JP2010149042A - Method of remedying contaminated soil zone - Google Patents

Method of remedying contaminated soil zone Download PDF

Info

Publication number
JP2010149042A
JP2010149042A JP2008329724A JP2008329724A JP2010149042A JP 2010149042 A JP2010149042 A JP 2010149042A JP 2008329724 A JP2008329724 A JP 2008329724A JP 2008329724 A JP2008329724 A JP 2008329724A JP 2010149042 A JP2010149042 A JP 2010149042A
Authority
JP
Japan
Prior art keywords
soil
contaminated soil
contaminated
water
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008329724A
Other languages
Japanese (ja)
Other versions
JP5276429B2 (en
Inventor
Satoshi Matsumoto
聰 松本
Ichizo Kono
市蔵 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ekomu Kk
Original Assignee
Ekomu Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ekomu Kk filed Critical Ekomu Kk
Priority to JP2008329724A priority Critical patent/JP5276429B2/en
Publication of JP2010149042A publication Critical patent/JP2010149042A/en
Application granted granted Critical
Publication of JP5276429B2 publication Critical patent/JP5276429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of comprehensively remedying contaminated soil and contaminated water, which enables an inactivation treatment of a contaminated material, an adsorption removal by a specific ore, and a decomposition and removal by bio-bacillus to clear a countermeasure of contaminated soil. <P>SOLUTION: The method of remedying contaminated soil regions includes a pretreatment process of making soil muddy to remove coarse fragments and other untreated materials, an inactivation treatment process of foreskin-fixing heavy metals with a silica component membrane in an aggregate stage in contaminated soil, a decomposition-removal treating process of decomposing an organic substance utilizing bio-bacillus, an adsorption removal treating process of sorbing other heavy metals which are not inactivated and undegradable materials by passing them through a filtration tank, and an aftertreatment process of drying and burying to return the soil from which the contaminated material is removed, and for treated water from which the contaminated material is removed or groundwater from which the contaminated material is removed by the decomposition-removal treating process and the adsorption removal treating process, of returning as clarified water to groundwater area or discharging separately. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、揮発性有機化合物(VOC)及び重金属類等の汚染物質を含んでいる土壌及び特定区域内の地下水から当該汚染物質を分解除去して改善された土壌と地下水域を得るための汚染土壌区域改善方法に関する。   The present invention is a pollution for obtaining an improved soil and groundwater area by decomposing and removing the contaminant from soil containing volatile organic compounds (VOC) and heavy metals, and groundwater in a specific area. It relates to soil area improvement methods.

汚染土壌対策法第5条第4項には、工場跡地等の汚染指定区域の指定解除は土壌の特定有害物質による汚染の除去が条件とされており、原位置において特定有害物質の浄化除去を行うことが認められている。この条件として、土壌中に含有する重金属類の量が基準以下であり、且つ特定有害物質の不溶出化を行わなければ指定解除には至らないと解釈されている。また、浄化には土壌を洗浄し、有害物質を除去する装置が開発されているが、それらの装置は砂質土には有効だが、粘土質や腐葉土等には適さなかった。つまりシルト質土の含有率が30%未満の土壌でないと有効に対応できないことや、洗浄汚濁水が地下水へ混入拡散する虞もあった。これらのことを解決するための低コストでの対策技術がないことが現状であった。一方、原位置において汚染土壌を改善することが考えられているが、それらに含まれる重金属類は元素が多いことで不可能であったし、有機化合物は多種ある有機物の一部のみがバイオ菌による分解処理が行われるのみで、十分な土壌改善には至らなかった。更に、地下水帯の土壌及び地下水域への汚染拡散が行われる虞があり、これを防止する目的で遮蔽壁を施すことが義務付けられているが、この地下水帯及び地下水を土壌と同時に改善する技術は見当たらなかった。上記のことから現在まで一般的に「土の総入れ替え」を行い、運ばれた土壌は中間処理や最終処分場への埋め立てによって処理されているが、処分場周辺の汚染や不適正処理によって汚染が拡散し新たな環境問題になっている現状がある。   According to Article 5, Paragraph 4 of the Contaminated Soil Countermeasures Law, deregistration of designated designated areas such as factory ruins is subject to the removal of contamination by specific hazardous substances in the soil. It is allowed to do. As this condition, the amount of heavy metals contained in the soil is below the standard, and it is interpreted that the designation will not be canceled unless the specific hazardous substance is not eluted. In addition, devices for cleaning soil and removing harmful substances have been developed for purification, but these devices are effective for sandy soil, but not suitable for clay or humus. In other words, there is a possibility that the soil can be effectively handled only when the content of silty soil is less than 30%, and there is a possibility that the washed polluted water is mixed and diffused into the groundwater. At present, there is no low-cost countermeasure technique for solving these problems. On the other hand, it is considered to improve the contaminated soil in situ, but the heavy metals contained in them are impossible due to the large amount of elements, and only a part of the various organic compounds are bio-fungi. However, the soil was not sufficiently improved. Furthermore, there is a risk of contamination spreading into the soil and groundwater area of the groundwater zone, and it is obliged to provide a shielding wall to prevent this, but technology to improve this groundwater zone and groundwater simultaneously with the soil Was not found. From the above, to date, the entire soil has been generally replaced, and the transported soil has been treated by intermediate treatment or landfilling to the final disposal site, but it has been contaminated by contamination around the disposal site or improper treatment. Is spreading and has become a new environmental problem.

また、従来のバイオによる汚染土壌対策としては、例えば特許文献1に開示されているような浄化方法が存在する。この技術は、汚染物質を浄化する芽胞形成細菌の芽胞を汚染物質で汚染された汚染土壌或いは/及び汚染地下水等に添加し、その発芽を誘導し、汚染土壌或いは/及び汚染地下水等を浄化することを特徴とするものであり、被浄化物質である汚染物質の分解能を有する芽胞形成細菌の芽胞を汚染土壌又は汚染地下水中に添加し、汚染領域に多く到達させた後に発芽を誘導することによって、被浄化物質である汚染物質の分解を行うというものであった。   In addition, as a conventional countermeasure against contaminated soil by biotechnology, there is a purification method as disclosed in Patent Document 1, for example. This technology adds spores of spore-forming bacteria that purify pollutants to polluted soil or / and contaminated groundwater contaminated with pollutants, induces germination, and purifies contaminated soil or / and polluted groundwater, etc. By adding spores of spore-forming bacteria having the resolution of contaminants to be purified to contaminated soil or contaminated groundwater, and inducing germination after reaching many contaminated areas In this method, the pollutant that is the substance to be purified is decomposed.

また、従来の電解凝集結合剤を使って汚泥を固化させることで土壌の改善を行う対策としては、例えば特許文献2に開示されているような難溺泥土即効固化剤が存在する。この技術は、処理する無シリカの状態にある汚泥土壌を酸化状態の健康土壌に改質すると共に、汚泥の固化が即効的に行われ、汚泥の搬出,撤去の大幅な効率化が可能な難溺泥土即効固化剤を使用している。すなわち、この難溺泥土即効固化剤は、純水、過硫酸アンモニウム、硝酸カルシウム、ホスホン酸及び希硫酸を所定の重量比で混合してなる電解凝集結合剤に、高重合ポリアクリル酸ナトリウム、珪藻土、フライアッシュ等の処理剤を所定の重量比で混合して構成されている。
特開2008−188510号公報 特開2001−104998号公報
Moreover, as a countermeasure for improving soil by solidifying sludge using a conventional electrolytic aggregating binder, for example, a hard-to-treat mud soil immediate effect solidifying agent as disclosed in Patent Document 2 exists. This technology improves the sludge soil in a silica-free state to be treated to oxidized healthy soil, and solidifies the sludge quickly, making it difficult to remove and remove sludge significantly. Uses dredged clay immediate effect solidifying agent. That is, this hard clay mud quick-acting solidifying agent is a high-polymerized sodium polyacrylate, diatomaceous earth, A treatment agent such as fly ash is mixed at a predetermined weight ratio.
JP 2008-188510 A JP 2001-104998 A

しかしながら、従来のバイオや不溶化等による汚染土壌の改善対策は、長期的な安全が担保されていないことや、土壌中には様々な汚染物が含まれており、特定の汚染物を除去しても土壌の浄化としての総合対策とはなっていないのが実状であった。しかも、地下水帯に存在する汚染土壌及び地下水帯を含め汚染区域全体を低コストで総合的に改良する汚染土壌改善工法の技術がないことから、掘削運搬除去を行って汚染土壌を処分場に埋め立てるか、中間処理を行ってその害を無くすものとしているが、不適正処理例が数多く発覚している。また、埋め立て処分場周辺の汚染も環境問題化しており、従来のような土壌の総入れ替えによる方法では、コストが掛かり過ぎてしまうこと並びに環境対策上からも好ましいものではなかった。   However, conventional measures to improve contaminated soil due to biotechnology and insolubilization are not guaranteed long-term safety, and soil contains various contaminants. However, the actual situation is not a comprehensive measure for soil purification. Moreover, because there is no technology for improving the contaminated soil and the contaminated soil existing in the groundwater zone at a low cost, the contaminated soil is buried in the disposal site by excavation and removal. Or, the intermediate process is performed to eliminate the harm, but many examples of inappropriate processes have been discovered. In addition, pollution around the landfill site has become an environmental problem, and the conventional method using total replacement of soil is not preferable in terms of cost and environmental measures.

そこで、本発明は叙上のような従来存した諸事情に鑑み創出されたもので、土壌及び地下水に含まれる汚染物質に対して特定の鉱石による吸着除去と、バイオ菌による分解除去とを同時に行うことを可能とし、土の総入れ替えを行うことなく、汚染土壌対策法をクリアーするところまで汚染土壌及び汚染地下水を総合的に改善することができる汚染土壌区域改善方法を提供することを目的とするものである。   Therefore, the present invention was created in view of the existing circumstances as described above, and simultaneously removes adsorption by a specific ore with respect to pollutants contained in soil and groundwater and decomposes and removes by a biofungus. The purpose is to provide a method for improving the contaminated soil area that can comprehensively improve the contaminated soil and the contaminated groundwater to the extent that the Contaminated Soil Countermeasures Act is cleared without having to replace the soil completely. To do.

本発明にあっては、土壌を泥状化し、礫やその他の非処理物質を除去する前処理工程と、汚染土壌にあってはその団粒化の過程で重金属類をシリカ成分皮膜をもって包皮固定させる不活性化処理工程と、バイオ菌を利用して有機物質を分解する分解除去処理工程と、不活性化されなかった他の重金属類や分解不可能な物質を濾過槽に通すことで吸着する吸着除去処理工程と、汚染物質が除去された土壌は乾燥して埋め戻し、上記各工程により汚染物質が除去された処理水或いは分解除去処理工程及び吸着除去処理工程によって汚染物質が除去された地下水にあっては清澄化水として地下水域に戻すか或いは別途排水する後処理工程とからなる汚染土壌区域改善方法を特徴とする。   In the present invention, the pretreatment process for removing soil and mud and other untreated substances in the soil, and for contaminated soil, heavy metals are fixed in a foreskin with a silica component film in the process of agglomeration. Adsorption by passing through the filter tank the inactivation treatment process to be performed, the decomposition removal treatment process for decomposing organic substances using bio-bacteria, and other heavy metals that have not been inactivated or non-degradable substances Adsorption / removal treatment process and soil from which contaminants have been removed are dried and backfilled, and treated water from which contaminants have been removed by the above-mentioned processes, or groundwater from which contaminants have been removed by decomposition / removal treatment processes and adsorption / removal treatment processes In that case, it is characterized by a method for improving a contaminated soil area comprising a post-treatment step of returning to groundwater as clarified water or draining it separately.

また、上記前処理工程は、土壌に加水し或いは洗浄・分級プラントにより洗浄することにより土壌を濃縮・減容化した状態で加水して泥状化し、礫や木、ゴミ、その他の非処理物質を除去する汚染土壌区域改善方法を特徴とする。   In addition, the above pretreatment process is performed by adding water to the soil or washing it with a washing / classifying plant so that the soil is concentrated and volume-reduced to become muddy, resulting in gravel, wood, garbage and other untreated substances. It features a method for improving contaminated soil area that removes soil.

更に、上記前処理工程は、土壌に加水し或いは洗浄・分級プラントにより洗浄することにより土壌を濃縮・減容化した状態で加水して泥状化し、礫や木、ゴミ、その他の非処理物質を除去し、同時に、検査装置により土壌を分析して非汚染土壌と判別されたものは後処理工程の埋め戻し工程へ、汚染土壌と判別されたものは不活性化処理工程へと分級してなる汚染土壌区域改善方法を特徴とする。   Furthermore, the pre-treatment step involves adding water to the soil or washing it with a washing / classifying plant to make the soil hydrolyzed and mudified in a concentrated and reduced volume, resulting in gravel, wood, garbage, and other untreated substances. At the same time, the soil that has been determined to be non-contaminated by analyzing the soil with an inspection device is classified into the back-treatment process in the post-treatment process, and the one that has been determined to be contaminated soil is classified into the inactivation process. It features a method for improving contaminated soil area.

また、上記不活性化処理工程は、土壌コロイドに作用することで瞬時に団粒化すると同時に重金属類はコロイドに包蔵されるものとする強アルカリ性のA液と、アルカリが中和されると同時にシリカ成分がガラス皮膜に変質し、土壌コロイド全体を完全に包み込むことで長期にわたり不活性化状態となるようにする中和改良剤(pH調整剤)によるB液との2液タイプによる汚染土壌区域改善方法を特徴とする。   In addition, the inactivation treatment process instantly agglomerates by acting on the soil colloid, and at the same time the alkali is neutralized with the strongly alkaline solution A in which heavy metals are encapsulated in the colloid. Contaminated soil area by two-component type with B-solution by neutralization improver (pH adjuster) that makes silica component transform into glass film and completely envelop the entire soil colloid so that it becomes inactive for a long time Features an improvement method.

更に、上記分解除去処理工程は、浮上分離処理、接触曝気処理、濾過処理が順次行われ、濾過処理においてバイオ菌による有機物質を分解処理して除去する汚染土壌区域改善方法を特徴とする。   Furthermore, the decomposition and removal treatment step is characterized by a method for improving a contaminated soil area in which a floating separation treatment, a contact aeration treatment, and a filtration treatment are sequentially performed, and organic substances due to biofungi are decomposed and removed in the filtration treatment.

また、上記吸着除去処理工程は、不活性化処理工程で不活性化されなかった他の重金属類、及び分解除去処理工程で分解不可能であった有機物質を、粉末或いは塊状の濾過材の吸着作用とイオン交換作用により、吸着除去する汚染土壌区域改善方法を特徴とする。   In addition, the adsorption removal treatment step adsorbs other heavy metals that have not been deactivated in the deactivation treatment step and organic substances that cannot be decomposed in the decomposition removal treatment step to adsorb powder or block filter media. It features a method for improving contaminated soil area by adsorption and removal by action and ion exchange action.

更に、上記濾過材は、吸着作用とイオン交換作用及びミネラルを溶出する等の各作用を有する斑状花崗閃緑岩鉱石を使用する汚染土壌区域改善方法を特徴とする。   Further, the filter medium is characterized by a method for improving a contaminated soil area using a mottled granodiorite ore having an action such as an adsorption action, an ion exchange action and a mineral elution.

また、上記後処理工程は、土壌にあっては養生ピットで自然乾燥して所定区域へ埋め戻し、清澄化水にあってはバイオ菌及びミネラルを含んで地下水域に戻すか或いは別途排水する汚染土壌区域改善方法を特徴とする。   In the above post-treatment process, the soil is naturally dried in a curing pit and backfilled to a predetermined area, and in the case of clarified water, it is returned to the groundwater area containing biobacteria and minerals or drained separately. Characterized by soil area improvement methods.

更に、上記後処理工程は、検査装置により非汚染土壌と判別された土壌は自然乾燥後、原位置に埋め戻し、不活性化処理工程、分解除去処理工程及び吸着除去処理工程を経て汚染物質が除去された土壌は自然乾燥後、遮蔽壁に囲まれた特定区域に埋め戻す汚染土壌区域改善方法を特徴とする。   Further, in the above post-treatment process, the soil determined as non-contaminated soil by the inspection device is naturally dried and then backfilled to the original position, and the contaminants are passed through the inactivation treatment process, the decomposition removal treatment process, and the adsorption removal treatment process. The removed soil is characterized by a method for improving the contaminated soil area after it is naturally dried and then backfilled in a specific area surrounded by a shielding wall.

また、上記特定区域は、遮蔽壁で囲まれた区域全面に遮水シートを敷設し、該遮水シート上に汚染物質が除去された乾燥土壌を埋め戻す汚染土壌区域改善方法を特徴とする。   The specific area is characterized by a method for improving a contaminated soil area in which a water shielding sheet is laid on the entire area surrounded by a shielding wall, and the dry soil from which contaminants have been removed is refilled on the water shielding sheet.

本発明によれば、汚染土壌や汚染地下水に含まれる汚染物質に対して不活性化処理と、特定の鉱石による吸着除去と、バイオ菌による分解除去とが同時に可能となり、土の総入れ替えを行うことなく、汚染土壌対策法をクリアーするところまで汚染土壌及び汚染地下水を総合的に改善することを可能とした。   According to the present invention, it is possible to perform inactivation treatment, adsorption removal with a specific ore, and decomposition removal with a biofungus at the same time for pollutants contained in contaminated soil and contaminated groundwater, and perform total soil replacement. Without any problem, it was possible to comprehensively improve contaminated soil and contaminated groundwater to the extent that the Contaminated Soil Control Law was cleared.

すなわち、本発明は、汚染土壌を泥状化し、礫やその他の非処理物質を除去する前処理工程と、汚染土壌の団粒化の過程で重金属類をシリカ成分皮膜をもって包皮固定させる不活性化処理工程と、バイオ菌を利用して有機物質を分解する分解除去処理工程と、不活性化されなかった他の重金属類や分解不可能な物質を濾過槽に通すことで吸着する吸着除去処理工程と、汚染物質が除去された土壌は乾燥して埋め戻し、上記各工程により汚染物質が除去された処理水或いは分解除去処理工程及び吸着除去処理工程によって汚染物質が除去された地下水にあっては清澄化水として地下水域に戻すか或いは別途排水する後処理工程とからなるので、汚染物質の不活性化、特定の鉱石による吸着除去、バイオ菌による分解除去のそれぞれが同時に進行する循環型のオンサイト工法が構築できることを可能とした。   That is, the present invention provides a pretreatment process for muddying contaminated soil to remove gravel and other non-treated substances, and deactivation by fixing the heavy metals with a silica component film in the process of agglomeration of the contaminated soil. Treatment process, Decomposition and removal process that decomposes organic substances using bio-bacteria, and Adsorption and removal process that adsorbs other heavy metals that have not been inactivated and materials that cannot be decomposed through a filtration tank The soil from which the pollutants have been removed is dried and backfilled, and the treated water from which the pollutants have been removed by the above-mentioned processes or the groundwater from which the pollutants have been removed by the decomposition removal treatment process and the adsorption removal treatment process should be used. Since it consists of a post-treatment process that returns to groundwater as clarified water or drains it separately, inactivation of pollutants, adsorption removal by specific ores, and decomposition removal by bio-bacteria proceed simultaneously Recycling on-site construction method made it possible to be constructed that.

しかも、上記のように活性化した水を汚染区域に戻すことで、バイオ菌が投入され、原土中の好気性菌や微生物が活性化し、浄化・分解を促進させることができる。このとき、汚染物質を不活性化処理工程によって団粒子構造に改良することで、有機物を餌とし、硝化分解活動をしている好気性微生物は自身が窒息しない「気相」をつくりだすことができ、更に、上記のように改良された地下水は酸素溶存量DO及びミネラル成分が増えて活性化されているため、外部に排出された際の微生物等の活性化にもつながり、自然浄化作用が促進されることになる。   In addition, by returning the activated water to the contaminated area as described above, biobacteria are introduced, aerobic bacteria and microorganisms in the raw soil are activated, and purification and decomposition can be promoted. At this time, by improving the pollutant into a particle structure by an inactivation treatment process, aerobic microorganisms that feed on organic matter and are performing nitrification decomposition activities can create a “gas phase” that does not suffocate themselves. Furthermore, since the groundwater improved as described above is activated by increasing the amount of dissolved oxygen DO and mineral components, it also leads to the activation of microorganisms etc. when discharged to the outside, promoting the natural purification action Will be.

また、上記不活性化処理工程は、土壌コロイドに作用することで瞬時に団粒化すると同時に重金属類はコロイドに包蔵されるものとする強アルカリ性のA液と、アルカリが中和されると同時にシリカ成分がガラス皮膜に変質し、土壌コロイド全体を完全に包み込むことで不活性化状態となるようにする中和改良剤(pH調整剤)によるB液との2液タイプによるものとしたので、泥土は安定的な固定化状態となり、殆ど半永久的に溶出しない不活性化状態が確実に得られることになる。   In addition, the inactivation treatment process instantly agglomerates by acting on the soil colloid, and at the same time the alkali is neutralized with the strongly alkaline solution A in which heavy metals are encapsulated in the colloid. Because the silica component is transformed into a glass film, and it is based on a two-component type with a B-solution by a neutralization improver (pH adjuster) that makes it in an inactivated state by completely wrapping the entire soil colloid, The mud is in a stable immobilization state, and an inactivated state that hardly elutes almost permanently is obtained.

更に、上記分解除去処理工程は、浮上分離処理、接触曝気処理、濾過処理が順次行われる浮上分解槽よりなり、濾過処理におけるバイオ菌により、前記不活性化処理工程によって団粒子構造に改良された土壌が通気性、保水性、疎水性を有し、土中の好気性微生物の活性につながることから、地下水を緩やかに循環させた時に、バイオ菌による濾過材で揮発性有機化合物(VOC)やベンゼン等の有機化学物質を効率良く且つ確実に分解することを可能とした。   Further, the decomposition and removal treatment step comprises a flotation decomposition tank in which a flotation separation treatment, a contact aeration treatment, and a filtration treatment are sequentially performed. The biobacteria in the filtration treatment have been improved to the aggregate particle structure by the inactivation treatment step. Since soil has air permeability, water retention and hydrophobicity, and leads to the activity of aerobic microorganisms in the soil, when groundwater is circulated gently, volatile organic compounds (VOC) and It was possible to decompose organic chemicals such as benzene efficiently and reliably.

また、上記吸着除去処理工程は、不活性化処理工程で不活性化されなかった他の重金属類、及び分解除去処理工程で分解不可能であった有機物質を、特定鉱石による濾過材の吸着作用とイオン交換作用により吸着除去するものとしたので、他の重金属類や分解不可能な物質を完全に除去することを可能とした。   In addition, the above adsorption removal treatment step adsorbs other heavy metals that have not been deactivated in the deactivation treatment step, and organic substances that cannot be decomposed in the decomposition removal treatment step, to the filter medium by a specific ore. As a result, it is possible to completely remove other heavy metals and substances that cannot be decomposed.

更に、上記特定鉱石は、吸着作用とイオン交換作用及びミネラルを溶出する斑状花崗閃緑岩鉱石を使用したので、例えば水銀、銅、鉛、カドミウム等の有害重金属類を低コストで効率良く除去し、清澄化水として地下水域に戻された地下水或いは別途排出される水の活性化を促進し、自然浄化作用を可能とした。   In addition, the specific ore used is a porphyry granodiorite ore that elutes adsorption, ion exchange, and minerals, so that harmful heavy metals such as mercury, copper, lead, and cadmium can be efficiently removed at low cost. It promotes the activation of groundwater returned to groundwater as clarified water or separately discharged water, enabling a natural purification action.

以下、本発明を実施する最良の形態について図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本発明に係る汚染土壌区域改善方法は、汚染土壌或いは汚染土壌と疑わしき土壌に加水し或いは洗浄・分級プラントにより洗浄することにより土壌を濃縮・減容化した状態で加水して泥状化し、礫や木、ゴミ、その他の非処理物質を除去する前処理工程と、汚染土壌にあってはその団粒子化の過程で重金属類をシリカ成分(ガラス)皮膜をもって包皮状に固定させ、土壌溶出量基準以下に適合する状態とする2液タイプによる不活性化処理工程と、バイオ菌を利用して揮発性有機化合物(VOC)やベンゼン等の有機物質を分解する分解除去処理工程と、不活性化されなかった他の重金属類、及び分解除去処理工程で分解不可能であった有機物質を濾過装置に通すことで吸着する吸着除去処理工程と、養生ピットで自然乾燥して所定区域へ埋め戻す土壌と、上記各工程により汚染物質が除去された処理水或いは分解除去処理工程及び吸着除去処理工程によって汚染物質が除去された地下水は清澄化水として地下水域に戻す等の後処理工程の各処理工程からなる循環型のオンサイト工法である。   The method for improving a contaminated soil area according to the present invention comprises adding water to a contaminated soil or a suspected contaminated soil or washing it with a washing / classifying plant to concentrate and reduce the volume of the soil to make it muddy, In the pretreatment process for removing wood, garbage, other untreated substances, and in the case of contaminated soil, heavy metals are fixed in a foreskin shape with a silica component (glass) film in the process of aggregate formation, and the amount of soil elution Deactivation treatment process with two-component type that conforms to below standard, decomposition and removal treatment process to decompose organic substances such as volatile organic compounds (VOC) and benzene using bio-bacteria, and deactivation Other heavy metals that have not been removed and organic substances that could not be decomposed in the decomposition and removal treatment process are adsorbed by passing through a filtration device, and are naturally dried in a curing pit and buried in a predetermined area. Each of the soil to be returned and the treated water from which the contaminants have been removed by the above steps or the groundwater from which the contaminants have been removed by the decomposition and removal treatment steps and the adsorption removal treatment step are returned to the groundwater area as clarified water. This is a circulation type on-site method consisting of processing steps.

除去可能な具体的汚染対象物質は、図10に示すように、水銀(活用場所は大気中の微生物)・六価クロム(活用場所は排水処理中の微生物)等の重金属、PCB(活用場所は土壌中及び排水処理中の微生物)・トリクロロエチレン(活用場所は土壌中及び排水処理中の微生物)・テトラクロロエチレン(活用場所は土壌中及び排水処理中の微生物)・農薬(活用場所は土壌中の微生物)・ダイオキシン(活用場所は土壌中の微生物)・環境ホルモン(活用場所は土壌中の微生物)等の有害化学物質、BOD・COD(活用場所は排水処理中の微生物)・窒素(活用場所は土壌中、水域中及び排水処理中の微生物)・リン(活用場所は排水処理中の微生物)・油(活用場所は土壌中、水域中及び排水処理中の微生物)等の有機汚濁物質がある。   As shown in Fig. 10, specific substances that can be removed include heavy metals such as mercury (the place of utilization is microorganisms in the atmosphere) and hexavalent chromium (the place of utilization is microorganisms during wastewater treatment), PCB (the place of use is Microorganisms in soil and wastewater treatment) ・ Trichlorethylene (Used place in microorganisms in soil and wastewater treatment) ・ Tetrachlorethylene (Used place in microorganisms in soil and wastewater treatment) ・ Pesticides (Used place in microorganisms in soil)・ Hazardous chemical substances such as dioxin (use place is microorganism in soil), environmental hormone (use place is microorganism in soil), BOD ・ COD (use place is microorganism during wastewater treatment), nitrogen (use place is in soil) There are organic pollutants such as microorganisms in water and wastewater treatment), phosphorus (microbe used in wastewater treatment), oil (microbe used in soil, water and wastewater treatment)

前処理工程及び不活性化処理工程は、図1に示すように、重機31を使って掘削除去された土壌を加水し泥土にしてから洗浄するための選別機32を備えている。この選別機32によって選別され洗浄された後の泥土は、運転管理室33の管理の下で送泥ポンプ34により混合機35に移送されるようにしてある。この前処理工程は、土壌に加水し或いは洗浄・分級プラントにより洗浄することにより土壌を濃縮・減容化した状態で加水して泥状化し、同時に礫や木、ゴミ、その他の非処理物質を除去することになる。   As shown in FIG. 1, the pretreatment process and the inactivation treatment process include a sorter 32 for washing the soil excavated and removed using the heavy machinery 31 to make it mud, and washing it. The mud after being sorted and washed by the sorter 32 is transferred to the mixer 35 by the mud pump 34 under the control of the operation management room 33. In this pretreatment process, water is added to the soil or washed by a washing / classifying plant to make the soil hydrated and muddy in a concentrated and reduced volume, and at the same time, gravel, wood, garbage and other untreated substances are removed. Will be removed.

汚染土壌にあっては次の工程に移行し、混合機35には上方から強アルカリ性のA液が投入されるA液タンク36が設けられている。このA液が土壌コロイドに作用することで瞬時に団粒化すると同時に重金属類はコロイドに包蔵されることになる。   In the contaminated soil, the process proceeds to the next step. The mixer 35 is provided with an A liquid tank 36 into which a strong alkaline A liquid is introduced from above. When this A liquid acts on a soil colloid, it aggregates instantaneously and at the same time, heavy metals are included in the colloid.

更に、混合機35には上方から中和改良剤(pH調整剤)であるB液が投入されるB液タンク37が設けられており、このB液の投入後、混合して養生ピット38で約40日間自然乾燥することで、アルカリが中和されると同時にシリカ成分がガラス皮膜に変質し、土壌コロイド全体を完全に包み込むことになる。すなわち泥土は安定的な固定化となり、殆ど半永久的に溶出しない不活性化状態となる。乾燥し、不活性化した泥土は原位置に埋め戻されることになる。   Further, the mixer 35 is provided with a B liquid tank 37 into which the B liquid which is a neutralization improver (pH adjuster) is charged from above. By naturally drying for about 40 days, the alkali component is neutralized, and at the same time, the silica component is transformed into a glass film and completely envelops the entire soil colloid. That is, the mud is stably fixed and is in an inactivated state that does not elute almost permanently. The dried and inactivated mud will be backfilled in situ.

上記2液タイプによる不活性化処理工程としては、塩素を含まない溶媒にホスホン酸と硫酸マグネシウムを混合し、数分間撹拌してから硫酸アルミニウムとポリ硫酸第二鉄を投与し、更に数分間撹拌してなる無機電解凝集剤を使用することができる。   Inactivation process by the above two-component type, phosphonic acid and magnesium sulfate are mixed in a solvent that does not contain chlorine, stirred for several minutes, then administered with aluminum sulfate and polyferric sulfate, and further stirred for several minutes. An inorganic electrolytic flocculant formed can be used.

具体的には、この無機電解凝集剤は、地下水等の塩素が混入されない清水を溶媒とし、該溶媒50〜100gにホスホン酸5〜10gと硫酸マグネシウム15〜30gを投入し、2〜3分間軽く撹拌した後、硫酸アルミニウム350g〜700gとポリ硫酸第二鉄を投入し、5〜10分間程度軽く撹拌して得るものである。   Specifically, this inorganic electrolytic flocculant is prepared by adding 5 to 10 g of phosphonic acid and 15 to 30 g of magnesium sulfate to 50 to 100 g of the solvent, and mixing lightly for 2 to 3 minutes. After stirring, 350 g to 700 g of aluminum sulfate and ferric polysulfate are added and lightly stirred for about 5 to 10 minutes.

そして、泥土に無機電解凝集剤を投与すると同時に土粒子補強剤としてケイ酸ナトリウム及びpH調整剤として炭酸カルシウムを混合した水溶液を投与することにより泥土を改質する。この時に生じる汚濁水は順次清澄化される。   Then, the mud is modified by administering an inorganic electrolytic flocculant to the mud and simultaneously administering an aqueous solution mixed with sodium silicate as a soil particle reinforcing agent and calcium carbonate as a pH adjuster. The polluted water generated at this time is clarified sequentially.

或いは、泥土を自然沈殿槽にストックし、該自然沈殿槽において2〜3時間程度静置後、浮水を清澄処理し放流した後に、底泥中に上記無機電解凝集剤を投与し、更に土粒子補強剤としてケイ酸ナトリウム及びpH調整剤として炭酸カルシウムを混合した水溶液を投与することにより泥土を改質するものとしても良い。   Alternatively, the mud is stocked in a natural sedimentation tank, left standing in the natural sedimentation tank for about 2 to 3 hours, and then the floating water is clarified and discharged, and then the inorganic electrolytic flocculant is administered into the bottom mud, and further the soil particles The mud may be modified by administering an aqueous solution mixed with sodium silicate as a reinforcing agent and calcium carbonate as a pH adjuster.

無機電解凝集剤、土粒子補強剤及びpH調整剤は、イオン価の異なる無機金属正荷電物質を、一溶媒液中に特殊装置を用いて合成し、単一正荷電ではなし得ない反応を、その相乗効果から高正荷電に改質した強力イオン結合土壌改良剤である。   The inorganic electrolytic flocculant, the soil particle reinforcing agent and the pH adjuster synthesize inorganic metal positively charged substances having different ionic valences using a special device in a single solvent solution, and a reaction that cannot be achieved by a single positive charge. Due to its synergistic effect, it is a strong ion-binding soil improver modified to a high positive charge.

この土壌改良剤は、水和反応時に無機系特有のイオン増加現象が起こり、数系統の正荷電物質が底泥中で同時反応を起し、各々の特徴をもって、その役割を担い、異性荷電との強い衝突結合を起こし、汚濁粒子及び底泥の電気二重層の殻を破壊する。すなわち中和することになり、ファンデルワールスの法則に基づく電解結合が起こり団粒子に成長する。   In this soil conditioner, an ion increase phenomenon peculiar to inorganic systems occurs during the hydration reaction, and several systems of positively charged substances cause simultaneous reactions in the bottom mud. Cause strong collisional coupling and destroy the shell of the electric double layer of polluted particles and bottom mud. In other words, neutralization occurs, and electrolytic coupling based on Van der Waals's law occurs and grows into aggregate particles.

成長した団粒子は親水基を失っているため、拘束水分子は自由水に変わり、粒子結合の電解圧縮力により粒間から押し出され(疎水化現象)、経時と共に強固に結合し、疎永性団粒子となる(不可逆性)。従って、処理土壌は二度と再泥化を起こすことなく、構築する活性団粒子内に各種の栄養塩等を包含し、シリカ被膜及びヒドロシキアパタイトにて溶出することなく保持することになる。   Since the grown aggregate particles have lost their hydrophilic groups, the constrained water molecules change to free water and are pushed out of the grains by the electrolytic compression force of the particle bond (hydrophobization phenomenon), and are firmly bonded over time, and are sparse. It becomes aggregate particles (irreversible). Therefore, the treated soil never contains re-mud and includes various nutrient salts in the activated group particles to be constructed, and retains them without elution with the silica coating and hydroxyapatite.

他の2液タイプによる不活性化処理工程としては、電解凝集結合剤とこれに混合される処理剤とからなる即効性の固化剤を使用することができる。この電解凝集結合剤は、純水,過硫酸アンモニウム,硝酸カルシウム,ホスホン酸及び希硫酸を所定の重量比で混合したものからなり、前記処理剤は、高重合ポリアクリル酸ナトリウム、珪藻土、フライアッシュからなり、当該処理剤を電解凝集結合剤に所定の重量比で混合して固化剤を形成し、該固化剤にケイ酸ナトリウムを混合して形成される。   As an inactivation treatment process using another two-component type, an immediate-acting solidifying agent comprising an electrolytic aggregation binder and a treatment agent mixed therewith can be used. This electrolytic cohesive binder is composed of a mixture of pure water, ammonium persulfate, calcium nitrate, phosphonic acid and dilute sulfuric acid at a predetermined weight ratio, and the treatment agent is made of highly polymerized sodium polyacrylate, diatomaceous earth, or fly ash. The treatment agent is mixed with the electrolytic aggregation binder at a predetermined weight ratio to form a solidifying agent, and the solidifying agent is mixed with sodium silicate.

処理剤としての高重合ポリアクリル酸ナトリウムは驚異的な吸水力を有するものであり、これにより汚泥の固化が促進されるのであるが、高重合ポリアクリル酸ナトリウムは疎水性が低いことから、これを補填すべく珪藻土やフライアッシュが用いられる。珪藻土及びフライアッシュにより、通気性,疎水性,保水性,分散性が向上する。従って、この3種の処理剤を用いることにより汚泥の即効固化ができると共に通気性,保水性,疎水性のある団粒子を形成することができる。   Highly polymerized sodium polyacrylate as a treating agent has an amazing water absorption ability, which promotes solidification of sludge. This is because highly polymerized sodium polyacrylate has low hydrophobicity. Diatomaceous earth and fly ash are used to compensate. Diatomaceous earth and fly ash improve breathability, hydrophobicity, water retention and dispersibility. Therefore, by using these three kinds of treatment agents, sludge can be instantly solidified, and aggregated particles having air permeability, water retention and hydrophobicity can be formed.

また、上記電解凝集結合剤を用いることにより還元土壌が酸化土壌となり、シリカの成分も多くなり健康土壌に改質することができ、しかもケイ酸ナトリウムを用いることにより泥土成分中の無シリカの改善や土壌硬化が一層促進され、加えて消石灰を使用することによりPH調整が自由に行われる。   In addition, the use of the above electrolytic agglomeration binder makes the reduced soil an oxidized soil, which increases the amount of silica components and can be modified into healthy soils, and by using sodium silicate, improvement of silica-free in mud components. And soil hardening are further promoted, and in addition, PH adjustment is freely performed by using slaked lime.

分解除去処理工程は、前記不活性化処理工程によって団粒子構造に改良された土壌が通気性、保水性、疎水性を有し、土中の好気性微生物の活性につながることから、地下水を緩やかに循環させた時に、これにバイオ菌を投入して揮発性有機化合物(VOC)やベンゼン等の有機化学物質を分解するものである。   In the decomposition and removal treatment process, the soil improved to the aggregate particle structure by the inactivation treatment process has air permeability, water retention and hydrophobicity, which leads to the activity of aerobic microorganisms in the soil. When it is circulated, bio-bacteria are introduced into it to decompose organic chemicals such as volatile organic compounds (VOC) and benzene.

すなわち、図2(a)、(b)、(c)及び図3に示すように、遮蔽壁Aによって囲まれた管理用井戸内部の地下水を、フィルタ3を介して揚水ポンプ2で揚上させ、流量制御装置4によって流量を制御しながら中継タンク1内に送られるようになっている。この中継タンク1内には吸着作用とイオン交換作用及びミネラルを溶出する濾過材5が投入設置されている。   That is, as shown in FIGS. 2 (a), (b), (c) and FIG. 3, the groundwater inside the management well surrounded by the shielding wall A is pumped up by the pump 2 through the filter 3. The flow rate control device 4 controls the flow rate so as to be sent into the relay tank 1. In the relay tank 1, an adsorbing action, an ion exchange action, and a filter medium 5 for eluting minerals are placed and installed.

この中継タンク1は、必要によって計量分析槽1´を介して浮上分解槽11に接続され、該浮上分解槽11内にはバイオフリンジ14が施されている。そして、該浮上分解槽11の上方にはエアーフィルタ付ポンプ12及びホルミックチューブ13(斑状花崗閃緑岩鉱石、望ましくは大広石で製造したチューブ)が配され、これらを介して槽底部に微細気泡発生装置15が設けられている。   The relay tank 1 is connected to a levitation decomposition tank 11 through a measurement / analysis tank 1 ′ as necessary, and a biofringe 14 is provided in the levitation decomposition tank 11. Above the levitation decomposition tank 11, a pump 12 with an air filter and a hormic tube 13 (a tube made of porphyry granodiorite ore, preferably a tube made of granite) are arranged, and through these, a fine is formed at the bottom of the tank. A bubble generating device 15 is provided.

この浮上分解槽11の上部は濾過槽21に接続され、該濾過槽21内には吸着作用とイオン交換作用及びミネラルを溶出する濾過材22が投入設置され、槽底部には上方の吸気口を介して撹拌水中ポンプ23が配されている。   The upper part of the levitation decomposition tank 11 is connected to a filtration tank 21, and a filter medium 22 for eluting adsorption, ion exchange and minerals is introduced into the filtration tank 21, and an upper intake port is provided at the bottom of the tank. An agitated submersible pump 23 is provided.

中継タンク1内に配されている濾過材5及び濾過槽21に配されている濾過材22は、吸着作用とイオン交換作用により水銀、銅、鉛、カドミウム等の有害重金属類を効率良く除去する斑状花崗閃緑岩鉱石を粉末状或いは塊状にしたものを使用するが、最適な鉱石として大広石(商品名)と称するものを使用している。   The filter medium 5 disposed in the relay tank 1 and the filter medium 22 disposed in the filter tank 21 efficiently remove harmful heavy metals such as mercury, copper, lead, and cadmium by an adsorption action and an ion exchange action. The powdered or block-like porphyry granodiorite ore is used, but what is called Ohiroishi (trade name) is used as the optimum ore.

上記鉱石は、超多孔性のため表面積が極めて広く、且つ主成分が無水珪酸、酸化アルミニウムであることから、上記吸着作用とイオン交換作用に優れている。大腸菌の吸着試験でも、常に高い除去率を示している。   Since the ore is superporous, it has a very large surface area, and its main components are silicic anhydride and aluminum oxide, and therefore has excellent adsorption and ion exchange effects. Even in the adsorption test of E. coli, the removal rate is always high.

また、濾過槽21の上部から分岐管24を介して一部が放流口又は検査用取水口に接続され、他の一部は高い透水力と持久性を備えた透水管25を介して地下水域の帯水層に還流されるようになっている。図2(c)は、地下水の循環を示す揚上した区域の概略断面図を示している。   In addition, a part of the filtration tank 21 is connected to a discharge port or a water intake for inspection through a branch pipe 24, and the other part is a groundwater area through a water pipe 25 having high water permeability and durability. The water is refluxed to the aquifer. FIG. 2 (c) shows a schematic cross-sectional view of the raised area showing the circulation of groundwater.

吸着作用とイオン交換作用及びミネラルを溶出する濾過材5,22及びホルミックチューブ13は、学術名が斑状花崗閃緑岩の鉱石を使用し、該鉱石の成分は無水珪酸、酸化アルミニウムを主成分とし、その他、鉄、カルシウム、マンガン、マグネシウム、ケイ素、ナトリウム、リン、チタン等の人体に必要なミネラルを含有している超多成分鉱石である。この濾過材5,22及びホルミックチューブ13は、吸着作用とイオン交換作用との相乗効果により、水銀、銅、鉛、カドミウム等の有害重金属類を効率良く除去する鉱石である。最適なものとして大広石(商品名)がある。   The filter media 5 and 22 and the hormic tube 13 that elute adsorption and ion exchange and minerals use the ore of the mottled granodiorite with the scientific name, and the components of the ore are mainly composed of anhydrous silicic acid and aluminum oxide. In addition, it is a super multi-component ore containing minerals necessary for the human body such as iron, calcium, manganese, magnesium, silicon, sodium, phosphorus, and titanium. The filter media 5 and 22 and the hormic tube 13 are ores that efficiently remove harmful heavy metals such as mercury, copper, lead, and cadmium by a synergistic effect of the adsorption action and the ion exchange action. There is Ohiroishi (trade name) as the most suitable one.

バイオ菌による汚泥分解メカニズムは、図7に示すように、細胞膜がリン脂質でできており疎水性があるため、一般活性汚泥菌では分解が困難であるのに対し、バイオ菌は、リパーゼ等の脂肪分解酵素を作り出すことで細胞膜を分解し、グリセリンと脂肪酸に分解できる。これをまた別の消化酵素がそれぞれを分解し、最終的には水と炭酸ガスにエネルギー化して行く。   As shown in FIG. 7, the biodegradable sludge degradation mechanism is difficult for general activated sludge fungi because the cell membrane is made of phospholipid and is hydrophobic. By creating a lipolytic enzyme, it can break down cell membranes into glycerin and fatty acids. Another digestive enzyme breaks down each of these, and eventually converts them into water and carbon dioxide.

バイオ菌が作り出すアミノ酸類としては、図8に示すように、グリシン・アラニン・バリン・ロイシン・イソロイシン・セリン・プロリン・トレオニン・アスパラギン酸・アスパラギン・グルタミン酸・グルタミン・ヒスジン・リジン・シスチン・アルギン・メチオニン・フェニルアラニン・チロシン・トリプトファン等がある。   As shown in FIG. 8, the amino acids produced by the biobacterium include glycine, alanine, valine, leucine, isoleucine, serine, proline, threonine, aspartic acid, asparagine, glutamic acid, glutamine, histidine, lysine, cystine, algin, methionine. -Phenylalanine, tyrosine, tryptophan, etc.

想定される消化酵素とその働きを一覧表として図9に示している。酵素の種類は、加水分解酵素・酸化還元酵素・脱離酵素・転移酵素・合成酵素に分けられ、バイオ菌の働きが明確に示されている。   FIG. 9 shows a list of assumed digestive enzymes and their functions. The types of enzymes are divided into hydrolases, oxidoreductases, leaching enzymes, transferases, and synthases, and the functions of biofungi are clearly shown.

斑状花崗閃緑岩鉱石の内、大広石よりなる濾過材5,22及びホルミックチューブ13の吸着力は、図5(a)に示すように、7日後において鉛とメチレンブルーが100%、銅が92.2%、水銀が79.5%、カドミウムが63.0%、フッ素が38.0%、六価クロムが24.2%であった。また、ミネラル溶出量(mg/リットル)は、図5(b)に示すように、カリウムが17.2、ナトリウムが13.7、カルシウムが12.4、マグネシウムが4.28、ケイ素が3.19、アルミニウムが0.14、マンガンが0.04、鉄が0.01であった。   Among the porphyry granodiorite ores, the adsorbing power of the filter media 5 and 22 and the hormic tube 13 made of large broad stone is 100% of lead and methylene blue and copper is 7 days later as shown in FIG. 5 (a). It was 92.2%, mercury was 79.5%, cadmium was 63.0%, fluorine was 38.0%, and hexavalent chromium was 24.2%. Further, as shown in FIG. 5B, the mineral elution amount (mg / liter) is 17.2 for potassium, 13.7 for sodium, 12.4 for calcium, 4.28 for magnesium, and 3.28 for silicon. 19, 0.14 for aluminum, 0.04 for manganese, and 0.01 for iron.

バイオレメディエーションのモニタリングの進行状況は土壌や地下水の酸化還元電位、pH、湿度、DO、酸素濃度、電子受容体/供与体濃度、分解生成物(二酸化炭素等)等を測定することにより間接的に監視できる。その生物学的分解速度と酸化還元電位の関係は図6に示される通りである。特に、二価の水銀を金属水銀に還元する微生物が六価クロムを三価に還元し沈殿除去するバイオ菌が存在している。また、有機塩素化合物を分解する微生物も存在する。   The progress of bioremediation monitoring is indirectly measured by measuring the redox potential, pH, humidity, DO, oxygen concentration, electron acceptor / donor concentration, decomposition products (carbon dioxide, etc.) of soil and groundwater. Can be monitored. The relationship between the biological degradation rate and the redox potential is as shown in FIG. In particular, there exists a biobacteria in which a microorganism that reduces divalent mercury to metallic mercury reduces hexavalent chromium to trivalent and removes the precipitate. There are also microorganisms that decompose organochlorine compounds.

上記においては、地下水の清澄化に沿って説明したが、上記した汚染土壌の改善工程によって生じる汚濁水或いは浮水についても、同様の処理をすることになる。   In the above, although it demonstrated along the clarification of groundwater, the same process is performed also about the polluted water or floating water which arises by the improvement process of the above-mentioned contaminated soil.

次に、以上のように構成された最良の形態についての使用、動作の一例を説明する。先ず、図1に示すように、不活性化処理工程にて、重機31を使って掘削除去された汚染土壌或いは汚染土壌と疑わしき土壌を加水し泥土にしてから、選別機32に投入し、そこで洗浄して大きな礫や砂分、木、ゴミ等を取り除く。   Next, an example of use and operation of the best mode configured as described above will be described. First, as shown in FIG. 1, in the deactivation process, the contaminated soil excavated and removed using the heavy machinery 31 or soil suspected of being contaminated soil is made into mud soil, and then put into the sorter 32, where Wash to remove large gravel, sand, wood and debris.

この取り除かれた内の礫や砂分等は安全であることを確認した上で掘削現場に埋め戻されるか別途処理される。   The removed gravel and sand are confirmed to be safe and then backfilled at the excavation site or processed separately.

洗浄後の泥土は、運転管理室33の管理の下で送泥ポンプ34により混合機35に移送される。この混合機35には、A液タンク36から、シリカがイオン化された状態にある強アルカリ性のA液が投入されて十分に撹拌混合される。このとき、A液が土壌コロイドに作用すると瞬時に団粒化すると同時に重金属類はコロイドに包蔵される。   The mud after washing is transferred to the mixer 35 by the mud pump 34 under the control of the operation management room 33. A strong alkaline A liquid in which silica is ionized is supplied from the A liquid tank 36 to the mixer 35 and sufficiently stirred and mixed. At this time, when the liquid A acts on the soil colloid, it instantly aggregates and at the same time the heavy metals are embedded in the colloid.

そして、B液タンク37から中和改良剤(pH調整剤)であるB液が投入され、混合後約40日間養生ピット38で自然乾燥することで、アルカリが中和されると同時にシリカ成分がガラス皮膜に変質し、土壌コロイド全体を完全に包み込む。従って、泥土は、安定的な固定化となり、殆ど半永久的に溶出しなくなり、再度の泥土化が抑止された不活性化状態となる。   And the B liquid which is a neutralization improving agent (pH adjuster) is thrown in from the B liquid tank 37, and it is naturally dried in the curing pit 38 for about 40 days after mixing, whereby the alkali is neutralized and at the same time the silica component is It transforms into a glass film and completely envelops the entire soil colloid. Accordingly, the mud is stably fixed, and is hardly semi-permanently eluted, so that it is in an inactivated state in which mud formation is suppressed again.

また、図2(a)、(b)、(c)及び図3に示すように、遮蔽壁Aで囲まれた特定区域の地下水を揚水ポンプ2により中継タンク1に揚上させ、斑状花崗閃緑岩鉱石よりなる濾過材5を介して汚物を沈殿分離させる。   2 (a), (b), (c) and FIG. 3, groundwater in a specific area surrounded by the shielding wall A is pumped up to the relay tank 1 by the pumping pump 2, and the patchy granite Sediment is precipitated and separated through a filter medium 5 made of diorite ore.

この沈殿分離後の被処理水は、必要に応じて計量分析槽1´を通じて隣の浮上分解槽11に送られ、そこで微細気泡発生装置15の作動で、バイオフリンジ14を通して曝気処理される。   The water to be treated after the precipitation separation is sent to the adjacent levitation decomposition tank 11 through the measurement and analysis tank 1 ′ as necessary, where it is aerated through the biofringe 14 by the operation of the microbubble generator 15.

曝気処理後には、隣の濾過槽21に送られ、濾過材5の吸着作用とイオン交換作用により、被処理水に含まれている水銀、銅、鉛、カドミウム等の有害重金属類が効率良く除去される。   After the aeration treatment, it is sent to the adjacent filtration tank 21, and harmful heavy metals such as mercury, copper, lead and cadmium contained in the water to be treated are efficiently removed by the adsorption action and ion exchange action of the filter medium 5. Is done.

そして、濾過槽21により吸着及びイオン交換作用により清澄処理され、ミネラルが付与された処理水は、分岐管24を介して、一部が放流口又は検査用取水口に接続され、他の一部は高い透水力と持久性を備えた透水管25を介して特定区域の地下水帯に還流される。   Then, the treated water that has been clarified by adsorption and ion exchange action in the filtration tank 21 and provided with minerals is partially connected to the outlet or the intake for inspection through the branch pipe 24, and the other part. Is returned to a groundwater zone in a specific area through a water permeable pipe 25 having high water permeability and durability.

こうして、図4に示すように、ミネラルを含む活性化した水を汚染区域に戻すことで、バイオ菌及び原土中の好気性菌や微生物が活性化し、浄化・分解を促進させる。このときの最大の特徴は汚染物質を不活性化処理工程によって団粒子構造に改良することで、有機物を餌とし、硝化分解活動をしている好気性微生物は自身が窒息しない「気相」をつくりだしている。   Thus, as shown in FIG. 4, by returning the activated water containing minerals to the contaminated area, biobacteria and aerobic bacteria and microorganisms in the raw soil are activated, thereby promoting purification and decomposition. The biggest feature at this time is that the pollutants are improved to a aggregate structure by an inactivation treatment process, and aerobic microorganisms that feed on organic matter and perform nitrification decomposition have a “gas phase” that they do not suffocate themselves. I'm making it.

しかも、上記のように改良された地下水は酸素溶存量DO及びミネラル成分が増えて活性化されているため、外部に排出された際の微生物等の活性にもつながり、自然浄化作用が促進されることから、例えば赤潮等の発生を抑制することも可能となる。   Moreover, since the groundwater improved as described above is activated by increasing the amount of dissolved oxygen DO and mineral components, it also leads to the activity of microorganisms and the like when discharged to the outside, and the natural purification action is promoted. Therefore, it is possible to suppress the occurrence of red tides, for example.

上記では、地下水に沿って説明したが、汚染土壌の改善工程により生じる汚濁水や浮水も、上記同様の処理により清澄化水とすることができる。   In the above description, groundwater has been described. However, contaminated water and floating water generated by the process of improving contaminated soil can be clarified water by the same treatment as described above.

上記した不活性化処理工程と分解除去処理工程とを組み合わせて土壌改良の試験を行った公的機関による結果証明を以下に示している。   The result proof by the public institution which tested the soil improvement combining the above-mentioned inactivation processing process and decomposition removal processing process is shown below.

採取場所がベンゼン含有土壌溶解水である汚染されている試料Xの分析結果(平成理研株式会社の計量証明書)は、ベンゼン濃度が1590mg/L(計量方法JIS−K0125−5)となった。   The analysis result of the contaminated sample X (the measurement certificate of Heisei Riken Co., Ltd.) whose collection location is benzene-containing soil-dissolved water has a benzene concentration of 1590 mg / L (measurement method JIS-K0125-5).

また、採取場所がバイオ菌分解処理水である試料Yの分析結果(平成理研株式会社の計量証明書)は、ベンゼン濃度が0.01mg/L以下(計量方法JIS−K0125−5)と極端に減少した。   Moreover, the analysis result of the sample Y whose biocidal site is biobacteria-decomposed treatment water (the measurement certificate of Heisei Riken Co., Ltd.) has an extreme benzene concentration of 0.01 mg / L or less (measurement method JIS-K0125-5). Diminished.

また、汚水内には、バイオ菌は一般細菌として約1300000000個/g(衛生試験法1.3.1.2.(4)、(24時間平板培養法)による)存在している。   In the sewage, about 13300,000 / g of biobacteria exist as general bacteria (according to sanitary test method 1.3.1.2. (4) (24-hour plate culture method)).

例えば、汚染土壌に含まれている総水銀0.08mg/リットル・ヒ素8mg/リットル、セレン0.7mg/リットル、フッ素化合物39.5mg/リットル、ホウ素11mg/リットル、鉛14mg/リットルが、不活性化処理工程Pにより、総水銀0.0005mg/リットル以下・ヒ素0.001mg/リットル以下、セレン0.001mg/リットル以下、フッ素化合物0.2mg/リットル以下、ホウ素0.1mg/リットル以下、鉛0.005mg/リットル以下となった。   For example, the total mercury contained in the contaminated soil is 0.08mg / liter, arsenic 8mg / liter, selenium 0.7mg / liter, fluorine compound 39.5mg / liter, boron 11mg / liter, lead 14mg / liter By the chemical treatment step P, total mercury 0.0005 mg / liter or less, arsenic 0.001 mg / liter or less, selenium 0.001 mg / liter or less, fluorine compound 0.2 mg / liter or less, boron 0.1 mg / liter or less, lead 0 0.005 mg / liter or less.

また、汚染土壌に含まれている総水銀0.0067mg/リットル・ヒ素0.32mg/リットル、セレン0.04mg/リットル、ベンゼン0.01mg/リットル、鉛2.83mg/リットルが、分解除去処理工程により、総水銀0.005mg/リットル以下・ヒ素0.001mg/リットル以下、セレン0.001mg/リットル以下、ベンゼン0.01mg/リットル以下、鉛0.01mg/リットル以下となった。   In addition, the total mercury contained in the contaminated soil is 0.0067 mg / liter, arsenic 0.32 mg / liter, selenium 0.04 mg / liter, benzene 0.01 mg / liter, lead 2.83 mg / liter is decomposed and removed. As a result, total mercury was 0.005 mg / liter or less, arsenic 0.001 mg / liter or less, selenium 0.001 mg / liter or less, benzene 0.01 mg / liter or less, and lead 0.01 mg / liter or less.

汚染土壌区域として認定された汚染箇所においては、汚染が当該汚染土壌区域全体に及ぶことは少なく、特定の箇所に限定されていることが多い。これは当該区域の過去において汚染物質を取り扱ったり排出していた箇所であるとか或いはその近接箇所に限定されることが多い。従って、当該箇所において予め汚染されている土壌であるかどうかを検査する工程が必要となる。その際、汚染土壌には該当しないが、それに近似した検査結果が得られた土壌にあっては次の工程へ移行させ、そうでない土壌については現状維持とすることになる。   In a contaminated area certified as a contaminated soil area, the contamination rarely extends to the entire contaminated soil area, and is often limited to a specific area. This is often limited to locations where the pollutants have been handled or discharged in the past of the area, or in the vicinity thereof. Therefore, the process of inspecting whether the soil is contaminated in advance at the location is necessary. At that time, if the soil does not fall under the contaminated soil but the test result approximated to it is transferred to the next step, the other soil is maintained as it is.

図11(a)は、汚染箇所或いはそれに近似した箇所(以下、汚染区画41という)と検査によってそうでなかった非汚染区画42とに区別したものである。例えば、30m×30m毎に調査し、汚染区画41を特定することになる。   FIG. 11A shows a distinction between a contaminated portion or a portion similar to the contaminated portion (hereinafter referred to as a contaminated section 41) and a non-contaminated section 42 that was not the result of the inspection. For example, the contamination section 41 is specified by examining every 30 m × 30 m.

汚染区画41として認められた場合には、上記実施例1と同様の工程を経ることになるが、当該汚染区画41にはそうでない土壌も存在することになる。そこで図12に示すように、前処理工程において、汚染土壌に加水し或いは洗浄・分級プラントにより洗浄することにより土壌を濃縮・減容化した状態で加水して泥状化し、礫や木、ゴミ、その他の非処理物質を除去し、同時に、検査装置43により土壌の汚染度を検査し、分級装置44により汚染土壌と非汚染土壌とに分別し、汚染土壌にあっては次の工程となる不活性化処理工程へ移送し、非汚染土壌にあっては養生ピット38´へと移送することになる。   When it is recognized as the contaminated section 41, the same process as in the first embodiment is performed, but the contaminated section 41 also includes soil that is not so. Therefore, as shown in FIG. 12, in the pretreatment step, water is added to the contaminated soil or washed with a washing / classifying plant to make the soil hydrated and mudified in a state of concentration and volume reduction, resulting in gravel, wood, and garbage. In addition, other non-treated substances are removed, and at the same time, the contamination degree of the soil is inspected by the inspection device 43, and is classified into the contaminated soil and the non-contaminated soil by the classifying device 44. It transfers to an inactivation process, and in non-contaminated soil, it transfers to the curing pit 38 '.

非汚染土壌にあっては自然乾燥後、原位置となる区域に埋め戻すことになるが、汚染土壌として不活性化処理された土壌にあっては別途封じ込め区域45へ自然乾燥後に埋め戻すことになる。   Non-contaminated soil will be backfilled in its original area after natural drying, but soil that has been inactivated as contaminated soil will be backfilled in natural containment area 45 after natural drying. Become.

図11(b)に示すように、不活性化処理された土壌は、当該汚染土壌区域の改善が求められる全区域の内、例えば、図13(b)に示すような植栽基盤として盛土された森林区域やアスファルト等で表面仕上げされた道路や駐車場区域等の特定された封じ込め区域45へ埋め戻されることになる。   As shown in FIG. 11 (b), the inactivated soil is filled as a planting base as shown in FIG. 13 (b), for example, among all the areas where improvement of the contaminated soil area is required. It will be backfilled to a specified containment area 45 such as a road or parking area that has been surface-finished with a forest area or asphalt.

図13(a)に示すように、封じ込め区域45は、遮蔽壁A´で当該区域を取り囲み、且つ遮水シート46を敷き詰め、その上方空間に不活性化処理された土壌を埋め戻すことになる。   As shown to Fig.13 (a), the containment area 45 surrounds the said area with shielding wall A ', spreads the water-impervious sheet | seat 46, and backfills the soil inactivated in the upper space. .

上記汚染土壌を特定し、その特定された汚染土壌のみを処理することにより不活性化処理の対象となる土壌量を減少することができ、且つそれらを特定の区域に封じ込めることにより、汚染土壌区域の安全性を一層強化することが可能となる。更に、封じ込め区域45は、改善区域全体から比較すれば小区域となり、当該区域を取り囲む遮蔽壁A´の設置箇所や遮水シート46の敷設面積を少なくすることができ、合理的な汚染土壌区域の改善手段となる。   By identifying the contaminated soil and treating only the identified contaminated soil, the amount of soil subject to inactivation treatment can be reduced, and by containing them in a specific area, the contaminated soil area It is possible to further enhance the safety of the system. Furthermore, the containment area 45 is a small area as compared with the entire improvement area, and the installation area of the shielding wall A ′ surrounding the area and the laying area of the water shielding sheet 46 can be reduced. It becomes an improvement means.

上記遮蔽壁A´及び遮水シート46による施工は、図14(a)、(b)、(c)に示すように、鉛直遮水工工事による。
鉛直遮水工は、ソイルセメント壁体に高密度ポリエチレンシートによる遮水層を挿入した三層構造の遮蔽壁A´によるものとする。
構築された遮蔽壁A´は、ソイルセメント壁体自体が難透水性で、更にジオロック挿入した三層構造から成るため、信頼性の高い遮水性能を発揮することが可能である。また、ジオロックは、耐薬品性・耐久性に優れた高密度ポリエチレンシートと、その接合部には水膨潤性の止水材(シール材)を用いることで連続する遮蔽壁A´を構築することが可能となる。
ソイルセメント壁の施工方法としては、TRDや掘削置換えなどが選定できるため、陸上におけるあらゆる土質に対応可能である。施工可能深度は概ね20m程度で難透水層へ達するように施工する。
表面遮水工は、高密度ポリエチレンシート(HDPEシート)によるものとし、シートの上下を保護マットにより保護する。機械的強度や耐候性、耐薬品性、耐熱性等の耐久性に優れており、且つフレキシブルな材質により、地盤変形への追従性に優れている。また、遮蔽壁及び掘削面に敷設する遮水シートと同じ材質を使用することで、遮蔽壁と直接溶着することが可能であり、表面遮水工と鉛直遮水工を一体化した一体構造として不活性化処理土壌を封じ込めることが可能となる。
The construction using the shielding wall A ′ and the water shielding sheet 46 is based on vertical water shielding work as shown in FIGS. 14 (a), 14 (b), and 14 (c).
The vertical water-impervious work is assumed to be a three-layer shielding wall A ′ in which a water-shielding layer made of a high-density polyethylene sheet is inserted into a soil cement wall body.
Since the constructed shielding wall A ′ has a three-layer structure in which the soil cement wall itself is hardly water permeable and further inserted with geolock, it is possible to exhibit a highly reliable water shielding performance. Geolock is to build a continuous shielding wall A 'by using a high-density polyethylene sheet with excellent chemical resistance and durability, and a water-swelling water-stopping material (sealing material) at the joint. Is possible.
As the soil cement wall construction method, TRD or excavation replacement can be selected, so it can cope with any soil quality on land. The possible construction depth is approximately 20m, and the construction is done to reach the hardly permeable layer.
The surface impermeable work is made of a high-density polyethylene sheet (HDPE sheet), and the upper and lower sides of the sheet are protected by protective mats. It has excellent durability such as mechanical strength, weather resistance, chemical resistance, and heat resistance, and is excellent in followability to ground deformation due to its flexible material. Also, by using the same material as the shielding wall and the shielding sheet laid on the excavation surface, it is possible to weld directly to the shielding wall, and as an integrated structure that integrates the surface impermeable work and the vertical impermeable work It becomes possible to contain inactivated soil.

地下水又は汚濁水或いは浮水等の汚染水については、実施例1と同様の処理となる。   Contaminated water such as ground water, polluted water or floating water is treated in the same manner as in the first embodiment.

なお、本発明に係る前処理工程、不活性化処理工程、分解除去処理工程、吸着除去処理工程及び後処理工程の各工程における各種装置を含む具体的な構成は、前記実施の形態に限定されるものではなく、本発明の目的を達成できる範囲での改良変形等は本発明に包含されるものである。   A specific configuration including various devices in each step of the pretreatment process, the inactivation treatment process, the decomposition removal treatment process, the adsorption removal treatment process, and the post-treatment process according to the present invention is limited to the above-described embodiment. However, the present invention includes modifications and improvements as long as the object of the present invention can be achieved.

本発明を実施するための最良の形態における不活性化処理工程の一例を示す説明図である。It is explanatory drawing which shows an example of the inactivation process process in the best form for implementing this invention. (a)同じく分解除去処理工程及び吸着除去処理工程の一例を示す平面図での説明図、(b)断面図での説明図である。(A) It is explanatory drawing in the top view which similarly shows an example of a decomposition removal processing process and an adsorption | suction removal processing process, (b) It is explanatory drawing in sectional drawing. 同じく土壌及び地下水域の概略断面図での説明図である。It is explanatory drawing in the schematic sectional drawing of a soil and a groundwater area similarly. 同じく分解除去処理工程及び吸着除去処理工程の処理の流れを示す説明図である。It is explanatory drawing which similarly shows the flow of a process of a decomposition | disassembly removal process process and an adsorption | suction removal process process. 同じく活性化した清澄水を汚染区域に戻すことで、バイオ菌及び原土中の好気性菌や微生物が活性化し、浄化・分解を促進させる動作を説明する説明図である。It is explanatory drawing explaining the operation | movement which accelerates | stimulates a purification | stimulation and decomposition | disassembly by activating biobacteria and aerobic bacteria and microorganisms in raw soil by returning activated clarified water to a contaminated area. 大広石を使った濾過材の一例を示すもので、(a)は大広石の吸着力、(b)は大広石のミネラル溶出量を表形態で示した図である。It shows an example of a filter medium using Oohiroishi, (a) is a diagram showing the adsorption power of Oohiroishi, (b) is a table showing the amount of mineral elution of Oohiroishi in tabular form. バイオレメディエーションのモニタリングにおいて生物学的分解速度と酸化還元電位の関係を示した図である。It is the figure which showed the relationship between the biological degradation rate and oxidation-reduction potential in monitoring of bioremediation. バイオ菌による分解メカニズムを示す説明図である。It is explanatory drawing which shows the degradation mechanism by a biomicrobe. バイオ菌が作り出すアミノ酸類の一例を表で示した図である。It is the figure which showed an example of the amino acids which a biomicrobe produces. 消化酵素とその働きの一覧表を示す図である。It is a figure which shows the list of digestive enzyme and its function. 汚染対象物質と活用場所を表で示した図である。It is the figure which showed the pollution target substance and the utilization place in the table | surface. (a)汚染土壌及び非汚染土壌の区域を示した平面図、(b)汚染土壌を不活性化処理して特定の区域に埋め戻した平面図である。(A) The top view which showed the area of the contaminated soil and the non-contaminated soil, (b) It is the top view which backfilled the specific area by inactivating the contaminated soil. 本発明を実施するための最良の形態における他の実施例の不活性化処理工程の一例を示す説明図である。It is explanatory drawing which shows an example of the inactivation processing process of the other Example in the best form for implementing this invention. (a)、(b)不活性化処理した土壌を特定の区域に埋め戻した状態の概略断面図である。(A), (b) It is a schematic sectional drawing of the state which backfilled inactivated soil to the specific area. (a)遮蔽壁を使用する鉛直遮水工の断面図、(b)遮水シートの連結部の断面図、(c)遮蔽壁の断面図である。(A) Cross-sectional view of vertical water-impervious construction using shielding wall, (b) Cross-sectional view of connecting portion of water-impervious sheet, (c) Cross-sectional view of shielding wall.

符号の説明Explanation of symbols

A、A´ 遮蔽壁
1 中継タンク
1´ 計量分析槽
2 揚水ポンプ
3 フィルタ
4 流量制御装置
5、22 濾過材
11 浮上分解槽
12 エアーフィルタ付ポンプ
13 ホルミックチューブ
14 バイオフリンジ
15 微細気泡発生装置
21 濾過槽
23 撹拌水中ポンプ
24 分岐管
25 透水管
31 重機
32 選別機
33 運転管理室
34 送泥ポンプ
35 混合機
36 A液タンク
37 B液タンク
38、38´ 養生ピット
41 汚染区画
42 非汚染区画
43 検査装置
44 分級装置
45 封じ込め区域
46 遮水シート
A, A 'Shielding wall 1 Relay tank 1' Weighing analysis tank 2 Pumping pump 3 Filter 4 Flow rate control device 5, 22 Filter medium 11 Floating decomposition tank 12 Pump 13 with air filter 13 Holmic tube 14 Bio-off lineage 15 Fine bubble generator 21 Filtration tank 23 Stirring submersible pump 24 Branch pipe 25 Permeable pipe 31 Heavy machine 32 Sorting machine 33 Operation control room 34 Mud pump 35 Mixer 36 A liquid tank 37 B liquid tanks 38 and 38 'Curing pit 41 Contaminated section 42 Uncontaminated section 43 Inspection device 44 Classification device 45 Containment area 46 Water shielding sheet

Claims (10)

土壌を泥状化し、礫やその他の非処理物質を除去する前処理工程と、汚染土壌にあってはその団粒化の過程で重金属類をシリカ成分皮膜をもって包皮固定させる不活性化処理工程と、バイオ菌を利用して有機物質を分解する分解除去処理工程と、不活性化されなかった他の重金属類や分解不可能な物質を濾過槽に通すことで吸着する吸着除去処理工程と、汚染物質が除去された土壌は乾燥して埋め戻し、上記各工程により汚染物質が除去された処理水或いは分解除去処理工程及び吸着除去処理工程によって汚染物質が除去された地下水にあっては清澄化水として地下水域に戻すか或いは別途排水する後処理工程とからなることを特徴とする汚染土壌区域改善方法。   A pretreatment process to muddy the soil and remove gravel and other untreated substances, and an inactivation process to fix heavy metals with a silica component film in the process of agglomeration in contaminated soil Decomposition and removal treatment process that decomposes organic substances using bio-bacteria, Adsorption and removal treatment process that adsorbs other heavy metals that have not been inactivated and materials that cannot be decomposed through filtration tanks, and contamination The soil from which the substances are removed is dried and backfilled, and the treated water from which the contaminants have been removed by the above-mentioned processes or the ground water from which the contaminants have been removed by the decomposition and removal treatment process and the adsorption removal treatment process are clarified water. A method for improving a contaminated soil area, characterized by comprising a post-treatment step of returning to a groundwater area or draining separately. 前処理工程は、土壌に加水し或いは洗浄・分級プラントにより洗浄することにより土壌を濃縮・減容化した状態で加水して泥状化し、礫や木、ゴミ、その他の非処理物質を除去することを特徴とする請求項1記載の汚染土壌区域改善方法。   The pre-treatment process is performed by adding water to the soil or washing it with a washing / classifying plant to make the soil hydrated and muddy in a concentrated and reduced volume, thereby removing gravel, wood, debris and other untreated substances. The method for improving a contaminated soil area according to claim 1. 前処理工程は、土壌に加水し或いは洗浄・分級プラントにより洗浄することにより土壌を濃縮・減容化した状態で加水して泥状化し、礫や木、ゴミ、その他の非処理物質を除去し、同時に、検査装置により土壌を分析して非汚染土壌と判別されたものは後処理工程の埋め戻し工程へ、汚染土壌と判別されたものは不活性化処理工程へと分級してなることを特徴とする請求項1記載の汚染土壌区域改善方法。   In the pretreatment process, water is added to the soil or washed with a washing / classifying plant to make the soil hydrolyzed and muddy in a concentrated and reduced volume, removing gravel, wood, garbage and other non-treated substances. At the same time, the soil analyzed by the inspection device is classified as non-contaminated soil, the post-processing step is backfilled, and the soil is classified as inactivated processing step. 2. The method for improving a contaminated soil area according to claim 1. 不活性化処理工程は、土壌コロイドに作用することで瞬時に団粒化すると同時に重金属類はコロイドに包蔵されるものとする強アルカリ性のA液と、アルカリが中和されると同時にシリカ成分がガラス皮膜に変質し、土壌コロイド全体を完全に包み込むことで長期にわたり不活性化状態となるようにする中和改良剤(pH調整剤)によるB液との2液タイプによることを特徴とする請求項1乃至3のいずれかに記載の汚染土壌区域改善方法。   The deactivation treatment step is to instantly agglomerate by acting on the soil colloid, and at the same time the heavy metal is contained in the colloid, the strongly alkaline A solution, and at the same time the alkali is neutralized, the silica component is It is a two-component type with a B solution by a neutralization improver (pH adjuster) that transforms into a glass film and completely encases the entire soil colloid so as to be inactivated over a long period of time. Item 4. The method for improving a contaminated soil area according to any one of Items 1 to 3. 分解除去処理工程は、浮上分離処理、接触曝気処理、濾過処理が順次行われ、濾過処理においてバイオ菌による有機物質を分解処理して除去することを特徴とする請求項1乃至4のいずれかに記載の汚染土壌区域改善方法。   5. The decomposition and removal treatment step is performed by sequentially performing a flotation separation treatment, a contact aeration treatment, and a filtration treatment, and decomposes and removes the organic substance by the biobacteria in the filtration treatment. Contaminated soil area improvement method as described. 吸着除去処理工程は、不活性化処理工程で不活性化されなかった他の重金属類、及び分解除去処理工程で分解不可能であった有機物質を、粉末或いは塊状の濾過材の吸着作用とイオン交換作用により、吸着除去することを特徴とする請求項1乃至5のいずれかに記載の汚染土壌区域改善方法。   In the adsorption removal process, other heavy metals that were not inactivated in the deactivation process and organic substances that could not be decomposed in the decomposition process, the adsorption action and ions of the filter material in the form of powder or block The method for improving a contaminated soil area according to any one of claims 1 to 5, wherein adsorption removal is performed by an exchange action. 濾過材は、吸着作用とイオン交換作用及びミネラルを溶出する等の各作用を有する斑状花崗閃緑岩鉱石を使用することを特徴とする請求項6記載の汚染土壌区域改善方法。   7. The method for improving a contaminated soil area according to claim 6, wherein the filter medium uses a mottled granodiorite ore having an action such as an adsorption action, an ion exchange action and a mineral elution. 後処理工程は、土壌にあっては養生ピットで自然乾燥して所定区域へ埋め戻し、清澄化水にあってはバイオ菌及びミネラルを含んで地下水域に戻すか或いは別途排水することを特徴とする請求項1乃至7のいずれかに記載の汚染土壌区域改善方法。   The post-treatment process is characterized in that the soil is naturally dried in a curing pit and backfilled into a predetermined area, and the clarified water is returned to the groundwater area containing biobacteria and minerals or drained separately. The method for improving a contaminated soil area according to any one of claims 1 to 7. 後処理工程は、検査装置により非汚染土壌と判別された土壌は自然乾燥後、原位置に埋め戻し、不活性化処理工程、分解除去処理工程及び吸着除去処理工程を経て汚染物質が除去された土壌は自然乾燥後、遮蔽壁に囲まれた特定区域に埋め戻すことを特徴とする請求項3乃至7のいずれかに記載の汚染土壌区域改善方法。   In the post-treatment process, the soil determined as non-contaminated soil by the inspection device was naturally dried and then backfilled in situ, and the contaminants were removed through the inactivation treatment process, the decomposition removal treatment process, and the adsorption removal treatment process. The method for improving a contaminated soil area according to any one of claims 3 to 7, wherein the soil is back-filled in a specific area surrounded by a shielding wall after natural drying. 特定区域は、遮蔽壁で囲まれた区域全面に遮水シートを敷設し、該遮水シート上に汚染物質が除去された乾燥土壌を埋め戻すことを特徴とする請求項9記載の汚染土壌区域改善方法。   10. The contaminated soil area according to claim 9, wherein the specific area is constructed by laying a water shielding sheet over the entire area surrounded by the shielding wall, and refilling the dry soil from which the pollutants have been removed on the water shielding sheet. How to improve.
JP2008329724A 2008-12-25 2008-12-25 Contaminated soil area improvement method Expired - Fee Related JP5276429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329724A JP5276429B2 (en) 2008-12-25 2008-12-25 Contaminated soil area improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329724A JP5276429B2 (en) 2008-12-25 2008-12-25 Contaminated soil area improvement method

Publications (2)

Publication Number Publication Date
JP2010149042A true JP2010149042A (en) 2010-07-08
JP5276429B2 JP5276429B2 (en) 2013-08-28

Family

ID=42568746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329724A Expired - Fee Related JP5276429B2 (en) 2008-12-25 2008-12-25 Contaminated soil area improvement method

Country Status (1)

Country Link
JP (1) JP5276429B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583712A (en) * 2012-02-21 2012-07-18 清华大学 Method and system by using micro-nano bubbles to perform reinforcement in-situ remediation on polluted ground water
JP2013002040A (en) * 2011-06-13 2013-01-07 Kajima Corp Sediment disposal method
CN103145232A (en) * 2012-02-21 2013-06-12 清华大学 Method and system using micro-nanometer bubbles to repair underground water in in-situ mode
CN104690084A (en) * 2013-12-05 2015-06-10 中国科学院沈阳应用生态研究所 Electrochemical and microbial synergetic restoration integrated equipment for organic contaminated soil and restoration method thereof
CN115448556A (en) * 2022-09-20 2022-12-09 生态环境部南京环境科学研究所 Remediation system and remediation method for heavy metal polluted bottom mud

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105457995B (en) * 2015-12-22 2018-09-28 航天凯天环保科技股份有限公司 A kind of soil elution device
CN105923963B (en) * 2016-06-16 2019-08-30 中国科学院南京地理与湖泊研究所 The activity covering restorative procedure in situ of persistence organic pollutant in a kind of deposit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177199A (en) * 1991-12-27 1993-07-20 Maezawa Ind Inc Sewage treatment method and treatment device therefor
JP2000198981A (en) * 1999-01-07 2000-07-18 Kankyo Biken:Kk Lake bed mud purifying agent and purification process
JP2001104998A (en) * 1999-10-05 2001-04-17 Kankyo Biken:Kk Fluid mud immediate effect solidifying agent
WO2001092159A1 (en) * 2000-05-31 2001-12-06 Kawano, Ichizo Method for treating and activating sea water and polluted water into drinking water
JP2003024928A (en) * 2001-07-19 2003-01-28 Maeda Corp Cleaning method for polluted soil
JP2004141783A (en) * 2002-10-25 2004-05-20 Ohbayashi Corp Treatment system for contaminated soil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177199A (en) * 1991-12-27 1993-07-20 Maezawa Ind Inc Sewage treatment method and treatment device therefor
JP2000198981A (en) * 1999-01-07 2000-07-18 Kankyo Biken:Kk Lake bed mud purifying agent and purification process
JP2001104998A (en) * 1999-10-05 2001-04-17 Kankyo Biken:Kk Fluid mud immediate effect solidifying agent
WO2001092159A1 (en) * 2000-05-31 2001-12-06 Kawano, Ichizo Method for treating and activating sea water and polluted water into drinking water
JP2003024928A (en) * 2001-07-19 2003-01-28 Maeda Corp Cleaning method for polluted soil
JP2004141783A (en) * 2002-10-25 2004-05-20 Ohbayashi Corp Treatment system for contaminated soil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002040A (en) * 2011-06-13 2013-01-07 Kajima Corp Sediment disposal method
CN102583712A (en) * 2012-02-21 2012-07-18 清华大学 Method and system by using micro-nano bubbles to perform reinforcement in-situ remediation on polluted ground water
CN103145232A (en) * 2012-02-21 2013-06-12 清华大学 Method and system using micro-nanometer bubbles to repair underground water in in-situ mode
CN104690084A (en) * 2013-12-05 2015-06-10 中国科学院沈阳应用生态研究所 Electrochemical and microbial synergetic restoration integrated equipment for organic contaminated soil and restoration method thereof
CN104690084B (en) * 2013-12-05 2017-02-01 中国科学院沈阳应用生态研究所 Electrochemical and microbial synergetic restoration integrated equipment for organic contaminated soil and restoration method thereof
CN115448556A (en) * 2022-09-20 2022-12-09 生态环境部南京环境科学研究所 Remediation system and remediation method for heavy metal polluted bottom mud
CN115448556B (en) * 2022-09-20 2023-05-05 生态环境部南京环境科学研究所 Repair system and repair method for heavy metal polluted bottom mud

Also Published As

Publication number Publication date
JP5276429B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
Ye et al. Emerging sustainable technologies for remediation of soils and groundwater in a municipal solid waste landfill site--A review
JP5276429B2 (en) Contaminated soil area improvement method
Lee et al. Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate
Moghadam et al. A review of combinations of electrokinetic applications
US6132623A (en) Immobilization of inorganic arsenic species using iron
CN108516658B (en) In-situ cleaning and recycling equipment and method for black and odorous river sediment
Makino et al. A practical soil washing method for use in a Cd-contaminated paddy field, with simple on-site wastewater treatment
Seng et al. Improvement of flotation and suppression of pyrite oxidation using phosphate-enhanced galvanic microencapsulation (GME) in a ball mill with steel ball media
CN102641888A (en) In-situ remediation method of heavy metal polluted site
US11697043B2 (en) Method and reagents for treating materials contaminated with mercury, PFAS, or other contaminants
KR100750585B1 (en) Ds-mprb system
US6387276B1 (en) Immobilization of inorganic arsenic species using iron
CN104478055B (en) Sewage disposal complexing agent, its preparation method and methods for using them
Alawa et al. Source reduction, recycling, disposal, and treatment
Bidhendi et al. Potential of natural bed soil in adsorption of heavy metals in industrial waste landfill
JP2008246273A (en) Washing treatment system for soil contaminated with dioxins and the like
JP2006500210A (en) Methods for soil decontamination and soil engineering
JP2005319456A (en) Stabilization accelerating method for waste landfill disposal site
Madrid et al. Effects of the presence of a composted biosolid on the metal immobilizing action of an urban soil
JP6719758B2 (en) Incineration ash treatment agent and incineration ash treatment method
JPH08257570A (en) Purification of polluted underground water
CN206476899U (en) A kind of permeable reaction brick of in-situ immobilization mercury, arsenic polluted water body
Pondja Jr et al. A survey of experience gained from the treatment of coal mine wastewater
Monga et al. Biochar, Clay, Zeolites, and Microorganism-based Methods for Remediation of Heavy Metals
Mitchell et al. Protection of ecosystem and human health via silica micro encapsulation of heavy metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5276429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees