JP2010145531A - Focus detecting device - Google Patents

Focus detecting device Download PDF

Info

Publication number
JP2010145531A
JP2010145531A JP2008320011A JP2008320011A JP2010145531A JP 2010145531 A JP2010145531 A JP 2010145531A JP 2008320011 A JP2008320011 A JP 2008320011A JP 2008320011 A JP2008320011 A JP 2008320011A JP 2010145531 A JP2010145531 A JP 2010145531A
Authority
JP
Japan
Prior art keywords
light
focus detection
objective lens
light beam
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008320011A
Other languages
Japanese (ja)
Other versions
JP5394718B2 (en
Inventor
Takami Shibazaki
尊己 芝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008320011A priority Critical patent/JP5394718B2/en
Publication of JP2010145531A publication Critical patent/JP2010145531A/en
Application granted granted Critical
Publication of JP5394718B2 publication Critical patent/JP5394718B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a focus detecting device capable of optimizing the incident position of a luminous flux in accordance with the pupil diameter of an objective lens without controlling laser light, even when replacing the objective lens with another objective lens having different pupil diameter, and also performing the focusing by detecting the reflected light amount from a surface of a focusing object, while eliminating an unfavorable influence caused by the reflected light from a surface of a non-focusing object. <P>SOLUTION: In the focus detecting device for focusing by projecting the focus detecting luminous flux on a sample surface through the objective lens 7, a luminous flux incident position adjusting means 4 including inclined surfaces 4a2 and 4b1 arranged facing each other, comprising optical members 4a and 4b capable of adjusting a distance between the inclined surfaces, and by adjusting the distance between the inclined surfaces, capable of adjusting the incident position of the focus detecting luminous flux at the position of the pupil 10 of the objective lens to the predetermined position in the pupil in accordance with the pupil diameter of the objective lens, is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、焦点検出装置に関し、特に、顕微観察装置において、マイクロプレートやスライドガラスなどの透明基板の所望の表面に焦点合わせを自動的に行うための焦点検出装置に関する。   The present invention relates to a focus detection apparatus, and more particularly to a focus detection apparatus for automatically performing focusing on a desired surface of a transparent substrate such as a microplate or a slide glass in a microscopic observation apparatus.

バイオテクノロジーの分野においては、様々な条件下での種々の生細胞の反応を明らかにするため、多数の細胞を対象とした統計解析結果を用いることが頻繁に行われている。このような目的のため、従来、フローサイトメーターと呼ばれる装置が使用されてきたが、近年、顕微観察装置によって多数の細胞の画像を取得し、取得した画像を解析することにより統計解析結果を得るという手法が用いられるようになってきている。   In the field of biotechnology, statistical analysis results for a large number of cells are frequently used in order to clarify the reactions of various living cells under various conditions. For this purpose, a device called a flow cytometer has been used in the past. However, in recent years, images of a large number of cells are acquired by a microscopic observation device, and a statistical analysis result is obtained by analyzing the acquired images. The method is now being used.

ところで、実際に様々な条件下での生細胞の反応を試験するためには、マイクロプレートなどの容器の中で培養された非常に多くの生細胞を解析対象とする必要がある。
このため、細胞画像を取得する顕微観察装置としては、マイクロプレートなどの容器の下方より観察する倒立顕微鏡型の光学配置を採用し、さらに視野位置変更、焦点合わせ、撮像などの画像取得に係わる一連の動作を自動化したものが望まれる。
By the way, in order to actually test the reaction of living cells under various conditions, it is necessary to analyze a very large number of living cells cultured in a container such as a microplate.
For this reason, as a microscope observation apparatus for acquiring a cell image, an inverted microscope type optical arrangement for observing from below a container such as a microplate is adopted, and a series of image acquisition such as field position change, focusing, imaging, etc. What automates the operation of is desired.

顕微観察装置を自動化する場合には、特に、焦点合わせの自動化方式が重要である。一般的に、焦点合わせの自動化方式には、大別して対象物(被写体)に赤外線等の照明光を照射し、その反射光の光量等を検出することにより焦点を検出するアクティブ方式と、レンズで捉えた画像を利用して焦点を検出するパッシブ方式の2つの方式が存在する。   When automating a microscopic observation apparatus, an automatic focusing method is particularly important. In general, the automatic focusing method is roughly divided into an active method for detecting a focus by irradiating an object (subject) with illumination light such as infrared light, and detecting the amount of reflected light, etc., and a lens. There are two passive methods for detecting a focus using captured images.

しかるに、様々な条件下での種々の生細胞の反応を明らかにすることを目的として細胞画像を取得する顕微観察装置においては、多数の画像を取得する必要があるため、迅速な動作速度を有するアクティブ方式の焦点合わせ方式が採用されることが多い。このようなアクティブ方式を採用した焦点検出装置としては、例えば、次の特許文献1に記載のものがある。   However, in order to clarify the reaction of various living cells under various conditions, a microscopic observation apparatus that acquires cell images needs to acquire a large number of images, and thus has a rapid operation speed. An active focusing method is often employed. As a focus detection apparatus employing such an active method, for example, there is one described in Patent Document 1 below.

ところで、このようなアクティブ方式の焦点検出装置においては、特許文献1に記載されているように光源としてレーザを使用することが一般的に行われているが、高い焦点合わせ精度を実現するために、レーザ光束径を対物レンズの瞳径に一致させるのが一般的である。しかしながら、レーザ光束径を瞳径の大きな低倍率の対物レンズに合わせて最適化すると、瞳径の小さな高倍率の対物レンズに切り換えた場合にレーザ光束が対物レンズの瞳によってケラレるため、光量不足となって焦点検出を行うことが困難になり易い。
一方、レーザ光束の径を瞳径の小さな高倍率の対物レンズに合わせて最適化すると、瞳径の大きな低倍率の対物レンズに切り換えた場合に焦点検出の精度が悪化する。
By the way, in such an active type focus detection apparatus, a laser is generally used as a light source as described in Patent Document 1, but in order to achieve high focusing accuracy. Generally, the laser beam diameter is made to coincide with the pupil diameter of the objective lens. However, if the laser beam diameter is optimized for a low-magnification objective lens with a large pupil diameter, the laser beam will be vignetted by the pupil of the objective lens when switching to a high-magnification objective lens with a small pupil diameter. This makes it difficult to perform focus detection.
On the other hand, if the laser beam diameter is optimized for a high-magnification objective lens with a small pupil diameter, the accuracy of focus detection deteriorates when switching to a low-magnification objective lens with a large pupil diameter.

特許文献1には、従来の焦点検出用光源のレーザパワーの制御に関し、レーザ光束径を瞳径の大きな対物レンズに合わせるとともに、制御回路を介して焦点検出用光源のレーザパワーを倍率の異なる対物レンズごとに変化させて、充分な受光量を得ることによって焦点検出を行うことが記載されている。
しかし、制御回路を介して焦点検出用光源のパワーを変化させる方法では、瞳径の小さい対物レンズを用いたときに、レーザ光のパワーが大きくなり過ぎ、対物レンズを外したときに、高出力のレーザ光が外部に出力されるなどの安全上の問題が生じるおそれがある。
Patent Document 1 relates to laser power control of a conventional focus detection light source, and adjusts the laser beam diameter to an objective lens having a large pupil diameter, and sets the laser power of the focus detection light source through a control circuit with different magnifications. It is described that focus detection is performed by changing each lens to obtain a sufficient amount of received light.
However, with the method of changing the power of the focus detection light source via the control circuit, the power of the laser beam becomes too large when an objective lens with a small pupil diameter is used, and the output is high when the objective lens is removed. There is a possibility that a safety problem such as the output of the laser beam to the outside occurs.

しかるに、特許文献1には、レーザ光源と対物レンズとの間に、NDフィルタと径の異なる開口絞りを組み合わせた絞りフィルタ組立体を備え、レーザ光源のパワーを一定にしたままで、NDフィルタを介してレーザ光量を調節するとともに、開口絞りを選択してレーザ光束の径を対物レンズの瞳径に合わせるようにした構成が開示されている。
特開2007−163738号公報
However, Patent Document 1 includes a diaphragm filter assembly in which an ND filter and an aperture stop having a different diameter are combined between a laser light source and an objective lens, and the ND filter is mounted with the power of the laser light source kept constant. A configuration is disclosed in which the amount of laser light is adjusted, and the aperture stop is selected so that the diameter of the laser beam matches the pupil diameter of the objective lens.
JP 2007-163738 A

また、アクティブ方式を採用した焦点検出装置においては、透明基板の一方の面に焦点を合わせるために、その一方の面からの反射光を光検出器で検出するような場合に、他方の面からの反射光も光検出器で検出されてノイズとなって焦点の検出に悪影響を及ぼすという問題がある。   Further, in a focus detection apparatus adopting an active method, in order to focus on one surface of a transparent substrate, when the reflected light from one surface is detected by a light detector, from the other surface The reflected light is also detected by the photodetector and becomes noise, which adversely affects the focus detection.

しかしながら、特許文献1に記載の焦点検出装置のように、開口絞りを介してレーザ光束の径を対物レンズの瞳径に合わせる構成では、他方の面からの反射光も光検出器で検出されてノイズとなって焦点の検出に悪影響を及ぼすという問題を解決することができない。   However, in the configuration in which the diameter of the laser beam is matched with the pupil diameter of the objective lens through the aperture stop as in the focus detection device described in Patent Document 1, reflected light from the other surface is also detected by the photodetector. It is impossible to solve the problem of causing noise and adversely affecting the focus detection.

本発明は上記問題点に鑑みてなされたものであり、瞳径の異なる対物レンズに切り換えても、レーザ光を調光することなく、レーザ光束の径を対物レンズの瞳径に合わせて最適化でき、しかも、瞳径の大きな対物レンズに切り換えたときでも、透明基板における焦点合わせの対象となっていない側の表面からの反射光による悪影響を排除しながら、透明基板における焦点合わせの対象となっている側の表面からの反射光量を高い検出感度で検出して、この焦点合わせの対象となっている側の表面に焦点合わせを行うことが可能な焦点検出装置を提供することを目的とする。   The present invention has been made in view of the above problems, and even when switching to an objective lens having a different pupil diameter, the laser beam diameter is optimized to match the pupil diameter of the objective lens without dimming the laser beam. In addition, even when switching to an objective lens with a large pupil diameter, the object of focusing on the transparent substrate is eliminated while eliminating the adverse effects of reflected light from the surface on the side that is not the object of focusing on the transparent substrate. An object of the present invention is to provide a focus detection device capable of detecting the amount of reflected light from the surface on the side with high detection sensitivity and performing focusing on the surface on the side to be focused. .

上記目的を達成するため、本発明による焦点検出装置は、焦点検出用光束を対物レンズを介して試料面に投射して、焦点合わせを行う焦点検出装置において、互いに対向した状態で配置された傾斜面を有し、且つ、該傾斜面の間隔を調節可能な2つの光学部材からなり、該2つの光学部材の傾斜面の間隔を調節することにより、前記対物レンズの瞳位置における前記焦点検出用光束の入射位置を該対物レンズの瞳径に応じた該瞳内の所定位置に調節可能な光束入射位置調節手段を備えたことを特徴としている。   In order to achieve the above object, a focus detection apparatus according to the present invention projects a focus detection light beam onto a sample surface through an objective lens, and in a focus detection apparatus that performs focusing, tilts arranged in a state of facing each other. It is composed of two optical members having a surface and the interval between the inclined surfaces can be adjusted, and the focus detection at the pupil position of the objective lens by adjusting the interval between the inclined surfaces of the two optical members. A light beam incident position adjusting means capable of adjusting the incident position of the light beam to a predetermined position in the pupil according to the pupil diameter of the objective lens is provided.

また、本発明の焦点検出装置においては、前記光束入射位置調節手段が、前記焦点検出用光束を光軸に対称に分離し、前記2つの光学部材の傾斜面の間隔を調節することによって、該分離した2つの光束の間隔を調節するのが好ましい。   Further, in the focus detection device of the present invention, the light beam incident position adjusting means separates the focus detection light beam symmetrically with respect to the optical axis, and adjusts the interval between the inclined surfaces of the two optical members. It is preferable to adjust the interval between the two separated light beams.

また、本発明の焦点検出装置においては、前記2つの光学部材が、入射側が平面、出射側が光軸に対称なV字形状に凹んだ傾斜面で構成された第1のプリズムと、入射側が前記第1のプリズムの傾斜面のV字形状に一致する、光軸に対称なV字形状に突出した傾斜面、出射側が平面で構成された第2のプリズムとからなるのが好ましい。   In the focus detection apparatus of the present invention, the two optical members include a first prism configured with an inclined surface recessed in a V shape symmetric with respect to the optical axis on the incident side and the incident side on the incident side, It is preferable that the first prism includes an inclined surface that protrudes in a V shape that is symmetric with respect to the optical axis and coincides with the V shape of the inclined surface of the first prism, and a second prism that has a flat exit surface.

また、本発明の焦点検出装置においては、前記光束入射位置調節手段が、前記2つの光学部材の傾斜面の間隔を調節することによって、前記焦点検出用光束を光軸に垂直な方向にシフトさせるのが好ましい。   In the focus detection apparatus of the present invention, the light beam incident position adjusting means shifts the focus detection light beam in a direction perpendicular to the optical axis by adjusting the interval between the inclined surfaces of the two optical members. Is preferred.

また、本発明の焦点検出装置においては、前記2つの光学部材が、互いの上下を逆向きにして配置された、頂角の等しい2つのプリズムからなるのが好ましい。   In the focus detection apparatus of the present invention, it is preferable that the two optical members are composed of two prisms having the same apex angle that are arranged upside down.

また、本発明の焦点検出装置においては、前記光束入射位置調節手段が、前記焦点検出用光束を、光軸を中心とした同心円状に変形し、前記2つの光学部材の傾斜面の間隔を調節することによって、該変形した同心円状の光束の径を調節するのが好ましい。   In the focus detection apparatus of the present invention, the light beam incident position adjusting means deforms the focus detection light beam into a concentric circle centered on the optical axis, and adjusts the interval between the inclined surfaces of the two optical members. It is preferable to adjust the diameter of the deformed concentric light beam.

また、本発明の焦点検出装置においては、前記2つの光学部材が、入射側が平面、出射側が光軸に対称な円錐形状に凹んだ傾斜面で構成された第1の円錐レンズと、入射側が前記第1の円錐レンズの傾斜面の凹んだ円錐形状に一致する、光軸に対称な円錐形状に突出した傾斜面、出射側が平面で構成された第2の円錐レンズとからなるのが好ましい。   In the focus detection apparatus of the present invention, the two optical members include a first conical lens formed of an inclined surface recessed in a conical shape symmetric with respect to the optical axis on the incident side, and the incident side on the incident side. The inclined surface of the first conical lens preferably has a concave conical shape protruding in a conical shape symmetrical to the optical axis, and a second conical lens having a flat exit surface.

また、本発明の焦点検出装置においては、前記焦点検出装置は、前記対物レンズと、透明基板に対し合焦信号を生成するための照明光を発し、前記対物レンズを通して照射する点光源と、前記照明光の光束のうちの該照明光の光軸に沿う第1の仮想平面で分割したときの一方の領域を通る光束を遮光する第1の遮光部を有するマスク手段と、前記透明基板で反射された光の光軸に沿う第2の仮想平面を挟んで対称に配置された2つの受光部を有する光検出器とを備え、前記2つの受光部を介して夫々検出された前記透明基板からの反射光の光量に基づいて、前記透明基板の第1又は第2の表面に前記対物レンズの焦点合わせを行い、前記光束入射位置調節手段は、前記透明基板における第1又は第2の表面のうち一方の表面近傍に前記対物レンズの焦点が位置するときに、該一方の表面からの反射光が前記2つの受光部に入射するとともに他方の表面からの反射光が前記第2の仮想平面で分割したときの一方の領域における当該領域に配置された受光部を外れた領域を通るような該対物レンズの瞳内の所定位置に、該対物レンズの瞳位置における前記焦点検出用光束の入射位置を調節可能に構成されているのが好ましい。   Further, in the focus detection device of the present invention, the focus detection device emits illumination light for generating a focus signal for the objective lens and a transparent substrate, and irradiates through the objective lens, and A mask means having a first light shielding portion for shielding a light beam passing through one region of the illumination light beam divided by a first virtual plane along the optical axis of the illumination light, and reflected by the transparent substrate; And a photodetector having two light receiving portions arranged symmetrically across the second virtual plane along the optical axis of the emitted light, from the transparent substrate detected through the two light receiving portions, respectively. The objective lens is focused on the first or second surface of the transparent substrate based on the amount of the reflected light, and the light beam incident position adjusting means is arranged on the first or second surface of the transparent substrate. Near the surface of the objective. When the focal point of the lens is located, the reflected light from the one surface is incident on the two light receiving portions and the reflected light from the other surface is divided in the second virtual plane in one region. The incident position of the light beam for focus detection at the pupil position of the objective lens can be adjusted to a predetermined position in the pupil of the objective lens so as to pass through an area outside the light receiving unit arranged in the area. Is preferred.

本発明によれば、瞳径の異なる対物レンズに切り換えても、レーザ光を調光することなく、レーザ光束の径を対物レンズの瞳径に合わせて最適化でき、しかも、瞳径の大きな対物レンズに切り換えたときに、透明基板における焦点合わせの対象となっていない側の表面からの反射光による悪影響を排除しながら、透明基板における焦点合わせの対象となっている側の表面からの反射光量を高い検出感度で検出して、この焦点合わせの対象となっている側の表面に焦点合わせを行うことが可能な焦点検出装置が得られる。   According to the present invention, even when switching to an objective lens having a different pupil diameter, the laser beam diameter can be optimized according to the pupil diameter of the objective lens without dimming the laser beam, and an objective with a large pupil diameter can be obtained. When switching to a lens, the amount of reflected light from the surface of the transparent substrate that is the focus target side is eliminated while eliminating the adverse effects of the reflected light from the surface that is not the focus target surface of the transparent substrate. Is detected with high detection sensitivity, and a focus detection device capable of focusing on the surface on the side to be focused is obtained.

実施形態に先立ち、本発明を導出するに至った経緯について説明する。
本件出願人は、本発明に先立ち、透明基板における焦点合わせの対象となっていない側の表面からの反射光による悪影響を排除しながら、透明基板における焦点合わせの対象となっている側の表面からの反射光量を高い検出感度で検出して、この焦点合わせの対象となっている側の表面に焦点合わせを行うことを目的として、特願2007−316857号に記載の発明の焦点検出装置を想出した。
そこで、特願2007−316857号に記載の発明の焦点検出装置について説明する。
Prior to the embodiment, the background for deriving the present invention will be described.
Prior to the present invention, the applicant of the present invention, from the surface of the transparent substrate that is the object of focusing, while eliminating the adverse effects of the reflected light from the surface of the transparent substrate that is not the object of focusing. The focus detection device of the invention described in Japanese Patent Application No. 2007-316857 is conceived for the purpose of detecting the amount of reflected light with high detection sensitivity and focusing on the surface of the focus target. I put it out.
Therefore, the focus detection device of the invention described in Japanese Patent Application No. 2007-316857 will be described.

図9は特願2007−316857号に記載の発明の一実施形態にかかる焦点検出装置を備えた顕微観察装置の概略構成を示す説明図、図10は図9の顕微観察装置に備わる焦点検出装置におけるマスク手段を構成する第1及び第2の遮光部の形状、及び(焦点検出用)照明光束における第1及び第2の遮光部で遮光されない領域と遮光される領域を示す説明図、図11は図10に示す第1及び第2の遮光部で遮光されない領域の(焦点検出用)照明光について、透明基板における焦点合わせの対象となっている側の表面で反射された光と、焦点合わせの対象となっていない側の表面で反射された光の、2つの受光部との位置関係を示す説明図である。図12は図9の焦点検出装置において、焦点を透明基板の被検物側の面に合わせた場合における、焦点合わせの対象となっている側の表面で反射する光と、焦点合わせの対象となっていない側の表面で反射する光の経路を概念的に示す説明図である。図13は図12に示す状態の焦点検出装置において、透明基板における焦点検出対象となっている側と焦点検出対象となっていない側の夫々の表面で反射する光の2つの受光部近傍での入射状態を示す説明図である。図14は図9の焦点検出装置において、焦点を透明基板の被検物側とは反対側の面に合わせた場合における、焦点合わせの対象となっている側の表面で反射する光と、焦点合わせの対象となっていない側の表面で反射する光の経路を概念的に示す説明図である。図15は図14に示す状態の焦点検出装置において、透明基板における焦点検出対象となっている側と焦点検出対象となっていない側の夫々の表面で反射する光の2つの受光部近傍での入射状態を示す説明図である。なお、図12及び図14では説明の便宜上、本発明における点光源及びマスク手段と、光検出器の位置を入れ替えた状態で示してある。また、後述する外乱光遮光部材も省略して示してある。   FIG. 9 is an explanatory diagram showing a schematic configuration of a microscopic observation apparatus including a focus detection apparatus according to an embodiment of the invention described in Japanese Patent Application No. 2007-316857, and FIG. 10 is a focus detection apparatus provided in the microscopic observation apparatus of FIG. FIG. 11 is an explanatory diagram showing the shapes of the first and second light shielding portions constituting the mask means in FIG. 5 and the regions not shielded and shielded by the first and second light shielding portions in the illumination light beam (for focus detection). Is the light reflected from the surface of the transparent substrate that is the target of focusing on the illumination light (for focus detection) in the region that is not shielded by the first and second light shielding portions shown in FIG. It is explanatory drawing which shows the positional relationship with the two light-receiving parts of the light reflected by the surface of the side which is not made into object. FIG. 12 shows the light reflected by the surface on the side to be focused and the focus target when the focus is set on the surface of the transparent substrate in the focus detection apparatus of FIG. It is explanatory drawing which shows notionally the path | route of the light reflected on the surface of the side which is not. FIG. 13 shows the focus detection apparatus in the state shown in FIG. 12, in the vicinity of the two light receiving portions of the light reflected by the respective surfaces of the transparent substrate on the side that is the focus detection target and the side that is not the focus detection target. It is explanatory drawing which shows an incident state. FIG. 14 shows the light reflected by the surface on the side to be focused and the focal point when the focal point is aligned with the surface of the transparent substrate opposite to the object side in the focus detection apparatus of FIG. It is explanatory drawing which shows notionally the path | route of the light reflected on the surface of the side which is not the object of alignment. FIG. 15 shows the focus detection apparatus in the state shown in FIG. 14 in the vicinity of the two light receiving portions of the light reflected by the respective surfaces of the transparent substrate on the side that is the focus detection target and the side that is not the focus detection target. It is explanatory drawing which shows an incident state. For convenience of explanation, FIGS. 12 and 14 show the point light source and mask means in the present invention and the positions of the photodetectors interchanged. Further, a disturbance light shielding member described later is also omitted.

図9の焦点検出装置を備えた顕微観察装置は、顕微鏡本体51と、落射照明装置52と、焦点検出装置53とからなる。
顕微鏡本体51は、被検物54を載置するXYステージ55を備えている。XYステージ55の下方には、対物レンズ56と、ハーフミラー57,70と、結像レンズ58と、CCDカメラ59とを備えている。XYステージ55は、水平面内(紙面に対して垂直な平面内)を移動可能に構成されている。対物レンズ56は、駆動部60を介して光軸方向に移動可能に構成されている。
被検物54は、公知の複数ウェルを有するポリスチレン等の光透過性部材で製作されたマイクロプレート54aを容器として使用し、培養液54b中で培養された細胞をマイクロプレート54aの底面部54a1の表面54a11に公知の技術によって固定化したものである。マイクロプレート54aの底面部54a1は、本発明における透明基板に相当する。なお、被検物54に用いる細胞は、さらに解析する項目に応じて適切な方法によって染色された細胞でもかまわない。また、使用する容器として、ここではプラスチック製のものを例示したが、底面にガラスを貼り付けたガラスボトムプレートでもかまわない。
A microscope observation apparatus provided with the focus detection apparatus in FIG. 9 includes a microscope main body 51, an epi-illumination apparatus 52, and a focus detection apparatus 53.
The microscope main body 51 includes an XY stage 55 on which the test object 54 is placed. Below the XY stage 55, an objective lens 56, half mirrors 57 and 70, an imaging lens 58, and a CCD camera 59 are provided. The XY stage 55 is configured to be movable in a horizontal plane (in a plane perpendicular to the paper surface). The objective lens 56 is configured to be movable in the optical axis direction via the drive unit 60.
The test object 54 uses a microplate 54a made of a light-transmitting member such as polystyrene having a plurality of wells as a container, and the cells cultured in the culture solution 54b are placed on the bottom surface 54a1 of the microplate 54a. The surface 54a11 is fixed by a known technique. The bottom surface portion 54a1 of the microplate 54a corresponds to the transparent substrate in the present invention. The cell used for the test object 54 may be a cell stained by an appropriate method according to the item to be analyzed. Moreover, although the plastic thing was illustrated here as a container to be used, you may be the glass bottom plate which affixed glass on the bottom face.

落射照明装置52は、XYステージ55の下方に備えられ、光源61と、レンズ62からなる。光源61は、白色LEDで構成されている。
焦点検出装置53は、対物レンズ56と、ハーフミラー57と、焦点検出ユニット53’とからなり、焦点検出ユニット53’は、顕微鏡本体51におけるハーフミラー57の反射光路上に配置され、λ/4板65と、レンズ63と、偏光ビームスプリッタ64と、マスク手段66と、偏光ビームスプリッタ64の透過光路上に配置された、焦点合わせ用の点光源67と、偏光ビームスプリッタ64の反射光路上に配置された、外乱光遮光部材68と、光検出器69とを備えている。焦点合わせ用の点光源67は、レーザダイオードで構成されていて、被検物54の透明基板(マイクロプレート54aの底面部54a1)に対して合焦信号を生成するための照明光を発するようになっている。外乱光遮光部材68は、後述するマスク手段66を通過し対物レンズ56を介して被検物54を照射し被検物54で反射されて光検出器69側へ向かう光のうち、所定の光路を外れた外乱光を遮光するように、光軸X2に沿う第2の仮想平面(図9では光軸X2を含む紙面に垂直な平面)で分割したときの一方の領域に設けられている。なお、外乱光遮光部材68は、所定の光路を外れた外乱光が殆ど発生しない場合には、その配置を省略してもよい。
光検出器69は、2分割フォトダイオードで構成されている。2分割フォトダイオードは、2つの受光部69a,69bを有している。2つの受光部69a,69bは、光軸X2に沿う仮想平面(図9では光軸X2を含む紙面に垂直な平面)を挟んで対称に配置されている。
The epi-illumination device 52 is provided below the XY stage 55 and includes a light source 61 and a lens 62. The light source 61 is composed of a white LED.
The focus detection device 53 includes an objective lens 56, a half mirror 57, and a focus detection unit 53 ′. The focus detection unit 53 ′ is disposed on the reflected light path of the half mirror 57 in the microscope main body 51, and λ / 4. A plate 65, a lens 63, a polarizing beam splitter 64, a masking unit 66, a focusing point light source 67 disposed on the transmitted light path of the polarizing beam splitter 64, and a reflected light path of the polarizing beam splitter 64 An ambient light shielding member 68 and a photodetector 69 are provided. The point light source 67 for focusing is configured by a laser diode so as to emit illumination light for generating a focus signal to the transparent substrate (the bottom surface portion 54a1 of the microplate 54a) of the test object 54. It has become. The disturbance light shielding member 68 passes through a mask means 66 described later, irradiates the test object 54 through the objective lens 56, is reflected by the test object 54, and travels toward the light detector 69 side. Is provided in one region when divided by a second imaginary plane along the optical axis X2 (in FIG. 9, a plane perpendicular to the paper surface including the optical axis X2) so as to shield ambient light that is off the axis. The disturbance light shielding member 68 may be omitted in the case where disturbance light outside a predetermined optical path is hardly generated.
The photodetector 69 is composed of a two-divided photodiode. The two-divided photodiode has two light receiving portions 69a and 69b. The two light receiving portions 69a and 69b are arranged symmetrically with a virtual plane along the optical axis X2 (a plane perpendicular to the paper surface including the optical axis X2 in FIG. 9) interposed therebetween.

マスク手段66は、図10に示すように、第1の遮光部66aと、第2の遮光部66bを有している。
第1の遮光部66aは、点光源67から発せられた照明光の光束のうち光軸X1に沿う第1の仮想平面(図9では光軸X1を含む紙面に垂直な平面)で分割したときの一方の領域を通る光束を遮光する形状及び大きさに形成されている。なお、本実施形態では、第1の遮光部66aは、矩形形状をしているが、この一方の片側部分の光束を遮光することができる形状であればどのような形状でもよい。
第2の遮光部66bは、光検出器69における一方の受光部と相似形状(ここでは矩形)に形成され、且つ、透明基板(マイクロプレート54aの底面部54a1)における第1又は第2の表面(底面部54a1の表面54a11又は表面54a12)のうち、一方の表面近傍に対物レンズ56の焦点が位置するときに、一方の表面からの反射光が2つの受光部69a,69bに入射するとともに他方の表面からの反射光が、例えば図11に示すように、第2の仮想平面で分割したときの一方の領域におけるその一方の領域に配置された受光部(図11の例では受光部69a)を外れた領域を通るように、点光源67から発せられた照明光の光束のうち光軸X1に沿う第1の仮想平面で分割したときの他方の領域を通る一部の光束を遮光するように構成されている。
As shown in FIG. 10, the mask means 66 has a first light shielding part 66a and a second light shielding part 66b.
When the first light shielding portion 66a is divided by a first virtual plane along the optical axis X1 (a plane perpendicular to the paper surface including the optical axis X1 in FIG. 9) of the luminous flux of the illumination light emitted from the point light source 67. It is formed in a shape and size that shields the light beam passing through one of the regions. In the present embodiment, the first light shielding portion 66a has a rectangular shape, but may have any shape as long as it can shield the light beam on one side of the first light shielding portion 66a.
The second light shielding portion 66b is formed in a similar shape (in this case, a rectangle) to one light receiving portion in the photodetector 69, and the first or second surface of the transparent substrate (the bottom surface portion 54a1 of the microplate 54a). Of the (surface 54a11 or surface 54a12 of the bottom surface portion 54a1), when the focal point of the objective lens 56 is located near one surface, the reflected light from one surface enters the two light receiving portions 69a and 69b and the other As shown in FIG. 11, for example, the light reflected from the surface of the light receiving unit disposed in one region when divided by the second virtual plane (the light receiving unit 69a in the example of FIG. 11). A part of the light flux of the illumination light emitted from the point light source 67 is shielded so as to pass through the other area when divided by the first virtual plane along the optical axis X1 so as to pass through the area outside Is constructed sea urchin.

このように構成された本実施形態の焦点検出装置を備えた顕微観察装置では、まず、落射照明装置52の光源61である白色LEDから射出された光が、レンズ62、ハーフミラー70、ハーフミラー57、対物レンズ56を介してXYステージ55に載置された被検物54を照明する。このときの被検物54からの光は、対物レンズ56、ハーフミラー57、ハーフミラー70、レンズ58を経由してCCDカメラ59へ導かれる。これにより、CCDカメラ59を介して被検物54を撮像することができる。   In the microscopic observation apparatus including the focus detection apparatus of the present embodiment configured as described above, first, the light emitted from the white LED that is the light source 61 of the epi-illumination apparatus 52 is converted into the lens 62, the half mirror 70, and the half mirror. 57, the object 54 placed on the XY stage 55 is illuminated via the objective lens 56. The light from the test object 54 at this time is guided to the CCD camera 59 via the objective lens 56, the half mirror 57, the half mirror 70, and the lens 58. Thereby, the test object 54 can be imaged via the CCD camera 59.

また、焦点検出装置53では、レーザダイオード67から射出された光の一部が、遮光部材66を介して遮光される。一方、遮光部材66によって遮光されることなく通り抜けた光は、偏光ビームスプリッタ64、レンズ63、λ/4板65、ハーフミラー57、対物レンズ58を経由して、被検物54へ導かれる。このときの被検物54からの反射光は、対物レンズ58、ハーフミラー57、λ/4板65、レンズ63、偏光ビームスプリッタ64を経由して、受光素子69側に導かれる。   In the focus detection device 53, a part of the light emitted from the laser diode 67 is shielded through the light shielding member 66. On the other hand, the light passing through without being blocked by the light blocking member 66 is guided to the test object 54 via the polarization beam splitter 64, the lens 63, the λ / 4 plate 65, the half mirror 57, and the objective lens 58. The reflected light from the test object 54 at this time is guided to the light receiving element 69 side via the objective lens 58, the half mirror 57, the λ / 4 plate 65, the lens 63, and the polarization beam splitter 64.

ここで、焦点検出装置53において、マイクロプレート54aの底面部54a1からの反射光が受光素子69へ入射する状態は、底面部54a1の2つの表面位置と対物レンズ58の焦点位置との関係において次のように変化する。   Here, in the focus detection device 53, the state in which the reflected light from the bottom surface portion 54a1 of the microplate 54a enters the light receiving element 69 is as follows in relation to the two surface positions of the bottom surface portion 54a1 and the focal position of the objective lens 58. It changes as follows.

まず、底面部54a1における培養液54b及び細胞と接する側の表面54a11に対物レンズ58の焦点位置を合わせる場合(以下、対物レンズ58の焦点を合わせる表面を目的表面と称す。)において、目的表面54a11近傍に対物レンズ58の焦点が位置するときは、図12に示すように、焦点検出装置53の光路を辿る。
すなわち、レーザダイオード67から発してマイクロプレート54aの底面部54a1で反射された光のうち、目的表面54a11で反射された光は、対物レンズ58を透過した後、受光素子69である2分割フォトディテクター上の結像点71に結像する。一方、目的表面54a11に対向する表面54a12で反射された光は、結像点71よりも遠い結像点73で結像する。
First, when the focal position of the objective lens 58 is aligned with the surface 54a11 in contact with the culture solution 54b and the cells in the bottom surface portion 54a1 (hereinafter, the surface on which the objective lens 58 is focused is referred to as a target surface), the target surface 54a11. When the focus of the objective lens 58 is located in the vicinity, the optical path of the focus detection device 53 is traced as shown in FIG.
That is, of the light emitted from the laser diode 67 and reflected by the bottom surface portion 54a1 of the microplate 54a, the light reflected by the target surface 54a11 passes through the objective lens 58 and then is a two-divided photodetector as the light receiving element 69. The image is formed at the upper image formation point 71. On the other hand, the light reflected by the surface 54 a 12 facing the target surface 54 a 11 forms an image at an image point 73 farther from the image point 71.

したがって、図13に示すように、目的表面54a11で反射された光は、ほぼ点に近い状態に集光して2分割フォトディテクターに入射し、2分割フォトディテクターの双方の受光部69a,69bで均等な光量が検出される。一方、表面54a12で反射された光は、結像しない状態で2分割フォトディテクター側に向かうが、点光源67から発せられて表面54a12で反射しうる光のうち2分割フォトディテクターに入射しうる領域の光は、マスク手段66の第2の遮光部66bによって遮光され、表面54a12で反射されない。このため、表面54a12で反射された光は、そのすべてが、2分割フォトディテクターから外れた位置を通る。   Therefore, as shown in FIG. 13, the light reflected by the target surface 54a11 is condensed in a state almost close to a point, enters the two-divided photodetector, and is received by both light receiving portions 69a and 69b of the two-divided photodetector. A uniform amount of light is detected. On the other hand, the light reflected by the surface 54a12 travels toward the two-divided photodetector without being imaged. However, the light emitted from the point light source 67 and reflected by the surface 54a12 can enter the two-divided photodetector. Is shielded by the second light shield 66b of the mask means 66 and is not reflected by the surface 54a12. For this reason, all of the light reflected by the surface 54a12 passes through a position outside the two-divided photodetector.

一方、底面部54a1における培養液54b及び細胞と接する側とは反対側の表面54a12に対物レンズ58の焦点位置を合わせる場合において、目的表面54a12近傍に対物レンズ58の焦点が位置するときは、図14に示すように、焦点検出装置53の光路を辿る。
すなわち、レーザダイオード67から発してマイクロプレート54aの底面部54a1で反射された光のうち、目的表面54a12で反射された光は、対物レンズ58を透過した後、受光素子69である2分割フォトディテクター上の結像点73’に結像する。一方、目的表面54a12に対向する表面54a11で反射された光は、結像点73’よりも近い結像点71’で結像する。
On the other hand, in the case where the focal position of the objective lens 58 is adjusted to the surface 54a12 opposite to the side in contact with the culture solution 54b and the cells in the bottom surface portion 54a1, the focus of the objective lens 58 is positioned in the vicinity of the target surface 54a12. 14, the optical path of the focus detection device 53 is traced.
That is, of the light emitted from the laser diode 67 and reflected by the bottom surface portion 54a1 of the microplate 54a, the light reflected by the target surface 54a12 passes through the objective lens 58 and then is a two-divided photodetector as the light receiving element 69. The image is formed at the upper image formation point 73 ′. On the other hand, the light reflected by the surface 54a11 facing the target surface 54a12 forms an image at an image forming point 71 ′ closer to the image forming point 73 ′.

したがって、図15に示すように、目的表面54a12で反射された光は、ほぼ点に近い状態に集光して2分割フォトディテクターに入射し、2分割フォトディテクターの双方の受光部69a,69bで均等な光量が検出される。一方、表面54a11で反射された光は、2分割フォトディテクター側に向かうが、点光源67から発せられて表面54a11で反射しうる光のうち2分割フォトディテクターに入射しうる領域の光は、マスク手段66の第2の遮光部66bによって遮光され、表面54a11で反射されない。このため、表面54a11で反射された光は、そのすべてが、2分割フォトディテクターから外れた位置を通る。   Therefore, as shown in FIG. 15, the light reflected by the target surface 54a12 is condensed in a state substantially close to a point, enters the two-divided photodetector, and is received by both light receiving portions 69a and 69b of the two-divided photodetector. A uniform amount of light is detected. On the other hand, the light reflected by the surface 54a11 is directed toward the two-divided photodetector, but the light in the region that can be incident on the two-divided photodetector out of the light emitted from the point light source 67 and reflected by the surface 54a11 is masked. The light is shielded by the second light shielding part 66b of the means 66 and is not reflected by the surface 54a11. For this reason, all of the light reflected by the surface 54a11 passes through a position away from the two-divided photodetector.

このようにして被検物54の目的表面からの反射光だけを受光した2分割フォトディテクター69は、前記反射光の光量情報を捉え、焦点合わせ信号として不図示の制御部へ出力する。そして、この制御部はこの焦点合わせ信号に基づき、(A−B)/(A十B)なる評価関数を計算する。焦点検出装置における2分割フォトディテクターによって検出される光量変化の一例を図16のグラフに示す。また、図17に図16のデータに基づいて行った評価関数計算値の一例をグラフに示す。図17のグラフにおいて、横軸が被検物54と対物レンズの相対距離、縦軸が焦点合わせ評価値である。焦点合わせは、この評価関数計算値が0となるように駆動部60を介して対物レンズ58を上下させる。評価関数計算値が0となる位置に対物レンズ58が移動したときに対物レンズ58の焦点が被検物54の目的表面に位置し合焦が達成される。   In this way, the two-divided photodetector 69 that receives only the reflected light from the target surface of the test object 54 captures the light quantity information of the reflected light and outputs it as a focusing signal to a control unit (not shown). And this control part calculates the evaluation function of (AB) / (A + B) based on this focusing signal. An example of the change in the amount of light detected by the two-divided photodetector in the focus detection apparatus is shown in the graph of FIG. FIG. 17 is a graph showing an example of the evaluation function calculated value based on the data of FIG. In the graph of FIG. 17, the horizontal axis represents the relative distance between the test object 54 and the objective lens, and the vertical axis represents the focusing evaluation value. In focusing, the objective lens 58 is moved up and down via the drive unit 60 so that the evaluation function calculation value becomes zero. When the objective lens 58 moves to a position where the evaluation function calculation value becomes 0, the focal point of the objective lens 58 is positioned on the target surface of the test object 54, and focusing is achieved.

このように図9の焦点検出装置によれば、焦点合わせ用光源67から発した光は、マスク手段66を介してサンプル容器底面部に照射され、目的としない側の表面からの反射光が排除されるので、点光源67から発されて目的表面からの反射する光だけを、受光素子で検出することができる。このため、目的としない側の表面からの反射光が外乱光として、焦点合わせ信号に悪影響を及ぼすことなく、高精度な焦点合わせを行うことができるようになる。   As described above, according to the focus detection apparatus of FIG. 9, the light emitted from the focusing light source 67 is applied to the bottom surface of the sample container through the mask means 66, and the reflected light from the surface on the non-target side is excluded. Therefore, only the light emitted from the point light source 67 and reflected from the target surface can be detected by the light receiving element. For this reason, the reflected light from the surface on the non-target side becomes disturbance light, and high-precision focusing can be performed without adversely affecting the focusing signal.

ここで、本件出願人は、図9の焦点検出装置において、点光源67から発せられて目的としない側の表面からの反射光のうち2分割フォトディテクターに入射しうる領域の光が、マスク手段66における第2の遮光部66bによって遮光される点について着目した。
即ち、図9の発明においては第2の遮光部66bによって遮光される分、第2の遮光部66bを設けない場合に比べて、マスク手段66を透過したときの光量が少なくなる。ところで、第2の遮光部66bで遮光される領域を通る光は、第2の遮光部66bを設けない場合には外乱光として焦点合わせに影響を与える光である。ここで、この第2の遮光部66bで遮光される領域を通る光を目的表面からの反射光となるべき光として用いることができるようにすれば、目的としない側の表面からの反射光を減らすことができるとともに、目的表面からの反射光が2分割フォトディテクターに入射する強度を強くすることができるので、より高精度な焦点合わせを行うことができるようになる。
Here, in the focus detection apparatus of FIG. 9, the applicant of the present invention is directed to mask means in which light in a region that can be incident on the two-divided photodetector out of reflected light from the surface on the non-target side that is emitted from the point light source 67 is masked. Attention is paid to the point where the second light shielding part 66b in FIG.
That is, in the invention shown in FIG. 9, the amount of light transmitted through the mask means 66 is reduced by the amount of light shielded by the second light shield 66b, compared to the case where the second light shield 66b is not provided. By the way, the light passing through the region shielded by the second light shield 66b is light that affects the focusing as disturbance light when the second light shield 66b is not provided. Here, if the light passing through the region shielded by the second light shielding portion 66b can be used as the light to be reflected from the target surface, the reflected light from the surface on the non-target side can be used. In addition to reducing the intensity, the intensity of the reflected light from the target surface incident on the two-divided photodetector can be increased, so that more accurate focusing can be performed.

しかるに、本件出願人は、点光源67からの光束が図9の焦点検出装置におけるマスク手段66を介して遮光される領域から外れた位置を通るように、点光源67からの光束の位置を調節すれば、マスク手段66において第2の遮光部66bを設けた場合と同様に、焦点合わせ信号に外乱光の悪影響を及ぼすことをなくす効果が得られ、点光源67からの光束を有効利用でき、しかも2分割フォトディテクターに入射する強度が強くなり、より高精度な焦点合わせを行うことができるようになることに気がついた。
また、対物レンズの瞳径は、一般に低倍率になるほど大きく、高倍率になるにしたがって小さくなるので、照明用光源からの光束の位置を調整できるようにすることにより、本件出願人は、瞳径の小さい高倍率の対物レンズから瞳径の大きい低倍率の対物レンズに切り換えたときに、点光源からの光束を図8の焦点検出装置におけるマスク手段66を介して遮光される領域に入らない位置を通るように位置調整可能な本発明を導出するに至った。
However, the present applicant adjusts the position of the light beam from the point light source 67 so that the light beam from the point light source 67 passes through a position that is out of the area shielded by the mask means 66 in the focus detection apparatus of FIG. Then, as in the case where the second light shielding portion 66b is provided in the mask means 66, an effect of eliminating the adverse influence of disturbance light on the focusing signal can be obtained, and the light flux from the point light source 67 can be effectively used. In addition, it has been found that the intensity incident on the two-divided photodetector is increased, and more accurate focusing can be performed.
In addition, since the pupil diameter of the objective lens is generally larger as the magnification becomes lower and becomes smaller as the magnification becomes higher, the applicant can adjust the position of the light beam from the illumination light source. When the objective lens with a small magnification and a low magnification objective lens with a large pupil diameter are switched, the light beam from the point light source does not enter the area where the light is shielded via the mask means 66 in the focus detection device of FIG. It came to derive | lead-out this invention which can adjust position so that it may pass.

第一実施形態
図1は本発明の第一実施形態にかかる焦点検出装置の概略構成を示す説明図である。図2は図1の焦点検出装置におけるマスク手段で遮光されない照明光束が、光束入射位置調節手段を介して、対物レンズの瞳位置における入射位置を対物レンズの瞳径に応じた瞳内の所定位置に調節される状態を示す説明図で、(a)は上方から見た図、(b)は側方から見た図である。図3は図1の焦点検出装置に用いられている光束入射位置調節手段の構成を示す分解斜視図である。図4は光束入射位置調節手段による光束入射位置調節の原理説明図である。図5は光束入射位置調節手段による光束入射位置調節の一数値例を示す説明図である。図6は光束入射位置調節手段を構成するプリズムの屈折率n=1.51として径が2mmの光束のマージナル光線が対物レンズの瞳位置において光軸から4mmの位置に入射するようにする場合における、光束入射位置調節手段を構成するプリズムの傾斜面間の間隔と、光軸とプリズムの傾斜面とのなす角度との関係を示すグラフである。なお、説明の便宜上、図1では光束入射位置調節手段を光軸周りに90度回転させた状態で示してある。
First Embodiment FIG. 1 is an explanatory diagram showing a schematic configuration of a focus detection apparatus according to a first embodiment of the present invention. FIG. 2 shows an illumination light beam not shielded by the mask means in the focus detection apparatus of FIG. 1 through the light beam incident position adjusting means, with the incident position at the pupil position of the objective lens being a predetermined position in the pupil corresponding to the pupil diameter of the objective lens. FIG. 4 is an explanatory diagram showing a state adjusted to (a), (a) is a view seen from above, and (b) is a view seen from the side. FIG. 3 is an exploded perspective view showing the configuration of the light beam incident position adjusting means used in the focus detection apparatus of FIG. FIG. 4 is a diagram for explaining the principle of adjusting the light beam incident position by the light beam incident position adjusting means. FIG. 5 is an explanatory view showing a numerical example of the light beam incident position adjustment by the light beam incident position adjusting means. FIG. 6 shows a case in which a marginal ray of a light beam having a diameter of 2 mm is incident at a position 4 mm from the optical axis at the pupil position of the objective lens with a refractive index n = 1.51 of the prism constituting the light beam incident position adjusting means. 5 is a graph showing the relationship between the interval between the inclined surfaces of the prisms constituting the light beam incident position adjusting means and the angle formed by the optical axis and the inclined surface of the prisms. For convenience of explanation, FIG. 1 shows the light beam incident position adjusting means rotated 90 degrees around the optical axis.

第一実施形態の焦点検出装置は、焦点検出用光源1と、コリメートレンズ2と、マスク手段3と、光束入射位置調節手段4と、偏光ビームスプリッタ5と、λ/4板6と、対物レンズ7と、偏光ビームスプリッタ5の反射光路上に配置された結像レンズ8と、光検出器9を有している。なお、図1中、10は対物レンズの入射瞳であり、Sは被検出表面を有する透明基板である。
焦点検出用光源1は、例えば、レーザダイオードなどの点光源で構成されていて、被検物としての透明基板(例えば、マイクロプレートの表面部又は底面部)Sの目的表面S1に対して合焦信号を生成するための照明光を発するようになっている。
コリメートレンズ2は、焦点検出用光源1からの光を平行光束に変換する。
マスク手段3は、点光源1から発せられた照明光の光束のうち光軸X1に沿う仮想平面(図1では光軸X1を含む紙面に垂直な平面)で分割したときの一方の領域を通る光束を遮光することが可能な形状及び大きさに形成されている。本実施形態では、マスク手段3は矩形形状に形成されている。なお、この一方の領域の光束を遮光することができる形状であればどのような形状でもよい。
偏光ビームスプリッタ5は、入射光のうちS偏光又はP偏光のいずれか一方の直線偏光成分を透過し、他方の直線偏光成分を反射する。
λ/4板6は、偏光ビームスプリッタ5の透過光路上に配置されており、偏光ビームスプリッタ5からの一方の直線偏光を円偏光に変換し、また、対物レンズ7からの円偏光を直線偏光を他方の直線偏光に変換する。
光検出器9は、2分割フォトダイオードで構成されている。2分割フォトダイオードは、2つの受光部9a,9bを有している。2つの受光部は、光軸X2に沿う仮想平面(図1では光軸X2を含む紙面に垂直な平面)を挟んで対称に配置されている。
The focus detection apparatus of the first embodiment includes a focus detection light source 1, a collimator lens 2, a mask means 3, a light beam incident position adjustment means 4, a polarization beam splitter 5, a λ / 4 plate 6, and an objective lens. 7, an imaging lens 8 disposed on the reflected light path of the polarization beam splitter 5, and a photodetector 9. In FIG. 1, 10 is an entrance pupil of the objective lens, and S is a transparent substrate having a surface to be detected.
The focus detection light source 1 is composed of a point light source such as a laser diode, for example, and is focused on a target surface S1 of a transparent substrate (for example, a surface portion or a bottom surface portion of a microplate) S as a test object. Illumination light for generating a signal is emitted.
The collimator lens 2 converts the light from the focus detection light source 1 into a parallel light beam.
The mask means 3 passes through one region when the illumination light beam emitted from the point light source 1 is divided by a virtual plane along the optical axis X1 (a plane perpendicular to the paper surface including the optical axis X1 in FIG. 1). It is formed in a shape and size that can block the light beam. In the present embodiment, the mask means 3 is formed in a rectangular shape. It should be noted that any shape is possible as long as the light flux in this one region can be shielded.
The polarization beam splitter 5 transmits one of linearly polarized light components of incident light, either S-polarized light or P-polarized light, and reflects the other linearly polarized light component.
The λ / 4 plate 6 is disposed on the transmission optical path of the polarizing beam splitter 5, converts one linearly polarized light from the polarizing beam splitter 5 into circularly polarized light, and converts the circularly polarized light from the objective lens 7 into linearly polarized light. Is converted into the other linearly polarized light.
The photodetector 9 is composed of a two-divided photodiode. The two-divided photodiode has two light receiving portions 9a and 9b. The two light receiving parts are arranged symmetrically with a virtual plane along the optical axis X2 (a plane perpendicular to the paper surface including the optical axis X2 in FIG. 1) interposed therebetween.

光束位置調整手段4は、第1のプリズム4aと、第2のプリズム4bとで構成されている。第1のプリズム4aは、入射側が平面4a1、出射側が光軸X1に対称なV字形状に凹んだ傾斜面4a2で構成されている。第2のプリズム4bは、入射側が第1のプリズム4aの傾斜面4a2のV字形状に一致する光軸X1に対称なV字形状に突出した傾斜面4b1、出射側が平面4b2で構成されている。
第1のプリズム4aと第2のプリズム4bは、傾斜面4a2と傾斜面4b1とが互いに対向した状態で配置され、傾斜面4a2,4b1の間隔を調節可能に構成されている。
また、第1のプリズム4aと第2のプリズム4bは、焦点検出用光束を光軸X1に対称に分離するとともに、傾斜面4a2,4b1の間隔を調節することによって、分離した2つの光束の間隔を調節するように構成されている。
The light beam position adjusting means 4 is composed of a first prism 4a and a second prism 4b. The first prism 4a is composed of a plane 4a1 on the incident side and an inclined surface 4a2 that is recessed in a V shape symmetrical on the output side with respect to the optical axis X1. The second prism 4b is configured with an inclined surface 4b1 protruding in a V shape symmetrical to the optical axis X1 coincident with the V shape of the inclined surface 4a2 of the first prism 4a on the incident side, and a flat surface 4b2 on the output side. .
The first prism 4a and the second prism 4b are arranged in a state where the inclined surface 4a2 and the inclined surface 4b1 face each other, and are configured such that the interval between the inclined surfaces 4a2 and 4b1 can be adjusted.
The first prism 4a and the second prism 4b separate the focus detection light beam symmetrically with respect to the optical axis X1 and adjust the distance between the inclined surfaces 4a2 and 4b1 to thereby separate the two separated light beams. Configured to adjust.

そして、光束入射位置調節手段4は、第1のプリズム4aと第2のプリズム4bの間隔を調整することにより、対物レンズ7の瞳10の位置における焦点検出用光束の入射位置を対物レンズ7の瞳10の径に応じた瞳10内の所定位置に調節することができるようになっている。
なお、ここでは、光束入射位置調節手段4は、瞳径の大きい対物レンズに切り換えたとき、被検物としての透明基板(例えば、マイクロプレートの表面部又は底面部)Sにおける2つの表面のうち目的表面S1近傍に対物レンズ7の焦点が位置するとき、目的表面S1からの反射光が2分割フォトダイオードの2つの受光部に入射するとともに他方の表面からの反射光が第2の仮想平面で分割したときの一方の領域における当該領域に配置された受光部を外れた領域を通るような対物レンズ7の瞳10内の所定位置に、対物レンズ7の瞳10の位置における焦点検出用光束の入射位置を調節可能に構成されている(図2(a))。
Then, the light beam incident position adjusting means 4 adjusts the distance between the first prism 4 a and the second prism 4 b, thereby determining the incident position of the focus detection light beam at the position of the pupil 10 of the objective lens 7. It can be adjusted to a predetermined position in the pupil 10 according to the diameter of the pupil 10.
Here, when the light beam incident position adjusting means 4 is switched to an objective lens having a large pupil diameter, of the two surfaces on the transparent substrate (for example, the surface portion or the bottom surface portion of the microplate) S as the test object. When the focal point of the objective lens 7 is located in the vicinity of the target surface S1, the reflected light from the target surface S1 is incident on the two light receiving portions of the two-divided photodiode, and the reflected light from the other surface is on the second virtual plane. The focus detection light beam at the position of the pupil 10 of the objective lens 7 is placed at a predetermined position in the pupil 10 of the objective lens 7 so as to pass through an area outside the light receiving unit arranged in the one area when divided. The incident position can be adjusted (FIG. 2 (a)).

ここで、光束入射位置調節手段4による光束入射位置調節の原理を、図4に示す第1のプリズム4aと第2のプリズム4bとの距離による分離された光束のシフト量との関係から説明する。なお、説明の便宜上、図2(a)に示した光束のうちの光軸X1から上側の部分について説明することとする。   Here, the principle of the light beam incident position adjustment by the light beam incident position adjusting means 4 will be described from the relationship between the shift amount of the separated light beams depending on the distance between the first prism 4a and the second prism 4b shown in FIG. . For convenience of description, the upper part of the light beam shown in FIG. 2A from the optical axis X1 will be described.

図4に示すように、第1のプリズム4aと第2のプリズム4bとの面間隔をd、第1のプリズム4aに入射する光束の光軸X1からのマージナル光線の光線高をh1、第1のプリズム4aの出射面(傾斜面)4a2と光軸X1とのなす角度をθ、第1のプリズム4aの出射面(傾斜面)4a2に垂直な直線と光軸とのなす角度をα、第1のプリズム4aの出射面(傾斜面)4a2及び第2のプリズム4bの入射面(傾斜面)4b1に垂直な直線と第1のプリズム4aの出射面(傾斜面)4a2で屈折して出射するマージナル光線とのなす角度をβ、第1のプリズム4aの出射面(傾斜面)4a2で屈折して出射するマージナル光線と光軸X1とのなす角度をγ、第1のプリズム4aの出射面(傾斜面)4a2及び第2のプリズム4bの入射面(傾斜面)4b1に垂直な線と、第1のプリズム4aの出射面(傾斜面)4a2と第2のプリズム4bの入射面(傾斜面)4b1との交点間の長さをl、第1のプリズム4aの出射面(傾斜面)4a2で屈折して出射するマージナル光線の第2のプリズムの入射面(傾斜面)4b1までの長さをl1、第1のプリズム4a及び第2のプリズム4bの屈折率をnとすると、
α=π/2−θ
β=sin-1[nsin(π/2−θ)]
l=dsinθ
l/l1=cosβ よってl1=l/cosβ
γ=β−α
=β−(π/2−θ)
=β+θ−(π/2)
と表すことができる。
As shown in FIG. 4, the surface interval between the first prism 4a and the second prism 4b is d, the light ray height of the marginal light beam from the optical axis X1 of the light beam incident on the first prism 4a is h 1 , The angle formed between the exit surface (inclined surface) 4a2 of the first prism 4a and the optical axis X1 is θ, and the angle formed between the straight line perpendicular to the exit surface (inclined surface) 4a2 of the first prism 4a and the optical axis is α, The light is refracted by the straight line perpendicular to the exit surface (inclined surface) 4a2 of the first prism 4a and the entrance surface (inclined surface) 4b1 of the second prism 4b and the exit surface (inclined surface) 4a2 of the first prism 4a. Β is an angle formed with the marginal light beam to be emitted, γ is an angle formed between the marginal light beam refracted by the emission surface (inclined surface) 4a2 of the first prism 4a and the optical axis X1, and the emission surface of the first prism 4a. (Inclined surface) 4a2 and incident surfaces of the second prism 4b ( The length between the line perpendicular to the (slope) 4b1 and the intersection of the exit surface (inclined surface) 4a2 of the first prism 4a and the entrance surface (inclined surface) 4b1 of the second prism 4b is l, the first prism The length of the marginal ray refracted by the exit surface (inclined surface) 4a2 of 4a to the entrance surface (inclined surface) 4b1 of the second prism is l 1 , and the lengths of the first prism 4a and the second prism 4b If the refractive index is n,
α = π / 2−θ
β = sin −1 [nsin (π / 2−θ)]
l = dsinθ
l / l 1 = cosβ Therefore l 1 = l / cosβ
γ = β-α
= Β- (π / 2-θ)
= Β + θ− (π / 2)
It can be expressed as.

また、第1のプリズム4aの出射面(傾斜面)4a2で屈折して出射するマージナル光線の第2のプリズムの入射面(傾斜面)4b1との交点に第1のプリズム4aに入射する光束の光軸X1からマージナル光線(の延長線)までの垂直な距離をh2とすると、
2=l1sinγ
=l1sin[β+θ−(π/2)]
=(l/cosβ)sin[β+θ−(π/2)]
=(dsinθ/cosβ)sin[β+θ−(π/2)]
よって、
d=h2(cosβ/sinθ)sin[β+θ−(π/2)]
となる。
Further, the light beam incident on the first prism 4a at the intersection point of the marginal light ray refracted and emitted from the emission surface (inclined surface) 4a2 of the first prism 4a with the incident surface (inclined surface) 4b1 of the second prism. When the vertical distance from the optical axis X1 until the marginal ray (extension) of the h 2,
h 2 = l 1 sin γ
= L 1 sin [β + θ− (π / 2)]
= (L / cosβ) sin [β + θ− (π / 2)]
= (Dsinθ / cosβ) sin [β + θ− (π / 2)]
Therefore,
d = h 2 (cos β / sin θ) sin [β + θ− (π / 2)]
It becomes.

図5に光束入射位置調節手段4による光束入射位置調節の一数値例を示す。
図5の例では、第1のプリズム4a、第2のプリズム4bの屈折率n=1.51、傾斜第1のプリズム4aの出射面(傾斜面)4a2と光軸X1とのなす角度が60度である。第1のプリズム4aの出射面(傾斜面)4a2と第2のプリズム4bの入射面4b1との間隔を0.74mmあけると、径が2mmの光束のマージナル光線が対物レンズ7の瞳10の位置において光軸から4mmの位置に入射することができるようになっている。
そこで、対物レンズ7の瞳10の径が10mmであるような場合、図5に示すように構成された光束入力位置調節手段4のプリズム4a,4bの傾斜面4b2,4b1の間隔を調節することで、入射光束をノイズとはならない好適な位置に調節できる。
FIG. 5 shows a numerical example of the light beam incident position adjustment by the light beam incident position adjusting means 4.
In the example of FIG. 5, the refractive index n = 1.51 of the first prism 4a and the second prism 4b, and the angle formed by the exit surface (inclined surface) 4a2 of the tilted first prism 4a and the optical axis X1 is 60. Degree. When the distance between the exit surface (inclined surface) 4a2 of the first prism 4a and the entrance surface 4b1 of the second prism 4b is 0.74 mm, a marginal ray of a light beam having a diameter of 2 mm is positioned at the pupil 10 of the objective lens 7. Can be incident at a position of 4 mm from the optical axis.
Therefore, when the diameter of the pupil 10 of the objective lens 7 is 10 mm, the interval between the inclined surfaces 4b2 and 4b1 of the prisms 4a and 4b of the light beam input position adjusting means 4 configured as shown in FIG. 5 is adjusted. Thus, the incident light beam can be adjusted to a suitable position that does not cause noise.

なお、光束入射位置調整手段4を構成するプリズム4a,4bに形成する傾斜面4b2,4b1の光軸X1に対する角度は、図5の例に限定されるものではない。例えば、図6に示すように、光軸X1に対するプリズム4a,4bの傾斜面4a2,4b1の角度に応じて、プリズム4a,4bの傾斜面間の距離を調節することで、対物レンズ7における瞳10内の所定位置に光束の位置を調節することが可能である。   The angles of the inclined surfaces 4b2 and 4b1 formed on the prisms 4a and 4b constituting the light beam incident position adjusting unit 4 with respect to the optical axis X1 are not limited to the example in FIG. For example, as shown in FIG. 6, the pupil of the objective lens 7 is adjusted by adjusting the distance between the inclined surfaces of the prisms 4a and 4b according to the angles of the inclined surfaces 4a2 and 4b1 of the prisms 4a and 4b with respect to the optical axis X1. It is possible to adjust the position of the light beam to a predetermined position in the area 10.

このように構成された第一実施形態の焦点検出装置では、まず、焦点検出用光源1から射出された光が、コリメートレンズ2で平行光束に変換される。変換された光束のうちの光軸X1に沿う第1の仮想平面で分割したときの一方の領域を通る光束がマスク手段3を介して遮光される。一方、マスク手段3によって遮光されることなく通り抜けた光束は、図2(a)、図2(b)に示すように、光束入射位置調節手段4を介して、対物レンズ7の瞳10の位置における焦点検出用光束が対物レンズ7の瞳10の径に応じた瞳10内の所定位置に入射するように調節される。位置を調節された光は、偏光ビームスプリッタ5に入射する。偏光ビームスプリッタ5を透過した一方の直線偏光がλ/4板6で円偏光に変換され、対物レンズ7を介して被検物を照明する。そして、被検物で反射した光束は、対物レンズ7を通り、λ/4板6で他方の直線偏光に変換され、偏光ビームスプリッタ5で反射され、結像レンズ8を経て光検出器9に導かれる。   In the focus detection apparatus of the first embodiment configured as described above, first, light emitted from the focus detection light source 1 is converted into a parallel light beam by the collimator lens 2. Of the converted luminous flux, the luminous flux passing through one region when divided by the first virtual plane along the optical axis X <b> 1 is shielded through the mask means 3. On the other hand, the light beam that has passed through without being shielded by the mask means 3 is, as shown in FIGS. 2 (a) and 2 (b), the position of the pupil 10 of the objective lens 7 via the light beam incident position adjusting means 4. Is adjusted so that the focus detection light beam at is incident on a predetermined position in the pupil 10 corresponding to the diameter of the pupil 10 of the objective lens 7. The light whose position has been adjusted enters the polarization beam splitter 5. One linearly polarized light transmitted through the polarizing beam splitter 5 is converted into circularly polarized light by the λ / 4 plate 6 and illuminates the test object through the objective lens 7. Then, the light beam reflected by the test object passes through the objective lens 7, is converted into the other linearly polarized light by the λ / 4 plate 6, is reflected by the polarization beam splitter 5, passes through the imaging lens 8, and passes to the photodetector 9. Led.

ここで、第一実施形態の焦点検出装置では、光束入射調節手段4が、互いに対向した状態で配置された傾斜面4a2,4b1を有し、且つ、傾斜面4a2,4b1の間隔を調節可能な第1のプリズム4a、第2のプリズム4bで構成されており、第1のプリズム4a、第2のプリズム4bの傾斜面4a2,4b1の間隔を調節することにより、対物レンズ7の瞳10の位置における焦点検出用光束の入射位置を対物レンズ7の瞳10の径に応じた瞳10内の所定位置に調節可能に構成されている。   Here, in the focus detection apparatus of the first embodiment, the light beam incidence adjusting means 4 has the inclined surfaces 4a2 and 4b1 arranged in a state of facing each other, and the interval between the inclined surfaces 4a2 and 4b1 can be adjusted. The first prism 4a and the second prism 4b are configured, and the position of the pupil 10 of the objective lens 7 is adjusted by adjusting the interval between the inclined surfaces 4a2 and 4b1 of the first prism 4a and the second prism 4b. The incident position of the focus detection light beam at is adjustable to a predetermined position in the pupil 10 corresponding to the diameter of the pupil 10 of the objective lens 7.

したがって、第1のプリズム4a、第2のプリズム4bの傾斜面4a2,4b1の間隔を調節することにより、例えば、被検物である透明基板の第1又は第2の表面のうち一方の表面近傍に対物レンズ7の焦点が位置するときに、一方の表面からの反射光が光検出器9における2つの受光部に入射するとともに他方の表面からの反射光が第2の仮想平面で分割したときの一方の領域における当該領域に配置された受光部を外れた領域を通るような対物レンズ7の瞳10内の所定位置に、対物レンズ7の瞳10位置における瞳10内の焦点検出用光束の入射位置を調節することができる。   Therefore, by adjusting the distance between the inclined surfaces 4a2 and 4b1 of the first prism 4a and the second prism 4b, for example, in the vicinity of one surface of the first or second surface of the transparent substrate that is the test object When the focal point of the objective lens 7 is located, the reflected light from one surface is incident on the two light receiving portions in the photodetector 9 and the reflected light from the other surface is divided by the second virtual plane. Of the focus detection light beam in the pupil 10 at the position of the pupil 10 of the objective lens 7 at a predetermined position in the pupil 10 of the objective lens 7 so as to pass through a region outside the light receiving portion arranged in the region in one of the regions. The incident position can be adjusted.

このため、第一実施形態の焦点検出装置によれば、瞳径が異なる対物レンズに切り換えても、レーザ光を調光することなく、レーザ光束の径を対物レンズの瞳径に合わせて最適化でき、しかも、瞳径の大きな対物レンズに切り換えたときに、透明基板における焦点合わせの対象となっていない側の表面からの反射光による影響を極力排除しながら、透明基板における焦点合わせの対象となっている側の表面からの反射光量を高い検出感度で検出して、この焦点合わせの対象となっている側の表面に焦点合わせを行うことができる。   For this reason, according to the focus detection apparatus of the first embodiment, the laser beam diameter is optimized to match the pupil diameter of the objective lens without dimming the laser light even when switching to an objective lens having a different pupil diameter. In addition, when switching to an objective lens having a large pupil diameter, the influence of the reflected light from the surface that is not the object of focusing on the transparent substrate is eliminated as much as possible, and the object of focusing on the transparent substrate is It is possible to detect the amount of reflected light from the surface on the side with high detection sensitivity and perform focusing on the surface on the side to be focused.

第二実施形態
図7は本発明の第二実施形態にかかる焦点検出装置の概略構成を側方からみた説明図で、(a)は瞳径の大きな対物レンズを用いた場合における、光束入射位置調節手段による光束入射位置の調節状態を示す図、(b)は透明基板の焦点合わせの対象になっている側の表面で反射された光と焦点合わせの対象となっていない側の表面で反射された光に関し、(a)の状態での2分割フォトディテクターとの位置関係を示す図であり、(c)は瞳径の小さな対物レンズを用いた場合における、光束入射位置調節手段による光束入射位置の調節状態を示す図である。
第二実施形態の焦点検出装置では、光束入射位置調節手段4は、互いの上下を逆向きにして配置された、頂角の等しい2つのプリズム4a’,4b’で構成されている。
第1のプリズム4a’は、入射側が平面4a1’、出射側が傾斜面4a2’で構成されている。
第2のプリズム4b’は、入射側が傾斜面4a2’に平行な傾斜面4b1’、出射側が平面4b2’で構成されている。
また、第1のプリズム4a’と第2のプリズム4b’は、傾斜面4a2’,4b1’の間隔を調節することによって、焦点検出用光束を光軸X1と垂直な方向にシフトするように構成されている。
そして、光束入射位置調節手段4は、第1のプリズム4aと第2のプリズム4bの間隔を調整することにより、対物レンズ7の瞳10の位置における焦点検出用光束の入射位置を対物レンズ7の瞳10の径に応じた瞳10内の所定位置に調節することができるようになっている。
その他の構成は、第一実施形態の焦点検出装置と略同じである。
Second Embodiment FIG. 7 is an explanatory view of a schematic configuration of a focus detection apparatus according to a second embodiment of the present invention as seen from the side, and (a) shows a light beam incident position when an objective lens having a large pupil diameter is used. The figure which shows the adjustment state of the light beam incident position by the adjusting means, (b) is the light reflected on the surface of the transparent substrate that is the object of focusing and the light reflected on the surface of the side that is not the object of focusing It is a figure which shows the positional relationship with the 2 division | segmentation photodetector in the state of (a) regarding the light which was made, (c) is light beam incidence by the light beam incident position adjustment means at the time of using an objective lens with a small pupil diameter It is a figure which shows the adjustment state of a position.
In the focus detection apparatus of the second embodiment, the light beam incident position adjusting means 4 is composed of two prisms 4a ′ and 4b ′ having the same apex angle, which are arranged upside down.
The first prism 4a ′ is configured with a flat surface 4a1 ′ on the incident side and an inclined surface 4a2 ′ on the output side.
The second prism 4b ′ is configured with an inclined surface 4b1 ′ parallel to the inclined surface 4a2 ′ on the incident side and a flat surface 4b2 ′ on the output side.
The first prism 4a ′ and the second prism 4b ′ are configured to shift the focus detection light beam in a direction perpendicular to the optical axis X1 by adjusting the interval between the inclined surfaces 4a2 ′ and 4b1 ′. Has been.
Then, the light beam incident position adjusting means 4 adjusts the distance between the first prism 4 a and the second prism 4 b, thereby determining the incident position of the focus detection light beam at the position of the pupil 10 of the objective lens 7. It can be adjusted to a predetermined position in the pupil 10 according to the diameter of the pupil 10.
Other configurations are substantially the same as those of the focus detection apparatus of the first embodiment.

このように構成された第二実施形態の焦点検出装置では、プリズム4a’とプリズム4b’との間隔が広がるにしたがって、プリズム4a’に入射した焦点検出用光束が光軸X1から離れる方向にシフトし、プリズム4a’とプリズム4b’との間隔が狭まるにしたがって、プリズム4a’に入射した焦点検出用光束が光軸X1に近づく方向にシフトする。
そこで、瞳径の大きい対物レンズを用いた場合には、図7(a)に示すように、プリズム4a’とプリズム4b’との間隔を広げて、焦点検出用光束の対物レンズ7の瞳10位置での入射位置を、瞳10内における光軸X1から離れた所定位置(ノイズとはならない好適な位置)に調節する。
このとき、図7(b)に示すように、透明基板の焦点合わせの対象になっている側の表面で反射された光は、ほぼ点に近い状態に集光して2分割フォトディテクターに入射し、2分割フォトディテクターの双方の受光部で均等な光量が検出される。一方、焦点合わせの対象となっていない側の表面で反射された光は、結像しない状態で2分割フォトディテクター側に向かうが、この光のうち2分割フォトディテクターに入射しうる領域の光は、そのすべてが、2分割フォトディテクターから外れた位置を通る。
一方、瞳径の小さい対物レンズを用いた場合には、図7(c)に示すように、プリズム4a’とプリズム4b’との間隔を狭めて、焦点検出用光束の対物レンズ7の瞳10位置での入射位置を、瞳10内に入るように調節する。
In the focus detection apparatus of the second embodiment configured as described above, the focus detection light beam incident on the prism 4a ′ is shifted in the direction away from the optical axis X1 as the distance between the prism 4a ′ and the prism 4b ′ increases. As the distance between the prism 4a ′ and the prism 4b ′ decreases, the focus detection light beam incident on the prism 4a ′ shifts in a direction approaching the optical axis X1.
Therefore, when an objective lens having a large pupil diameter is used, as shown in FIG. 7A, the interval between the prism 4a ′ and the prism 4b ′ is widened, and the pupil 10 of the objective lens 7 for the focus detection light beam. The incident position at the position is adjusted to a predetermined position (a suitable position that does not cause noise) in the pupil 10 away from the optical axis X1.
At this time, as shown in FIG. 7 (b), the light reflected by the surface of the transparent substrate that is the object of focusing is condensed in a state almost close to a point and is incident on the two-divided photodetector. In addition, an equal amount of light is detected by both light receiving portions of the two-divided photodetector. On the other hand, the light reflected by the surface that is not the object of focusing is directed to the two-divided photodetector without being imaged. Of this light, the light in the region that can enter the two-divided photodetector is , All of which pass through a position off the two-divided photodetector.
On the other hand, when an objective lens having a small pupil diameter is used, as shown in FIG. 7C, the distance between the prism 4a ′ and the prism 4b ′ is reduced, and the pupil 10 of the objective lens 7 for the focus detection light beam. The incident position at the position is adjusted so as to enter the pupil 10.

このため、第二実施形態の焦点検出装置によれば、第一実施形態の焦点検出装置と同様に、瞳径の異なる対物レンズに切り換えても、レーザ光を調光することなく、レーザ光束径を対物レンズの瞳径に合わせて最適化でき、しかも、瞳径の大きな対物レンズに切り換えたときでも、焦点合わせの対象となっている側の表面からの反射光量を高い検出感度で検出して、この焦点合わせの対象となっている側の表面に焦点合わせを行うことができる。
しかも、第二実施形態の焦点検出装置によれば、入射光束位置調節手段を構成するプリズムが一種類で済みしかも形状が単純であるため、その分、構成を簡単化できコスト低減に寄与できる。
Therefore, according to the focus detection device of the second embodiment, similarly to the focus detection device of the first embodiment, the laser beam diameter can be adjusted without dimming the laser light even when switching to an objective lens having a different pupil diameter. Can be optimized according to the pupil diameter of the objective lens, and even when switching to an objective lens with a large pupil diameter, the amount of reflected light from the surface on the focus target side is detected with high detection sensitivity. The focusing can be performed on the surface on the side to be focused.
In addition, according to the focus detection apparatus of the second embodiment, only one type of prism is required to form the incident light beam position adjusting means, and the shape is simple. Therefore, the configuration can be simplified and the cost can be reduced.

第三実施形態
図8(a)は本発明の第三実施形態の焦点検出装置の概略構成を示す説明図、(b)は透明基板の焦点合わせの対象になっている側の表面で反射された光と焦点合わせの対象となっていない側の表面で反射された光に関し、焦点検出装置内の光検出器である2分割フォトディテクターとの位置関係を示す図である。
第三実施形態の焦点検出装置では、光束入射位置調節手段4が、入射側が平面4a1”、出射側が光軸X1に対称な円錐形状に凹んだ傾斜面4a2”で構成された第1の円錐レンズ4a”と、入射側が第1の円錐レンズ4a”の傾斜面4a2”の凹んだ円錐形状に一致する、光軸X11に対称な円錐形状に突出した傾斜面4b1”、出射側が平面4b2”で構成された第2の円錐レンズ4b”とで構成されている。
そして、光束入射位置調節手段4は、焦点検出用光束を光軸を中心とした同心円状に変形し、円錐レンズ4a”,4b”の傾斜面4a2”,4b1”の間隔を大きくすることによって、変形した光束を光軸X1から離れる方向にシフトするようになっている。
その他の構成は、第一実施形態の焦点検出装置と略同じである。
したがって、図8(b)に示すように、透明基板の焦点合わせの対象になっている側の表面で反射された光は、ほぼ点に近い状態に集光して2分割フォトディテクターに入射し、2分割フォトディテクターの双方の受光部で均等な光量が検出される。一方、焦点合わせの対象となっていない側の表面で反射された光は、結像しない状態で2分割フォトディテクター側に向かうが、この光のうち2分割フォトディテクターに入射しうる領域の光は、そのすべてが、2分割フォトディテクターから外れた位置を通る。
Third Embodiment FIG. 8A is an explanatory view showing a schematic configuration of a focus detection apparatus according to a third embodiment of the present invention, and FIG. 8B is reflected by the surface of the transparent substrate on the side to be focused. It is a figure which shows the positional relationship with the 2 division | segmentation photodetector which is a photodetector in a focus detection apparatus regarding the light reflected on the surface of the side which is not the object of focusing with the collected light.
In the focus detection apparatus according to the third embodiment, the light beam incident position adjusting means 4 includes a first conical lens having a plane 4a1 ″ on the incident side and an inclined surface 4a2 ″ that is recessed in a conical shape symmetrical on the output side with respect to the optical axis X1. 4 a ″, the incident side is configured by the inclined surface 4 b 1 ″ protruding in a conical shape symmetrical to the optical axis X 11, which coincides with the concave conical shape of the inclined surface 4 a 2 ″ of the first conical lens 4 a ″, and the output side is configured by the plane 4 b 2 ″. Second conical lens 4b ″.
The light beam incident position adjusting means 4 transforms the focus detection light beam into a concentric shape with the optical axis as the center, and increases the interval between the inclined surfaces 4a2 ″ and 4b1 ″ of the conical lenses 4a ″ and 4b ″. The deformed light flux is shifted in a direction away from the optical axis X1.
Other configurations are substantially the same as those of the focus detection apparatus of the first embodiment.
Therefore, as shown in FIG. 8 (b), the light reflected by the surface of the transparent substrate that is the object of focusing is condensed in a state that is almost close to a point and enters the two-divided photodetector. An equal amount of light is detected by both light receiving portions of the two-divided photodetector. On the other hand, the light reflected by the surface that is not the object of focusing is directed to the two-divided photodetector without being imaged. Of this light, the light in the region that can enter the two-divided photodetector is , All of which pass through a position off the two-divided photodetector.

第三実施形態の焦点検出装置によれば、図8に示すように、対物レンズ7の瞳10内における外周部全域を検出用照明光が通る光路として使用できるので、自動焦点検出の感度が良くなる。
その他の作用効果は、第一実施形態の焦点検出装置と略同じである。
According to the focus detection device of the third embodiment, as shown in FIG. 8, since the entire area of the outer periphery in the pupil 10 of the objective lens 7 can be used as an optical path through which the illumination light for detection passes, the sensitivity of automatic focus detection is good. Become.
Other functions and effects are substantially the same as those of the focus detection apparatus of the first embodiment.

なお、上記各実施形態の焦点検出装置において、瞳径の極端に小さい対物レンズを用いた場合、焦点検出用光束は、瞳10位置において略瞳10の全範囲を含む位置に入射し、ノイズとなる光軸近傍の領域にも入射することになる。
そこで、上記各実施形態の焦点検出装置においても、マスク手段3とともに、図9の焦点検出装置において示したマスク手段66(図10)をマスク手段3と切り換え可能に備えておき、瞳径の小さい対物レンズを用いた場合には、マスク手段3からマスク手段66に切り換えるようにするのが好ましい。そのようにすれば、瞳径の小さい対物レンズを用いたときに、焦点合わせ信号に悪影響を及ぼすことなく、高精度な焦点合わせを行うことができるようになる。
In the focus detection apparatus of each of the above embodiments, when an objective lens having an extremely small pupil diameter is used, the focus detection light beam is incident on a position including substantially the entire range of the pupil 10 at the position of the pupil 10, and noise and The incident light also enters a region near the optical axis.
Therefore, also in the focus detection apparatus of each of the above embodiments, the mask means 66 (FIG. 10) shown in the focus detection apparatus of FIG. 9 can be switched to the mask means 3 together with the mask means 3, and the pupil diameter is small. When an objective lens is used, it is preferable to switch from the mask means 3 to the mask means 66. In this way, when an objective lens having a small pupil diameter is used, highly accurate focusing can be performed without adversely affecting the focusing signal.

その他、上記各実施形態の焦点検出装置では、光束入射位置調節手段4を構成する2つの光学部材としてプリズムを用いたが、プリズムの代わりにDOEを用いても良い。
そのようにすれば、光束入射位置調節手段4を構成する光学部材を小さくすることができ、光束入射位置調節手段4の配置スペースを小さくすることができる。
In addition, in the focus detection apparatus of each embodiment described above, the prism is used as the two optical members constituting the light beam incident position adjusting unit 4, but a DOE may be used instead of the prism.
By doing so, the optical member constituting the light beam incident position adjusting means 4 can be reduced, and the arrangement space of the light beam incident position adjusting means 4 can be reduced.

本発明は、例えば、自動化した顕微観察装置を用いて多数の細胞の画像を取得し、取得した画像を解析することにより統計解析結果を得ることが求められる分野に有用である。   The present invention is useful, for example, in a field where it is required to obtain a statistical analysis result by acquiring images of a large number of cells using an automated microscope observation apparatus and analyzing the acquired images.

本発明の第一実施形態にかかる焦点検出装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the focus detection apparatus concerning 1st embodiment of this invention. 図1の焦点検出装置におけるマスク手段で遮光されない照明光束が、光束入射位置調節手段を介して、対物レンズの瞳位置における入射位置を対物レンズの瞳径に応じた所定位置に調節される状態を示す説明図で、(a)は上方から見た図、(b)は側方から見た図である。The state in which the illumination light beam not shielded by the mask means in the focus detection apparatus of FIG. 1 is adjusted to a predetermined position according to the pupil diameter of the objective lens through the light beam incident position adjustment means. It is explanatory drawing shown, (a) is the figure seen from upper direction, (b) is the figure seen from the side. 図1の焦点検出装置に用いられている光束入射位置調節手段の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the light beam incident position adjustment means used for the focus detection apparatus of FIG. 光束入射位置調節手段による光束入射位置調節の原理説明図である。It is principle explanatory drawing of light beam incident position adjustment by a light beam incident position adjustment means. 光束入射位置調節手段による光束調節の一例を示す説明図である。It is explanatory drawing which shows an example of the light beam adjustment by a light beam incident position adjustment means. 光束入射位置調節手段を構成するプリズムの屈折率n=1.51として径が2mmの光束のマージナル光線が対物レンズの瞳位置において光軸から4mmの位置に入射するようにする場合における、光束入射位置調節手段を構成するプリズムの傾斜面間の間隔と、光軸とプリズムの傾斜面とのなす角度との関係を示すグラフである。Incidence of light beam when the refractive index n of the prism constituting the light beam incident position adjusting means is n = 1.51 and a marginal light beam having a diameter of 2 mm is incident at a position 4 mm from the optical axis at the pupil position of the objective lens. It is a graph which shows the relationship between the space | interval between the inclined surfaces of the prism which comprises a position adjustment means, and the angle which an optical axis and the inclined surface of a prism make. 本発明の第二実施形態にかかる焦点検出装置の概略構成を側方からみた説明図で、(a)は光束入射位置調節手段を介して入射光束の位置を平行にシフトした状態を示す図、(b)は透明基板の焦点合わせの対象になっている側の表面で反射された光と焦点合わせの対象となっていない側の表面で反射された光に関し、(a)の状態での2分割フォトディテクターとの位置関係を示す図、(c)は光束入射位置調節手段を介して入射光束の位置をシフトしない状態を示す図である。FIG. 7 is an explanatory view of a schematic configuration of a focus detection apparatus according to a second embodiment of the present invention viewed from the side, (a) is a diagram showing a state in which the position of an incident light beam is shifted in parallel via a light beam incident position adjustment unit; (b) relates to light reflected from the surface of the transparent substrate that is the object of focusing and light reflected from the surface of the side that is not the object of focusing. FIG. 5C is a diagram showing a positional relationship with the split photodetector, and FIG. 5C is a diagram showing a state where the position of the incident light beam is not shifted via the light beam incident position adjusting means. (a)は本発明の第三実施形態の焦点検出装置の概略構成を示す説明図、(b)は透明基板の焦点合わせの対象になっている側の表面で反射された光と焦点合わせの対象となっていない側の表面で反射された光に関し、焦点検出装置内の光検出器である2分割フォトディテクターとの位置関係を示す図である。(a) is an explanatory view showing a schematic configuration of the focus detection apparatus of the third embodiment of the present invention, (b) is a focus of the light reflected by the surface of the transparent substrate that is the focus target side It is a figure which shows the positional relationship with the 2 division | segmentation photodetector which is a photodetector in a focus detection apparatus regarding the light reflected by the surface of the side which is not object. 特願2007−316857号に記載の発明の一実施形態にかかる焦点検出装置を備えた顕微観察装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the microscope observation apparatus provided with the focus detection apparatus concerning one Embodiment of invention described in Japanese Patent Application No. 2007-316857. 図9の顕微観察装置に備わる焦点検出装置におけるマスク手段を構成する第1及び第2の遮光部の形状、及び(焦点検出用)照明光束における第1及び第2の遮光部で遮光されない領域と遮光される領域を示す説明図である。The shape of the first and second light shielding parts constituting the mask means in the focus detection apparatus provided in the microscopic observation apparatus of FIG. 9, and the region not shielded by the first and second light shielding parts in the illumination light beam (for focus detection) It is explanatory drawing which shows the area | region shielded. 図10に示す第1及び第2の遮光部で遮光されない領域の(焦点検出用)照明光について、透明基板における焦点合わせの対象となっている側の表面で反射された光と、焦点合わせの対象となっていない側の表面で反射された光の、2つの受光部との位置関係を示す説明図である。With respect to the illumination light (for focus detection) in the area not shielded by the first and second light shielding portions shown in FIG. 10, the light reflected from the surface of the transparent substrate on the side to be focused, It is explanatory drawing which shows the positional relationship with the two light-receiving part of the light reflected by the surface of the side which is not object. 図9の焦点検出装置において、焦点を透明基板の被検物側の面に合わせた場合における、焦点合わせの対象となっている側の表面で反射する光と、焦点合わせの対象となっていない側の表面で反射する光の経路を概念的に示す説明図である。In the focus detection apparatus of FIG. 9, when the focus is set on the surface of the transparent substrate to be tested, the light reflected by the surface on the focus target side is not the focus target. It is explanatory drawing which shows notionally the path | route of the light reflected on the surface of the side. 図12に示す状態の焦点検出装置において、透明基板における焦点検出対象となっている側と焦点検出対象となっていない側の夫々の表面で反射する光の2つの受光部近傍での入射状態を示す説明図である。In the focus detection apparatus in the state shown in FIG. 12, the incident states in the vicinity of the two light receiving portions of the light reflected by the respective surfaces of the transparent substrate on the side that is the focus detection target and the side that is not the focus detection target are shown. It is explanatory drawing shown. 図9の焦点検出装置において、焦点を透明基板の被検物側とは反対側の面に合わせた場合における、焦点合わせの対象となっている側の表面で反射する光と、焦点合わせの対象となっていない側の表面で反射する光の経路を概念的に示す説明図である。In the focus detection apparatus of FIG. 9, when the focus is set on the surface of the transparent substrate opposite to the test object side, the light reflected by the surface on the focus target side and the focus target It is explanatory drawing which shows notionally the path | route of the light reflected on the surface of the side which is not. 図14に示す状態の焦点検出装置において、透明基板における焦点検出対象となっている側と焦点検出対象となっていない側の夫々の表面で反射する光の2つの受光部近傍での入射状態を示す説明図である。In the focus detection apparatus in the state shown in FIG. 14, the incident states in the vicinity of the two light receiving portions of the light reflected by the respective surfaces of the transparent substrate on the side that is the focus detection target and the side that is not the focus detection target are shown. It is explanatory drawing shown. 図9の焦点検出装置における2つの受光部で検出される、合焦状態に応じた受光量の変化の一例を示すグラフである。It is a graph which shows an example of the change of the light reception amount according to the focusing state detected by two light-receiving parts in the focus detection apparatus of FIG. 図16に示した2つの受光部で検出された受光量に基づき計算された評価関数計算値の一例を示すグラフである。It is a graph which shows an example of the evaluation function calculation value calculated based on the light-receiving amount detected by the two light-receiving parts shown in FIG.

符号の説明Explanation of symbols

1 焦点検出用光源
2 コリメートレンズ
3 マスク手段
4 光束入射位置調節手段
4a,4a’ 第1のプリズム
4a1,4a1’,4a1” 平面
4a2 光軸に対称なV字形状に凹んだ傾斜面
4a2’ 傾斜面
4a2” 光軸に対称な円錐形状に凹んだ傾斜面
4b,4b’ 第2のプリズム
4b1 第1のプリズム4aの傾斜面4a2のV字形状に一致する光軸に対称なV字形状に突出した傾斜面
4b1’ 傾斜面4a2’に平行な傾斜面
4b2,4b2’ 平面
5 偏光ビームスプリッタ
6 λ/4板
7 対物レンズ
8 結像レンズ
9 光検出器
9a,9b 受光部
10 入射瞳
51 顕微鏡本体
52 落射照明装置
53 焦点検出装置
53’ 自動焦点検出ユニット
54 被検物
54a マイクロプレート
54a1 底面部
54a11,54a12 底面部4a1の表面
54b 培養液
55 XYステージ
56 対物レンズ
57,70 ハーフミラー
58 結像レンズ
59 CCDカメラ
60 駆動部
61 光源
62,63 レンズ
64 偏光ビームスプリッタ
65 λ/4板
66 マスク手段
66a 第1の遮光部
66b 第2の遮光部
67 点光源
68 外乱光遮光部材
69 光検出器
69a,69b 受光部
S 被検出表面を有する透明基板
S1 目的表面
DESCRIPTION OF SYMBOLS 1 Focus detection light source 2 Collimating lens 3 Mask means 4 Light beam incident position adjustment means 4a, 4a '1st prism 4a1, 4a1', 4a1 "plane 4a2 Inclined surface 4a2 'inclined to V shape symmetrical to an optical axis Surface 4a2 "Inclined surface 4b, 4b 'recessed in a conical shape symmetrical to the optical axis Second prism 4b1 Projected into a V shape symmetrical to the optical axis that matches the V shape of the inclined surface 4a2 of the first prism 4a Inclined surface 4b1 ′ Inclined surfaces 4b2 and 4b2 ′ parallel to the inclined surface 4a2 ′ 5 Polarizing beam splitter 6 λ / 4 plate 7 Objective lens 8 Imaging lens 9 Photo detectors 9a and 9b Light receiving unit 10 Entrance pupil 51 Microscope main body 52 Epi-illumination device 53 Focus detection device 53 ′ Automatic focus detection unit 54 Test object 54a Microplate 54a1 Bottom surface portion 54a11, 54a12 Bottom surface portion 4a1 Surface 54b Culture medium 55 XY stage 56 Objective lens 57, 70 Half mirror 58 Imaging lens 59 CCD camera 60 Driving unit 61 Light source 62, 63 Lens 64 Polarizing beam splitter 65 λ / 4 plate 66 Mask means 66a First light shielding unit 66b Second light shielding portion 67 Point light source 68 Disturbing light shielding member 69 Photo detectors 69a and 69b Light receiving portion S Transparent substrate having surface to be detected S1 Target surface

Claims (8)

焦点検出用光束を対物レンズを介して試料面に投射して、焦点合わせを行う焦点検出装置において、
互いに対向した状態で配置された傾斜面を有し、且つ、該傾斜面の間隔を調節可能な2つの光学部材からなり、該2つの光学部材の傾斜面の間隔を調節することにより、前記対物レンズの瞳位置における前記焦点検出用光束の入射位置を該対物レンズの瞳径に応じた該瞳内の所定位置に調節可能な光束入射位置調節手段を備えたことを特徴とする焦点検出装置。
In a focus detection device that performs focus adjustment by projecting a focus detection light beam onto a sample surface via an objective lens,
The optical system includes two optical members having inclined surfaces arranged in opposition to each other and capable of adjusting the interval between the inclined surfaces. By adjusting the interval between the inclined surfaces of the two optical members, the objective A focus detection apparatus comprising: a light beam incident position adjusting unit capable of adjusting an incident position of the focus detection light beam at a pupil position of a lens to a predetermined position in the pupil according to a pupil diameter of the objective lens.
前記光束入射位置調節手段が、前記焦点検出用光束を光軸に対称に分離し、前記2つの光学部材の傾斜面の間隔を調節することによって、該分離した2つの光束の間隔を調節することを特徴とする請求項1に記載の焦点検出装置。   The light beam incident position adjusting means separates the focus detection light beam symmetrically with respect to an optical axis, and adjusts an interval between the inclined surfaces of the two optical members, thereby adjusting an interval between the two separated light beams. The focus detection apparatus according to claim 1. 前記2つの光学部材が、入射側が平面、出射側が光軸に対称なV字形状に凹んだ傾斜面で構成された第1のプリズムと、入射側が前記第1のプリズムの傾斜面のV字形状に一致する、光軸に対称なV字形状に突出した傾斜面、出射側が平面で構成された第2のプリズムとからなることを特徴とする請求項2に記載の焦点検出装置。   The two optical members are a first prism composed of an inclined surface recessed in a V-shape symmetric with respect to the optical axis on the incident side and an incident side, and a V-shape with an incident side inclined on the inclined surface of the first prism. 3. The focus detection apparatus according to claim 2, wherein the focus detection apparatus includes an inclined surface that projects in a V shape symmetrical to the optical axis, and a second prism having a flat exit surface. 前記光束入射位置調節手段が、前記2つの光学部材の傾斜面の間隔を調節することによって、前記焦点検出用光束を光軸に垂直な方向にシフトさせることを特徴とする請求項1に記載の焦点検出装置。   The light beam incident position adjusting means shifts the focus detection light beam in a direction perpendicular to the optical axis by adjusting an interval between inclined surfaces of the two optical members. Focus detection device. 前記2つの光学部材が、互いの上下を逆向きにして配置された、頂角の等しい2つのプリズムからなることを特徴とする請求項4に記載の焦点検出装置。   5. The focus detection apparatus according to claim 4, wherein the two optical members include two prisms having the same apex angle, which are arranged with their tops and bottoms reversed. 前記光束入射位置調節手段が、前記焦点検出用光束を、光軸を中心とした同心円状に変形し、前記2つの光学部材の傾斜面の間隔を調節することによって、該変形した同心円状の光束の径を調節することを特徴とする請求項1に記載の焦点検出装置。   The light beam incident position adjusting means deforms the focus detection light beam into a concentric circle centered on the optical axis, and adjusts the interval between the inclined surfaces of the two optical members, thereby changing the deformed concentric light beam. The focus detection apparatus according to claim 1, wherein the diameter of the focus detection apparatus is adjusted. 前記2つの光学部材が、入射側が平面、出射側が光軸に対称な円錐形状に凹んだ傾斜面で構成された第1の円錐レンズと、入射側が前記第1の円錐レンズの傾斜面の凹んだ円錐形状に一致する、光軸に対称な円錐形状に突出した傾斜面、出射側が平面で構成された第2の円錐レンズとからなることを特徴とする請求項6に記載の焦点検出装置。   The two optical members have a first conical lens configured with a concave surface that is concave in a conical shape symmetric with respect to the optical axis on the incident side, and an incident side is concave on the inclined surface of the first conical lens. 7. The focus detection apparatus according to claim 6, comprising an inclined surface that coincides with the conical shape and protrudes in a conical shape symmetrical to the optical axis, and a second conical lens having a flat exit surface. 前記焦点検出装置は、前記対物レンズと、透明基板に対し合焦信号を生成するための照明光を発し、前記対物レンズを通して照射する点光源と、前記照明光の光束のうちの該照明光の光軸に沿う第1の仮想平面で分割したときの一方の領域を通る光束を遮光する第1の遮光部を有するマスク手段と、前記透明基板で反射された光の光軸に沿う第2の仮想平面を挟んで対称に配置された2つの受光部を有する光検出器とを備え、前記2つの受光部を介して夫々検出された前記透明基板からの反射光の光量に基づいて、前記透明基板の第1又は第2の表面に前記対物レンズの焦点合わせを行い、
前記光束入射位置調節手段は、前記透明基板における第1又は第2の表面のうち一方の表面近傍に前記対物レンズの焦点が位置するときに、該一方の表面からの反射光が前記2つの受光部に入射するとともに他方の表面からの反射光が前記第2の仮想平面で分割したときの一方の領域における当該領域に配置された受光部を外れた領域を通るような該対物レンズの瞳内の所定位置に、該対物レンズの瞳位置における前記焦点検出用光束の入射位置を調節可能に構成されていることを特徴とする請求項1〜7のいずれかに記載の焦点検出装置。
The focus detection device emits illumination light for generating an in-focus signal for the objective lens and the transparent substrate, and irradiates through the objective lens with the point light source and the illumination light of the illumination light. Mask means having a first light-shielding portion that shields a light beam passing through one region when divided by a first virtual plane along the optical axis, and a second along the optical axis of the light reflected by the transparent substrate A light detector having two light receiving portions arranged symmetrically across a virtual plane, and based on the amount of reflected light from the transparent substrate detected through the two light receiving portions, the transparent Focusing the objective lens on the first or second surface of the substrate;
The light beam incident position adjusting means is configured to receive reflected light from the first surface when the focal point of the objective lens is located in the vicinity of one of the first and second surfaces of the transparent substrate. In the pupil of the objective lens that passes through a region outside the light receiving unit disposed in the one region when the reflected light from the other surface is divided by the second virtual plane and incident on the other portion The focus detection apparatus according to claim 1, wherein an incident position of the light beam for focus detection at a pupil position of the objective lens can be adjusted to a predetermined position.
JP2008320011A 2008-12-16 2008-12-16 Microscopic observation equipment Expired - Fee Related JP5394718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008320011A JP5394718B2 (en) 2008-12-16 2008-12-16 Microscopic observation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008320011A JP5394718B2 (en) 2008-12-16 2008-12-16 Microscopic observation equipment

Publications (2)

Publication Number Publication Date
JP2010145531A true JP2010145531A (en) 2010-07-01
JP5394718B2 JP5394718B2 (en) 2014-01-22

Family

ID=42566070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320011A Expired - Fee Related JP5394718B2 (en) 2008-12-16 2008-12-16 Microscopic observation equipment

Country Status (1)

Country Link
JP (1) JP5394718B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106695A1 (en) * 2019-11-28 2021-06-03 佐藤 拙 Optical element, optical system, and optical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035777A (en) * 1999-07-23 2001-02-09 Nikon Corp Illumination optical apparatus and aligner having the same
JP2007163738A (en) * 2005-12-13 2007-06-28 Nikon Corp Optical device having automatic focusing mechanism
JP2008015074A (en) * 2006-07-04 2008-01-24 Olympus Corp Microscope, autofocus device and autofocus method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035777A (en) * 1999-07-23 2001-02-09 Nikon Corp Illumination optical apparatus and aligner having the same
JP2007163738A (en) * 2005-12-13 2007-06-28 Nikon Corp Optical device having automatic focusing mechanism
JP2008015074A (en) * 2006-07-04 2008-01-24 Olympus Corp Microscope, autofocus device and autofocus method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106695A1 (en) * 2019-11-28 2021-06-03 佐藤 拙 Optical element, optical system, and optical device
CN114846381A (en) * 2019-11-28 2022-08-02 佐藤拙 Optical element, optical system, and optical device

Also Published As

Publication number Publication date
JP5394718B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
US4690561A (en) Particle analyzing apparatus
CN102313976A (en) Autofocusing device for microscopes and suitable autofocus aperture stops
CN102540447B (en) Trapping and detecting multiplexed scanning optical-tweezers system
JP2008276070A (en) Magnifying image pickup apparatus
CN102483509A (en) Three-dimensional directional drift control device and microscope device
JP5620502B2 (en) Autofocus device
US11333605B2 (en) Sample measurement device and sample measurement method
US10697764B2 (en) Sample shape measuring apparatus for calculating a shape of a sample disposed between an illumination optical system and an observation optical system
US7462805B2 (en) Focus detection apparatus having a luminous flux deformation member
US5714749A (en) Focus detecting apparatus and microscope apparatus equipped with the foregoing apparatus
JPH0812046B2 (en) Two-step detection non-contact positioning device
KR101568980B1 (en) Automatic focus control apparatus and automatic focus control method using the same
US10634895B2 (en) Microscope apparatus, automatic focusing device, and automatic focusing method
JP5394718B2 (en) Microscopic observation equipment
JP5052318B2 (en) Fluorescence detection device
JP2012212018A (en) Focal point maintenance device and microscope device
US11971531B2 (en) Method and microscope for determining the thickness of a cover slip or slide
JP5400499B2 (en) Focus detection device
US11635608B2 (en) Method and microscope for determining the refractive index of an optical medium
JP5009141B2 (en) Focus detection apparatus and focusing method using the same
JPH0593845A (en) Automatic focus detecting device
US20230012588A1 (en) Observation device
JPH10133117A (en) Microscope equipped with focus detecting device
KR100738387B1 (en) Wavefront measuring devices with off-axis illumination
JPH1123953A (en) Microscope equipped with focus detector and displacement measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121217

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131017

R151 Written notification of patent or utility model registration

Ref document number: 5394718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees