば検出方位θを90度までとせず、検出基準方位kを中心として限定された範囲に絞り込む場合には、dの値がλからλ/2の範囲に設定しても検出方位θを一意に算出することができる。したがって、2個の超音波マイクロホン4a、4bの配置間隔dを検出しようとする角度の範囲に応じて超音波の波長(λ)から半波長(λ/2)の間に設定することで位相差Δφを検出することで一意に存在方位θを検出することができる。
このような第1の実施形態によれば、超音波マイクロホン4a、4bを互いに対向する方向に傾斜させた配置構成とすることで、簡単且つ安価な構成としながら、両者の間の距離を短くすることができる。これによって、探査波である超音波の波長λに対して半波長(λ/2)程度に設定する場合には、検出方位θを検出基準方位kに対して±90°の範囲で一意に特定することができるようになる。
また、超音波マイクロホン4a、4bの配置間隔を超音波の波長λ程度から半波長までの間の距離に設定する場合には、検出基準方位kに対して間隔に応じた範囲の検出方向θにおいて一意に特定することができる。実用的には、例えば配置間隔を超音波の波長λに対して0.6λ程度に設定することができれば通常の検出動作に支障をきたさないものを得ることができる。
そして、超音波マイクロホン4a、4bを傾斜配置したことで検出感度が高い指向方向が検出基準方位kからずれることに対して、指向する方向が検出基準方位kにシフトするように構成しているので、検出感度の点でも2個の超音波マイクロホン4a、4bの特性をそろえたものとすることができる。
(第2の実施形態)
図4は本発明の第2の実施形態を示すもので、第1の実施形態と異なるところは、超音波マイクロホン4c、4dの傾斜角度βを互いに背面が対向するように傾斜した状態に設けたところである。すなわち、検出部11は、第1の実施形態の台座2に対して傾斜方向が異なる台座12を備えている。超音波マイクロホン4c、4dは検出基準方位kに対して、互いに背面が対向するように傾斜角度βだけ傾斜した角度に設定されている。この状態で、2個の超音波マイクロホン4c、4dの配置間隔dは、第1の実施形態と同様に、超音波の波長λと同程度から半波長(λ/2)程度までの範囲に設定されている。また、この実施形態においても、2個の超音波マイクロホン4c、4dは、検出感度の指向方向が検出基準方位kの方向に指向するように設定されている。
このような構成を採用することにより、第1の実施形態と同様の作用効果を得ることができる。
(第3の実施形態)
図5は本発明の第3の実施形態を示すもので、この実施形態においては、検出部13の構成を第1の実施形態及び第2の実施形態の両者を複合的に構成したものとしている。
すなわち、図5に示すように、検出部13の台座14は、4個の超音波マイクロホン4a〜4dを搭載した構成であり、超音波マイクロホン4a、4bが受信面が対向する方向に傾斜角度αだけ傾斜するとともに間隔dを存して配置され、超音波マイクロホン4c、4dが受信面の背面が対向する方向に傾斜角度αだけ傾斜するとともに間隔dを存して配置されている。そして、間隔dは、いずれも超音波発信器3から送信する超音波の波長λに対して半波長(λ/2)〜一波長(λ)の範囲で設定されている。
なお、この検出部13の構成においては、超音波発信器3は図示はしていないが、台座14の近傍に配置しているものとする。また、検出回路部は第1の実施形態で示したものを2組備えたものとし、超音波マイクロホン4a、4bで検出する検出方位θAと、超音波マイクロホン4c、4dで検出する検出方位θBとの2系統となり、これによって3次元的な検出方位θを得ることができる。
また、この実施形態においても、簡単且つ安価な構成としながら検出基準方位kに対して超音波の到来方向すなわち検出対象物の存在方位θを一意に特定できる範囲を広くとることができ、3次元的に正確な方位の検出動作を行なうことができる。
(第4の実施形態)
図6及び図7は本発明の第4の実施形態を示すものである。以下、上記各実施形態と異なる部分について説明する。
図7は、検出部15aあるいは15bの構成を示している。検出部15aの構成は図7(a)、(b)に示し、検出部15bの構成は図7(c)、(d)に示している。検出部15aは台座16aに4個の受信素子である超音波マイクロホン17a〜17dを備えた構成とされ、検出部15bは台座16bに4個の受信素子である超音波マイクロホン17a〜17dを備えた構成とされている。いずれの検出部15a、15bを採用することもできる。
検出部15aは、台座16aに4個の超音波マイクロホン17a〜17dを一列に配置すると共に、2個ずつV字状をなすように傾斜した状態に配置されている。そして、隣接する超音波マイクロホン17a〜17dの間は間隔dに設定されている。この間隔dは、第1の実施形態で示したと同様に、探査波として用いる超音波の波長λに対してその半波長(λ/2)〜一波長(λ)の範囲である。検出部15bは、台座16bに4個の超音波マイクロホン17a〜17dを一列に配置すると共に、2個ずつ逆V字状をなすように傾斜した状態に配置されている。その他の配置条件は検出部15aと同じである。
図6は電気的構成を示している。検出回路部18は、4個の超音波マイクロホン17a〜17dに対応して4個の復調部19a〜19dが設けられる。復調部19a〜19dの復調出力はビームスキャン演算部20に入力される。復調部17a〜17dにおいては、第1の実施形態と同様に、受信した超音波の信号をA/D変換すると共に、直交復調処理を行い、ベースバンド複素信号に変換する。
ビームスキャン演算部20は、4個の超音波マイクロホン17a〜17dで受信した超音波の信号を、演算処理を行うことで所望の角度に絞り込んだビームとし、検出方位の範囲でビームスキャンして受信するものである。この場合、たとえばビームスキャン演算部20においては、デジタルビームフォーミング演算を行うようになっており、これはアルゴリズムとしてはたとえば既存のBeam Former法を用いている。次式はBeam Former法を用いた場合のビームを角度θ方向に向けたときのアレー状に配置した超音波マイクロホン17a〜17dの合成出力電力を示すもので、信号の相関行列Rxxとモードベクトルa(θ)から計算するものである。
Figure 2010151496
ビームスキャン演算部20の出力は検出演算部21に入力される。検出演算部21は、ビームスキャン演算部20によりスキャンした角度に対応した検出信号である角度スペクトラムに対し、閾値判定を行うと共に、ピーク値検出を行い、反射波が到達した方向すなわち被対象物の存在方位θを演算により求める。
このような第4の実施形態によれば、第1の実施形態と同様の作用効果を得ることができると共に、4個の超音波マイクロホン17a〜17dを超音波の波長λよりも短い間隔でアレイ状に配置してビームスキャンをすることで、確実に被対象物の存在方位を認識することができるようになる。
なお、この実施形態においては、4個の超音波マイクロホン17a〜17dを用いる構成としているが、4個に限らず、3個で構成しても良いし、5個以上設ける構成としても良い。
(他の実施形態)
本発明は、上記実施例にのみ限定されるものではなく、次のように変形または拡張できる。
探査波として用いる超音波の周波数は、実用的には、20kHz程度から100kHz程度の範囲で適宜に設定されたものを使用することができる。また、更に低い周波数あるいは高い周波数でも適用することは可能である。また、受信素子は共振を利用しない方式のものを使用することもできる。
さらに、探査波は超音波に限らず、電磁波を使用することもできる。
第4の実施形態は、一方向にアレイ受信素子を並べたものであるが、第3の実施形態で示した二次元的に配置する構成とすることもできる。
受信素子の傾斜角度α、βは、検出方位θの範囲に応じて適宜の角度に設定することができる。
本発明の第1の実施形態を示す電気的なブロック構成図 検出部の外観を示す図 検出原理を説明するための図 本発明の第2の実施形態を示す図2相当図 本発明の第3の実施形態を示す図2相当図 本発明の第4の実施形態を示す図1相当図 本発明の第4の実施形態を示す図2相当図
符号の説明
図面中、1、11、13、15a、15bは検出部、2,12、14、16a、16bは台座、3は超音波発信器(送信素子)、4a〜4d、17a〜17dは超音波マイクロホン(受信素子)、5は信号生成部、6、18は検出回路、7a、7b、19a〜19dは復調部、8は閾値判定部、9は位相算出部、10は方位算出部、20はビームスキャン演算部、21は検出演算部である。

Claims (5)

  1. 探査波を送信する送信素子と、
    前記送信素子から送信された前記探査波が物体に照射されて発生する反射波を受信するように所定間隔を存して配置された2個の受信素子を備えた検出部と、
    前記検出部の2個の受信素子により受信した前記反射波の信号の位相差を検出して検出基準方向に対する傾き角度として前記物体の存在方位を検出する検出回路とを備え、
    前記検出部の2個の受信素子は、前記反射波を受ける受信面が前記検出基準方位に対して互いに向かい合う方向もしくは互いに背け合う方向に所定角度だけ傾斜した状態に配置され、且つ受信面の中心間距離が前記探査波の波長未満の間隔に設定されていることを特徴とする方位検出装置。
  2. 請求項1に記載の方位検出装置において、
    前記検出部の2個の受信素子は、前記受信面の中心間距離が前記探査波の波長の半分以下となるように配置されていることを特徴とする方位検出装置。
  3. 請求項1または2に記載の方位検出装置において、
    前記検出部は、前記2個の受信素子に加えて他の2個の受信素子を設けた構成とし、
    前記2個の受信素子および前記他の2個の受信素子は、一方の2個の受信素子が前記反射波を受ける受信面が前記検出基準方位に対して互いに向かい合う方向に所定角度だけ傾斜した状態に配置され、他方の2個の受信素子が前記反射波を受ける受信面が前記検出基準方位に対して互いに背け合う方向に所定角度だけ傾斜した状態に配置され、且つそれぞれの2個の受信素子の受信面の中心間距離が前記探査波の波長未満の間隔に設定されていることを特徴とする方位検出装置。
  4. 請求項1に記載の方位検出装置において、
    前記検出部は、
    前記2個の受信素子と並べて配置される少なくとも1個の他の受信素子を有する3個以上のアレイ受信素子から構成され、
    前記アレイ受信素子は、各受信面が隣接するアレイ受信素子の受信面の傾斜方向と互いに向かい合う方向もしくは互いに背け合う方向に受信面が傾斜した状態に配置されていることを特徴とする方位検出装置。
  5. 請求項1ないし4のいずれか一項に記載の方位検出装置において、
    前記検出部は、受信素子の受信面が傾斜配置されて前記検出基準方位からずれた指向性を前記検出基準方位に指向するように構成された受信素子を用いていることを特徴とする方位検出装置。
JP2008327562A 2008-12-24 2008-12-24 方位検出装置 Pending JP2010151496A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008327562A JP2010151496A (ja) 2008-12-24 2008-12-24 方位検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008327562A JP2010151496A (ja) 2008-12-24 2008-12-24 方位検出装置

Publications (1)

Publication Number Publication Date
JP2010151496A true JP2010151496A (ja) 2010-07-08

Family

ID=42570781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008327562A Pending JP2010151496A (ja) 2008-12-24 2008-12-24 方位検出装置

Country Status (1)

Country Link
JP (1) JP2010151496A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147284A1 (ja) * 2011-04-26 2012-11-01 株式会社村田製作所 移動物体検出装置
CN111739463A (zh) * 2020-06-10 2020-10-02 湖南人文科技学院 一种led显示屏控制方法及其系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850172A (ja) * 1994-08-05 1996-02-20 Nippon Avionics Co Ltd 音波方位計測装置
WO2006009122A1 (ja) * 2004-07-16 2006-01-26 Fujitsu Ten Limited モノパルスレーダ装置およびアンテナ切換スイッチ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850172A (ja) * 1994-08-05 1996-02-20 Nippon Avionics Co Ltd 音波方位計測装置
WO2006009122A1 (ja) * 2004-07-16 2006-01-26 Fujitsu Ten Limited モノパルスレーダ装置およびアンテナ切換スイッチ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147284A1 (ja) * 2011-04-26 2012-11-01 株式会社村田製作所 移動物体検出装置
CN111739463A (zh) * 2020-06-10 2020-10-02 湖南人文科技学院 一种led显示屏控制方法及其系统

Similar Documents

Publication Publication Date Title
US7821872B2 (en) Method for ultrasonic wave transmission and apparatus for ultrasonic wave transmission
CN110333293B (zh) 一种正方网格相控超声阵列激发与检测混凝土缺陷的方法
US5991239A (en) Confocal acoustic force generator
JP2012098107A (ja) レーダ装置
JP2007127503A (ja) 物体位置検出装置
JP2010151496A (ja) 方位検出装置
JP2006208110A (ja) 水中探知装置および水中探知装置の表示制御方法
JP6179973B2 (ja) 信号処理装置、水中探知装置、信号処理方法、及びプログラム
JP4776349B2 (ja) 超音波撮像装置
Brown et al. Cylindrical transducer for producing an acoustic spiral wave for underwater navigation (L)
JP2007121045A (ja) 超音波物体検知装置
JP5058108B2 (ja) 超音波探知装置
JP7238516B2 (ja) ソーナー装置とこれを用いた目標探知方法
JP4771575B2 (ja) 水中探知装置
JP6088165B2 (ja) 探知装置、探知方法及び探知プログラム
JP2012137447A (ja) 到来方向推定方式
JP4239742B2 (ja) 超音波距離測定装置
KR102565942B1 (ko) 배열형 검출기 단위 구조와 이를 구비하는 밀리미터파 통신 장치 및 영상 시스템
JP2006003278A (ja) 超音波センサ装置
JP3946692B2 (ja) 電波探知装置
JP7367322B2 (ja) 対象物位置検出センサ
JP2010151720A (ja) 送受波器、ラインアレイアンテナ、及びファンビーム生成方法
JP2005049301A (ja) 超音波センサ
JP2002350538A (ja) ソナーの目標物識別装置
JP2887376B2 (ja) 水中探知装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120301

A131 Notification of reasons for refusal

Effective date: 20120424

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120625

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130611

Free format text: JAPANESE INTERMEDIATE CODE: A02