JP2010149201A - Method of conditioning surface of hot slab - Google Patents

Method of conditioning surface of hot slab Download PDF

Info

Publication number
JP2010149201A
JP2010149201A JP2008327450A JP2008327450A JP2010149201A JP 2010149201 A JP2010149201 A JP 2010149201A JP 2008327450 A JP2008327450 A JP 2008327450A JP 2008327450 A JP2008327450 A JP 2008327450A JP 2010149201 A JP2010149201 A JP 2010149201A
Authority
JP
Japan
Prior art keywords
cutting
blade
hot
slab
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008327450A
Other languages
Japanese (ja)
Other versions
JP5394724B2 (en
Inventor
Hiromasa Hayashi
宏優 林
Kazuya Tanaka
和也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Shin Nippon Koki KK
Original Assignee
JFE Steel Corp
Shin Nippon Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Shin Nippon Koki KK filed Critical JFE Steel Corp
Priority to JP2008327450A priority Critical patent/JP5394724B2/en
Publication of JP2010149201A publication Critical patent/JP2010149201A/en
Application granted granted Critical
Publication of JP5394724B2 publication Critical patent/JP5394724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of conditioning the surface of a hot slab, accurately determining the replacement time of a blade before a cutting surface is deteriorated, without stopping a facility. <P>SOLUTION: When the surface of a hot steel material is conditioned by a milling machine having a cutting blade, the use limit of the cutting blade is determined by the specific cutting force value Kc specified in the following expression (1). When the specific cutting force value Kc reaches a predetermined threshold, the cutting blade is replaced. Expression(1) Kc=ä(We&times;60&times;10<SP>6</SP>&times;&eta;e&times;&eta;m)/(ap&times;ae&times;vf)}&times;(Tm/T<SB>o</SB>), where We:cutting power(kW),&eta;e:motor efficiency(%),&eta;m:mechanical efficiency(%), ap:cutting depth(mm), ae:cutting width(mm), vf:feed rate(mm/min), Tm:work surface temperature(&deg;C), and T<SB>0</SB>:work surface reference temperature(&deg;C). <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、熱間スラブの表面手入れ方法に関し、特に熱間スラブの表面をフライス盤によって手入れする際に、切削刃の交換時期を的確に判断して作業能率の向上を図ろうとするものである。   The present invention relates to a method for cleaning a hot slab surface, and in particular, when the surface of a hot slab is cleaned with a milling machine, it is intended to improve the work efficiency by accurately determining the replacement time of the cutting blade.

連続鋳造設備では溶鋼から10m前後の長さのスラブを連続して製造し、次工程の熱間圧延ラインに圧延用素材として送り出している。この熱間圧延ラインでは、通常、スラブを加熱炉で加熱した後に、熱間圧延に供している。この場合に、連続鋳造で製造されたスラブを、できるだけ高温のまま、好ましくは800℃以上の高温のまま熱間圧延ラインの加熱炉に装入してやれば、加熱炉での負担は小さくなり、燃料原単位を低減することが可能となる。このような操業方法は、直送圧延やダイレクトホットチャージロール(DHCR)と呼ばれ、最近、広く試みられている。   The continuous casting equipment continuously manufactures slabs with a length of around 10m from molten steel and sends them to the next hot rolling line as rolling material. In this hot rolling line, the slab is usually heated in a heating furnace and then subjected to hot rolling. In this case, if the slab produced by continuous casting is inserted in the heating furnace of the hot rolling line at the highest possible temperature, preferably at a high temperature of 800 ° C. or higher, the burden on the heating furnace will be reduced. The basic unit can be reduced. Such an operation method is called direct feed rolling or direct hot charge roll (DHCR), and has been widely attempted recently.

しかしながら、スラブには、鋳造段階において発生する介在物欠陥などがあり、特にスラブ表皮下数mmまでに存在している介在物欠陥は、次工程以降の圧延工程あるいはめっき工程で鋼板の表面に線状疵を発生させる。かような介在物欠陥は、連続鋳造時に使用されるモールドパウダーやアルミナなどの脱酸生成物などを起源とし、数百ミクロン程度の大きさの介在物が疵の原因になるといわれている。   However, slabs have inclusion defects that occur in the casting stage. In particular, inclusion defects existing up to several millimeters below the surface of the slab are lined up on the surface of the steel sheet in the subsequent rolling or plating processes. Generate a state defect. Such inclusion defects originate from deoxidation products such as mold powder and alumina used during continuous casting, and inclusions having a size of about several hundred microns are said to cause wrinkles.

そのため、従来から、鋳造設備で製造されたスラブを、熱間の状態あるいは冷却した後の冷間の状態で、スラブ表層部の全面をホットスカーファーやコールドスカーファーによって溶削(スカーフ)したり、グラインダーによって表面研削を実施することが一般的に行われてきた。   For this reason, slabs produced by casting equipment are conventionally either hot or cold after being cooled, and the entire surface of the slab surface is subjected to hot-cut or scarfing (scarfing). It has been common practice to perform surface grinding with a grinder.

しかしながら、ホットスカーファーは、スラブ表層部を高熱で溶融させ、溶融物を吹き飛ばしながら削り取る方法であるので、スラブ表層部が局部的に加熱される。その結果、スラブ表層部で燐(P)やニッケル(Ni)といった特定元素の濃化を招いたり、表層部の脱炭を招くことから、スラブの表層部品質が悪化するという問題があった。   However, the hot scurfer is a method in which the slab surface layer is melted with high heat and scraped off while the melt is blown away, so that the slab surface layer is locally heated. As a result, concentration of specific elements such as phosphorus (P) and nickel (Ni) in the surface portion of the slab is caused, and decarburization of the surface portion is caused, so that there is a problem that the surface portion quality of the slab is deteriorated.

また、冷片化したスラブを対象とするコールドスカーファーは、スラブ温度が変化しないために溶削深さが変動しないという利点や、スラブ表層部の加熱程度が少ないので前述した特定元素の濃化が起こり難いという利点があるものの、スラブを冷片化することによるエネルギーロスが甚だしいという問題があった。   In addition, cold scurfers for slabs that have been sharded have the advantage that the slab temperature does not change, so the depth of cutting does not fluctuate, and the degree of heating of the slab surface layer is low, so the concentration of the specific elements described above Although there is an advantage that it is difficult to occur, there has been a problem that energy loss due to slab cooling is severe.

なお、ホットスカーファーおよびコールドスカーファーを問わず、スカーファー(溶削)によりスラブ表層部の全面手入れを行うと、スラブの溶削面に2mm程度の高さのうねりを持った凹凸が生ずることが多い。これは、スカーファーのノズルからの可燃性ガス噴出口が分割されていることに起因するものである。このようなうねりを解消するためのスカーファーも開発されてはいるが、溶削手入れ後の溶削面の平滑化の点では十分とは言い難い。このうねりは、熱間圧延工程において熱延鋼板の新たな表面欠陥の原因になると言われている。   Regardless of whether the hot scurfer or cold scurfer is used, if the entire surface of the slab surface is cleaned by scurfers (welding), irregularities with a slab height of about 2 mm may be generated on the slab surface. Many. This is due to the fact that the flammable gas outlet from the nozzle of the skater is divided. Scarfers for eliminating such undulations have been developed, but it is not sufficient in terms of smoothing the surface to be welded after cleaning. This undulation is said to cause new surface defects of the hot-rolled steel sheet in the hot rolling process.

一方、グラインダーによる手入れは、グラインダーの表層部除去能力(手入れ能力)が低いため、スカーファーに比べると切削能率が著しく小さいという不利がある。また、鋼製品における表面疵の原因となる砥石の欠落や付着もあるため、熱間状態のスラブに対しては、スラブ端部のガス切断ノロの除去に使用されている程度にすぎなかった。
上述したように、従来の一般的な手入れ方法では、手入れした後の鋳片の表皮または表層部に新たな表面疵の原因となる欠陥を生じるおそれがあった。
On the other hand, the maintenance by the grinder has a disadvantage that the cutting efficiency is remarkably small as compared with the scarf because the grinder's surface layer removing ability (care ability) is low. In addition, since there are missing or attached grindstones that cause surface flaws in steel products, it has only been used to remove gas cutting paste at the end of the slab for hot slabs.
As described above, in the conventional general care method, there is a possibility that a defect causing a new surface flaw may occur in the skin or surface layer portion of the slab after care.

上記の問題を解決するものとして、切削刃により鋼板の表面を研削するスラブ手入れ方法が提案されている。
切削刃を利用した熱間鋼材の表面切削方法としては、シェーパー方式(鉋削り)とフライス盤による切削方式の2とおりの方法が提案されている。
熱間状態の鋼材は、冷間状態の鋼材に比べて、切削時の抵抗である比切削抵抗が小さくなり、特に 500℃以上では冷間時の2/3〜1/2まで低減する。このように熱間切削は容易に切削ができ、被削性(快削性)が良いことから、切削面の表面粗さも良好となる。
As a solution to the above problem, a slab care method for grinding the surface of a steel sheet with a cutting blade has been proposed.
As surface cutting methods of hot steel materials using a cutting blade, two methods, a shaper method (shaving) and a cutting method using a milling machine, have been proposed.
The steel material in the hot state has a lower specific cutting resistance, which is the resistance at the time of cutting, than the steel material in the cold state, and particularly at 500 ° C. or higher, it is reduced to 2/3 to 1/2 in the cold state. Thus, the hot cutting can be easily performed, and the machinability (free-cutting property) is good, so that the surface roughness of the cutting surface is also good.

高温状態で鋼材を切削するときの特徴は、次のとおりである。
(1) 比切削抵抗の低下に伴い、切削動力が低下する。
(2) 高温での切削であるため、刃先磨耗が進行する。
(3) 刃先磨耗が進行しても、切削動力の増加や切削面粗度の悪化が小さい。
(4) 刃先磨耗の進行状況に関係なく、切削時の切り屑が赤熱状態で排出される、もしくは切削時に火花がでる。
(5) 刃先に付着物が付きやすい。
The characteristics when cutting steel in a high temperature state are as follows.
(1) The cutting power decreases as the specific cutting resistance decreases.
(2) Since the cutting is performed at a high temperature, wear of the blade edge proceeds.
(3) Even if the cutting edge wear progresses, the increase of cutting power and the deterioration of cutting surface roughness are small.
(4) Regardless of the progress of cutting edge wear, chips during cutting are discharged in a red hot state, or sparks are generated during cutting.
(5) Adherents are easily attached to the cutting edge.

上述した(1)〜(5)の特徴は、冷間材の切削では見られない現象であり、熱間材の切削に固有の現象である。このような現象が現れる境界温度は明確ではないが、実験的な結果からは鋼材表面温度が400℃程度から上記の特徴が見られはじめ、特に500℃以上で顕著となる。
このように、切削刃による熱間鋼材の表面切削では、高温の材料を切削することから刃先の熱負荷が大きく、冷間切削に比べて刃先の摩耗が促進される。また、熱衝撃で刃のチッピング(欠け)が生じ易くなり、刃の寿命が問題となる。
The features (1) to (5) described above are phenomena that are not observed in the cutting of cold material, and are inherent to the cutting of hot material. The boundary temperature at which such a phenomenon appears is not clear, but the experimental results show that the above-mentioned characteristics start to be observed when the steel surface temperature is about 400 ° C., and is particularly noticeable at 500 ° C. or higher.
Thus, in the surface cutting of the hot steel material by the cutting blade, since the high-temperature material is cut, the thermal load on the cutting edge is large, and the wear of the cutting edge is promoted compared to the cold cutting. Further, the chipping (chip) of the blade is likely to occur due to thermal shock, and the blade life becomes a problem.

このような高温の熱間鋼材の切削に関する従来技術としては、特許文献1,2が挙げられる。
特開2004−181561号公報 特開平9−47913号公報
Patent documents 1 and 2 are mentioned as conventional technology about cutting of such hot steel materials of high temperature.
JP 2004-181561 A Japanese Patent Laid-Open No. 9-47913

特許文献1,2はいずれも、熱間切削における刃の寿命の延命化を図る技術とはいえ、これらの技術では、熱間状態の鋼材を切削するフライス盤において、切削刃の適切な交換時期に関する技術については具体記に記載されていない。   Although both Patent Documents 1 and 2 are techniques for extending the life of the blade in hot cutting, these techniques relate to an appropriate replacement time of the cutting blade in a milling machine for cutting a hot steel material. The technology is not described in detail.

熱間スラブの表面を切削手入れする場合、膨大な量のスラブを処理する必要があるため、一つの製鉄所にあっては、手入れの対象とするスラブ量は数万〜20万トン/月、スラブ枚数としては5000枚/月以上のスラブの全表面を切削する必要がある。
また、切削刃の交換回数は、ランニングコストに影響すると共に、刃換えによるスラブ手入れ処理能力の低減にもつながるので、切削刃の長寿命化および刃換えのタイミングは極めて重要である。
When cutting and cleaning the surface of a hot slab, it is necessary to process a huge amount of slab, so in one steelworks, the amount of slab to be cleaned is tens of thousands to 200,000 tons / month, As for the number of slabs, it is necessary to cut the entire surface of slabs of 5000 sheets / month or more.
In addition, the number of replacements of the cutting blade affects the running cost and leads to a reduction in the slab care processing capability by blade replacement. Therefore, extending the life of the cutting blade and the timing of blade replacement are extremely important.

冷間の鋼材切削においては、鋼材の切削終了度毎に、切削チップの刃先の摩耗状態を目視で観察し、摩耗の進行状態を確認したり、被削材の加工面を観察することで、刃換えのタイミングを判断するのが一般的である。   In cold steel cutting, by observing the wear state of the cutting edge of the cutting tip visually for each degree of cutting of the steel material, confirming the progress of wear, or observing the work surface of the work material, It is common to determine the timing of blade replacement.

これに対し、熱間鋼材の表面を手入れする場合には、熱間状態のスラブ表面を観察すること自体が難しい。とはいえ、冷間状態に降温してから観察することは、能率面およびエネルギーコストの面からも難しい。
また、刃先チップを観察することも、作業員がカッター近傍に近づくためには、安全に設備稼働範囲に入るための設備の条件設定を行う必要があるため、刃替え頻度にもよるが、能率低下につながる。
On the other hand, when cleaning the surface of the hot steel material, it is difficult to observe the slab surface in the hot state itself. However, it is difficult to observe after cooling to a cold state also in terms of efficiency and energy cost.
In addition, observing the cutting edge tip is also necessary because it is necessary to set the equipment conditions to safely enter the equipment operating range in order for the worker to approach the cutter vicinity. Leading to a decline.

一方、一定枚数を処理した処理枚数ベースで交換タイミングを決定することは、切削刃の交換時期決定方法としては妥当な方法と考えられるが、熱間スラブ手入れの場合、スラブの温度状態やサイズに変動があるため、単純な総処理枚数で研削刃を交換すると、交換時期が遅すぎて表面状態を劣化させたり、また早すぎてまだ研削刃が使用可能な段階で交換をするという事態が生じる。   On the other hand, deciding the replacement timing on the basis of the number of processed sheets after processing a certain number of sheets is considered an appropriate method for determining the replacement time of the cutting blade. Due to fluctuations, if the grinding blade is replaced with a simple total number of processed sheets, the replacement time will be too late and the surface condition will deteriorate, or it will be replaced too soon when the grinding blade can still be used. .

従って、ランニングコストの観点からは、単純な総処理枚数での刃交換よりも、品質面の維持も配慮して、刃の磨耗状態を別な指標で判断することが望ましい。
熱間鋼材の切削は、冷間鋼材の切削の場合と諸現象が大きく異なることから、刃の交換タイミングにおいては、その特徴を活かしたものとし、ランニングコストの低減からみても、何らかの定量的な指標値をもって交換を行うことが望まれる。
Therefore, from the viewpoint of running cost, it is desirable to judge the wear state of the blade by another index in consideration of maintaining the quality rather than simply replacing the blade with the total number of processed sheets.
Since the cutting of hot steel differs greatly from the phenomenon of cutting of cold steel, the characteristics of the blade replacement timing should be utilized, and some quantitative measures will be taken from the viewpoint of reducing running costs. It is desirable to exchange with index values.

本発明は、上記の実情に鑑みて開発されたもので、切削刃の磨耗状態や切削加工面の表面粗さの直接観察によって刃換え交換時期を判断する代わりに、設備を停止することなく、また切削加工面の悪化を招く前に、切削刃の摩耗状態を正確に把握して、刃換えの交換時期を的確に決定することにより、ランニングコストおよび作業能率を大幅に向上させた熱間スラブの表面手入れ方法を提案することを目的とする。   The present invention was developed in view of the above circumstances, and instead of judging the replacement time by directly observing the wear state of the cutting blade and the surface roughness of the cutting surface, without stopping the equipment, In addition, the hot slab has greatly improved running costs and work efficiency by accurately grasping the wear state of the cutting blade and accurately determining when to replace the blade before deteriorating the machined surface. The purpose of this is to propose a surface care method.

すなわち、本発明の要旨構成は次のとおりである。
1.高温の鋼材の表面を、切削刃を有するフライス盤によって表面手入れするに際し、該切削刃の使用限界を、下記式(1)で規定した比切削抵抗値Kcによって判断するものとし、該比切削抵抗値Kcが所定の閾値に達した時点で該切削刃を交換することを特徴とする熱間スラブの表面手入れ方法。

Kc={(We×60×106×ηe×ηm)/(ap×ae×vf)}×(Tm/To) --- (1)
ここで、We:切削動力(kW)、ηe:モータ効率(%)、ηm:機械効率(%)、
ap:切込深さ(mm)、ae:切削幅(mm)、vf:送り速度(mm/min)、
Tm:被削材表面温度(℃)、To:被削材表面基準温度(℃)
That is, the gist configuration of the present invention is as follows.
1. When the surface of a high-temperature steel material is cleaned with a milling machine having a cutting blade, the use limit of the cutting blade is determined by the specific cutting resistance value Kc defined by the following formula (1), and the specific cutting resistance value A method for cleaning the surface of a hot slab, characterized in that the cutting blade is replaced when Kc reaches a predetermined threshold value.
Kc = {(We × 60 × 10 6 × ηe × ηm) / (ap × ae × vf)} × (Tm / To) --- (1)
Where We: cutting power (kW), ηe: motor efficiency (%), ηm: mechanical efficiency (%),
ap: depth of cut (mm), ae: cutting width (mm), vf: feed rate (mm / min),
Tm: Workpiece surface temperature (° C), To: Workpiece surface reference temperature (° C)

本発明によれば、高温の鋼材を表面手入れするに際し、切削刃の摩耗状態を的確に推定して、使用限界ぎりぎりまで使用したのちに、刃交換を行えばよいので、ランニングコストおよび作業能率を大幅に向上させることができ、工業的に極めて有用な技術である。   According to the present invention, when cleaning the surface of a high-temperature steel material, it is only necessary to accurately estimate the wear state of the cutting blade and replace the blade after it has been used to the limit of use, so the running cost and work efficiency can be reduced. It can be greatly improved and is an industrially extremely useful technique.

以下、本発明を図面に従い具体的に説明する。
図1に、本発明で想定している、連続鋳造ラインから熱間圧延ラインの加熱炉までのスラブの流れの中における熱間表面手入れ時期を示す。
本発明では、図1に示したように、連続鋳造ラインで製造されたスラブを、所定の長さに切り出したのち、熱間状態のまま次工程の熱間圧延ラインの加熱炉に搬送する。この搬送過程の途中、スラブの手入れが必要と判定された場合には、搬送用ローラーテーブルの上、あるいは専用の表層部手入れ場などの適当な場所で、熱間状態のままのスラブの表面、裏面および側面の少なくとも欠陥部分について、電動機の駆動力で回転する多数の切削刃を有するフライス盤を用いて、鋳込みままの状態で切削する。
なお、本発明では、従来のように、ホットスカーファーやグラインダー研削などで手入れをした後に、本発明に従う表面手入れを行ってもよい。
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 shows the hot surface maintenance time in the flow of the slab from the continuous casting line to the heating furnace of the hot rolling line, which is assumed in the present invention.
In the present invention, as shown in FIG. 1, a slab manufactured in a continuous casting line is cut out to a predetermined length, and then transferred to a heating furnace of the next hot rolling line in a hot state. If it is determined that the slab needs to be cleaned during the transfer process, the surface of the slab in the hot state at an appropriate place such as on the transfer roller table or a dedicated surface layer maintenance area, At least defective portions of the back surface and the side surface are cut in an as-cast state using a milling machine having a large number of cutting blades that are rotated by the driving force of the electric motor.
In the present invention, as in the prior art, surface care according to the present invention may be performed after cleaning by hot scurfer or grinder grinding.

しかしながら、熱間鋼材の切削は、冷間鋼材の切削の場合と諸現象が大きく異なることは、前述したとおりである。
従って、切削刃の交換タイミングについても、熱間鋼材の切削の場合は冷間鋼材の切削の場合と異なることが考えられる。
そこで、発明者らは、まず、熱間鋼材を切削する場合における切削刃の使用限界について検討した。
その結果、冷間鋼材の切削の場合には、目視観察により切削チップの刃先摩耗が進行し、これ以上の使用は無理は判断された状態でも、熱間鋼材の切削の場合にはさらなる使用が可能であることが判明した。
However, as described above, the cutting of the hot steel material is greatly different from the case of the cutting of the cold steel material.
Therefore, it is conceivable that the cutting blade replacement timing is also different in the case of hot steel material cutting than in the case of cold steel material cutting.
Therefore, the inventors first examined the usage limit of the cutting blade when cutting hot steel.
As a result, in the case of cold steel cutting, the cutting edge wear of the cutting tip has progressed by visual observation, and further use is possible in the case of hot steel cutting even if it is judged that further use is impossible. It turned out to be possible.

図2に、熱間鋼材の切削における、刃先の逃げ面の摩耗の推移について調べた結果を示す。
同図に示したとおり、刃先の摩耗(斜線部)は、図(a)〜(d)の順に進行していくわけであるが、冷間鋼材の切削の場合には同図(b)の段階で、これ以上の使用は無理、すなわち使用限界と判断されていた。
これに対し、熱間鋼材の切削の場合には同図(c)の状態はいうに及ばず、同図(d)の状態でもまだ健全な研削が可能であることが判明した。
FIG. 2 shows the results of examining the transition of wear on the flank face of the cutting edge in cutting hot steel.
As shown in the figure, the wear of the blade edge (hatched area) proceeds in the order of figures (a) to (d), but in the case of cutting cold steel, the figure (b) At this stage, further use was considered impossible, that is, the use limit.
On the other hand, in the case of cutting hot steel materials, it has been found that not only the state of (c) in the figure but also the grinding can still be performed smoothly in the state of (d) in the figure.

このように、熱間鋼材の切削の場合、冷間鋼材の切削の場合には使用限界とされた摩耗量であっても、さらなる使用が可能である。
従って、かような熱間鋼材の切削に特有な現象を考慮して、切削刃の交換時期を決定することが重要と考えられる。
Thus, in the case of cutting a hot steel material, further use is possible even if the wear amount is the use limit in the case of cutting a cold steel material.
Accordingly, it is considered important to determine the replacement timing of the cutting blade in consideration of such a phenomenon peculiar to the cutting of hot steel materials.

そこで、発明者らは、熱間鋼材の切削に特有な現象を加味した上で、切削刃の磨耗状態を的確に評価できる指標について検討を重ねた。
すなわち、被削対象鋼材の過去の表面温度履歴および現在の表面温度や、総切削量または総切削長、現在の切削動力値と過去の切削動力変化パターンなどを考慮した指標について検討した。その結果、次式(2)で示される比切削抵抗値Kが効果的と考えられた。
K={(We×60×106×ηe×ηm)/(ap×ae×vf)} --- (2)
ここで、We:切削動力(kW)、ηe:モータ効率(%)、ηm:機械効率(%)、
ap:切込深さ(mm)、ae:切削幅(mm)、vf:送り速度(mm/min)
Therefore, the inventors have repeatedly studied an index that can accurately evaluate the wear state of the cutting blade in consideration of a phenomenon peculiar to the cutting of the hot steel material.
That is, the index which considered the past surface temperature history of the steel material to be cut, the current surface temperature, the total cutting amount or the total cutting length, the current cutting power value and the past cutting power change pattern, and the like were examined. As a result, the specific cutting resistance value K expressed by the following equation (2) was considered effective.
K = {(We × 60 × 10 6 × ηe × ηm) / (ap × ae × vf)} --- (2)
Where We: cutting power (kW), ηe: motor efficiency (%), ηm: mechanical efficiency (%),
ap: Depth of cut (mm), ae: Cutting width (mm), vf: Feed rate (mm / min)

そこで、スラブ表面温度を種々に変化させた場合における、スラブ表面温度と比切削抵抗値Kとの関係について調査した。得られた結果を図3に示す。
同図に示したとおり、通常の比切削抵抗値Kではバラツキが大きく、指標にはならないことが判明した。
Therefore, the relationship between the slab surface temperature and the specific cutting resistance value K when the slab surface temperature was variously changed was investigated. The obtained results are shown in FIG.
As shown in the figure, it was found that the normal specific cutting resistance value K has a large variation and does not serve as an index.

一般的に材料の比切削抵抗は材質毎の特性値であり、材料温度、一刃当りの切込み量などにより変化する。また、刃先のすくい角によっても変わるもので、言葉通り切削難さを示す指標である。すなわち、切削チップは固定のすくい角を持っているが、切削を重ねることにより、刃先においては磨耗が進行し、切削面と刃先のすくい角が変化する。すると、刃先が磨耗により丸くなり、すくい角としては負のすくい角の方向に変化することになり、切れ味が悪くなる。その結果,比切削抵抗が高まる。   In general, the specific cutting resistance of a material is a characteristic value for each material, and varies depending on the material temperature, the amount of cutting per blade, and the like. In addition, it varies depending on the rake angle of the blade edge, and as the word indicates, it is an index indicating the difficulty of cutting. In other words, the cutting tip has a fixed rake angle, but by repeated cutting, wear progresses at the cutting edge, and the rake angle between the cutting surface and the cutting edge changes. Then, the cutting edge becomes round due to wear, and the rake angle changes in the direction of a negative rake angle, resulting in poor sharpness. As a result, the specific cutting resistance increases.

切削動力と切削負荷(切込み、一刃あたり)から逆算される比切削抵抗Kは、切削負荷、刃先の状態、材料温度が一定であれば、本来一定値を示すものである。
ところが、図3のようにK値にバラツキがあることは、切削負荷、刃先の状態、材料温度の何れかが変化したことによるものと推測できる。
切削負荷は決定できるものであり、既知の値である場合がほとんどである。図3の試験においては、切削負荷は一定下での結果であり、変化はない。
残りのパラメータである被削材温度と刃先状態のうち,スラブの手入れにおいて、被削材の温度を計測し,温度による比切削抵抗の変化分を補正することができれば、比切削抵抗Kの変動は刃先のすくい角、すなわち、刃先の状態を示し得るものと推定される。
The specific cutting resistance K calculated backward from the cutting power and the cutting load (cutting, per blade) is essentially a constant value if the cutting load, the state of the cutting edge, and the material temperature are constant.
However, it can be inferred that the variation in the K value as shown in FIG. 3 is due to a change in any of the cutting load, the state of the cutting edge, and the material temperature.
The cutting load can be determined and is often a known value. In the test of FIG. 3, the cutting load is a result under a constant condition, and there is no change.
Of the remaining parameters, the workpiece temperature and the cutting edge state, if the temperature of the workpiece is measured during slab care and the change in specific cutting resistance due to temperature can be corrected, the variation in specific cutting resistance K Is presumed to indicate the rake angle of the cutting edge, that is, the state of the cutting edge.

そこで、さらに、発明者らは、上記の比切削抵抗値Kを、被削対象鋼材の表面温度と現在の切削動力値から温度補正した比切削抵抗値Kcを求め、これを刃先摩耗の指標としたところ、この比切削抵抗値Kcは刃先摩耗量と極めて強い相関があることが判明した。
上記した比切削抵抗値Kcは、次式(1)で規定されるものである。
Kc={(We×60×106×ηe×ηm)/(ap×ae×vf)}×(Tm/To) --- (1)
ここで、We:切削動力(kW)、ηe:モータ効率(%)、ηm:機械効率(%)、
ap:切込深さ(mm)、ae:切削幅(mm)、vf:送り速度(mm/min)、
Tm:被削材表面温度(℃)、To:被削材表面基準温度(℃)
Accordingly, the inventors further obtain a specific cutting resistance value Kc obtained by correcting the above-mentioned specific cutting resistance value K from the surface temperature of the steel material to be cut and the current cutting power value, and this is used as an index of cutting edge wear. As a result, it has been found that this specific cutting resistance value Kc has a very strong correlation with the cutting edge wear amount.
The specific cutting resistance value Kc described above is defined by the following equation (1).
Kc = {(We × 60 × 10 6 × ηe × ηm) / (ap × ae × vf)} × (Tm / To) --- (1)
Where We: cutting power (kW), ηe: motor efficiency (%), ηm: mechanical efficiency (%),
ap: depth of cut (mm), ae: cutting width (mm), vf: feed rate (mm / min),
Tm: Workpiece surface temperature (° C), To: Workpiece surface reference temperature (° C)

図4に、切込み深さap:1mm、切削幅ae:150mm,周速:200m/min、カッター送り速度:0.5m/min(カッター径:250mm、刃数:8枚)の条件で、150mm角のビレット試験片を熱間研削したときの総切削長さと比切削抵抗値Kcおよび刃先の逃げ面の摩耗量Xとの関係について調べた結果を、併せて示す。なお、ηe及びηmはそれぞれ0.8とした。また、Toは,熱間スラブの高温側の温度900℃とした。
なお、刃先の逃げ面の摩耗量Xは、上記と同様の実験を複数回行い、総切削長さが所定長さに達した段階で、常温まで冷却して刃先の摩耗量を測定することにより求めた。
同図に示したとおり、比切削抵抗値Kcの値と刃先の逃げ面の摩耗量Xとの間には強い相関が見られた。
従って、比切削抵抗値Kcを指標として刃先の逃げ面の摩耗量を高確度で推定できることが判る。
Fig. 4 shows a cutting depth of ap: 1 mm, cutting width ae: 150 mm, peripheral speed: 200 m / min, cutter feed speed: 0.5 m / min (cutter diameter: 250 mm, number of blades: 8), 150 mm square The results of examining the relationship between the total cutting length, the specific cutting resistance value Kc, and the wear amount X of the flank of the cutting edge when the billet specimen is hot ground are also shown. Note that ηe and ηm were each 0.8. Further, To was set to 900 ° C. on the high temperature side of the hot slab.
The amount of wear X on the flank of the cutting edge is determined by performing the same experiment several times as described above, and measuring the amount of wear on the cutting edge after cooling to room temperature when the total cutting length reaches a predetermined length. Asked.
As shown in the figure, a strong correlation was found between the value of the specific cutting resistance value Kc and the wear amount X of the flank face of the cutting edge.
Therefore, it can be seen that the wear amount of the flank face of the cutting edge can be estimated with high accuracy using the specific cutting resistance value Kc as an index.

例えば、図4に示した例において、初期の比切削抵抗は700〜800MPaである。磨耗が進行し、4.76mm厚の切削チップにおいて、4mmを超える磨耗となった図4の(d)の段階に摩耗限度を設定した場合には、比切削抵抗値Kc:2700MPaを指標とし、Kc値がこの値となった時点で刃先交換を行えばよいのである。   For example, in the example shown in FIG. 4, the initial specific cutting resistance is 700 to 800 MPa. When the wear limit is set at the stage of (d) in Fig. 4 where the wear progressed and the 4.76mm-thick cutting tip exceeded 4mm, the specific cutting resistance value Kc: 2700MPa was used as the index, and Kc The blade edge may be replaced when the value reaches this value.

ところで、いくつかの実験結果から、磨耗限界に近づいた場合の比切削抵抗は、初期のそれに比べて3倍〜4倍となることがわかっている。また、磨耗限度付近の切削チップの磨耗進行速度は初期の磨耗進行速度に比べて速いことが、経験的に分かっている。それ故、実際的には、磨耗限度の比切削抵抗値に対して、1割から2割程度小さい値で刃を交換するのが望ましい。
従って、上記のように摩耗限度における比切削抵抗値Kcが2700MPaと推定された場合には、安全率を見込んで、2700MPaよりも一割程度小さい2430MPaを交換の指標とすることがより好適である。
By the way, it is known from several experimental results that the specific cutting resistance when approaching the wear limit is 3 to 4 times that of the initial one. Further, it has been empirically found that the wear progress speed of the cutting tip near the wear limit is faster than the initial wear progress speed. Therefore, in practice, it is desirable to replace the blade with a value that is about 10 to 20% smaller than the specific cutting resistance value of the wear limit.
Therefore, when the specific cutting resistance value Kc at the wear limit is estimated to be 2700 MPa as described above, it is more preferable to use 2430 MPa, which is about 10% smaller than 2700 MPa, as an index for replacement in consideration of the safety factor. .

なお、実際の設備においては、刃を交換した直後の比切削抵抗を記録もしくは値を事前に決めておくことで、切削中に、随時、切削動力から比切削抵抗Kcを算出し、この値が刃の交換設定値になった時点で刃を交換する信号等を知らせるシステムを構築することが望ましい。   In actual equipment, by recording the specific cutting resistance immediately after replacing the blade or determining the value in advance, the specific cutting resistance Kc is calculated from the cutting power at any time during cutting, and this value is It is desirable to construct a system that notifies a blade replacement signal when the blade replacement set value is reached.

比切削抵抗値Kcの閾値の設定は、次式(2)に示すように整理できる。
Kclimit=α・Kc0 --- (2)
ここで、Kclimitは磨耗限界における比切削抵抗、Kc0は刃交換時の比切削抵抗値、α=3〜4の係数、超鋼を母材として表面に特殊コーティングを施した切削チップの試験においては3.5であった。
すなわち、このKclimitが切削刃の使用限界における摩耗量Xlimitに対応した比切削抵抗となる。
従って、刃交換の比切削抵抗の閾値Kc1
Kc1=β×Kclimit
から求められる。βは0.8〜0.9で磨耗限界に対するチップ交換閾値を求める係数である。
The setting of the threshold value of the specific cutting resistance value Kc can be arranged as shown in the following equation (2).
Kclimit = α ・ Kc 0 --- (2)
Here, Kclimit is the specific cutting resistance at the wear limit, Kc 0 is the specific cutting resistance value at the time of blade replacement, the coefficient of α = 3-4, in the test of the cutting tip with special coating on the surface using super steel as the base material Was 3.5.
That is, this Kclimit is a specific cutting resistance corresponding to the wear amount Xlimit at the cutting blade usage limit.
Therefore, the specific cutting resistance threshold Kc 1 for blade replacement is
Kc 1 = β × Kclimit
It is requested from. β is a coefficient for obtaining a chip replacement threshold with respect to the wear limit at 0.8 to 0.9.

今回示した磨耗量と温度補正した比切削抵抗の相関は、刃の形状が変わっても同じであるが、以下に示すような場合はα及びβは別な値となる可能性があり、実際の加工において補正する必要がある。
すなわち、切削面において、著しく切削面が荒れたり、切削面端でバリが多発する場合である。これは刃先磨耗に進行により、極端に刃先が丸まり切れ味劣化が著しい場合に起きる現象であり、切削チップの形状において、逃げ角が大きい場合などに多く見られるものである。
The correlation between the amount of wear and the specific cutting resistance corrected for temperature is the same even if the shape of the blade is changed. However, in the following cases, α and β may be different values. It is necessary to correct in the machining.
That is, in the cutting surface, the cutting surface is remarkably rough or burrs frequently occur at the end of the cutting surface. This is a phenomenon that occurs when the cutting edge is extremely rounded and the sharpness of the cutting edge is significantly deteriorated due to the progress of wear of the cutting edge, and is often seen when the clearance angle is large in the shape of the cutting tip.

なお、本発明で使用するフライス盤については、特に制限されることはないが、熱間鋼材を切削する場合に特に好適なフライス盤について、以下に述べる。
図5に、本発明を適用して好適なフライス盤の全体図を、また図6には、その要部詳細図を示す。図中、符号1でフライス盤の全体を示す、2がフライス盤1の周上に取り付けられた丸駒切削チップである。
図6に示したように、フライス盤1の周りに取り付けられた各切削刃は、全て丸駒の切削チップ2で、各切削チップの円筒エッジは全周切削刃となっている。この丸駒切削駒チップ2は、フライス盤1の周上に組み込まれた回転軸に取り付けられており、この回転軸には駆動系は付いていない。そして、丸駒チップ2および丸駒チップ用回転軸は、図6に示すように切削面に対して、丸駒チップが切削反力によって転動するような角度でフライス盤1に取り付けられている。従って、フライス盤1は、工作機械主軸の駆動系によって強制的に回転するけれども、フライス盤1の周上に取り付けられた丸駒チップ2は、切削反力により、フライス盤1の回転に従って回転する、すなわち、従動回転(以後、フリー回転)を行う。このように、切削反力で従動回転するように、丸駒チップ2をフライス盤1に取り付けたことにより、丸駒チップ2の刃は切削面に対し負のすくい角を持つことになる。なお、切削チップの回転をよりスムーズに行うには、スピンドルは十分に回転摺動性を確保しておくことが好ましい。
The milling machine used in the present invention is not particularly limited, but a milling machine particularly suitable for cutting hot steel materials will be described below.
FIG. 5 shows an overall view of a suitable milling machine to which the present invention is applied, and FIG. In the figure, reference numeral 1 denotes the entire milling machine, and 2 is a circular piece cutting tip attached on the circumference of the milling machine 1.
As shown in FIG. 6, each cutting blade attached around the milling machine 1 is a circular cutting tip 2, and the cylindrical edge of each cutting tip is an all-round cutting blade. This round piece cutting piece chip 2 is attached to a rotating shaft incorporated on the periphery of the milling machine 1, and this rotating shaft is not provided with a drive system. As shown in FIG. 6, the round piece chip 2 and the round piece chip rotation shaft are attached to the milling machine 1 at an angle such that the round piece chip rolls due to the cutting reaction force with respect to the cutting surface. Therefore, although the milling machine 1 is forcibly rotated by the drive system of the machine tool spindle, the round chip 2 attached on the circumference of the milling machine 1 rotates according to the rotation of the milling machine 1 by the cutting reaction force, that is, The driven rotation (hereinafter referred to as free rotation) is performed. Thus, by attaching the round piece tip 2 to the milling machine 1 so as to be driven and rotated by the cutting reaction force, the blade of the round piece tip 2 has a negative rake angle with respect to the cutting surface. In order to rotate the cutting tip more smoothly, it is preferable that the spindle has sufficient rotational slidability.

なお、上記の例では、切削刃として、フリー回転する丸駒チップを用いる場合について主に説明したが、本発明は、通常の固定刃を用いる場合にも適用できることはいうまでもない。   In the above example, the description has been mainly given of the case of using a freely rotating round piece chip as the cutting blade. However, it goes without saying that the present invention can also be applied to the case of using a normal fixed blade.

本発明における、連続鋳造ラインから熱間圧延ラインの加熱炉までのスラブの流れを示したフローチャートである。It is the flowchart which showed the flow of the slab from the continuous casting line to the heating furnace of a hot rolling line in this invention. 熱間鋼材の切削における、刃先の逃げ面の摩耗の推移を示した図である。It is the figure which showed transition of the abrasion of the flank of a blade edge | tip in the cutting of hot steel materials. スラブ表面温度と比切削抵抗値Kとの関係を示した図である。It is the figure which showed the relationship between slab surface temperature and specific cutting resistance value K. FIG. 熱間研削における総切削長さと比切削抵抗値Kcおよび刃先の逃げ面の摩耗量Xとの関係を示した図である。It is the figure which showed the relationship between the total cutting length in hot grinding, the specific cutting resistance value Kc, and the abrasion amount X of the flank of a blade edge | tip. 本発明に従うフライス式表層切削装置のフライス盤の全体図である。1 is an overall view of a milling machine of a milling surface cutting device according to the present invention. 図3の要部詳細図である。It is a principal part detail drawing of FIG.

符号の説明Explanation of symbols

1 フライス盤
2 丸駒切削チップ
1 Milling machine 2 Round piece cutting tip

Claims (1)

高温の鋼材の表面を、切削刃を有するフライス盤によって表面手入れするに際し、該切削刃の使用限界を、下記式(1)で規定した比切削抵抗値Kcによって判断するものとし、該比切削抵抗値Kcが所定の閾値に達した時点で該切削刃を交換することを特徴とする熱間スラブの表面手入れ方法。

Kc={(We×60×106×ηe×ηm)/(ap×ae×vf)}×(Tm/To) --- (1)
ここで、We:切削動力(kW)、ηe:モータ効率(%)、ηm:機械効率(%)、
ap:切込深さ(mm)、ae:切削幅(mm)、vf:送り速度(mm/min)、
Tm:被削材表面温度(℃)、To:被削材表面基準温度(℃)
When the surface of a high-temperature steel material is cleaned with a milling machine having a cutting blade, the use limit of the cutting blade is determined by the specific cutting resistance value Kc defined by the following formula (1), and the specific cutting resistance value A method for cleaning the surface of a hot slab, characterized in that the cutting blade is replaced when Kc reaches a predetermined threshold value.
Kc = {(We × 60 × 10 6 × ηe × ηm) / (ap × ae × vf)} × (Tm / To) --- (1)
Where We: cutting power (kW), ηe: motor efficiency (%), ηm: mechanical efficiency (%),
ap: depth of cut (mm), ae: cutting width (mm), vf: feed rate (mm / min),
Tm: Workpiece surface temperature (° C), To: Workpiece surface reference temperature (° C)
JP2008327450A 2008-12-24 2008-12-24 How to clean hot slab surface Expired - Fee Related JP5394724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008327450A JP5394724B2 (en) 2008-12-24 2008-12-24 How to clean hot slab surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008327450A JP5394724B2 (en) 2008-12-24 2008-12-24 How to clean hot slab surface

Publications (2)

Publication Number Publication Date
JP2010149201A true JP2010149201A (en) 2010-07-08
JP5394724B2 JP5394724B2 (en) 2014-01-22

Family

ID=42568875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008327450A Expired - Fee Related JP5394724B2 (en) 2008-12-24 2008-12-24 How to clean hot slab surface

Country Status (1)

Country Link
JP (1) JP5394724B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102672249A (en) * 2012-05-07 2012-09-19 华中科技大学 Method for predicting generation of residual tensile stress based on milling temperature and corresponding optimal control method
CN104268343A (en) * 2014-09-28 2015-01-07 北京理工大学 Method of cutting force prediction and temperature prediction for end-milling cutting
JP2018161698A (en) * 2017-03-24 2018-10-18 学校法人福岡工業大学 Tool wear estimating method
CN112705766A (en) * 2020-12-18 2021-04-27 成都航空职业技术学院 Method for monitoring non-uniform wear state of cutter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320201A (en) * 1998-05-18 1999-11-24 Mitsubishi Materials Corp Grooving method and its device
JP2004148365A (en) * 2002-10-30 2004-05-27 Jfe Steel Kk Method and equipment for manufacturing hot-rolled steel product
JP2006102864A (en) * 2004-10-05 2006-04-20 Nagano Prefecture Cutting testing machine
JP2006107073A (en) * 2004-10-05 2006-04-20 Nagano Prefecture Working information sharing system and its method
JP2008290175A (en) * 2007-05-24 2008-12-04 Jfe Steel Kk Method for cleaning surface layer part of hot slab and method for manufacturing hot rolled steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320201A (en) * 1998-05-18 1999-11-24 Mitsubishi Materials Corp Grooving method and its device
JP2004148365A (en) * 2002-10-30 2004-05-27 Jfe Steel Kk Method and equipment for manufacturing hot-rolled steel product
JP2006102864A (en) * 2004-10-05 2006-04-20 Nagano Prefecture Cutting testing machine
JP2006107073A (en) * 2004-10-05 2006-04-20 Nagano Prefecture Working information sharing system and its method
JP2008290175A (en) * 2007-05-24 2008-12-04 Jfe Steel Kk Method for cleaning surface layer part of hot slab and method for manufacturing hot rolled steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102672249A (en) * 2012-05-07 2012-09-19 华中科技大学 Method for predicting generation of residual tensile stress based on milling temperature and corresponding optimal control method
CN104268343A (en) * 2014-09-28 2015-01-07 北京理工大学 Method of cutting force prediction and temperature prediction for end-milling cutting
CN104268343B (en) * 2014-09-28 2018-01-12 北京理工大学 A kind of method of prediction of Turning Force with Artificial and temperature prediction for end mill cutting
JP2018161698A (en) * 2017-03-24 2018-10-18 学校法人福岡工業大学 Tool wear estimating method
CN112705766A (en) * 2020-12-18 2021-04-27 成都航空职业技术学院 Method for monitoring non-uniform wear state of cutter

Also Published As

Publication number Publication date
JP5394724B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
CN102764958B (en) Process for manufacturing cold-rolled/cold-drawn precise welded steel pipe
EP0790093B1 (en) Method of surface machining of hot rolled steel material
JP4867789B2 (en) Hot slab surface layer care method and hot rolled steel manufacturing method
JP5394724B2 (en) How to clean hot slab surface
JP5220115B2 (en) Titanium slab for hot rolling, its melting method and rolling method
JP4823400B1 (en) Hot rolled steel sheet manufacturing apparatus and manufacturing method
JP3951889B2 (en) Manufacturing method and equipment for hot-rolled steel
JP5258530B2 (en) How to clean hot slab surface
CA2653360C (en) Method and device for producing a metal strip by continuous casting
JP2016068251A (en) Surface mending method of slab
JPH0610172A (en) Treatment of hot finished austenitic stainless steel strip
JP5892266B2 (en) Method and apparatus for processing edge of square metal material
JP5394706B2 (en) How to clean hot slab cutting surface layer
JP2007331010A (en) Method for manufacturing hot-rolled bearing steel
JP4545130B2 (en) Steel plate manufacturing method
JP4764135B2 (en) Mechanical descaling method for steel
JP2004181561A (en) Manufacturing method of hot rolled steel material
JPH07266207A (en) Processing method and processing device line for stainless steel band
JPH05269656A (en) Processing method for band metal body
KR101186580B1 (en) Apparatus for trimming burrs of strip edge in twin roll strip casting process
JP4487684B2 (en) Work roll surface roughness evaluation method in hot rolling, work roll grinding method and hot rolling method using the same
JP2624599B2 (en) Method of treating strip-shaped metal body with excellent surface properties
JP2005279898A (en) Method and facility for manufacturing steel strip with few surface defects
SU855018A1 (en) Method of strengthening metal coatings
JPH08103812A (en) Rotary cutting tool for scale removing of hot steel stock and scale removing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131017

R150 Certificate of patent or registration of utility model

Ref document number: 5394724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees