JP2010147921A - Aircraft communication system, on-board device and ground gateway station device - Google Patents

Aircraft communication system, on-board device and ground gateway station device Download PDF

Info

Publication number
JP2010147921A
JP2010147921A JP2008324325A JP2008324325A JP2010147921A JP 2010147921 A JP2010147921 A JP 2010147921A JP 2008324325 A JP2008324325 A JP 2008324325A JP 2008324325 A JP2008324325 A JP 2008324325A JP 2010147921 A JP2010147921 A JP 2010147921A
Authority
JP
Japan
Prior art keywords
aircraft
communication
ground
route
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008324325A
Other languages
Japanese (ja)
Inventor
Takanari Ogawa
隆也 小川
Nobufumi Saruwatari
信文 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008324325A priority Critical patent/JP2010147921A/en
Publication of JP2010147921A publication Critical patent/JP2010147921A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure a wide-band radio communication channel between an aircraft and a ground GW station. <P>SOLUTION: Aircraft A1-A3 have flights along a predetermined course, and under the course, ground GW stations B1-B3 are disposed. The ground GW stations B1-B3 are, respectively managed by a radio channel control station C and in response to an instruction from the control station C; a communication channel is set up with a designated aircraft; and the communication channel is connected to a ground communication network D. The radio channel control station C grasps the flight situations of the aircraft A1-A3, valid communication ranges of the ground GW stations B1-B3 and weather conditions over the course and instructs a ground GW station under the weather conditions, where setup of the communication channel is enabled, to set up a communication channel with the aircraft that enters the valid communication range of that ground GW station. The aircraft A1-A3 include communication mechanisms for communicating with each other on the course; and when communication with a ground GW station is disabled, a communication channel is set up with a preceding or following aircraft A, to attain setup of the communication channel with the ground GW station via the aircraft A that has set up the communication channel with the ground GW station B. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、航空機上でブロードバンドインターネットサービスを実現する航空機通信システムとこのシステムに用いられる機上搭載装置及び地上ゲートウェイ局装置に関する。   The present invention relates to an aircraft communication system that realizes broadband Internet service on an aircraft, an on-board device used in the system, and a ground gateway station device.

従来から提案されている航空機通信システムでは、飛翔中の航空機において、機内の携帯通信端末を機内ネットワーク(有線LANまたは無線LAN)を通じて機上GW(ゲートウェイ)局に接続し、機上GW局と地上GW局との間で通信回線を確立し、地上GW局側で確立した通信回線を地上通信網に接続することで、航空機上でブロードバンドインターネットサービスを実現する航空機通信システムが提案されている(例えば特開2005−159448号公報)。   In an aircraft communication system that has been proposed in the past, an in-flight portable communication terminal is connected to an on-board GW (gateway) station via an in-flight network (wired LAN or wireless LAN) in an aircraft in flight, and the on-board GW station and the ground An aircraft communication system that realizes broadband Internet service on an aircraft by establishing a communication line with a GW station and connecting the communication line established on the ground GW station side to the ground communication network has been proposed (for example, JP-A-2005-159448).

このシステムでは、航空機上のアンテナと地上GW局のアンテナを互いに向き合うように指向させて通信回線を確立する。ところが、実際には地形、障害物、雲による電波の遮蔽、減衰によって通信回線が不安定となるため、実用化が極めて困難である。また、通信有効距離を考慮すると、航空機の航路下に多数の地上GW局を設置する必要があり、膨大な経費がかかってしまうこととなるため、現実的ではない。   In this system, the communication line is established by directing the antenna on the aircraft and the antenna on the ground GW station so as to face each other. However, in practice, communication lines become unstable due to radio wave shielding and attenuation by topography, obstacles, and clouds, making it extremely difficult to put to practical use. In addition, considering the effective communication distance, it is necessary to install a large number of ground GW stations under the route of the aircraft, which entails enormous costs, which is not realistic.

尚、衛星通信の利用も考えられるが、衛星通信回線では通信距離が長いため伝送ロスが大きく、非常に大きな送信パワーが要求され、ブロードバンドインターネットサービスに要する帯域を確保することは困難である。
特開2005−159448号公報
Although satellite communication may be used, the satellite communication line has a long communication distance, so transmission loss is large, a very large transmission power is required, and it is difficult to secure a band required for the broadband Internet service.
JP 2005-159448 A

以上述べたように、従来の航空機通信システムでは、航空機−GW局間の広帯域無線通信回線の確保が困難で、しかも多数のGW局を要することから実用化が極めて困難であったため、航空機上でブロードバンドインターネットサービスを行うことができなかった。   As described above, in the conventional aircraft communication system, it is difficult to secure a broadband wireless communication line between the aircraft and the GW station, and since it requires a large number of GW stations, it has been extremely difficult to put into practical use. Could not provide broadband internet service.

本発明は上記の課題に鑑みてなされたもので、航空機−地上GW局間の広帯域無線通信回線を容易に確保することができ、しかも地上GW局数を低減することができ、これによって航空機上でのブロードバンドインターネットサービスを実現可能とする航空機通信システムとこのシステムに用いられる機上搭載装置及び地上ゲートウェイ局装置を提供することを目的とする。   The present invention has been made in view of the above problems, and can easily secure a broadband wireless communication line between an aircraft and a ground GW station, and can reduce the number of ground GW stations. It is an object of the present invention to provide an aircraft communication system capable of realizing broadband Internet service in Japan, an on-board device and a ground gateway station device used in this system.

上記課題を解決するため、本発明は、所定航路を飛翔中の複数の航空機にて、機内の通信端末を機内ネットワークを通じて機上ゲートウェイ局に接続し、機上ゲートウェイ局と航路下周辺に配置されるいずれかの地上ゲートウェイ局との間で通信回線を確立し、地上ゲートウェイ局側で確立した通信回線を地上通信網に接続する航空機通信システムであって、前記航路上に存在する複数の航空機間で通信回線を確立し、前記地上ゲートウェイ局と通信回線を確立している航空機を通じて地上通信網と接続することを特徴とする。   In order to solve the above-described problems, the present invention connects an in-flight communication terminal to an on-board gateway station through an on-board network in a plurality of aircraft flying on a predetermined route, and is arranged around the on-board gateway station and under the route. An aircraft communication system that establishes a communication line with any one of the ground gateway stations and connects the communication line established on the ground gateway station side to the ground communication network, between a plurality of aircraft existing on the route A communication line is established by the above-described method, and the communication line is connected to the ground communication network through an aircraft that has established a communication line with the ground gateway station.

また、上記構成による航空機通信システムに用いられ、前記航路上に存在する複数の航空機間で通信回線を確立し、前記地上ゲートウェイ局と通信回線を確立している航空機を通じて地上通信網と接続するために、前記航空機に搭載される機上搭載装置であって、前記航路の飛翔中に前記地上ゲートウェイ局に向けて指向制御される第1アンテナと、前記航路の飛翔中に前記航路上に存在する航空機に向けて指向制御される第2アンテナとを備える、あるいは地上ゲートウェイ局と航路上の航空機との間で選択的に接続を切り替える共用アンテナを備えることを特徴とする。   In addition, for use in the aircraft communication system having the above-described configuration, for establishing a communication line between a plurality of aircraft existing on the route, and connecting to the ground communication network through the aircraft establishing the communication line with the ground gateway station And an on-board device mounted on the aircraft, wherein the first antenna is controlled to be directed toward the ground gateway station during the flight of the route, and is present on the route during the flight of the route. A second antenna that is directed toward the aircraft, or a shared antenna that selectively switches connection between the ground gateway station and the aircraft on the route.

また、前記構成による航空機通信システムの地上ゲートウェイ局に装備される地上ゲートウェイ局装置であって、前記航空機との間で通信可能なサービスエリア内に向けてビーコン波を発信するビーコン波発信手段と、前記サービスエリア内に存在する航空機に対し、当該航空機の位置、高度/通信スケジュールの管理情報に基づいて通信用アンテナを指向制御して、前記航空機との間の通信回線を確立する通信用アンテナ制御手段とを具備することを特徴とする。   Also, a ground gateway station apparatus equipped in a ground gateway station of the aircraft communication system according to the above configuration, a beacon wave transmitting means for transmitting a beacon wave toward a service area communicable with the aircraft, Communication antenna control that establishes a communication line with the aircraft by controlling the direction of the communication antenna based on management information of the position of the aircraft and altitude / communication schedule for the aircraft existing in the service area Means.

本発明によれば、航空機−地上GW局間の広帯域無線通信回線を容易に確保することができ、しかも地上GW局数を低減することができ、これによって航空機上でのブロードバンドインターネットサービスを実現可能とする航空機通信システムとこのシステムに用いられる機上搭載装置及び地上ゲートウェイ局装置を提供することができる。   According to the present invention, a broadband wireless communication line between an aircraft and a terrestrial GW station can be easily secured, and the number of terrestrial GW stations can be reduced, thereby realizing a broadband Internet service on an aircraft. It is possible to provide an aircraft communication system and an on-board device and a ground gateway station device used in this system.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明に係る航空機通信システムの一実施形態の構成を示すブロック図である。図1において、A1〜An(図ではn=3)は所定の航路を飛翔する航空機であり、その航路下には地上GW局B1〜Bm(図ではm=3)が配置される。地上GW局B1〜Bmはそれぞれ無線回線管理局Cによって管理されており、当該管理局Cからの指示により、指定された航空機との間で通信回線を確立し、その通信回線を地上通信網Dに接続する。   FIG. 1 is a block diagram showing a configuration of an embodiment of an aircraft communication system according to the present invention. In FIG. 1, A1 to An (n = 3 in the figure) are aircraft flying on a predetermined route, and ground GW stations B1 to Bm (m = 3 in the drawing) are arranged under the route. The terrestrial GW stations B1 to Bm are respectively managed by the radio network management station C. In response to an instruction from the management station C, a communication line is established with the designated aircraft, and the communication line is connected to the terrestrial communication network D. Connect to.

上記無線回線管理局Cは、飛翔中の各航空機A1〜Anのフライト状況、各地上GW局B1〜Bmの設置位置における通信有効範囲、航路上の気象状態を把握し、通信回線の確立が可能な気象状態にある地上GW局にその通信有効範囲に入る航空機と通信回線を確立するように指示する。   The radio network management station C can establish a communication line by grasping the flight status of each aircraft A1 to An in flight, the effective communication range at the installation position of each ground GW station B1 to Bm, and the weather condition on the route. Instruct the ground GW station in a certain weather condition to establish a communication line with an aircraft that falls within the effective communication range.

上記航空機A1〜Anは互いに航路上で通信を行うための通信機構を備え、地上GW局Bとの通信が不可の場合に、前方または後方の航空機Aとの間で通信回線を確立し、地上GW局Bとの通信回線を確立可能な航空機Aを通じて地上GW局との通信回線確立を図れるものとなっている。   The aircrafts A1 to An are provided with a communication mechanism for communicating with each other on the route, and when communication with the ground GW station B is impossible, a communication line is established with the aircraft A ahead or behind, The communication line with the ground GW station can be established through the aircraft A capable of establishing a communication line with the GW station B.

図2は地上GW局Bの具体的な構成を示すブロック図である。図2に示す地上GW局Bは、通信用アンテナ11及びビーコン用アンテナ12を備え、通信用アンテナ11は制御部13からの駆動制御信号により指定方向に指向される。   FIG. 2 is a block diagram showing a specific configuration of the ground GW station B. The terrestrial GW station B shown in FIG. 2 includes a communication antenna 11 and a beacon antenna 12, and the communication antenna 11 is directed in a specified direction by a drive control signal from the control unit 13.

通信用アンテナ11は地上通信網Dに接続される送受信器14に接続され、ビーコン用アンテナ12はビーコン送信器15に接続される。制御部13は、無線回線管理局Cからの指示を受けて、通信用アンテナ11の指向制御を行いつつ、送受信器14に指定航空機との間で確立される通信回線を地上通信網Dに接続させる。また、初期捕捉及び追尾を容易にするため、ビーコン送信器15にビーコン波を通信有効範囲内に向けて放射させる。   The communication antenna 11 is connected to a transmitter / receiver 14 connected to the ground communication network D, and the beacon antenna 12 is connected to a beacon transmitter 15. In response to an instruction from the radio network management station C, the control unit 13 controls the directivity of the communication antenna 11 and connects the communication line established with the designated aircraft to the transceiver 14 to the terrestrial communication network D. Let In order to facilitate initial acquisition and tracking, the beacon transmitter 15 is caused to radiate a beacon wave within the effective communication range.

図3は航空機A側の機上GW局の具体的な構成を示すブロック図である。図3において、21は第1アンテナ、22はビーコン受信器、23は制御部、24は第1送受信器、25は機内ネットワークインターフェースである。ビーコン受信器22は、アンテナ21を通じて地上GW局Bからのビーコン波を受信し、その到来方向を制御部23に通知する。制御部23はその方向情報に基づいて第1アンテナ21を地上GW局Bに指向制御し、通信回線を確立させる。また、制御部23は通信回線確立後に第1送受信器24を機内ネットワークインターフェース25に接続して、機内ネットワークに接続される携帯端末と地上GW局Bとの通信を可能にする。   FIG. 3 is a block diagram showing a specific configuration of the onboard GW station on the aircraft A side. In FIG. 3, 21 is a first antenna, 22 is a beacon receiver, 23 is a control unit, 24 is a first transceiver, and 25 is an in-flight network interface. The beacon receiver 22 receives the beacon wave from the terrestrial GW station B through the antenna 21 and notifies the control unit 23 of the arrival direction. Based on the direction information, the control unit 23 controls the direction of the first antenna 21 to the terrestrial GW station B to establish a communication line. Further, the control unit 23 connects the first transmitter / receiver 24 to the in-flight network interface 25 after establishing the communication line, thereby enabling communication between the portable terminal connected to the in-flight network and the ground GW station B.

また、上記機上GW局は、航路前方を飛翔する航空機と通信を行うための第2アンテナ26と、この第2アンテナ26を通じて前方を飛翔中の航空機と通信を行うための第2送受信器27とを備え、制御部23からの指示により第2送受信器24を機内ネットワークインターフェース25に接続し、これによって前方航空機との通信回線を確立する。   The onboard GW station has a second antenna 26 for communicating with an aircraft flying in front of the route, and a second transceiver 27 for communicating with an aircraft flying in front through the second antenna 26. And the second transmitter / receiver 24 is connected to the in-flight network interface 25 according to an instruction from the control unit 23, thereby establishing a communication line with the forward aircraft.

また、上記機上GW局は、航路後方を飛翔する航空機と通信を行うための第3アンテナ28と、この第3アンテナ28を通じて後方を飛翔中の航空機と通信を行うための第3送受信器29とを備え、制御部23からの指示により第3送受信器29を機内ネットワークインターフェース25に接続し、これによって前方航空機との通信回線を確立する。   The onboard GW station has a third antenna 28 for communicating with an aircraft flying behind the route, and a third transceiver 29 for communicating with an aircraft flying behind the third antenna 28. And the third transmitter / receiver 29 is connected to the in-flight network interface 25 according to an instruction from the control unit 23, thereby establishing a communication line with the forward aircraft.

ここで、上記第1乃至第3アンテナ21,26,28はどのような形態でもってもよいが、第1アンテナ21は下方、第2アンテナ26は前方、第3アンテナ28は後方を主として指向するアンテナである。   Here, the first to third antennas 21, 26, and 28 may take any form, but the first antenna 21 is directed downward, the second antenna 26 is directed forward, and the third antenna 28 is directed backward. It is an antenna.

これら第1乃至第3アンテナ21,26,28を同時にもつ形態の具体例として、機体先端部に、第1アンテナ(下方)21と第2アンテナ(前方)26を配置し、取付スペースの少ない機体尾部に第3アンテナ(後方)28を配置する。他の具体例として、第1乃至第3アンテナ21,26,28を、例えば、機体腹部の一カ所にまとめて機体から突起するようにして搭載するようにしてもよい。この場合、取り外し可能なポッド型のものにしてもよい。また、第1乃至第3アンテナ21,26,28を例えばレフレクタ切り替え型アンテナで共用するようにしてもよい。   As a specific example of the form having the first to third antennas 21, 26, and 28 at the same time, the aircraft has a small mounting space by arranging the first antenna (downward) 21 and the second antenna (front) 26 at the front end of the aircraft. A third antenna (rear) 28 is arranged at the tail. As another specific example, the first to third antennas 21, 26, and 28 may be mounted, for example, in one place at the abdomen of the body so as to protrude from the body. In this case, a removable pod type may be used. Further, the first to third antennas 21, 26, 28 may be shared by, for example, a reflector switching type antenna.

上記構成において、以下にシステムの運用手順について説明する。   In the above configuration, the operation procedure of the system will be described below.

図4は航空機−地上GW局間の通信回線を確立するための手順を示すシーケンス図であり、A1は航空機(機上GW局)、B1は地上GW局、Cは無線回線管理局を示している。   FIG. 4 is a sequence diagram showing a procedure for establishing a communication line between an aircraft and a ground GW station. A1 is an aircraft (onboard GW station), B1 is a ground GW station, and C is a radio network management station. Yes.

図4において、地上GW局B1は、まず、ビーコン波を送信し(S11)、航空機A1の方向を探索し、航空機A1から送信される無線回線管理情報(局名/自機位置/高度)を取得する(S12)。このとき、無線回線管理局Cで航空管制システムから得ている航空機位置、高度/通信スケジュールの管理情報を利用して航空機A1に対する指向角の初期値を求めることで、航空機A1を容易に捕捉することができる。   In FIG. 4, the terrestrial GW station B1 first transmits a beacon wave (S11), searches for the direction of the aircraft A1, and obtains wireless line management information (station name / own device position / altitude) transmitted from the aircraft A1. Obtain (S12). At this time, by acquiring the initial value of the directivity angle with respect to the aircraft A1 using the management information of the aircraft position and altitude / communication schedule obtained from the air traffic control system at the radio network management station C, the aircraft A1 is easily captured. be able to.

探索終了後、通信回線を確立し、航空機A1の指向角を逐次取得し、航空機A1からの無線回線管理情報を基に航空機A1の位置、高度を逐次算出して更新し、その無線回線管理情報を航空機A1に通知する(S13)。これにより、通信アンテナを一定期間にわたって航空機A1に指向させ、航空機A1との通信を維持することができ、コンテンツ通信が可能となる。   After the search is completed, the communication line is established, the directivity angle of the aircraft A1 is sequentially acquired, the position and altitude of the aircraft A1 are sequentially calculated and updated based on the wireless line management information from the aircraft A1, and the wireless line management information Is sent to the aircraft A1 (S13). As a result, the communication antenna can be directed to the aircraft A1 over a certain period of time, and communication with the aircraft A1 can be maintained, enabling content communication.

一方、航空機A1では、通信予定の地上GW局B1の位置/通信スケジュールをフライト前に取得しておき、離陸して巡航高度(約1万m)に達した後に、地上GW局B1の方向探索及びビーコン波の受信を行い、これによって地上GW局B1に対する指向角を得る(S14)。この指向角を用いて地上GW局B1を追尾し、無線回線管理情報(局名/自機位置/高度)を地上GW局B1に通知する(S15)。続いて、通信回線を確立後、地上GW局B1から手順S13で更新された無線回線管理情報を受け取って無線回線管理情報を更新し(S16)、これによって一定期間にわたって地上GW局B1との通信を維持することができ、コンテンツ通信が可能となる。   On the other hand, in the aircraft A1, the position / communication schedule of the ground GW station B1 scheduled to communicate is acquired before the flight, and after taking off and reaching the cruise altitude (about 10,000 m), the direction search of the ground GW station B1 is performed. And a beacon wave are received, thereby obtaining a directivity angle with respect to the ground GW station B1 (S14). Using this directivity angle, the terrestrial GW station B1 is tracked, and the radio network management information (station name / own device position / altitude) is notified to the terrestrial GW station B1 (S15). Subsequently, after establishing the communication line, the wireless line management information updated in step S13 is received from the ground GW station B1 and the wireless line management information is updated (S16), thereby communicating with the ground GW station B1 over a certain period. Can be maintained, and content communication becomes possible.

図5は航空機A1において、地上GW局B1との通信から航空機A2を通じて当該航空機A2と通信回線が確立している地上GW局B2との通信に切り替える(ハンドオーバ)ための手順を示すシーケンス図である。図5において、地上GW局B1が無線回線管理局Cから航空機A1に関する無線回線管理情報を受け取り、航空機A1との間で通信回線を確立している状態(S21)で、航空機A1では、無線回線管理情報から通信許容状態を脱するタイミングを判別し、その前に、無線回線管理局Cからの航空機位置、高度/通信スケジュールの管理情報に基づき、航空機A1の航路前方に位置する航空機A2との通信に切り替えるためのハンドオーバを準備する(S22)。   FIG. 5 is a sequence diagram showing a procedure for switching (handover) from communication with the ground GW station B1 to communication with the ground GW station B2 having established a communication line with the aircraft A2 through the aircraft A2 in the aircraft A1. . In FIG. 5, in the state in which the ground GW station B1 receives the wireless line management information related to the aircraft A1 from the wireless line management station C and establishes a communication line with the aircraft A1 (S21), The timing at which the communication permission state is removed from the management information is determined. Before that, based on the management information of the aircraft position and altitude / communication schedule from the radio network management station C, the communication with the aircraft A2 located in front of the route of the aircraft A1 A handover for switching to communication is prepared (S22).

一方、航空機A2においても、地上GW局B2を通じて航空機A1の無線回線管理情報を受けてハンドオーバの準備を行い(S23)、後方用アンテナ(図示せず)を航路後方に位置する航空機A1に指向させる(S24)。一方、航空機A1側も同様に、前方用アンテナ(図示せず)を航路前方に位置する航空機A2に指向させる(S25)。このようにして航空機A1,A2間で互いにアンテナの指向追尾により通信回線を確立する(S26,S27)。このとき、航空機A2では、航空機A1の指向角を取得すると、その指向角から航空機A1の位置、高度を算出更新して、無線回線管理情報として無線回線管理局Cに通知するとともに、この無線回線管理情報を航空機A1に送る。航空機A1では、更新された無線回線管理情報を受け取って管理情報の更新を行う。   On the other hand, the aircraft A2 also receives the radio link management information of the aircraft A1 through the ground GW station B2 and prepares for handover (S23), and directs the rear antenna (not shown) to the aircraft A1 located behind the route. (S24). On the other hand, the aircraft A1 side similarly directs a forward antenna (not shown) to the aircraft A2 located in front of the course (S25). In this way, communication lines are established between the aircrafts A1 and A2 by the tracking of the antennas mutually (S26, S27). At this time, when the aircraft A2 acquires the directivity angle of the aircraft A1, the position and altitude of the aircraft A1 are calculated and updated from the directivity angle and notified to the radio network management station C as radio network management information. Management information is sent to the aircraft A1. The aircraft A1 receives the updated wireless line management information and updates the management information.

すなわち、上記運用手順に従った航空機通信システムでは、航空機内のネットワークと、飛翔する航空機同士の通信網と、地上の通信網を連携させて、航空機上の携帯端末によるブロードバンド通信を地上と確立させるために、離陸を完了して高空の巡航に入った航空機は、自航路下に存在する地上GW局から発信されているビーコン波を探索し、ビーコン波を捕捉した場合には、ビーコン波到来方向にアンテナを指向させ、無線回線管理情報を低レートで送信する。これに対し、地上GW局では、予め自サービスエリア内に入る航空機の位置を無線回線管理局Cから与えられる無線回線管理情報から把握し、通信用アンテナをその航空機に指向させ、航空機から送信される低レートの無線回線管理情報を探索する。このとき、航空機からの送信信号は低レートで送られてくるため、比較的天候に左右されず、地上GW局に到達する。これにより、地上GW局は航空機からの電波を捕捉し、無線回線管理情報を取得する。通信状態が良好な場合は通信回線を確立し、通信状態が劣悪な場合はその旨無線回線管理局Cに通知し、航空機間通信に切り替えるように促す。これを受けて、管理局Cは通信相手を検索し、その相手となる航空機が存在する場合には、それぞれ通信相手となる航空機に対し、互いの無線回線管理情報を通信中の地上GW局を通じて返送させる。これにより航空機側は次の通信相手との間でアンテナを互いに指向させることが可能となる。   That is, in the aircraft communication system according to the above operation procedure, broadband communication by a portable terminal on the aircraft is established with the ground by linking the network in the aircraft, the communication network between the flying aircraft, and the ground communication network. Therefore, an aircraft that has completed takeoff and entered a high altitude cruise searches for a beacon wave transmitted from a ground GW station existing under its own route, and if a beacon wave is captured, the beacon wave arrival direction The antenna is pointed to and the wireless link management information is transmitted at a low rate. On the other hand, the terrestrial GW station grasps the position of the aircraft entering the service area in advance from the radio network management information given from the radio network management station C, directs the communication antenna to the aircraft, and is transmitted from the aircraft. Search for low-rate radio link management information. At this time, since the transmission signal from the aircraft is sent at a low rate, it reaches the ground GW station without being influenced by the weather relatively. Thereby, the terrestrial GW station captures radio waves from the aircraft and acquires the wireless line management information. When the communication state is good, a communication line is established, and when the communication state is bad, the wireless line management station C is notified to that effect and urges to switch to inter-aircraft communication. In response to this, the management station C searches for a communication partner, and when there is an aircraft as a partner, the wireless station management information is transmitted to the aircraft as a communication partner through the terrestrial GW station in communication. Let me return it. This allows the aircraft side to point the antennas at the next communication partner.

航空機同士の通信網は、航路下の地上GW局と通信が確立した場合には、通信網に通信確立したゲートウェイ名、通信確保できる見込み時間(対地速度、飛行高度、地図情報および、場合によっては気象情報から判断。)を航空機ネットワーク管理情報に登録する。これによって得られた管理情報は、通信網上に共有して、航空機同士でネットワーク効率が最大となるように、航空機間通信と、航空機対地上通信を振り分ける。あるいは、地上ゲートウェイ管理者(無線回線管理局C)の判断する地上、航空機上でネットワーク効率が最大となるような手順に従って、航空機間通信と航空機対地上通信を振り分ける。尚、上記無線管理局Cは、特定の管理者(マスター)を特に設置せず、ノード間の相互関係によって統合的に決定するようにしてもよい。ネットワーク管理情報は、地上通信網Dを通じて、地上のゲートウェイの管理情報と共有される。   The communication network between aircraft, when communication is established with the ground GW station under the route, the gateway name established in the communication network, the expected time to ensure communication (ground speed, flight altitude, map information, and in some cases Judgment from weather information) is registered in the aircraft network management information. The management information obtained in this way is shared on the communication network, and the inter-aircraft communication and the aircraft-to-ground communication are distributed so that the network efficiency is maximized between the aircrafts. Alternatively, the inter-aircraft communication and the aircraft-to-ground communication are distributed according to a procedure that maximizes the network efficiency on the ground and on the aircraft, as determined by the ground gateway manager (wireless network management station C). Note that the radio management station C may not determine a specific manager (master) in particular, and may determine it in an integrated manner according to the interrelationship between nodes. The network management information is shared with the management information of the ground gateway through the ground communication network D.

航空機上にあっては、複数のユーザの保有する携帯端末は、無線または有線による機上ネットワークに接続されると、この機上ネットワークに接続された機上GW局を通じて地上GW局との間で通信することにより、地上通信網と接続されることになる。航空機の位置により航空機上アンテナが、地上ゲートウェイ局のアンテナに対して、地形による遮蔽、障害物による遮蔽、雲による遮蔽、減衰、遠距離による待機の減衰によって、通信が確立できない場合、航空機上の第2または第3アンテナが、地上GW局と通信確立できている他航空機を指向して通信を行い、その航空機経由で機上の携帯端末を地上通信網に接続させることができる。航路全てが大雨というケースは滅多になく、航路のどこかの下に雨雲にかからない地上GW局が一つくらいはあると予想できる。   On an aircraft, when a mobile terminal owned by a plurality of users is connected to a wireless or wired onboard network, the mobile terminal is connected to the ground GW station through the onboard GW station connected to the onboard network. By communicating, it is connected to the ground communication network. Depending on the location of the aircraft, the antenna on the aircraft may be unable to establish communication with the ground gateway station antenna if communication cannot be established due to terrain shielding, obstacle shielding, cloud shielding, attenuation, and long-distance standby attenuation. The second or third antenna can communicate with another aircraft that has established communication with the ground GW station, and the portable terminal on the aircraft can be connected to the ground communication network via the aircraft. It is unlikely that the entire route will be heavily rained, and it can be expected that there will be one ground GW station below the route that will not be exposed to rain clouds.

上記のようにして運用する航空機上ブロードバンド通信では、従来では航空機の航路下に非常にたくさんの地上GW局が必要となっていたが、航空機間通信を用いることによって、航空機同士のネットワークが形成され、地上GW局の設置数を削減できる効果がある。特に航空機間通信においては、高空にて巡航中(高度約1万m)の航空機を選択することによって、以下の効果を生む。   In the on-air broadband communication operated as described above, a large number of ground GW stations have been conventionally required under the aircraft route. However, by using inter-aircraft communication, a network between aircrafts is formed. There is an effect that the number of ground GW stations can be reduced. In inter-aircraft communication in particular, the following effects are produced by selecting an aircraft that is cruising in the high sky (altitude about 10,000 m).

まず、雨雲等電波空間伝搬において減衰の要素の少ない環境で通信することができるため、航空機対地上通信よりも、高効率に通信が成立する。結果的に、同じシステムであれば、遠距離まで通信することが可能となり、逆に同じ距離で有れば、小型軽量省電力なシステムとなる効果がある。また、高空にて巡航中の航空機は、ほとんどの時間を大きな機体の傾斜や振動もなく滑るように飛行している。つまり、航路に沿ってほとんど大きな離隔無く航空機が飛んでいることになり、航空機間通信を希望する相手の航空機は、自分の航路の前か、後に、ほとんどのケースで飛行していることになる。このことから、航空機間通信を行う第2または第3アンテナの指向角度範囲を、自機の概略前方と、概略後方に限定することができ、アンテナの小型軽量化につながる。また、第1アンテナは地上向け(下向き)と第2、第3アンテナは、進行方向前後向けの指向範囲となるため、第1乃至第3アンテナを例えばレフレクタ型による同一アンテナ用いて指向方向を切り替える方式を採用することにより、一段と小型軽量化を図ることができる。   First, since communication can be performed in an environment with less attenuation factors in radio wave space propagation such as rain clouds, communication is established with higher efficiency than aircraft-to-ground communication. As a result, if it is the same system, it becomes possible to communicate to a long distance, and conversely, if it is the same distance, there is an effect of becoming a small, light and power saving system. In addition, aircraft cruising in the high sky fly almost all the time without slipping or shaking the aircraft. In other words, the aircraft is flying along the route with almost no separation, and the partner aircraft that wants inter-aircraft communication is flying in most cases before or after your route. . From this, the directivity angle range of the 2nd or 3rd antenna which performs communication between aircrafts can be limited to the approximate front of the own aircraft and the approximate back, leading to a reduction in the size and weight of the antenna. In addition, since the first antenna is directed to the ground (downward) and the second and third antennas are directed to the front and rear in the traveling direction, the first to third antennas are switched using the same antenna, for example, a reflector type. By adopting the method, the size and weight can be further reduced.

尚、上記実施形態では、機体中央部に下方用アンテナを配置する構成で説明したが、航空機に搭載するアンテナは、空力特性を考慮するため、特に機体からの張り出しを小さくする必要がある。機体先端部に前方及び下方用アンテナを配置し、機体尾部に後方及び下方用アンテナを設置すると、張り出しを抑えることができ、空力的問題を最小限にとどめることができる。   Although the above embodiment has been described with the configuration in which the downward antenna is disposed in the center of the aircraft, the antenna mounted on the aircraft needs to have a particularly small overhang from the aircraft in order to consider aerodynamic characteristics. When the front and lower antennas are arranged at the front end of the airframe and the rear and lower antennas are installed at the rear of the airframe, the overhang can be suppressed and the aerodynamic problem can be minimized.

また、上記実施形態では、前方又は後方の航空機が地上GW局と通信回線を確立しているものとして説明したが、その航空機が通信回線を確立していない場合には、さらに当該航空機を通じて次の航空機と通信回線を確立し、いずれか地上GW局と通信回線を確立している航空機を通じて通信を行うようにすればよい。   Moreover, although the said embodiment demonstrated that the aircraft of the front or back had established the communication line with the ground GW station, when the aircraft has not established the communication line, the next through the said aircraft further A communication line may be established with an aircraft, and communication may be performed through an aircraft that has established a communication line with any ground GW station.

また、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Further, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明に係る航空機通信システムの一実施形態の構成を示すブロック図。The block diagram which shows the structure of one Embodiment of the aircraft communication system which concerns on this invention. 図1に示す地上GW局Bの具体的な構成を示すブロック図。The block diagram which shows the specific structure of the ground GW station B shown in FIG. 図1に示す航空機A側の機上GW局の具体的な構成を示すブロック図。The block diagram which shows the specific structure of the onboard GW station by the side of the aircraft A shown in FIG. 図1に示す航空機A1−地上GW局B1間の通信回線を確立するための手順を示すシーケンス図。The sequence diagram which shows the procedure for establishing the communication line between the aircraft A1-ground GW station B1 shown in FIG. 図1に示す航空機A1において、地上GW局B1との通信から航空機A2を通じて当該航空機A2と通信回線が確立している地上GW局B2との通信に切り替えるための手順を示すシーケンス図。FIG. 2 is a sequence diagram showing a procedure for switching from communication with the ground GW station B1 to communication with the ground GW station B2 having a communication line established with the aircraft A2 through the aircraft A2 in the aircraft A1 shown in FIG.

符号の説明Explanation of symbols

A1〜An…航空機、B1〜Bm…地上GW局、C…無線回線管理局、D…地上通信網、11…通信用アンテナ、12…ビーコン用アンテナ、13…制御部、14…送受信器、15…ビーコン送信器、21…第1アンテナ(下方用)、22…ビーコン受信器、23…制御部、24…第1送受信器、25…機内ネットワークインターフェース、26…第2アンテナ(前方用)、27…第2送受信器(前方用)、28…第3アンテナ(後方用)、29…第3送受信器。   A1 to An ... Aircraft, B1 to Bm ... Ground GW station, C ... Radio network management station, D ... Terrestrial communication network, 11 ... Communication antenna, 12 ... Beacon antenna, 13 ... Control unit, 14 ... Transceiver, 15 ... beacon transmitter, 21 ... first antenna (for downward), 22 ... beacon receiver, 23 ... control unit, 24 ... first transmitter / receiver, 25 ... in-machine network interface, 26 ... second antenna (for forward), 27 ... 2nd transceiver (for front), 28 ... 3rd antenna (for back), 29 ... 3rd transceiver.

Claims (11)

所定航路を飛翔中の複数の航空機にて、機内の通信端末を機内ネットワークを通じて機上ゲートウェイ局に接続し、機上ゲートウェイ局と航路下周辺に配置されるいずれかの地上ゲートウェイ局との間で通信回線を確立し、地上ゲートウェイ局側で確立した通信回線を地上通信網に接続する航空機通信システムであって、
前記航路上に存在する複数の航空機間で通信回線を確立し、前記地上ゲートウェイ局と通信回線を確立している航空機を通じて地上通信網と接続することを特徴とする航空機通信システム。
Connect the in-flight communication terminal to the on-board gateway station via the in-flight network and connect between the on-board gateway station and one of the ground gateway stations located in the vicinity of the route on multiple aircraft flying on the specified route. An aircraft communication system that establishes a communication line and connects the communication line established on the ground gateway station side to the ground communication network,
An aircraft communication system, characterized in that a communication line is established between a plurality of aircraft existing on the route, and is connected to a ground communication network through an aircraft having established a communication line with the ground gateway station.
前記航空機は、前記航路の飛翔中に前記地上ゲートウェイ局に向けて指向制御される第1アンテナと、前記航路の飛翔中に前記航路上に存在する航空機に向けて指向制御される第2アンテナとを備えることを特徴とする請求項1記載の航空機通信システム。   The aircraft has a first antenna whose direction is controlled toward the ground gateway station during flight of the route, and a second antenna whose direction is controlled toward aircraft existing on the route during flight of the route. The aircraft communication system according to claim 1, comprising: 前記航空機は、前記航路の飛翔中に前記地上ゲートウェイ局と前記航路上に存在する航空機のいずれかに向けて選択的に指向制御される共用アンテナを備えることを特徴とする請求項1記載の航空機通信システム。   2. The aircraft according to claim 1, wherein the aircraft includes a shared antenna that is selectively directed to either the ground gateway station or an aircraft existing on the route during the flight of the route. Communications system. 前記航空機とその通信相手となる航空機または地上ゲートウェイ局それぞれに対し、相互の位置、高度/通信スケジュールの管理情報に基づく指示を送り、互いのアンテナを向き合わせて前記通信回線を確立することを特徴する請求項1記載の航空機通信システム。   An instruction based on mutual position and altitude / communication schedule management information is sent to the aircraft and each aircraft or ground gateway station with which it communicates, and the communication line is established by facing each other's antennas. The aircraft communication system according to claim 1. さらに、前記管理情報から通信回線の接続状況を識別して通信相手を決定し双方に指示する通信回線管理局を備えることを特徴とする請求項4記載の航空機通信システム。   5. The aircraft communication system according to claim 4, further comprising a communication line management station that identifies a connection state of a communication line from the management information, determines a communication partner, and instructs both parties. 前記無線回線管理局は、飛翔中の各航空機のフライト状況、各地上ゲートウェイ局の設置位置における通信有効範囲、航路上の気象状態、各通信回線のトラフィック状況の少なくともいずれかを把握し、通信回線の確立が可能な状態にある地上ゲートウェイ局にその通信有効範囲に入る航空機と通信回線を確立するように指示することを特徴とする請求項5記載の航空機通信システム。   The radio network management station grasps at least one of the flight status of each aircraft in flight, the effective communication range at the installation position of each ground gateway station, the weather condition on the route, and the traffic status of each communication channel. 6. The aircraft communication system according to claim 5, wherein the ground gateway station in a state where the establishment of the communication network can be established is instructed to establish a communication line with an aircraft entering the communication effective range. 前記地上ゲートウェイ局はサービスエリア内にビーコンを発信し、
前記航空機は前記ビーコンを検索し、前記ビーコンが受かった場合には前記ビーコンの到来方向にアンテナを指向させて自機の管理情報を低レートで送出することを特徴とする請求項1記載の航空機通信システム。
The ground gateway station sends a beacon into the service area,
2. The aircraft according to claim 1, wherein the aircraft searches for the beacon, and when the beacon is received, sends the management information of the aircraft at a low rate by directing an antenna in an arrival direction of the beacon. Communications system.
前記航路上を飛翔中の複数の航空機は、互いに通信回線を確立して航空機間通信網を形成しつつ、それぞれがいずれかの地上ゲートウェイ局との通信回線確立を行い、離陸して巡航に入った航空機は前記航空機間通信網にログインすることを特徴とする請求項1記載の航空機通信システム。   A plurality of aircraft flying on the route establish a communication line with each other to form an inter-aircraft communication network, each establishes a communication line with one of the ground gateway stations, takes off and enters a cruise The aircraft communication system according to claim 1, wherein the aircraft logs in to the inter-aircraft communication network. 所定航路を飛翔中の複数の航空機にて、機内の通信端末を機内ネットワークを通じて機上ゲートウェイ局に接続し、機上ゲートウェイ局と航路下周辺に配置されるいずれかの地上ゲートウェイ局との間で通信回線を確立し、地上ゲートウェイ局側で確立した通信回線を地上通信網に接続する航空機通信システムに用いられ、
前記航路上に存在する複数の航空機間で通信回線を確立し、前記地上ゲートウェイ局と通信回線を確立している航空機を通じて地上通信網と接続するために、前記航空機に搭載される機上搭載装置であって、
前記航路の飛翔中に前記地上ゲートウェイ局に向けて指向制御される第1アンテナと、前記航路の飛翔中に前記航路上に存在する航空機に向けて指向制御される第2アンテナとを備えることを特徴とする航空機通信システムの機上搭載装置。
Connect the in-flight communication terminal to the on-board gateway station via the in-flight network and connect between the on-board gateway station and one of the ground gateway stations located in the vicinity of the route on multiple aircraft flying on the specified route. Used in aircraft communication systems that establish communication lines and connect communication lines established on the ground gateway station side to the ground communication network.
An on-board device mounted on the aircraft for establishing a communication line between a plurality of aircraft existing on the route and connecting to a ground communication network through the aircraft establishing a communication line with the ground gateway station. Because
A first antenna whose direction is controlled toward the ground gateway station during flight of the route, and a second antenna whose direction is controlled toward an aircraft existing on the route during flight of the route. An on-board device for an aircraft communication system.
所定航路を飛翔中の複数の航空機にて、機内の通信端末を機内ネットワークを通じて機上ゲートウェイ局に接続し、機上ゲートウェイ局と航路下周辺に配置されるいずれかの地上ゲートウェイ局との間で通信回線を確立し、地上ゲートウェイ局側で確立した通信回線を地上通信網に接続する航空機通信システムに用いられ、
前記航路上に存在する複数の航空機間で通信回線を確立し、前記地上ゲートウェイ局と通信回線を確立している航空機を通じて地上通信網と接続するために、前記航空機に搭載される機上搭載装置であって、
前記航路の飛翔中に、前記地上ゲートウェイ局と前記航路上に存在する航空機とに向けて選択的に指向制御される共用アンテナを備えることを特徴とする航空機通信システムの機上搭載装置。
Connect the in-flight communication terminal to the on-board gateway station via the in-flight network and connect between the on-board gateway station and one of the ground gateway stations located in the vicinity of the route on multiple aircraft flying on the specified route. Used in aircraft communication systems that establish communication lines and connect communication lines established on the ground gateway station side to the ground communication network.
An on-board device mounted on the aircraft for establishing a communication line between a plurality of aircraft existing on the route and connecting to a ground communication network through the aircraft establishing a communication line with the ground gateway station. Because
An on-board apparatus for an aircraft communication system, comprising: a shared antenna that is selectively directed toward the ground gateway station and an aircraft existing on the route during the flight of the route.
所定航路を飛翔中の複数の航空機にて、機内の通信端末を機内ネットワークを通じて機上ゲートウェイ局に接続し、機上ゲートウェイ局と航路下周辺に配置されるいずれかの地上ゲートウェイ局との間で通信回線を確立し、地上ゲートウェイ局側で確立した通信回線を地上通信網に接続する航空機通信システムに用いられ、前記地上ゲートウェイ局に装備される地上ゲートウェイ局装置であって、
前記航空機との間で通信可能なサービスエリア内に向けてビーコン波を発信するビーコン波発信手段と、
前記サービスエリア内に存在する航空機に対し、当該航空機の位置、高度/通信スケジュールの管理情報に基づいて通信用アンテナを指向制御して、前記航空機との間の通信回線を確立する通信用アンテナ制御手段と
を具備することを特徴とする地上ゲートウェイ局装置。
Connect the in-flight communication terminal to the on-board gateway station via the in-flight network and connect between the on-board gateway station and one of the ground gateway stations located in the vicinity of the route on multiple aircraft flying on the specified route. A ground gateway station apparatus that is used in an aircraft communication system that establishes a communication line and connects a communication line established on the ground gateway station side to a ground communication network, and is installed in the ground gateway station,
Beacon wave transmission means for transmitting a beacon wave toward a service area communicable with the aircraft;
Communication antenna control that establishes a communication line with the aircraft by controlling the direction of the communication antenna based on management information of the position of the aircraft and altitude / communication schedule for the aircraft existing in the service area A terrestrial gateway station device.
JP2008324325A 2008-12-19 2008-12-19 Aircraft communication system, on-board device and ground gateway station device Abandoned JP2010147921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008324325A JP2010147921A (en) 2008-12-19 2008-12-19 Aircraft communication system, on-board device and ground gateway station device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324325A JP2010147921A (en) 2008-12-19 2008-12-19 Aircraft communication system, on-board device and ground gateway station device

Publications (1)

Publication Number Publication Date
JP2010147921A true JP2010147921A (en) 2010-07-01

Family

ID=42567865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324325A Abandoned JP2010147921A (en) 2008-12-19 2008-12-19 Aircraft communication system, on-board device and ground gateway station device

Country Status (1)

Country Link
JP (1) JP2010147921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405232A3 (en) * 2010-07-08 2017-03-29 MBDA Deutschland GmbH Method for transferring data between a base station and a missile and missile for performing this method
JP7563021B2 (en) 2020-07-28 2024-10-08 日本電気株式会社 COMMUNICATION DEVICE, COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND PROGRAM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205213A (en) * 1998-01-19 1999-07-30 Mitsubishi Electric Corp Transmitter-receiver for space vehicle
JP2000209233A (en) * 1998-12-30 2000-07-28 Lucent Technol Inc Data access system, ground station, aircraft data system and radiator
JP2001102986A (en) * 1999-09-30 2001-04-13 Toshiba Corp Communication system
JP2001127682A (en) * 1999-10-25 2001-05-11 Mitsubishi Electric Corp Communication system
JP2002516496A (en) * 1998-03-03 2002-06-04 ゼネラル・エレクトリック・カンパニイ System and method for directing an adaptive antenna array
JP2003102986A (en) * 2001-09-28 2003-04-08 Takasago Electric Ind Co Ltd Game machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205213A (en) * 1998-01-19 1999-07-30 Mitsubishi Electric Corp Transmitter-receiver for space vehicle
JP2002516496A (en) * 1998-03-03 2002-06-04 ゼネラル・エレクトリック・カンパニイ System and method for directing an adaptive antenna array
JP2000209233A (en) * 1998-12-30 2000-07-28 Lucent Technol Inc Data access system, ground station, aircraft data system and radiator
JP2001102986A (en) * 1999-09-30 2001-04-13 Toshiba Corp Communication system
JP2001127682A (en) * 1999-10-25 2001-05-11 Mitsubishi Electric Corp Communication system
JP2003102986A (en) * 2001-09-28 2003-04-08 Takasago Electric Ind Co Ltd Game machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405232A3 (en) * 2010-07-08 2017-03-29 MBDA Deutschland GmbH Method for transferring data between a base station and a missile and missile for performing this method
JP7563021B2 (en) 2020-07-28 2024-10-08 日本電気株式会社 COMMUNICATION DEVICE, COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND PROGRAM

Similar Documents

Publication Publication Date Title
US9985718B2 (en) Methods for providing distributed airborne wireless communications
US9319466B2 (en) Open Wireless Architecture (OWA) unified airborne and terrestrial communications architecture
US10461842B2 (en) Open wireless architecture (OWA) unified airborne and terrestrial communications architecture
US10341010B2 (en) Mobility and power management for high altitude platform (HAP) communication systems
CN109150288B (en) Aeronautical communication system based on ACARS and MACS
US9302782B2 (en) Methods and apparatus for a distributed airborne wireless communications fleet
US9083425B1 (en) Distributed airborne wireless networks
US8897770B1 (en) Apparatus for distributed airborne wireless communications
US11962390B2 (en) Methods, apparatus and system for extended wireless communications
US8121593B2 (en) System and method for air-to-air communications using network formed between aircraft
US9979789B2 (en) Open wireless architecture (OWA) unified airborne and terrestrial communications architecture
US20160156406A1 (en) Distributed airborne wireless communication services
US9553658B1 (en) Router for aircraft communications with simultaneous satellite connections
KR101500480B1 (en) Wireless control system for unmanned aerial vehicle
US9692500B2 (en) Aircraft communications during different phases of flight
WO2018092412A1 (en) Wireless communication system, wireless relay device and wireless communication method
CN113746529B (en) Switching method of airborne satellite network
US20040102191A1 (en) Communications system using high altitude relay platforms
JP2003517762A (en) Systems and methods for interfacing satellite communications with aircraft
JP2010147921A (en) Aircraft communication system, on-board device and ground gateway station device
CN214228250U (en) Communication device and system for middle and low altitude aircraft
JP2021044774A (en) Radio relay system
JP6854860B2 (en) Wireless relay system
CN116915316B (en) Marine mobile network wide area coverage system based on unmanned aerial vehicle communication
CN215773120U (en) Multimode airborne satellite modulation and demodulation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20121119