JP2010147035A - Optical element and method of manufacturing same - Google Patents

Optical element and method of manufacturing same Download PDF

Info

Publication number
JP2010147035A
JP2010147035A JP2008319045A JP2008319045A JP2010147035A JP 2010147035 A JP2010147035 A JP 2010147035A JP 2008319045 A JP2008319045 A JP 2008319045A JP 2008319045 A JP2008319045 A JP 2008319045A JP 2010147035 A JP2010147035 A JP 2010147035A
Authority
JP
Japan
Prior art keywords
direction side
large substrate
optical
substrate
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008319045A
Other languages
Japanese (ja)
Other versions
JP5272700B2 (en
Inventor
Katsuhiko Tokuda
勝彦 徳田
Mamoru Hisamitsu
守 久光
Kazutomo Kadokura
一智 門倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008319045A priority Critical patent/JP5272700B2/en
Publication of JP2010147035A publication Critical patent/JP2010147035A/en
Application granted granted Critical
Publication of JP5272700B2 publication Critical patent/JP5272700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element which has superior stability of laser oscillation even when having low excitation optical powder and low output, and to provide a method of manufacturing the optical element. <P>SOLUTION: A periphery of an optical path having reflecting mirrors (51, 52) at both ends and including a laser crystal (1) and a wavelength-converting crystal (2) is covered with dummy materials (3a, 3b, 3c, and 3d) to obtain an optical path as an optical waveguide. Because of the fact that the optical path serves as the optical waveguide, light can be laterally confined to obtain a stable lateral mode. Consequently, the laser oscillation becomes stable, with low excitation optical power and low output, even when sufficient thermal lens effect is not obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光学素子および光学素子の製造方法に関し、さらに詳しくは、レーザ発振の安定性に優れた光学素子および光学素子の製造方法に関する。   The present invention relates to an optical element and a method for manufacturing the optical element, and more particularly to an optical element having excellent laser oscillation stability and a method for manufacturing the optical element.

レーザ結晶と波長変換結晶とを貼り合わせた構造の光学素子およびその製造方法が知られている(例えば特許文献1、2参照。)。
特開2005−57043号公報 特開2007−225786号公報
An optical element having a structure in which a laser crystal and a wavelength conversion crystal are bonded together and a manufacturing method thereof are known (for example, see Patent Documents 1 and 2).
JP 2005-57043 A JP 2007-225786 A

従来の光学素子では、両端を平行平面研磨したレーザ結晶と両端を平行平面研磨した波長変換結晶とを貼り合わせて平行平面型の共振器を形成している。このような平行平面型の共振器では、レーザ結晶内に発生する熱レンズ効果を利用してレーザ発振の安定性を得ている。すなわち、熱レンズ効果により、平行平面型よりも安定性の高い半共焦点型の共振器として擬似的に動作し、レーザ発振が安定する。
しかし、励起光パワーが高く、高出力の場合には、十分な熱レンズ効果が得られるが、励起光パワーが低く、低出力の場合には、十分な熱レンズ効果が得られず、レーザ発振が不安定になる問題点がある。
そこで、本発明の目的は、励起光パワーが低く、低出力の場合でも、レーザ発振の安定性に優れた光学素子および光学素子の製造方法を提供することにある。
In a conventional optical element, a laser crystal whose both ends are parallel plane polished and a wavelength conversion crystal whose both ends are parallel plane polished are bonded together to form a parallel plane type resonator. In such a parallel plane type resonator, the stability of laser oscillation is obtained by utilizing the thermal lens effect generated in the laser crystal. That is, due to the thermal lens effect, it operates in a pseudo manner as a semi-confocal resonator having higher stability than the parallel plane type, and the laser oscillation is stabilized.
However, when the pumping light power is high and the output is high, a sufficient thermal lens effect can be obtained, but when the pumping light power is low and the output is low, a sufficient thermal lens effect cannot be obtained and laser oscillation There is a problem that becomes unstable.
Accordingly, an object of the present invention is to provide an optical element having excellent laser oscillation stability even when the pumping light power is low and the output is low, and a method for manufacturing the optical element.

第1の観点では、本発明は、両端に反射ミラー(51,52)を有し且つレーザ結晶(1)および波長変換結晶(2)を含む光路の周囲をダミー材(3a,3b,3c,3d)で覆って前記光路を光導波路としたことを特徴とする光学素子(10)を提供する。
上記第1の観点による光学素子(10)では、光路を光導波路としたため、光の横閉じ込めができ、安定した横モードが得られる。これにより、励起光パワーが低く、低出力で、十分な熱レンズ効果が得られない場合でも、レーザ発振が安定になる。
In the first aspect, the present invention provides a dummy material (3a, 3b, 3c,...) Around the optical path including the reflection mirrors (51, 52) at both ends and including the laser crystal (1) and the wavelength conversion crystal (2). Provided is an optical element (10) characterized in that the optical path is an optical waveguide covered with 3d).
In the optical element (10) according to the first aspect, since the optical path is an optical waveguide, light can be laterally confined and a stable lateral mode can be obtained. This stabilizes the laser oscillation even when the pumping light power is low, the output is low, and a sufficient thermal lens effect cannot be obtained.

第2の観点では、本発明は、光軸方向辺(Z1)と幅方向辺(G1)と厚さ方向辺(H1)とを有する板状体であるレーザ結晶大基板(11)および光軸方向辺(Z2)と幅方向辺(G1)と厚さ方向辺(H1)とを有する板状体である波長変換結晶大基板(12)を幅方向辺(G1)と厚さ方向辺(H1)で区画された面同士を当接させた状態で第1ダミー大基板(31)および第2ダミー大基板(32)で挟んで一体化し、光軸方向辺(Z1+Z2)と幅方向辺(G1)で区画された面に垂直に切断分離して複数の複合基板(43)とし、光軸方向辺(Z1+Z2)と幅方向辺(G3)で区画された面同士を対向させて複数の前記複合基板(43)を並べて第3ダミー大基板(33)および第4ダミー大基板(34)で挟んで一体化し複合大基板(44)とし、前記複合大基板(44)の光軸方向辺(Z1+Z2)の両端面にHRコート(51,52)を形成した後、各複合基板(43)を分離するように前記複合大基板(44)を切断して複数の光学素子(10)を得ることを特徴とする光学素子の製造方法を提供する。
上記第2の観点による光学素子の製造方法では、前記第1の観点による光学素子(10)を効率よく量産できる。
In a second aspect, the present invention relates to a laser crystal large substrate (11) which is a plate-like body having an optical axis direction side (Z1), a width direction side (G1), and a thickness direction side (H1), and an optical axis. The wavelength conversion crystal large substrate (12), which is a plate-like body having a direction side (Z2), a width direction side (G1), and a thickness direction side (H1), is converted into a width direction side (G1) and a thickness direction side (H1). ) Are integrated by being sandwiched between the first dummy large substrate (31) and the second dummy large substrate (32) in a state where the surfaces partitioned by each other are in contact with each other. ) Are cut and separated perpendicularly to the plane partitioned by (4) to form a plurality of composite substrates (43), and the plurality of composites are formed by facing the planes partitioned by the optical axis direction side (Z1 + Z2) and the width direction side (G3). The substrates (43) are arranged side by side and integrated between the third dummy large substrate (33) and the fourth dummy large substrate (34). After forming HR coat (51, 52) on both end faces of the optical axis direction side (Z1 + Z2) of the composite large substrate (44) as a large substrate (44), the composite substrates (43) are separated from each other. There is provided a method for manufacturing an optical element, characterized in that a plurality of optical elements (10) are obtained by cutting a composite large substrate (44).
In the optical element manufacturing method according to the second aspect, the optical element (10) according to the first aspect can be mass-produced efficiently.

本発明の光学素子によれば、励起状態や出力に関係なく、レーザ発振を安定化することが出来る。
本発明の光学素子の製造方法によれば、レーザ発振の安定性に優れた光学素子を効率よく量産することが出来る。
According to the optical element of the present invention, laser oscillation can be stabilized regardless of the excited state or output.
According to the method for manufacturing an optical element of the present invention, an optical element having excellent laser oscillation stability can be mass-produced efficiently.

以下、図に示す実施例により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1は、実施例1に係る光学素子10を示す斜視図である。図2は、光学素子10の分解斜視図である。
この光学素子10は、半導体レーザからの励起レーザ光Liにより励起されて基本波レーザ光を出すレーザ結晶1と、基本波レーザ光の高調波である波長変換レーザ光Loを出す波長変換結晶2と、レーザ結晶1および波長変換結晶2から形成される光路の周囲を覆って該光路を光導波路とするダミー材3a,3b,3c,3dと、光路の両端面に形成されたHRコート51,52とを具備している。
FIG. 1 is a perspective view illustrating an optical element 10 according to the first embodiment. FIG. 2 is an exploded perspective view of the optical element 10.
The optical element 10 includes a laser crystal 1 that emits a fundamental laser beam by being excited by excitation laser light Li from a semiconductor laser, and a wavelength conversion crystal 2 that emits a wavelength conversion laser beam Lo that is a harmonic of the fundamental laser beam. Dummy materials 3a, 3b, 3c, 3d covering the periphery of the optical path formed from the laser crystal 1 and the wavelength conversion crystal 2 and using the optical path as an optical waveguide, and HR coats 51, 52 formed on both end faces of the optical path It is equipped with.

レーザ結晶1は、例えばNdがドープされたYVO4結晶やYAG結晶である。
波長変換結晶2は、例えば周期的分極反転構造を有する擬似位相整合型波長変換結晶((例えばMgOをドープしたSLT基板)である。
ダミー材3a,3b,3c,3dは、ヒートシンクとして好適に機能するように、ガラスの熱伝導率よりも大きい熱伝導率を有する材料製とすることが好ましい。また、熱膨張した時の悪影響を抑制するため、熱膨張係数がレーザ結晶1や波長変換結晶2と同程度の材料とするのが好ましい。例えばLT基板や波長変換結晶2と同じ材料(周期的分極反転構造は必要ない)である。
HRコート51,52は、基本波レーザ光(例えば波長1.064μm)に対して高反射である。
The laser crystal 1 is, for example, a YVO4 crystal or YAG crystal doped with Nd.
The wavelength conversion crystal 2 is, for example, a quasi phase matching type wavelength conversion crystal (for example, an SLT substrate doped with MgO) having a periodically poled structure.
The dummy materials 3a, 3b, 3c, and 3d are preferably made of a material having a thermal conductivity larger than that of glass so as to function suitably as a heat sink. Further, in order to suppress adverse effects when thermally expanded, it is preferable to use a material having a thermal expansion coefficient comparable to that of the laser crystal 1 and the wavelength conversion crystal 2. For example, it is the same material as the LT substrate and the wavelength conversion crystal 2 (no periodic polarization inversion structure is required).
The HR coats 51 and 52 are highly reflective to the fundamental laser beam (for example, wavelength 1.064 μm).

図3は、光学素子10の製造手順を示すフロー図である。
ステップS1では、図4に示すように、光軸方向辺長Z1,幅方向辺長G1,厚さ方向辺長H1を有する板状体であるレーザ結晶大基板11を作成する。例えばZ1≒1mm,G1≒2mm,H1≒200μmである。レーザ結晶大基板11の各面は平行平面研磨しておく。そして、ステップS4へ進む。
FIG. 3 is a flowchart showing the manufacturing procedure of the optical element 10.
In step S1, as shown in FIG. 4, a laser crystal large substrate 11 which is a plate-like body having an optical axis direction side length Z1, a width direction side length G1, and a thickness direction side length H1 is formed. For example, Z1≈1 mm, G1≈2 mm, and H1≈200 μm. Each surface of the laser crystal large substrate 11 is polished in parallel plane. Then, the process proceeds to step S4.

一方、ステップS2では、図5に示すように、分極反転方向Drの光軸方向辺長Z2,分極反転方向Drおよび分極方向Dpに交差する幅方向辺長G1,分極方向Dpの厚さ方向長H1の板状体である波長変換結晶大基板21を作成する。例えばZ2≒2mm,G1≒2mm,H1≒200μmである。波長変換結晶大基板21の各面は平行平面研磨しておく。そして、ステップS4へ進む。   On the other hand, in step S2, as shown in FIG. 5, the optical axis direction side length Z2 in the polarization inversion direction Dr2, the width direction side length G1 intersecting the polarization inversion direction Dr and the polarization direction Dp, and the thickness direction length in the polarization direction Dp. A wavelength conversion crystal large substrate 21 which is a plate of H1 is formed. For example, Z2≈2 mm, G1≈2 mm, and H1≈200 μm. Each surface of the wavelength conversion crystal large substrate 21 is polished in parallel plane. Then, the process proceeds to step S4.

波長変換結晶大基板21は、例えば所定サイズの強誘電体結晶大基板21aの対向面に周期電極21bとベタ電極21cを形成し、電極間に電圧を印加し、強誘電体結晶大基板21aの内部に周期的分極反転構造を形成することにより作成しうる。電極の対向方向が分極方向Dpになり、周期電極32bの形状の周期パターン方向が分極反転方向Drになる。電極は、そのまま残しておいてもよいし、除去してもよい。   The wavelength conversion crystal large substrate 21 is formed, for example, by forming a periodic electrode 21b and a solid electrode 21c on the opposing surface of a ferroelectric crystal large substrate 21a of a predetermined size, and applying a voltage between the electrodes to form the ferroelectric crystal large substrate 21a. It can be created by forming a periodically poled structure inside. The opposing direction of the electrodes is the polarization direction Dp, and the periodic pattern direction of the shape of the periodic electrode 32b is the polarization inversion direction Dr. The electrode may be left as it is or may be removed.

また一方、ステップS3では、図6に示すように、長さ方向辺長Z1+Z2,幅方向辺長G1,厚さ方向辺長H2を有する板状体である第1ダミー材大基板31および第2ダミー材大基板32と、長さ方向辺長Z1+Z2,幅方向辺長G2,厚さ方向辺長H2を有する板状体である第3ダミー材大基板33および第4ダミー材大基板34とを作成する。例えばZ1+Z2≒3mm,G1≒2mm,H2≒1mmである。また、G2≒8mmである。各ダミー材大基板31〜34の各面は平行平面研磨しておく。そして、ステップS4へ進む。   On the other hand, in step S3, as shown in FIG. 6, the first dummy material large substrate 31 and the second substrate which are plate-like bodies having the length direction side length Z1 + Z2, the width direction side length G1, and the thickness direction side length H2. A dummy material large substrate 32, a third dummy material large substrate 33 and a fourth dummy material large substrate 34, which are plate-shaped bodies having a lengthwise side length Z1 + Z2, a widthwise side length G2, and a thickness direction side length H2. create. For example, Z1 + Z2≈3 mm, G1≈2 mm, and H2≈1 mm. G2≈8 mm. Each surface of each of the dummy large substrates 31 to 34 is polished in parallel plane. Then, the process proceeds to step S4.

ステップS4では、図7に示すようにレーザ結晶大基板11と波長変換結晶大基板21とを幅方向辺(G1)と厚さ方向辺(H1)で区画された面同士が当接した状態で第1ダミー材大基板31に載せ、接着剤で貼り付けた後、レーザ結晶大基板11と波長変換結晶大基板21とを研磨して厚さ方向長H3とする。例えばH3≒10μm〜100μmである。さらに、図8に示すようにレーザ結晶大基板11と波長変換結晶大基板21とを挟むように第2ダミー材大基板32を載せ、接着剤で貼り付けた後、光軸方向辺(Z1+Z2)と幅方向辺(G1)で区画された面に垂直に切断線C1で切断分離し、図9に示す如き複合基板43を複数得る。複合基板43は、幅方向辺長G4となる。例えばG4≒200μmである。   In step S4, as shown in FIG. 7, the laser crystal large substrate 11 and the wavelength conversion crystal large substrate 21 are in a state where the surfaces partitioned by the width direction side (G1) and the thickness direction side (H1) are in contact with each other. After being placed on the first dummy material large substrate 31 and pasted with an adhesive, the laser crystal large substrate 11 and the wavelength conversion crystal large substrate 21 are polished to a thickness direction length H3. For example, H3≈10 μm to 100 μm. Further, as shown in FIG. 8, the second dummy material large substrate 32 is placed so as to sandwich the laser crystal large substrate 11 and the wavelength conversion crystal large substrate 21, and after being attached with an adhesive, the side in the optical axis direction (Z1 + Z2) And a plurality of composite substrates 43 as shown in FIG. 9 are obtained by cutting along the cutting line C1 perpendicularly to the plane defined by the width direction side (G1). The composite substrate 43 has a side length G4 in the width direction. For example, G4≈200 μm.

ステップS5では、図10に示すように複数の複合基板43を研磨用ガラス板Kの上に、光軸方向辺(Z1+Z2)と幅方向辺(G3)で区画された面同士を対向させて並べ、仮固定剤(例えばワックス)で仮固定し、平面研磨し、複合基板43の幅方向辺長G3とする。例えばG3≒10μm〜100μmである。   In step S5, as shown in FIG. 10, a plurality of composite substrates 43 are arranged on the polishing glass plate K with the surfaces partitioned by the optical axis direction side (Z1 + Z2) and the width direction side (G3) facing each other. Temporarily fixing with a temporary fixing agent (for example, wax), and surface polishing is performed to obtain a side length G3 of the composite substrate 43 in the width direction. For example, G3≈10 μm to 100 μm.

ステップS6では、平面研磨した複合基板43の上に第3ダミー材大基板33を接着剤で貼り付けた後、仮固定した研磨用ガラス板Kを外し、図11に示すように複数の複合基板33を第3ダミー材大基板33上に並べて貼り付けた状態とする。そして、図12に示すように複合基板43を挟むように第4ダミー材大基板34を貼り付け、複合大基板44を得る。   In step S6, the third dummy large substrate 33 is attached to the flat-polished composite substrate 43 with an adhesive, and then the temporarily fixed polishing glass plate K is removed, and a plurality of composite substrates as shown in FIG. 33 is set in a state of being arranged and pasted on the third dummy material large substrate 33. Then, as shown in FIG. 12, a fourth dummy material large substrate 34 is attached so as to sandwich the composite substrate 43 to obtain a composite large substrate 44.

ステップS7では、図12に示すように複合大基板44の光軸方向辺(Z1+Z2)の両端面にHRコート51,52を形成する。そして、各複合基板43を分離するように切断線C2で複合大基板44を切断し、複数の光学素子10を得る。   In step S7, as shown in FIG. 12, HR coats 51 and 52 are formed on both end faces of the optical axis direction side (Z1 + Z2) of the composite large substrate 44. And the composite large board | substrate 44 is cut | disconnected by the cutting line C2 so that each composite board | substrate 43 may be isolate | separated, and the some optical element 10 is obtained.

実施例1によれば、レーザ結晶1および波長変換結晶2から形成される光路を光導波路としたため、光の横閉じ込めができ、安定した横モードが得られ、これにより励起光パワーが低く、低出力で、十分な熱レンズ効果が得られない場合でも、レーザ発振が安定になる。   According to the first embodiment, since the optical path formed from the laser crystal 1 and the wavelength conversion crystal 2 is an optical waveguide, the light can be laterally confined and a stable lateral mode can be obtained. Even when a sufficient thermal lens effect cannot be obtained at the output, the laser oscillation becomes stable.

光路中に、レーザ結晶1および波長変換結晶2に加えて、別の結晶(例えばノンドープYVO4)などを挿入してもよい。   In addition to the laser crystal 1 and the wavelength conversion crystal 2, another crystal (for example, non-doped YVO4) or the like may be inserted in the optical path.

本発明の光学素子および光学素子の製造方法は、例えばSHG波長変換技術を用いた半導体励起固体レーザ等に利用できる。   The optical element and the optical element manufacturing method of the present invention can be used for, for example, a semiconductor-excited solid-state laser using SHG wavelength conversion technology.

実施例1に係る光学素子を示す斜視図である。1 is a perspective view showing an optical element according to Example 1. FIG. 実施例1に係る光学素子を示す分解斜視図である。1 is an exploded perspective view showing an optical element according to Example 1. FIG. 実施例1に係る光学素子の製造手順を示すフロー図である。FIG. 3 is a flowchart showing a manufacturing procedure of the optical element according to Example 1. レーザ結晶大基板を示す斜視図である。It is a perspective view which shows a laser crystal large board | substrate. 波長変換結晶大基板を示す斜視図である。It is a perspective view which shows a wavelength conversion crystal large substrate. ダミー材大基板を示す斜視図である。It is a perspective view which shows a dummy material large board | substrate. レーザ結晶大基板と波長変換結晶大基板と第1ダミー材大基板とを一体化した斜視図である。It is the perspective view which integrated the laser crystal large substrate, the wavelength conversion crystal large substrate, and the 1st dummy material large substrate. レーザ結晶大基板および波長変換結晶大基板を第1,第2ダミー材大基板で挟んだ斜視図である。It is the perspective view which pinched | interposed the laser crystal large substrate and the wavelength conversion crystal large substrate with the 1st, 2nd dummy material large substrate. 複合基板を示す斜視図である。It is a perspective view which shows a composite substrate. 複数の複合基板を研磨する工程を示す斜視図である。It is a perspective view which shows the process of grind | polishing a some composite substrate. 複数の複合基板と第3ダミー材大基板とを一体化した斜視図である。It is the perspective view which integrated the some composite substrate and the 3rd dummy material large board | substrate. 複数の複合基板を第3,第4ダミー材大基板で挟んだ斜視図である。It is the perspective view which pinched | interposed the some composite board | substrate with the 3rd, 4th dummy material large board | substrate. HRコートの形成と切断分離を示す斜視図である。It is a perspective view showing formation and cutting separation of HR coat.

符号の説明Explanation of symbols

1 レーザ結晶
2 波長変換結晶
3a〜3d ダミー材
10 光学素子
11 レーザ結晶大基板
21 波長変換結晶大基板
31〜34 ダミー材大基板
43 複合基板
44 複合大基板
C1,C2 切断線
DESCRIPTION OF SYMBOLS 1 Laser crystal 2 Wavelength conversion crystal 3a-3d Dummy material 10 Optical element 11 Laser crystal large substrate 21 Wavelength conversion crystal large substrate 31-34 Dummy material large substrate 43 Composite substrate 44 Composite large substrate C1, C2 Cutting line

Claims (2)

両端に反射ミラー(51,52)を有し且つレーザ結晶(1)および波長変換結晶(2)を含む光路の周囲をダミー材(3a,3b,3c,3d)で覆って前記光路を光導波路としたことを特徴とする光学素子(10)。 An optical waveguide having reflection mirrors (51, 52) at both ends and covering the periphery of the optical path including the laser crystal (1) and the wavelength conversion crystal (2) with a dummy material (3a, 3b, 3c, 3d) An optical element (10) characterized in that 光軸方向辺(Z1)と幅方向辺(G1)と厚さ方向辺(H1)とを有する板状体であるレーザ結晶大基板(11)および光軸方向辺(Z2)と幅方向辺(G1)と厚さ方向辺(H1)とを有する板状体である波長変換結晶大基板(12)を幅方向辺(G1)と厚さ方向辺(H1)で区画された面同士を当接させた状態で第1ダミー大基板(31)および第2ダミー大基板(32)で挟んで一体化し、光軸方向辺(Z1+Z2)と幅方向辺(G1)で区画された面に垂直に切断分離して複数の複合基板(43)とし、光軸方向辺(Z1+Z2)と幅方向辺(G3)で区画された面同士を対向させて複数の前記複合基板(43)を並べて第3ダミー大基板(33)および第4ダミー大基板(34)で挟んで一体化し複合大基板(44)とし、前記複合大基板(44)の光軸方向辺(Z1+Z2)の両端面にHRコート(51,52)を形成した後、各複合基板(43)を分離するように前記複合大基板(44)を切断して複数の光学素子(10)を得ることを特徴とする光学素子の製造方法。 The laser crystal large substrate (11) which is a plate-like body having the optical axis direction side (Z1), the width direction side (G1), and the thickness direction side (H1), and the optical axis direction side (Z2) and the width direction side ( G1) and the wavelength conversion crystal large substrate (12), which is a plate-like body having a thickness direction side (H1), are brought into contact with each other by dividing the width direction side (G1) and the thickness direction side (H1). In this state, the first dummy large substrate (31) and the second dummy large substrate (32) are sandwiched and integrated, and cut perpendicularly to the plane defined by the optical axis direction side (Z1 + Z2) and the width direction side (G1). A plurality of composite substrates (43) are separated, and a plurality of the composite substrates (43) are arranged with the surfaces defined by the sides in the optical axis direction (Z1 + Z2) and the width direction sides (G3) facing each other. A composite large substrate (44) is formed by sandwiching the substrate (33) and the fourth dummy large substrate (34), After forming the HR coat (51, 52) on both end surfaces of the side (Z1 + Z2) in the optical axis direction of the combined substrate (44), the combined large substrate (44) is cut so as to separate each combined substrate (43). And obtaining a plurality of optical elements (10).
JP2008319045A 2008-12-16 2008-12-16 Optical element and optical element manufacturing method Active JP5272700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008319045A JP5272700B2 (en) 2008-12-16 2008-12-16 Optical element and optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008319045A JP5272700B2 (en) 2008-12-16 2008-12-16 Optical element and optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2010147035A true JP2010147035A (en) 2010-07-01
JP5272700B2 JP5272700B2 (en) 2013-08-28

Family

ID=42567187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008319045A Active JP5272700B2 (en) 2008-12-16 2008-12-16 Optical element and optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP5272700B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018005034A (en) * 2016-07-05 2018-01-11 株式会社島津製作所 Laser device and wavelength conversion element
CN109755849A (en) * 2019-02-14 2019-05-14 聊城大学 A kind of preparation method of " surface launching " waveguide laser resonant cavity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281039A (en) * 1994-04-06 1995-10-27 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide having amplifying action
JPH07321394A (en) * 1994-05-23 1995-12-08 Nec Corp Crystal for solid state laser
JP2007225786A (en) * 2006-02-22 2007-09-06 Shimadzu Corp Optical element and manufacturing method of optical element
JP2008224972A (en) * 2007-03-12 2008-09-25 Shimadzu Corp Optical element and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281039A (en) * 1994-04-06 1995-10-27 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide having amplifying action
JPH07321394A (en) * 1994-05-23 1995-12-08 Nec Corp Crystal for solid state laser
JP2007225786A (en) * 2006-02-22 2007-09-06 Shimadzu Corp Optical element and manufacturing method of optical element
JP2008224972A (en) * 2007-03-12 2008-09-25 Shimadzu Corp Optical element and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018005034A (en) * 2016-07-05 2018-01-11 株式会社島津製作所 Laser device and wavelength conversion element
CN109755849A (en) * 2019-02-14 2019-05-14 聊城大学 A kind of preparation method of " surface launching " waveguide laser resonant cavity
CN109755849B (en) * 2019-02-14 2020-09-01 聊城大学 Method for preparing resonant cavity of surface-emitting waveguide laser

Also Published As

Publication number Publication date
JP5272700B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
US7839908B2 (en) Mode control waveguide laser device
JP4640207B2 (en) Optical element manufacturing method
JPWO2015097869A1 (en) Planar waveguide laser device
JP6466035B2 (en) Planar waveguide laser device
JP2008016833A (en) Joining method of opttical components, optical component integrated structure, and laser oscillator
WO2007032402A1 (en) Laser light source, and display unit using it
JP5272700B2 (en) Optical element and optical element manufacturing method
JP3450073B2 (en) Laser diode pumped solid state laser and method for manufacturing the same
US20120077003A1 (en) Method of nonlinear crystal packaging and its application in diode pumped solid state lasers
JP2008224972A (en) Optical element and method for manufacturing the same
JP5267247B2 (en) Optical element for small laser
JP5018685B2 (en) Optical element and optical element manufacturing method
WO2014030404A1 (en) Wavelength conversion element
JP2005055528A (en) Method and device for oscillating blue laser beam
JP5855229B2 (en) Laser equipment
JP5464121B2 (en) Optical element manufacturing method
JP2010032568A (en) Optical element and method of manufacturing optical element
JP5428132B2 (en) Optical element manufacturing method and optical element
JP5343699B2 (en) Optical resonator
JP2000275488A (en) Optical member fixing method and support member for optical member
EP1864954A2 (en) Method for joining optical members, structure for integrating optical members and laser oscillation device
JP4496029B2 (en) LD pumped solid state laser device
JP5742127B2 (en) Optical module and solid-state laser device
KR100796100B1 (en) Mode control waveguide laser
JP2009015039A (en) Method for manufacturing optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R151 Written notification of patent or utility model registration

Ref document number: 5272700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151