JP2010146791A - Flat circuit body - Google Patents

Flat circuit body Download PDF

Info

Publication number
JP2010146791A
JP2010146791A JP2008320792A JP2008320792A JP2010146791A JP 2010146791 A JP2010146791 A JP 2010146791A JP 2008320792 A JP2008320792 A JP 2008320792A JP 2008320792 A JP2008320792 A JP 2008320792A JP 2010146791 A JP2010146791 A JP 2010146791A
Authority
JP
Japan
Prior art keywords
infrared
conductor
infrared ray
ffc
circuit body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008320792A
Other languages
Japanese (ja)
Inventor
Katsura Ikeda
桂 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2008320792A priority Critical patent/JP2010146791A/en
Publication of JP2010146791A publication Critical patent/JP2010146791A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat circuit body capable of preventing a burr or the like from being generated, without using a separate component, capable of fusing only a required part to be welded, and allowing sure holding under a folded state. <P>SOLUTION: An FFC 1A includes a conductor 11, an insulating coating part 12 for coating the conductor 11, and a joining part 34. The coating part 12 includes an infrared ray transmitting part 21, and an infrared ray absorbing part 22A. The infrared ray transmitting part 21 is constituted of an infrared ray transmissive resin, coats the conductor 11, and is formed with a slim ellipsoid cross-sectional shape. The infrared ray absorbing part 22A is constituted of an infrared ray absorbing resin, and is provided in one part of one outer surface 21a of the infrared ray transmitting part 21. The joining portion 34 is constituted to be mechanically coupled, by folding the FFC 1A to overlap the infrared ray transmitting part 21 to the infrared ray absorbing part 22A, and by infrared-ray-welding the overlapped infrared ray transmitting part 21 and the infrared ray absorbing part 22A. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、導体と、導体を被覆する絶縁性の被覆部とを備え、折り曲げた状態で保持できるフラット回路体に関する。   The present invention relates to a flat circuit body that includes a conductor and an insulating covering portion that covers the conductor and can be held in a bent state.

移動体としての自動車には、多種多様な電子機器が搭載される。この自動車は、前記電子機器に電力や制御信号等を伝えるために、ワイヤハーネスを配索している。ワイヤハーネスは、例えば、フラット回路体としてのフレキシブルフラットケーブル(Flexible Flat Cable、以下、FFCという)と、FFCの端末に接続されたコネクタとを備えている。FFCは、互いに平行な複数の導体と、それぞれの導体を被覆する絶縁性の被覆部とを備え、長尺帯状に形成されている。   A wide variety of electronic devices are mounted on a vehicle as a moving body. In this automobile, a wire harness is routed in order to transmit electric power, a control signal, and the like to the electronic device. The wire harness includes, for example, a flexible flat cable (Flexible Flat Cable, hereinafter referred to as FFC) as a flat circuit body and a connector connected to an FFC terminal. The FFC includes a plurality of conductors parallel to each other and an insulating covering portion that covers each conductor, and is formed in a long band shape.

ワイヤハーネスは、FFCを必要に応じて所定箇所で折り曲げて、所定経路に沿って自動車の車内に配索される。このため、ワイヤハーネスは、FFCを折り曲げた状態で保持する必要がある。このようにFFCを折り曲げた状態で保持する手段としては、例えば、特許文献1及び2に記載されたものが知られている。   The wire harness is routed in a car along a predetermined route by bending the FFC at a predetermined position as necessary. For this reason, it is necessary to hold | maintain a wire harness in the state which bent FFC. As means for holding the FFC in a folded state as described above, for example, those described in Patent Documents 1 and 2 are known.

特許文献1においては、FFCの折り曲げ部分に合成樹脂で構成された保持具を取り付けることによって、FFCを折り曲げた状態で保持している。FFCは、平板L字状の保持具表面の一端に取り付けられ、保持具中央の基準辺に沿わせて保持具裏面に向かって折り曲げられた後に、保持具裏面の他端に取り付けられる。また、特許文献2においては、FFCを折り曲げた際に互いに重なり合う被覆部同士を互いに熱溶着することによって、FFCを折り曲げた状態で保持している。
特開2007−109497号公報 特開2002−319317号公報
In Patent Document 1, the FFC is held in a folded state by attaching a holder made of synthetic resin to the bent portion of the FFC. The FFC is attached to one end of the flat L-shaped holder surface, and is bent toward the back surface of the holder along the reference side at the center of the holder, and then attached to the other end of the back surface of the holder. Moreover, in patent document 2, when FFC is bent, the coating parts which mutually overlap are heat-welded with each other, thereby holding the FFC in a bent state.
JP 2007-109497 A JP 2002-319317 A

しかしながら、前述した特許文献1に記載されたFFCでは、保持具が別途必要になるので、コストがかかるといった問題があった。さらに、保持具のスペースが必要になるのでFFCの折り曲げ部分が大型化するとともに、保持具の重量によってワイヤハーネスの重量が増大するといった問題があった。   However, the FFC described in Patent Document 1 described above has a problem in that it requires cost because a holder is required separately. Furthermore, since a space for the holding tool is required, there is a problem that the bent portion of the FFC is enlarged and the weight of the wire harness is increased due to the weight of the holding tool.

これらの問題は、保持具を用いない特許文献2に記載されたFFCで解決することができる。しかしながら、特許文献2に記載されたFFCでは、被覆部同士を熱溶着するので、溶着部分にバリや糸引きが発生しやすく、溶着部分周辺の被覆部を溶融させて導体を露出させてしまいFFCが短絡する虞があった。また、熱溶着の代替として例えば被覆部同士を超音波溶着すると、熱溶着の場合と同様に溶着部分にバリが発生しやすく、さらには、溶着時に騒音や粉塵が発生するといった問題があった。   These problems can be solved by the FFC described in Patent Document 2 that does not use a holder. However, in the FFC described in Patent Document 2, since the coating portions are thermally welded to each other, burrs and stringing are likely to occur in the welded portion, and the conductor is exposed by melting the coating portion around the welded portion. There was a risk of short circuit. Further, for example, when the coating portions are ultrasonically welded as an alternative to heat welding, there is a problem that burrs are likely to be generated in the welded portion as in the case of heat welding, and noise and dust are generated during welding.

本発明は、このような問題を解決することを目的としている。即ち、本発明は、別部品を用いずに、バリ等の発生を防止し必要部位のみを溶融させて溶着して、折り曲げた状態で確実に保持できるフラット回路体を提供することを目的としている。   The present invention aims to solve such problems. That is, an object of the present invention is to provide a flat circuit body that can be securely held in a bent state by preventing occurrence of burrs and the like by melting and welding only necessary portions without using separate parts. .

前記課題を解決し目的を達成するために、請求項1に記載された発明は、導体と、前記導体を被覆する絶縁性の被覆部と、を備えたフラット回路体において、前記被覆部が、赤外線透過性を有した材料で構成され、かつ、前記導体を被覆し断面形状が扁平な赤外線透過部と、赤外線吸収性を有した材料で構成され、かつ、前記赤外線透過部の一方の外表面の少なくとも一部に設けられた赤外線吸収層と、を備えるとともに、前記赤外線透過部と前記赤外線吸収層が重なるように折り曲げて、重なり合った前記赤外線透過部と前記赤外線吸収層を赤外線溶着によって互いに機械的に結合した接合箇所を備えたことを特徴としたフラット回路体である。   In order to solve the problems and achieve the object, the invention described in claim 1 is a flat circuit body including a conductor and an insulating covering portion that covers the conductor, wherein the covering portion includes: Infrared transmitting portion made of a material having infrared transparency, covering the conductor and having a flat cross-sectional shape, and made of a material having infrared absorbing properties, and one outer surface of the infrared transmitting portion An infrared absorption layer provided on at least a part of the infrared transmission layer, and the infrared transmission portion and the infrared absorption layer are folded so as to overlap, and the overlapping infrared transmission portion and the infrared absorption layer are mechanically bonded to each other by infrared welding. It is the flat circuit body characterized by having the joint location joined together.

請求項2に記載された発明は、請求項1に記載されたフラット回路体において、平面視において、前記赤外線透過部が前記導体の周りに設けられたことを特徴としたフラット回路体である。   A second aspect of the present invention is the flat circuit body according to the first aspect, wherein the infrared transmission portion is provided around the conductor in a plan view.

請求項3に記載された発明は、導体と、前記導体を被覆する絶縁性の被覆部と、を備えたフラット回路体において、前記被覆部が、赤外線透過性を有した材料で構成され、かつ、前記導体を被覆し断面形状が扁平な赤外線透過部と、赤外線吸収性を有した材料で構成され、かつ、前記赤外線透過部の一方の外表面の少なくとも一部に設けられた赤外線吸収層と、を備えるとともに、前記赤外線吸収層同士が重なるように折り曲げて、重なり合った前記赤外線吸収層同士を赤外線溶着によって互いに機械的に結合した接合箇所を備えたことを特徴としたフラット回路体である。   The invention described in claim 3 is a flat circuit body including a conductor and an insulating covering portion covering the conductor, wherein the covering portion is made of a material having infrared transparency, and An infrared transmission part that covers the conductor and has a flat cross-sectional shape, and an infrared absorption layer that is formed of at least a part of one outer surface of the infrared transmission part, and is made of a material having infrared absorption properties; The flat circuit body is characterized in that the infrared absorption layers are bent so as to overlap each other, and the overlapping infrared absorption layers are mechanically coupled to each other by infrared welding.

請求項4に記載された発明は、請求項1ないし請求項3のうちいずれか一項に記載されたフラット回路体において、前記赤外線吸収層が、前記被覆部の長手方向全長に亘って設けられたことを特徴としたフラット回路体である。   According to a fourth aspect of the present invention, in the flat circuit body according to any one of the first to third aspects, the infrared absorption layer is provided over the entire length in the longitudinal direction of the covering portion. This is a flat circuit body characterized by that.

請求項1に記載された発明によれば、被覆部が赤外線透過部と赤外線吸収層とを備えており、接合箇所が、重なり合った赤外線透過部と赤外線吸収層を機械的に結合している。したがって、別部品を用いずにフラット回路体を折り曲げた状態で確実に保持できる。よって、コストを低減でき、折り曲げ部分を小型化でき、また、フラット回路体を軽量化できる。   According to the first aspect of the present invention, the covering portion includes the infrared transmitting portion and the infrared absorbing layer, and the joint portion mechanically couples the overlapping infrared transmitting portion and infrared absorbing layer. Therefore, the flat circuit body can be reliably held in a folded state without using another component. Therefore, the cost can be reduced, the bent portion can be reduced in size, and the flat circuit body can be reduced in weight.

また、赤外線溶着によって、接合箇所が赤外線透過部と赤外線吸収層を結合している。このため、熱溶着の場合と比較して、被覆部が肉薄でも溶着しやすく、溶着部分でのバリや糸引きの発生を防止でき、溶着部分以外での被覆部の溶融を防止してフラット回路体の短絡を防止できる。また、超音波溶着や振動溶着の場合と比較して、溶着時の騒音や粉塵の発生を防止できる。   Moreover, the joining location has couple | bonded the infrared transmission part and the infrared absorption layer by infrared welding. For this reason, compared with the case of thermal welding, it is easy to weld even if the coating part is thin, it can prevent the occurrence of burrs and stringing at the welded part, and the melting of the coated part other than the welded part is prevented, and the flat circuit Can prevent short circuit of the body. Moreover, compared with the case of ultrasonic welding or vibration welding, generation of noise and dust during welding can be prevented.

請求項2に記載された発明によれば、平面視において、赤外線透過部が導体の周りに設けられている。このため、重なり合った赤外線透過部と赤外線吸収層に対して赤外線透過部側から赤外線吸収層に向かって赤外線を照射すると、赤外線は導体に遮られることなく赤外線透過部を透過して赤外線吸収層に到達する。このとき、赤外線吸収層の赤外線透過部を透過した赤外線が最初に到達する面と、赤外線透過部と重なる面とが同じ面であるので、赤外線吸収層の熱が赤外線透過部に迅速に伝達する。したがって、溶着時間を短くできる(照射される赤外線の強度を下げることができる)。   According to the second aspect of the present invention, the infrared transmission portion is provided around the conductor in plan view. For this reason, when the infrared ray is irradiated from the infrared ray transmitting portion side toward the infrared ray absorbing layer with respect to the overlapping infrared ray transmitting portion and the infrared ray absorbing layer, the infrared ray is transmitted through the infrared ray transmitting portion without being interrupted by the conductor. To reach. At this time, since the surface where the infrared rays first transmitted through the infrared transmission portion of the infrared absorption layer reach and the surface overlapping the infrared transmission portion are the same surface, the heat of the infrared absorption layer is quickly transferred to the infrared transmission portion. . Therefore, the welding time can be shortened (the intensity of irradiated infrared rays can be reduced).

請求項3に記載された発明によれば、被覆部が赤外線透過部と赤外線吸収層とを備えており、接合箇所が、重なり合った赤外線吸収層同士を機械的に結合している。したがって、別部品を用いずにフラット回路体を折り曲げた状態で確実に保持できる。よって、コストを低減でき、折り曲げ部分を小型化でき、また、フラット回路体を軽量化できる。   According to the invention described in claim 3, the covering portion includes the infrared transmitting portion and the infrared absorbing layer, and the joining portion mechanically bonds the overlapping infrared absorbing layers. Therefore, the flat circuit body can be reliably held in a folded state without using another component. Therefore, the cost can be reduced, the bent portion can be reduced in size, and the flat circuit body can be reduced in weight.

また、赤外線溶着によって、接合箇所が赤外線吸収層同士を結合している。このため、熱溶着の場合と比較して、被覆部が肉薄でも溶着しやすく、溶着部分でのバリや糸引きの発生を防止でき、溶着部分以外での被覆部の溶融を防止してフラット回路体の短絡を防止できる。また、超音波溶着や振動溶着の場合と比較して、溶着時の騒音や粉塵の発生を防止できる。   Moreover, the joining location has couple | bonded the infrared absorption layers by infrared welding. For this reason, compared with the case of thermal welding, it is easy to weld even if the coating part is thin, it can prevent the occurrence of burrs and stringing at the welded part, and the melting of the coated part other than the welded part is prevented, and the flat circuit Can prevent short circuit of the body. Moreover, compared with the case of ultrasonic welding or vibration welding, generation of noise and dust during welding can be prevented.

請求項4に記載された発明によれば、赤外線吸収層が、被覆部の長手方向全長に亘って設けられている。このため、フラット回路体をどの部分で折り曲げても、接合箇所で、赤外線透過部と赤外線吸収層、または、赤外線吸収層同士、を赤外線溶着によって結合できる。したがって、ワイヤハーネス配索時の自由度を向上させることができる。   According to the invention described in claim 4, the infrared absorption layer is provided over the entire length in the longitudinal direction of the covering portion. For this reason, no matter what part the flat circuit body is bent, the infrared transmission part and the infrared absorption layer, or the infrared absorption layers can be bonded by infrared welding at the joint. Therefore, the freedom degree at the time of wiring harness wiring can be improved.

以下、本発明の第1の実施形態にかかるフラット回路体としてのフレキシブルフラットケーブル(Flexible Flat Cable、以下、FFCという)1Aを、図1ないし図4を参照して説明する。本発明の第1の実施形態にかかるFFC1Aは、自動車の車内に配索されるワイヤハーネスを構成する。   A flexible flat cable (Flexible Flat Cable, hereinafter referred to as FFC) 1A as a flat circuit body according to a first embodiment of the present invention will be described below with reference to FIGS. FFC1A concerning the 1st Embodiment of this invention comprises the wire harness routed in the vehicle interior of a motor vehicle.

ワイヤハーネスは、図示しないコネクタと、図1等に示すFFC1Aとを備えている。コネクタは、FFC1Aに接続される端子金具と、当該端子金具を収容するコネクタハウジングとを備えている。   The wire harness includes a connector (not shown) and the FFC 1A shown in FIG. The connector includes a terminal fitting connected to the FFC 1A and a connector housing that houses the terminal fitting.

FFC1Aは、図1及び図2に示すように、複数の導体11と、これら導体11を被覆する被覆部12とを備えている。導体11は、銅等の導電性の金属材料で構成されている。導体11は、断面形状が矩形状に形成され、帯状に形成されている。導体11は、複数(図示例では2本)設けられている。複数の導体11は、互いに間隔をあけて互いに平行に設けられている。なお、導体11は、図示例では2本設けられているが、1本でもよく、3本以上であってもよい。   As shown in FIGS. 1 and 2, the FFC 1 </ b> A includes a plurality of conductors 11 and a covering portion 12 that covers these conductors 11. The conductor 11 is made of a conductive metal material such as copper. The conductor 11 has a rectangular cross section and is formed in a strip shape. A plurality of conductors 11 (two in the illustrated example) are provided. The plurality of conductors 11 are provided in parallel to each other at intervals. In addition, although two conductors 11 are provided in the illustrated example, one conductor or three or more conductors 11 may be provided.

被覆部12は、一対の絶縁シート12a、12bから構成されている。後述するように、絶縁シート12aは赤外線透過性樹脂と赤外線吸収性樹脂とで構成され、絶縁シート12bは赤外線透過性樹脂のみで構成されている。一対の絶縁シート12a、12bは、それぞれ帯状に形成され、互いの間に複数の導体11を挟んだ状態で接着剤(赤外線透過性を有するもの)によって互いに(及び各導体11と)接着されて、複数の導体11をそれぞれ被覆している。被覆部12の両端では、導体11の端部が露出している。複数の導体11とこれら導体11を被覆する被覆部12とで、FFC1Aは断面形状が扁平な矩形状に形成されている。導体11と被覆部12とは、可撓性を有している。なお、被覆部12は、導体11の外周面に赤外線透過性樹脂や赤外線吸収性樹脂を押出成形することによって形成されていてもよい。   The covering portion 12 is composed of a pair of insulating sheets 12a and 12b. As will be described later, the insulating sheet 12a is composed of an infrared transmitting resin and an infrared absorbing resin, and the insulating sheet 12b is composed only of an infrared transmitting resin. The pair of insulating sheets 12a and 12b are each formed in a band shape, and are bonded to each other (and each conductor 11) with an adhesive (having infrared transparency) with a plurality of conductors 11 sandwiched between them. The plurality of conductors 11 are respectively covered. At both ends of the covering portion 12, the end portions of the conductor 11 are exposed. The FFC 1 </ b> A is formed in a rectangular shape with a flat cross-sectional shape by a plurality of conductors 11 and a covering portion 12 that covers these conductors 11. The conductor 11 and the covering portion 12 have flexibility. Note that the covering portion 12 may be formed by extruding an infrared transmitting resin or an infrared absorbing resin on the outer peripheral surface of the conductor 11.

前述した被覆部12は、図2等に示すように、赤外線透過部21と赤外線吸収層22Aとを備えている。赤外線透過部21とは、絶縁シート12aの後述する赤外線透過性樹脂で構成された部分と、絶縁シート12b全体とのことである。赤外線透過部21は、断面形状が扁平な略矩形状に形成され、導体11を被覆している。   The covering portion 12 described above includes an infrared transmitting portion 21 and an infrared absorbing layer 22A as shown in FIG. The infrared transmission part 21 is the part comprised with the infrared rays transparent resin mentioned later of the insulating sheet 12a, and the whole insulating sheet 12b. The infrared transmitting portion 21 is formed in a substantially rectangular shape with a flat cross-sectional shape and covers the conductor 11.

赤外線透過部21は、絶縁性を有しかつ赤外線透過性を有した樹脂(以下、赤外線透過性樹脂という)で構成されて、赤外線透過性を有した材料で構成されている。なお、本明細書でいう赤外線透過性を有した材料とは、赤外線吸収性を有した材料と重ねられた際に、照射された赤外線を透過させて赤外線吸収性を有した材料に到達させかつこの到達した赤外線を吸収して赤外線吸収性を有した材料が発熱・溶融する(または隣接する物質を発熱・溶融させる)程度の赤外線透過性を有した材料を意味する。   The infrared transmitting portion 21 is made of a resin having an insulating property and an infrared transmitting property (hereinafter referred to as an infrared transmitting resin), and a material having an infrared transmitting property. In addition, the material having infrared transparency referred to in this specification means that when it is overlapped with a material having infrared absorptivity, the irradiated infrared ray is transmitted to reach the material having infrared absorptivity, and It means a material having an infrared transmission property that absorbs the infrared rays that have arrived and the material having infrared absorptivity generates heat and melts (or heats and melts adjacent substances).

赤外線透過性樹脂は、ベース樹脂を含有している。ベース樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアミド(PA)、ポリアセタール(POM)、ポリフェニレンサルファイド(PPS)等の結晶性の合成樹脂や、ポリスチレン(PS)、低密度ポリエチレン(LDPE)、ポリカーボネート(PC)、ポリメタクリル酸メチル(PMMA)、ポリアリレート(PAR)、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)等の非晶性の合成樹脂が挙げられる。これらベース樹脂は、樹脂本来の色が半透明〜透明であるので、赤外線透過性が高く、好ましい。また、これらは単独で使用してもよく、二種以上を併用してもよい。   The infrared transmitting resin contains a base resin. Examples of the base resin include crystallinity such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene (PE), polypropylene (PP), polyamide (PA), polyacetal (POM), and polyphenylene sulfide (PPS). Non-synthetic resin, non-polystyrene (PS), low density polyethylene (LDPE), polycarbonate (PC), polymethyl methacrylate (PMMA), polyarylate (PAR), polysulfone (PSF), polyethersulfone (PES), etc. Crystalline synthetic resin is exemplified. These base resins are preferable because the original color of the resin is translucent to transparent, and thus has high infrared transparency. Moreover, these may be used independently and may use 2 or more types together.

さらに、赤外線透過性樹脂は、染料系色素を含有して所望の色に着色されていてもよい。これは、染料系色素は、黒色等の暗色(濃色。一般的に赤外線吸収性が高い色)を呈する染料系色素であっても、ベース樹脂中に分子レベルで均一に溶融するのでベース樹脂中に入射した赤外線を吸収・反射(散乱)しにくく、赤外線透過性を低下させにくいためである。一方、顔料系色素は、淡色(一般的に赤外線透過性が高い色)を呈するものであっても、ベース樹脂中に大きな粒径で分散するので、ベース樹脂中に入射した赤外線を反射(散乱)しやすく、赤外線透過性を低下させるので好ましくない。   Further, the infrared transmitting resin may contain a dye-based pigment and be colored in a desired color. This is because even if the dye-based pigment is a dye-based pigment exhibiting a dark color such as black (dark color, generally a color with high infrared absorption), the base resin melts uniformly at the molecular level in the base resin. This is because it is difficult to absorb / reflect (scatter) the incident infrared rays and to reduce the infrared transparency. On the other hand, pigment-based dyes, even those that exhibit a light color (generally a color with high infrared transparency), are dispersed with a large particle size in the base resin, and therefore reflect (scatter) the infrared rays that have entered the base resin. This is not preferable because it easily reduces the infrared transparency.

赤外線吸収層22Aは、絶縁シート12aの後述する赤外線吸収性樹脂で構成された部分のことである。赤外線吸収層22Aは、図1等に示すように、赤外線透過部21の一方の外表面21aに形成され、絶縁シート12aの絶縁シート12bから離れた外表面、即ち、被覆部12の一方の外表面13に形成されている(図1及び図3中では、便宜上、赤外線吸収層22Aを平行斜線で示している)。赤外線吸収層22Aは、被覆部12の長手方向全長に亘って延びた、導体11と略等しい幅の帯状に形成されている。赤外線吸収層22Aは複数(図示例では2本)設けられ、これら赤外線吸収層22Aは互いに間隔をあけて互いに平行に設けられている。こうして、赤外線吸収層22Aは、ストライプ状に形成されている。   The infrared absorbing layer 22A is a portion made of an infrared absorbing resin described later of the insulating sheet 12a. As shown in FIG. 1 and the like, the infrared absorbing layer 22A is formed on one outer surface 21a of the infrared transmitting portion 21, and is separated from the insulating sheet 12b of the insulating sheet 12a, that is, one outer surface of the covering portion 12. It is formed on the surface 13 (in FIG. 1 and FIG. 3, the infrared absorption layer 22A is indicated by parallel oblique lines for convenience). The infrared absorbing layer 22 </ b> A is formed in a belt shape extending substantially over the entire length in the longitudinal direction of the covering portion 12 and having a width substantially equal to that of the conductor 11. A plurality of infrared absorbing layers 22A (two in the illustrated example) are provided, and these infrared absorbing layers 22A are provided in parallel to each other with a space therebetween. Thus, the infrared absorption layer 22A is formed in a stripe shape.

また、各赤外線吸収層22Aは、図2に示すように、薄層状に形成され、被覆部12の厚さ方向に沿って導体11と重なる位置に形成されている。このため、2本の赤外線吸収層22Aの間の部分と外側の部分、即ち、被覆部12の厚さ方向に沿って導体11と重ならない位置は、被覆部12の厚さ方向全長に亘って赤外線透過部21となっている。即ち、平面視において、赤外線吸収層22Aは導体11上に設けられ、赤外線透過部21は導体11の周りに設けられている。   Each infrared absorption layer 22 </ b> A is formed in a thin layer shape as shown in FIG. 2, and is formed at a position overlapping the conductor 11 along the thickness direction of the covering portion 12. For this reason, the portion between the two infrared absorption layers 22 </ b> A and the outer portion, that is, the position that does not overlap the conductor 11 along the thickness direction of the covering portion 12 extends over the entire length of the covering portion 12. An infrared transmitting portion 21 is provided. That is, the infrared absorption layer 22 </ b> A is provided on the conductor 11 and the infrared transmission portion 21 is provided around the conductor 11 in plan view.

前述した赤外線吸収層22Aは、絶縁性を有しかつ赤外線吸収性を有した樹脂(以下、赤外線吸収性樹脂という)で構成されて、赤外線吸収性を有した材料で構成されている。なお、本明細書でいう赤外線吸収性を有した材料とは、赤外線を吸収して発熱・溶融する(または隣接する物質を発熱・溶融させる)程度の赤外線吸収性を有した材料を意味する。   The infrared absorbing layer 22A described above is made of a resin having an insulating property and an infrared absorbing property (hereinafter referred to as an infrared absorbing resin) and a material having an infrared absorbing property. In addition, the material having infrared absorptivity in the present specification means a material having infrared absorptivity enough to absorb infrared rays to generate heat and melt (or to heat and melt adjacent substances).

赤外線吸収性樹脂は、ベース樹脂と顔料系色素とを含有し、黒色等の暗色(濃色)に着色されている。ベース樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)等の合成樹脂が挙げられる。   The infrared absorbing resin contains a base resin and a pigment-based dye and is colored in a dark color (dark color) such as black. Examples of the base resin include synthetic resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC).

顔料系色素は、黒色等の暗色を呈する顔料系色素である。この暗色とは、例えばマンセルカラーシステムにおいて明度が2.5以下かつ彩度が1.0以下程度の色が好ましい。このような顔料系色素としては、例えば、カーボンブラックが挙げられる。このような顔料系色素は、ベース樹脂中に大きな粒径で分散しベース樹脂中に入射した赤外線を効率的に吸収して、赤外線吸収性を向上させる。一方、顔料系色素の替わりに染料系色素を含有すると、前記暗色を呈するものであっても、ベース樹脂中に分子レベルで均一に溶融するのでベース樹脂中に入射した赤外線を吸収しにくく、赤外線吸収性を向上させにくいので好ましくない。   The pigment dye is a pigment dye exhibiting a dark color such as black. The dark color is preferably, for example, a color having a lightness of 2.5 or less and a saturation of 1.0 or less in the Munsell color system. Examples of such pigment-based dyes include carbon black. Such pigment-based dye efficiently absorbs infrared rays dispersed in the base resin with a large particle size and incident on the base resin, thereby improving the infrared absorptivity. On the other hand, when a dye-based pigment is contained instead of a pigment-based pigment, even if it exhibits the dark color, it melts uniformly at the molecular level in the base resin, so that it is difficult to absorb infrared rays incident on the base resin. Since it is difficult to improve the absorbability, it is not preferable.

前述した構成の赤外線透過部21と赤外線吸収層22Aとを備えた被覆部12は、絶縁シート12aを前記赤外線吸収性樹脂と前記赤外線透過性樹脂とを用いた二色押出成形を行って帯状に成形し、絶縁シート12bを前記赤外線吸収性樹脂のみを用いた押出成形を行って帯状に成形し、これら絶縁シート12a、12bを前述のように接着することで形成される。なお、赤外線透過性樹脂や赤外線吸収性樹脂は、本発明の目的に反しない限り、種々の添加剤(添加材)をさらに含有していてもよい。   The covering portion 12 including the infrared transmitting portion 21 and the infrared absorbing layer 22A having the above-described configuration is formed into a strip shape by performing two-color extrusion molding of the insulating sheet 12a using the infrared absorbing resin and the infrared transmitting resin. The insulating sheet 12b is formed by extrusion molding using only the infrared absorbing resin, and is formed into a strip shape, and the insulating sheets 12a and 12b are bonded as described above. The infrared transmitting resin and the infrared absorbing resin may further contain various additives (additives) as long as they do not contradict the purpose of the present invention.

さらに、前述したFFC1Aは、後述するように折り曲げた状態で保持できるが、このときのFFC1Aは接合箇所34を備えている。接合箇所34は、図4に点線で示すように、赤外線透過部21と赤外線吸収層22Aが重なるようにFFC1Aを折り曲げて、重なり合った赤外線透過部21と赤外線吸収層22Aとを赤外線溶着によって互いに機械的に結合している(接合箇所34は、溶着されているので実際には目視できないが、便宜上、図4に点線で示している)。   Further, the above-described FFC 1A can be held in a bent state as will be described later, but the FFC 1A at this time includes a joining portion 34. As shown by a dotted line in FIG. 4, the joining portion 34 is formed by bending the FFC 1A so that the infrared transmitting portion 21 and the infrared absorbing layer 22A overlap each other and mechanically connecting the overlapping infrared transmitting portion 21 and the infrared absorbing layer 22A to each other by infrared welding. (The joint portion 34 is welded so that it cannot actually be visually observed, but is shown by a dotted line in FIG. 4 for convenience).

前述した構成のワイヤハーネスは、FFC1Aを所定箇所で折り曲げて、所定経路に沿って自動車の車内に配索される。以下、接合箇所34を形成してFFC1Aを折り曲げた状態で保持する方法について説明する。   The wire harness having the above-described configuration is routed in the vehicle along the predetermined route by bending the FFC 1A at a predetermined location. Hereinafter, a method of forming the joint portion 34 and holding the FFC 1A in a bent state will be described.

まず、図1に示すFFC1Aを、赤外線透過部21と赤外線吸収層22Aが重なるように、即ち、赤外線吸収層22Aの形成された被覆部12の外表面13が内側になるように、折り目31(図1中、一点鎖線で示す)で折り曲げる。すると、図4に示すように、折り目31両側の、FFC1Aの一部をなす三角形部分32、33(図1中、折り目31と点線で囲まれた部分)同士が互いに重なり合い、これら三角形部分32、33の被覆部12の外表面13同士が互いに重なり合う。   First, the FFC 1A shown in FIG. 1 is folded so that the infrared transmitting portion 21 and the infrared absorbing layer 22A overlap, that is, the outer surface 13 of the covering portion 12 on which the infrared absorbing layer 22A is formed is on the inner side. In FIG. 1, it is bent along the one-dot chain line. Then, as shown in FIG. 4, the triangular portions 32 and 33 (parts surrounded by dotted lines in FIG. 1) that form part of the FFC 1A on both sides of the fold 31 overlap each other, and these triangular portions 32, The outer surfaces 13 of the 33 covering portions 12 overlap each other.

三角形部分32、33の前記外表面13には、それぞれ、赤外線透過部21と赤外線吸収層22Aの双方が設けられている。そして、三角形部分32、33の前記外表面13同士が互いに重なり合うと、赤外線透過部21、21同士、赤外線吸収層22A、22A同士や、赤外線透過部21と赤外線吸収層22Aが重なり合う。そして、この折り曲げた状態のFFC1Aを図示しない治具等で固定し、三角形部分32、33同士を密着させておく。   Both the infrared transmitting portion 21 and the infrared absorbing layer 22A are provided on the outer surface 13 of the triangular portions 32 and 33, respectively. When the outer surfaces 13 of the triangular portions 32 and 33 overlap with each other, the infrared transmission portions 21 and 21, the infrared absorption layers 22 </ b> A and 22 </ b> A, or the infrared transmission portion 21 and the infrared absorption layer 22 </ b> A overlap. Then, the bent FFC 1A is fixed with a jig or the like (not shown), and the triangular portions 32 and 33 are brought into close contact with each other.

次いで、赤外線照射装置41を用いて、図4で上方に配された三角形部分(以下、上方の三角形部分という)32の被覆部12の他方の外表面14上に、上方の三角形部分32側から図4で下方に配された三角形部分(以下、下方の三角形部分)33に向かって、矢印Aに沿って赤外線を照射する。照射する赤外線は、レーザーでもよいし、複数の波長が混在しているものでもよい。また、照射する赤外線は、近赤外線が好ましく、0.7〜1.7μm程度の波長のものがより好ましい。このような赤外線照射装置41としては、周知のものを用いることができる。   Next, using the infrared irradiation device 41, on the other outer surface 14 of the covering portion 12 of the triangular portion (hereinafter referred to as the upper triangular portion) 32 arranged upward in FIG. 4, from the upper triangular portion 32 side. Infrared rays are irradiated along an arrow A toward a triangular portion (hereinafter, a lower triangular portion) 33 disposed below in FIG. The infrared ray to be irradiated may be a laser or a mixture of a plurality of wavelengths. Moreover, near infrared rays are preferable and the infrared rays with a wavelength of about 0.7 to 1.7 μm are more preferable. As such an infrared irradiation device 41, a known device can be used.

照射された赤外線のうち赤外線IR1(図3及び図4に一部を示す)は、矢印Aに沿って上方の三角形部分32の導体11と重なる位置に照射される。そして、赤外線IR1は、上方の三角形部分32の絶縁シート12bを透過した後、導体11に遮られて(吸収されて)下方の三角形部分33まで到達しない。   Among the irradiated infrared rays, the infrared ray IR1 (a part of which is shown in FIGS. 3 and 4) is irradiated along the arrow A to a position overlapping the conductor 11 of the upper triangular portion 32. Then, after passing through the insulating sheet 12b of the upper triangular portion 32, the infrared ray IR1 is blocked (absorbed) by the conductor 11 and does not reach the lower triangular portion 33.

また、赤外線IR2(図3に一部を示す)は、矢印Aに沿って上方の三角形部分32の導体11と重ならない位置、かつ、下方の三角形部分33の赤外線透過部21と重なる位置、に照射される。そして、赤外線IR2は、上方の三角形部分32の赤外線透過部21を透過した後、下方の三角形部分33の赤外線透過部21に到達して当該赤外線透過部21を透過していく。   Further, the infrared ray IR2 (a part of which is shown in FIG. 3) is positioned along the arrow A so as not to overlap the conductor 11 of the upper triangular portion 32 and to the position overlapping the infrared transmitting portion 21 of the lower triangular portion 33. Irradiated. The infrared ray IR <b> 2 passes through the infrared transmission part 21 of the upper triangular part 32, then reaches the infrared transmission part 21 of the lower triangular part 33 and passes through the infrared transmission part 21.

また、赤外線IR3(図3及び図4に一部を示す)は、矢印Aに沿って上方の三角形部分32の導体11と重ならない位置、かつ、下方の三角形部分33の赤外線吸収層22Aと重なる位置、に照射される。そして、赤外線IR3は、上方の三角形部分32の赤外線透過部21を透過した後、下方の三角形部分33の赤外線吸収層22Aの図4で上方に配される面(以下、上面という)22dに到達してこの上面22d側から吸収され、赤外線吸収層22Aを発熱・溶融させる。   Further, the infrared ray IR3 (a part of which is shown in FIGS. 3 and 4) overlaps the infrared absorption layer 22A of the lower triangular portion 33 at a position that does not overlap the conductor 11 of the upper triangular portion 32 along the arrow A. To the position. The infrared ray IR3 passes through the infrared ray transmitting portion 21 of the upper triangular portion 32, and then reaches the surface (hereinafter referred to as the upper surface) 22d disposed above in FIG. 4 of the infrared absorbing layer 22A of the lower triangular portion 33. Then, it is absorbed from the upper surface 22d side and heats and melts the infrared absorbing layer 22A.

即ち、赤外線IR3が通過する領域S1では、上方の三角形部分32の被覆部12が当該被覆部12の厚さ方向全長に亘って赤外線透過部21となっており、下方の三角形部分33の被覆部12の外表面13側が赤外線吸収層22Aとなっている。このため、領域S1では、上方の三角形部分32の赤外線透過部21と、下方の三角形部分33の赤外線吸収層22Aとが重なり合っている。   That is, in the region S1 through which the infrared ray IR3 passes, the covering portion 12 of the upper triangular portion 32 becomes the infrared transmitting portion 21 over the entire length in the thickness direction of the covering portion 12, and the covering portion of the lower triangular portion 33 is formed. The outer surface 13 side of 12 is an infrared absorption layer 22A. For this reason, in the region S1, the infrared transmitting portion 21 of the upper triangular portion 32 and the infrared absorbing layer 22A of the lower triangular portion 33 overlap each other.

そして、下方の三角形部分33の赤外線吸収層22Aが発熱することによって、この熱が、当該赤外線吸収層22Aの上面22dと重なり合う上方の三角形部分32の赤外線透過部21に伝達して、当該赤外線透過部21を発熱・溶融させる。そして、溶融した上方の三角形部分32の赤外線透過部21と、溶融した下方の三角形部分33の赤外線吸収層22Aとが赤外線溶着によって互いに機械的に結合した接合箇所34が形成され、FFC1Aが折り曲げた状態で保持される。必要に応じて、FFC1Aの他の部分も折り曲げて、同様の作業を繰り返す。   Then, when the infrared absorption layer 22A of the lower triangular portion 33 generates heat, this heat is transmitted to the infrared transmission portion 21 of the upper triangular portion 32 that overlaps the upper surface 22d of the infrared absorption layer 22A, and the infrared transmission. The part 21 is heated and melted. And the joint part 34 which the infrared rays transmission part 21 of the fuse | melted upper triangle part 32 and the infrared absorption layer 22A of the fuse | melted lower triangle part 33 were mutually mechanically joined by infrared welding was formed, and FFC1A was bent. Held in a state. If necessary, the other parts of the FFC 1A are bent and the same operation is repeated.

本実施形態によれば、被覆部12が赤外線透過部21と赤外線吸収層22Aとを備えており、接合箇所34が、重なり合った赤外線透過部21と赤外線吸収層22Aとを機械的に結合している。したがって、別部品を用いずにFFC1Aを折り曲げた状態で確実に保持できる。よって、コストを低減でき、折り曲げ部分を小型化でき、また、FFC1Aを軽量化できる。   According to the present embodiment, the covering portion 12 includes the infrared transmitting portion 21 and the infrared absorbing layer 22A, and the joint portion 34 mechanically couples the overlapping infrared transmitting portion 21 and the infrared absorbing layer 22A. Yes. Therefore, the FFC 1A can be reliably held in a folded state without using another component. Therefore, the cost can be reduced, the bent portion can be reduced in size, and the FFC 1A can be reduced in weight.

また、赤外線溶着によって、接合箇所34が赤外線透過部21と赤外線吸収層22Aとを結合している。このため、熱溶着の場合と比較して、被覆部12が肉薄でも溶着しやすく、溶着部分でのバリや糸引きの発生を防止でき、溶着部分以外での被覆部12の溶融を防止してFFC1Aの短絡を防止できる。また、超音波溶着や振動溶着の場合と比較して、溶着時の騒音や粉塵の発生を防止できる。   Moreover, the joining location 34 has couple | bonded the infrared transmission part 21 and 22 A of infrared absorption layers by infrared welding. For this reason, compared with the case of heat welding, it is easy to weld even if the coating | coated part 12 is thin, can prevent generation | occurrence | production of the burr | flash and stringing in a welding part, and prevent melting | fusing of the coating | coated part 12 except a welding part Short circuit of the FFC 1A can be prevented. Moreover, compared with the case of ultrasonic welding or vibration welding, generation of noise and dust during welding can be prevented.

また、赤外線透過部21が平面視において導体11の周りに設けられ、被覆部12の厚さ方向に沿って導体11と重ならない位置に被覆部12の厚さ方向全長に亘って設けられている。このため、領域S1において重なり合った赤外線透過部21と赤外線吸収層22Aに対して、赤外線透過部21側から赤外線吸収層22Aに向かって赤外線IR3を照射すると、赤外線IR3は導体11に遮られることなく赤外線透過部21を透過して赤外線吸収層22Aに到達する。   Further, the infrared transmitting portion 21 is provided around the conductor 11 in a plan view, and is provided over the entire length in the thickness direction of the covering portion 12 at a position that does not overlap the conductor 11 along the thickness direction of the covering portion 12. . For this reason, when the infrared ray IR3 is irradiated toward the infrared absorption layer 22A from the infrared transmission portion 21 side to the infrared transmission portion 21 and the infrared absorption layer 22A that overlap in the region S1, the infrared ray IR3 is not blocked by the conductor 11. The light passes through the infrared transmission part 21 and reaches the infrared absorption layer 22A.

このとき、赤外線透過部21を透過した赤外線IR3が下方の三角形部分33の赤外線吸収層22Aの上面22dに最初に到達し、この上面22dが上方の三角形部分32の赤外線透過部21と重なり合うので、赤外線吸収層22Aの熱が赤外線透過部21に迅速に伝達する。したがって、溶着時間を短くできる(照射される赤外線IR3の強度を下げることができる)。   At this time, the infrared ray IR3 transmitted through the infrared transmission part 21 first reaches the upper surface 22d of the infrared absorption layer 22A of the lower triangular part 33, and this upper surface 22d overlaps with the infrared transmission part 21 of the upper triangular part 32. The heat of the infrared absorption layer 22 </ b> A is quickly transmitted to the infrared transmission part 21. Therefore, the welding time can be shortened (the intensity of the irradiated infrared IR3 can be reduced).

また、赤外線吸収層22Aが、被覆部12の長手方向全長に亘って設けられている。このため、FFC1Aをどの部分で折り曲げても、接合箇所34で赤外線透過部21と赤外線吸収層22Aを赤外線溶着によって結合できる。したがって、ワイヤハーネス配索時の自由度を向上させることができる。   Further, the infrared absorption layer 22 </ b> A is provided over the entire length in the longitudinal direction of the covering portion 12. For this reason, no matter what part the FFC 1A is bent, the infrared transmitting portion 21 and the infrared absorbing layer 22A can be joined at the joint 34 by infrared welding. Therefore, the freedom degree at the time of wiring harness wiring can be improved.

前述した実施形態においては、フラット回路体としてFFC1Aを例にして説明したが、フラット回路体はリボン線やフレキシブルプリントサーキット(Flexible Printed Circuit:FPC)等でもよく、断面形状が比較的扁平な形状のものであればどんな回路体でもよい。   In the above-described embodiment, the FFC 1A has been described as an example of the flat circuit body. However, the flat circuit body may be a ribbon line, a flexible printed circuit (FPC), or the like, and has a relatively flat cross-sectional shape. Any circuit body can be used.

また、前述した実施形態においては、赤外線吸収層22Aは、赤外線吸収性樹脂を用いた二色成形を行って絶縁シート12aを成形することによって形成されていたが、前述した黒色等の暗色を呈する顔料系色素を含有した着色剤(赤外線吸収性を有した材料)を用いて、転写ロールによる印刷やインクジェット方式やレーザー方式の印刷等によって形成されていてもよい。また、前述した実施形態においては、赤外線を上方の三角形部分32の被覆部12の外表面14全体に照射していたが、勿論、少なくとも領域S1に照射すればよい。   In the above-described embodiment, the infrared absorbing layer 22A is formed by performing two-color molding using an infrared absorbing resin to mold the insulating sheet 12a. However, the infrared absorbing layer 22A exhibits a dark color such as black as described above. You may form by the printing by a transfer roll, the inkjet system, the laser system printing, etc. using the coloring agent (material which has infrared absorptivity) containing a pigment-type pigment | dye. Further, in the above-described embodiment, infrared rays are applied to the entire outer surface 14 of the covering portion 12 of the upper triangular portion 32. Of course, at least the region S1 may be applied.

次に、本発明の第2の実施形態にかかるフラット回路体としてのFFC1Bを、図5及び図6を参照して説明する。なお、前述した第1の実施形態と同一構成部分には、同一符号を付して説明を省略する。   Next, FFC1B as a flat circuit body concerning the 2nd Embodiment of this invention is demonstrated with reference to FIG.5 and FIG.6. Note that the same components as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

本発明の第2の実施形態にかかるFFC1Bは、図5に示すように、第1の実施形態のFFC1Aと比較して、赤外線吸収層22Bのみが異なる。赤外線吸収層22Bは、被覆部12の長手方向全長に亘って延びた、導体11と略等しい幅の帯状に形成されている。赤外線吸収層22Bは複数(図示例では3本)設けられ、これら赤外線吸収層22Bは互いに間隔をあけて互いに平行に設けられている。こうして、赤外線吸収層22Bは、ストライプ状に形成されている。また、赤外線吸収層22Bは、薄層状に形成されて被覆部12の厚さ方向に沿って導体11と重ならない位置に形成され、平面視において導体11の周りに設けられている。   As shown in FIG. 5, the FFC 1B according to the second embodiment of the present invention is different from the FFC 1A according to the first embodiment only in the infrared absorption layer 22B. The infrared absorption layer 22 </ b> B is formed in a strip shape that extends over the entire length in the longitudinal direction of the covering portion 12 and has a width substantially equal to that of the conductor 11. A plurality of infrared absorbing layers 22B (three in the illustrated example) are provided, and these infrared absorbing layers 22B are provided in parallel to each other at intervals. Thus, the infrared absorption layer 22B is formed in a stripe shape. The infrared absorption layer 22B is formed in a thin layer shape, is formed at a position that does not overlap the conductor 11 along the thickness direction of the covering portion 12, and is provided around the conductor 11 in plan view.

第1の実施形態と同様に、図5及び図6に示すように、このFFC1Bを折り曲げてFFC1Bに赤外線を照射すると、照射された赤外線のうち赤外線IR4(図5及び図6に一部を示す)は、矢印Aに沿って上方の三角形部分32の導体11と重なる位置に照射される。そして、赤外線IR4は、上方の三角形部分32の絶縁シート12bを透過した後、導体11に遮られて下方の三角形部分33まで到達しない。   As in the first embodiment, as shown in FIGS. 5 and 6, when this FFC 1B is bent and infrared rays are irradiated to the FFC 1B, infrared rays IR4 (parts of which are shown in FIGS. 5 and 6 are shown). ) Is irradiated along the arrow A to a position overlapping the conductor 11 of the upper triangular portion 32. Then, after passing through the insulating sheet 12b of the upper triangular portion 32, the infrared ray IR4 is blocked by the conductor 11 and does not reach the lower triangular portion 33.

また、赤外線IR5(図5及び図6に一部を示す)は、矢印Aに沿って上方の三角形部分32の導体11と重ならない位置に照射される。そして、赤外線IR5は、上方の三角形部分32において、赤外線透過部21を透過した後に赤外線吸収層22Bの上面22dに到達し、この上面22d側から吸収されて赤外線吸収層22Bの上面22d側を発熱・溶融させる。   Moreover, infrared IR5 (a part is shown in FIG.5 and FIG.6) is irradiated to the position which does not overlap with the conductor 11 of the upper triangular part 32 along the arrow A. FIG. The infrared ray IR5 passes through the infrared transmitting portion 21 in the upper triangular portion 32 and then reaches the upper surface 22d of the infrared absorbing layer 22B, and is absorbed from the upper surface 22d side to generate heat on the upper surface 22d side of the infrared absorbing layer 22B. -Melt.

赤外線吸収層22Bの上面22d側が発熱することによって、この熱は、まず赤外線吸収層22Bの図6中で下方に配される面(以下、下面という)22e側に伝達して下面22e側を発熱させ溶融させた後に、下面22eと重なる下方の三角形部分33の赤外線透過部21または赤外線吸収層22Bに伝達してこれらを発熱・溶融させる。   When the upper surface 22d side of the infrared absorption layer 22B generates heat, this heat is first transmitted to the surface 22e side of the infrared absorption layer 22B (hereinafter referred to as the lower surface) 22e and is heated on the lower surface 22e side. After being melted, they are transmitted to the infrared transmitting portion 21 or the infrared absorbing layer 22B of the lower triangular portion 33 that overlaps the lower surface 22e to generate heat and melt.

即ち、赤外線IR5が通過する領域S2では、上方の三角形部分32の被覆部12の外表面14側が赤外線透過部21かつ外表面13側が赤外線吸収層22Bとなっており、下方の三角形部分33の被覆部12の外表面13側が赤外線透過部21または赤外線吸収層22Aとなっている。このため、領域S2では、上方の三角形部分32の赤外線吸収層22Bと下方の三角形部分33の赤外線吸収層22B、または、上方の三角形部分32の赤外線吸収層22Bと下方の三角形部分33の赤外線透過部21、が重なり合っている。   That is, in the region S2 through which the infrared ray IR5 passes, the outer surface 14 side of the covering portion 12 of the upper triangular portion 32 is the infrared transmitting portion 21 and the outer surface 13 side is the infrared absorbing layer 22B, and the lower triangular portion 33 is covered. The outer surface 13 side of the part 12 is the infrared transmitting part 21 or the infrared absorbing layer 22A. For this reason, in the region S2, the infrared absorption layer 22B of the upper triangular portion 32 and the infrared absorption layer 22B of the lower triangular portion 33, or the infrared transmission of the infrared absorption layer 22B of the upper triangular portion 32 and the lower triangular portion 33 are transmitted. The portions 21 overlap.

そして、溶融した上方の三角形部分32の赤外線吸収層22Bと溶融した下方の三角形部分33の赤外線吸収層22B、または、溶融した上方の三角形部分32の赤外線吸収層22Bと溶融した下方の三角形部分33の赤外線透過部21、が赤外線溶着によって互いに機械的に結合した接合箇所34(図6中、点線で示す)が形成され、FFC1Bが折り曲げた状態で保持される。なお、図6には、上方の三角形部分32の赤外線吸収層22Bと、下方の三角形部分33の赤外線透過部21との接合箇所34のみが示されている。   Then, the infrared absorption layer 22B of the molten upper triangular portion 32 and the infrared absorption layer 22B of the molten lower triangular portion 33 or the molten infrared absorption layer 22B of the upper triangular portion 32 and the molten lower triangular portion 33 are formed. Are joined together by infrared welding to form a joint 34 (indicated by a dotted line in FIG. 6), and the FFC 1B is held in a bent state. In FIG. 6, only the joint portion 34 between the infrared absorption layer 22 </ b> B of the upper triangular portion 32 and the infrared transmitting portion 21 of the lower triangular portion 33 is shown.

本実施形態においては、接合箇所34が重なり合った赤外線透過部21と赤外線吸収層22Bを、また赤外線吸収層22B同士を、それぞれ赤外線溶着によって機械的に結合しているので、前述した第1の実施形態と同様の効果を得ることができる。   In the present embodiment, the infrared transmitting portion 21 and the infrared absorbing layer 22B where the joining portions 34 overlap each other and the infrared absorbing layers 22B are mechanically coupled to each other by infrared welding, so the first implementation described above. The same effect as the form can be obtained.

但し、本実施形態では、上方の三角形部分32において、赤外線IR5が赤外線透過部21を透過した後に赤外線吸収層22Bの上面22dに最初に到達し、下面22eが下方の三角形部分33と重なり合うので、上面22d側の熱が下面22e側に伝達する時間が必要になるので、赤外線吸収層22Bの厚さTが大きいと溶着時間が長くなる(照射される赤外線IR5の強度を強くする必要がある)ことがある。   However, in the present embodiment, in the upper triangular portion 32, the infrared IR5 first reaches the upper surface 22d of the infrared absorbing layer 22B after passing through the infrared transmitting portion 21, and the lower surface 22e overlaps the lower triangular portion 33. Since it takes time for the heat on the upper surface 22d side to be transferred to the lower surface 22e side, the welding time becomes longer when the thickness T of the infrared absorption layer 22B is large (the intensity of the irradiated infrared IR5 needs to be increased). Sometimes.

次に、本発明の第3の実施形態にかかるフラット回路体としてのFFC1Cを、図7及び図8を参照して説明する。なお、前述した第1及び第2の実施形態と同一構成部分には、同一符号を付して説明を省略する。   Next, FFC1C as a flat circuit body concerning the 3rd Embodiment of this invention is demonstrated with reference to FIG.7 and FIG.8. In addition, the same code | symbol is attached | subjected to the same component as 1st and 2nd embodiment mentioned above, and description is abbreviate | omitted.

本発明の第3の実施形態にかかるFFC1Cは、図7に示すように、第1及び第2の実施形態のFFC1A、1Bと比較して、赤外線吸収層22Cのみが異なる。赤外線吸収層22Cは、被覆部12の外表面13全体に薄層状に形成されている。このため、赤外線吸収層22Cは、被覆部12の長手方向全長に亘って形成され、また、被覆部12の厚さ方向に沿って導体11と重なる位置と重ならない位置の双方に設けられている。   As shown in FIG. 7, the FFC 1C according to the third embodiment of the present invention is different from the FFCs 1A and 1B according to the first and second embodiments only in the infrared absorption layer 22C. The infrared absorption layer 22 </ b> C is formed in a thin layer on the entire outer surface 13 of the covering portion 12. For this reason, the infrared absorption layer 22C is formed over the entire length in the longitudinal direction of the covering portion 12, and is provided at both the position overlapping the conductor 11 and the position not overlapping along the thickness direction of the covering portion 12. .

第1及び第2の実施形態と同様に、図7及び図8に示すように、このFFC1Cを折り曲げてFFC1Cに赤外線を照射すると、照射された赤外線のうち赤外線IR7(図7及び図8に一部を示す)は、矢印Aに沿って上方の三角形部分32の導体11と重なる位置に照射される。そして、赤外線IR7は、上方の三角形部分32の絶縁シート12bを透過した後、導体11に遮られて下方の三角形部分33まで到達しない。   As in the first and second embodiments, as shown in FIGS. 7 and 8, when this FFC 1C is folded and infrared rays are irradiated to the FFC 1C, infrared rays IR7 (one in FIGS. 7 and 8) are irradiated. Is shown to the position overlapping the conductor 11 of the upper triangular portion 32 along the arrow A. The infrared ray IR7 passes through the insulating sheet 12b of the upper triangular portion 32, and then is blocked by the conductor 11 and does not reach the lower triangular portion 33.

また、赤外線IR8(図7及び図8に一部を示す)は、矢印Aに沿って上方の三角形部分32の導体11と重ならない位置に照射される。そして、赤外線IR8は、上方の三角形部分32の赤外線透過部21を透過して赤外線吸収層22Cの上面22dに到達し、上面22d側から吸収されて赤外線吸収層22Cの上面22d側を発熱・溶融させる。   In addition, infrared IR8 (a part of which is shown in FIGS. 7 and 8) is irradiated along the arrow A to a position that does not overlap the conductor 11 of the upper triangular portion 32. The infrared ray IR8 passes through the infrared transmission part 21 of the upper triangular portion 32 and reaches the upper surface 22d of the infrared absorption layer 22C, and is absorbed from the upper surface 22d side to generate heat and melt on the upper surface 22d side of the infrared absorption layer 22C. Let

赤外線吸収層22Cの上面22d側が発熱することによって、この熱は、まず赤外線吸収層22Cの下面22e側に伝達して下面22e側を発熱させ溶融させた後に、下面22eと重なる下方の三角形部分33の赤外線吸収層22Cに伝達してこれらを発熱・溶融させる。   When the upper surface 22d side of the infrared absorption layer 22C generates heat, this heat is first transferred to the lower surface 22e side of the infrared absorption layer 22C to heat and melt the lower surface 22e side, and then the lower triangular portion 33 overlapping the lower surface 22e. These are transmitted to the infrared absorption layer 22C to generate heat and melt them.

即ち、赤外線IR8が通過する領域S3では、上方の三角形部分32の被覆部12の外表面14側が赤外線透過部21、外表面13側が赤外線吸収層22Cとなっており、下方の三角形部分33の被覆部12の外表面13側が赤外線吸収層22Cとなっている。このため、領域S3では、上方の三角形部分32の赤外線吸収層22Cと下方の三角形部分33の赤外線吸収層22Cが重なり合っている。   That is, in the region S3 through which the infrared ray IR8 passes, the outer surface 14 side of the covering portion 12 of the upper triangular portion 32 is the infrared transmitting portion 21 and the outer surface 13 side is the infrared absorbing layer 22C, and the lower triangular portion 33 is covered. The outer surface 13 side of the portion 12 is an infrared absorption layer 22C. For this reason, in the region S3, the infrared absorption layer 22C of the upper triangular portion 32 and the infrared absorption layer 22C of the lower triangular portion 33 overlap each other.

そして、溶融した上方の三角形部分32の赤外線吸収層22Cと、溶融した下方の三角形部分33の赤外線吸収層22Cとが赤外線溶着によって互いに機械的に結合した接合箇所34(図8中、点線で示す)が形成され、FFC1Cが折り曲げた状態で保持される。   Then, a joint portion 34 (indicated by a dotted line in FIG. 8) where the infrared absorption layer 22C of the upper triangular portion 32 melted and the infrared absorption layer 22C of the lower triangular portion 33 melted are mechanically coupled to each other by infrared welding. ) Is formed, and the FFC 1C is held in a bent state.

本実施形態においては、接合箇所34が重なり合った赤外線吸収層22C同士を赤外線溶着によって機械的に結合しているので、前述した第1及び第2の実施形態と同様の効果を得ることができる。なお、この第3の実施形態においても、第2の実施形態と同様の理由により、赤外線吸収層22Cの厚さTが大きいと溶着時間が長くなる(照射される赤外線IR8の強度を強くする必要がある)ことがある。   In the present embodiment, since the infrared absorption layers 22C where the joint portions 34 overlap are mechanically coupled by infrared welding, the same effects as those of the first and second embodiments described above can be obtained. In the third embodiment, for the same reason as in the second embodiment, if the thickness T of the infrared absorption layer 22C is large, the welding time becomes long (the intensity of the irradiated infrared IR8 needs to be increased). There is).

前述した第1ないし第3の実施形態において、3つの形状の赤外線吸収層22A〜22Cを示したが、少なくとも三角形部分32、33の被覆部12、12の外表面13、13の一方に赤外線吸収層が形成されていれば、その形状はこれらに限定されるものではない。   In the first to third embodiments described above, three shapes of the infrared absorbing layers 22A to 22C are shown, but at least one of the outer surfaces 13 and 13 of the covering portions 12 and 12 of the triangular portions 32 and 33 absorbs infrared rays. If the layer is formed, the shape is not limited to these.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、前述した実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   The above-described embodiments are merely representative examples of the present invention, and the present invention is not limited to the above-described embodiments. That is, various modifications can be made without departing from the scope of the present invention.

本発明の第1の実施形態にかかるFFCを示す斜視図である。It is a perspective view showing FFC concerning a 1st embodiment of the present invention. 図1中のII−II線に沿った断面図である。It is sectional drawing along the II-II line | wire in FIG. 図1に示されたFFCを折り曲げた状態を示す斜視図である。It is a perspective view which shows the state which bent FFC shown by FIG. 図3中のIV−IV線に沿った断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 本発明の第2の実施形態にかかるFFCを示す斜視図である。It is a perspective view which shows FFC concerning the 2nd Embodiment of this invention. 図5中のVI−VI線に沿った断面図である。It is sectional drawing along the VI-VI line in FIG. 本発明の第3の実施形態にかかるFFCを示す斜視図である。It is a perspective view which shows FFC concerning the 3rd Embodiment of this invention. 図7中のVIII−VIII線に沿った断面図である。It is sectional drawing along the VIII-VIII line in FIG.

符号の説明Explanation of symbols

1A、1B、1C FFC(フラット回路体)
11 導体
12 被覆部
21 赤外線透過部
21a 外表面
22A、22B、22C 赤外線吸収層
34 接合箇所
1A, 1B, 1C FFC (flat circuit body)
DESCRIPTION OF SYMBOLS 11 Conductor 12 Covering part 21 Infrared transmission part 21a Outer surface 22A, 22B, 22C Infrared absorption layer 34 Joint location

Claims (4)

導体と、前記導体を被覆する絶縁性の被覆部と、を備えたフラット回路体において、
前記被覆部が、
赤外線透過性を有した材料で構成され、かつ、前記導体を被覆し断面形状が扁平な赤外線透過部と、
赤外線吸収性を有した材料で構成され、かつ、前記赤外線透過部の一方の外表面の少なくとも一部に設けられた赤外線吸収層と、を備えるとともに、
前記赤外線透過部と前記赤外線吸収層が重なるように折り曲げて、重なり合った前記赤外線透過部と前記赤外線吸収層を赤外線溶着によって互いに機械的に結合した接合箇所を備えたことを特徴とするフラット回路体。
In a flat circuit body comprising a conductor and an insulating covering portion covering the conductor,
The covering portion is
An infrared transmission part that is made of a material having infrared transparency and that covers the conductor and has a flat cross-sectional shape;
Comprising an infrared absorbing layer that is made of a material having infrared absorptivity and provided on at least a part of one outer surface of the infrared transmitting part,
A flat circuit body comprising a joint where the infrared transmitting portion and the infrared absorbing layer are folded so as to overlap each other and the overlapping infrared transmitting portion and the infrared absorbing layer are mechanically coupled to each other by infrared welding. .
平面視において、前記赤外線透過部が前記導体の周りに設けられたことを特徴とする請求項1に記載のフラット回路体。   The flat circuit body according to claim 1, wherein the infrared transmission portion is provided around the conductor in a plan view. 導体と、前記導体を被覆する絶縁性の被覆部と、を備えたフラット回路体において、
前記被覆部が、
赤外線透過性を有した材料で構成され、かつ、前記導体を被覆し断面形状が扁平な赤外線透過部と、
赤外線吸収性を有した材料で構成され、かつ、前記赤外線透過部の一方の外表面の少なくとも一部に設けられた赤外線吸収層と、を備えるとともに、
前記赤外線吸収層同士が重なるように折り曲げて、重なり合った前記赤外線吸収層同士を赤外線溶着によって互いに機械的に結合した接合箇所を備えたことを特徴とするフラット回路体。
In a flat circuit body comprising a conductor and an insulating covering portion covering the conductor,
The covering portion is
An infrared transmission part that is made of a material having infrared transparency and that covers the conductor and has a flat cross-sectional shape;
An infrared absorbing layer that is made of a material having infrared absorptivity and provided on at least a part of one outer surface of the infrared transmitting part, and
A flat circuit body, comprising: a joining portion where the infrared absorbing layers are bent so as to overlap each other, and the overlapping infrared absorbing layers are mechanically bonded to each other by infrared welding.
前記赤外線吸収層が、前記被覆部の長手方向全長に亘って設けられたことを特徴とする請求項1ないし請求項3のうちいずれか一項に記載のフラット回路体。   The flat circuit body according to any one of claims 1 to 3, wherein the infrared absorption layer is provided over the entire length in the longitudinal direction of the covering portion.
JP2008320792A 2008-12-17 2008-12-17 Flat circuit body Abandoned JP2010146791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008320792A JP2010146791A (en) 2008-12-17 2008-12-17 Flat circuit body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008320792A JP2010146791A (en) 2008-12-17 2008-12-17 Flat circuit body

Publications (1)

Publication Number Publication Date
JP2010146791A true JP2010146791A (en) 2010-07-01

Family

ID=42566993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320792A Abandoned JP2010146791A (en) 2008-12-17 2008-12-17 Flat circuit body

Country Status (1)

Country Link
JP (1) JP2010146791A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198218A (en) * 2015-04-08 2016-12-01 出光ユニテック株式会社 Zipper tape, bag body with zipper tape, and method for manufacturing bag body with zipper tape
US11370064B2 (en) 2015-04-08 2022-06-28 Idemitsu Unitech Co., Ltd. Zipper tape, bag with zipper tape, method for manufacturing bag with zipper tape, long member-bonding method capable of favorably bonding long members, device therefor, and zipper tape-bonding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198218A (en) * 2015-04-08 2016-12-01 出光ユニテック株式会社 Zipper tape, bag body with zipper tape, and method for manufacturing bag body with zipper tape
US11370064B2 (en) 2015-04-08 2022-06-28 Idemitsu Unitech Co., Ltd. Zipper tape, bag with zipper tape, method for manufacturing bag with zipper tape, long member-bonding method capable of favorably bonding long members, device therefor, and zipper tape-bonding device

Similar Documents

Publication Publication Date Title
CN112204836B (en) Wiring member
JP2019003925A (en) Wire harness and manufacturing method of wire harness
JP6184506B2 (en) Polymer vehicle glass with embedded opaque edge bands
JP3630298B2 (en) Bonding method of resin molded products
WO2020121434A1 (en) Wiring member and wiring member in packing mode
JP6858480B2 (en) Laminated glass and conductive heating element
JP2010146791A (en) Flat circuit body
JP6827177B2 (en) In-vehicle camera and its assembly method
CN112740496B (en) Wiring member
JP2021125310A (en) Connection structure and connection method of flexible flat cable
JP2010146790A (en) Wire harness
JP6624234B2 (en) Wiring member mounting structure
US20230154647A1 (en) Wiring member
KR20230129226A (en) sensor module
JP2007276305A (en) Jig for laser welding and resin molding
US20160191721A1 (en) Mechanism for fixing transmission cables and apparatus for reading images provided with the mechanism
JP7485156B2 (en) Wiring materials
JP2003136600A (en) Laser bonding method for resin members
JP7028098B2 (en) Fixed structure of splice part
JP7200885B2 (en) Wiring material
CN114651313B (en) Wiring member
WO2021200590A1 (en) Defogging heater
JPH0636330B2 (en) Wire-harness manufacturing method
JP6563829B2 (en) Hollow cylinder structure manufacturing method, hollow cylinder structure and hollow cylinder structure
JP2019529152A (en) Method and component composite for forming a laser weld connection

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20111101

Free format text: JAPANESE INTERMEDIATE CODE: A621

A762 Written abandonment of application

Effective date: 20130212

Free format text: JAPANESE INTERMEDIATE CODE: A762