JP2010144240A - Method for recovering platinum group metal ion - Google Patents

Method for recovering platinum group metal ion Download PDF

Info

Publication number
JP2010144240A
JP2010144240A JP2008325296A JP2008325296A JP2010144240A JP 2010144240 A JP2010144240 A JP 2010144240A JP 2008325296 A JP2008325296 A JP 2008325296A JP 2008325296 A JP2008325296 A JP 2008325296A JP 2010144240 A JP2010144240 A JP 2010144240A
Authority
JP
Japan
Prior art keywords
platinum group
group metal
acid
recovery method
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008325296A
Other languages
Japanese (ja)
Inventor
Masayoshi Murakami
昌義 村上
Junichi Nishimoto
純一 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008325296A priority Critical patent/JP2010144240A/en
Priority to TW098143845A priority patent/TW201033374A/en
Priority to PCT/JP2009/071828 priority patent/WO2010074294A1/en
Publication of JP2010144240A publication Critical patent/JP2010144240A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/68Liquid treating or treating in liquid phase, e.g. dissolved or suspended including substantial dissolution or chemical precipitation of a catalyst component in the ultimate reconstitution of the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/33Cyanic acids, derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient method for recovering platinum group metal ions. <P>SOLUTION: The method for recovering platinum group metal ions comprises: adding a nitrile compound and heteropolyacid to a solution in which the platinum group metal ions are dissolved so as to precipitate the platinum group metal ions; and recovering the platinum group metal ions. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、白金族金属イオン(パラジウム等)の回収方法に関するものである。   The present invention relates to a method for recovering platinum group metal ions (such as palladium).

特許文献1には、酸性溶液中に溶存する白金族金属イオンを回収する方法としてピリジンなどのアミノ化合物を単独で、あるいはヘテロポリ酸溶液とともに添加して沈殿させる方法が知られている。しかしながら、この方法では、微量の白金属金属イオンを含む溶液の単位容積に対して、1/2程度の容積量のアミノ化合物そのものを必要としており、さらにヘテロポリ酸を併用する場合、白金族金属に対してヘテロポリ酸を大過剰量使用しており、大量の沈殿剤を必要とするため工業的には必ずしも満足行く方法とは言えない。 Patent Document 1 discloses a method for recovering platinum group metal ions dissolved in an acidic solution by adding an amino compound such as pyridine alone or together with a heteropolyacid solution to cause precipitation. However, this method requires an amino compound of about 1/2 volume per unit volume of a solution containing a small amount of white metal metal ions, and when a heteropolyacid is used in combination, On the other hand, a large excess of heteropolyacid is used, and a large amount of precipitant is required, so this is not always a satisfactory method industrially.

公開特許公報2005−194546号Published Patent Publication No. 2005-194546

本発明は、白金族金属イオンの効率的な回収方法を提供することである。   The present invention is to provide an efficient method for recovering platinum group metal ions.

すなわち、本発明は、ニトリル化合物とヘテロポリ酸を、白金族金属イオンが溶存する溶液に添加し、白金族金属イオンを沈殿させ、白金族金属イオンを回収する方法に関するものである。   That is, the present invention relates to a method for recovering platinum group metal ions by adding a nitrile compound and a heteropolyacid to a solution in which platinum group metal ions are dissolved, precipitating platinum group metal ions.

本発明によれば、工業的に重要かつ平均価格が極めて高い貴金属元素である白金族金属を良好な選択性で効率的に回収できる。   According to the present invention, a platinum group metal that is a noble metal element that is industrially important and has an extremely high average price can be efficiently recovered with good selectivity.

本発明の、適用対象である白金族金属イオンが溶存する各種の溶液としては、特に限定されないが、各種工業の過程において得られる白金族金属を含んだ液、例えば、使用済み触媒の浸出液、使用済み核燃料の再処理工場で発生する高レベル放射性廃液、ピクリング浴液等の廃液、廃水等が例示される。また、地質学試料等の分析の際の、白金族金属の前処理段階での一括濃縮、分別濃縮等に適用することができる。
こうした、本発明が対象とする、白金族金属イオンを含有する各種溶液の化学的性状については、特に限定されない。また、白金族金属イオンと共存する無機化合物や有機化合物が、白金族金属イオンと化学結合を形成しない場合、それら無機化合物の種類及び存在量、及び有機化合物の種類及び存在量は、特に限定されるものではない。
また、本発明において、白金族金属イオンとは、元素の周期律表第8族に属する元素の金属イオンであり、例えば、パラジウム、ロジウム、ルテニウム、白金、イリジウム、オスミウムが例示される。
Various solutions in which platinum group metal ions to be applied of the present invention are dissolved are not particularly limited, but include liquids containing platinum group metals obtained in various industrial processes, for example, leaching solutions of used catalysts. Examples include high-level radioactive liquid waste generated in a reprocessing plant for spent nuclear fuel, liquids such as pickling bath liquid, and waste water. In addition, the present invention can be applied to collective concentration, fractional concentration, etc. at the pretreatment stage of platinum group metals when analyzing geological samples.
Such chemical properties of various solutions containing platinum group metal ions targeted by the present invention are not particularly limited. In addition, when the inorganic compound or organic compound coexisting with the platinum group metal ion does not form a chemical bond with the platinum group metal ion, the type and amount of the inorganic compound, and the type and amount of the organic compound are particularly limited. It is not something.
In the present invention, the platinum group metal ion is a metal ion of an element belonging to Group 8 of the periodic table of elements, and examples thereof include palladium, rhodium, ruthenium, platinum, iridium, and osmium.

本発明に用いられるニトリル化合物としては、特に限定されるものではないが、一般式RCN(Rはアルキル基、アリール基など)で表される有機化合物であり、好ましくは、アセトニトリルが挙げられる。 Although it does not specifically limit as a nitrile compound used for this invention, It is an organic compound represented by general formula RCN (R is an alkyl group, an aryl group, etc.), Preferably acetonitrile is mentioned.

また、ヘテロポリ酸についても特に限定されるものではないが、好ましくは、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸、リンモリブドタングステン酸、ケイモリブドタングステン酸、リンモリブドバナジン酸、ケイモリブドバナジン酸、リンタングストバナジン酸およびケイタングストバナジン酸からなる群から選ばれる少なくとも一つのヘテロポリ酸が例示される。これらのヘテロポリ酸の中でも、リンモリブドバナジン酸がさらに好ましい。上記ヘテロポリ酸に結晶水が含まれていても構わない。また、上記ヘテロポリ酸の対カチオンは特に限定されるものではないが、水素イオンを対カチオンにもったプロトン型のヘテロポリ酸が好ましい。   Further, the heteropolyacid is not particularly limited, but is preferably phosphomolybdic acid, silicomolybdic acid, phosphotungstic acid, silicotungstic acid, phosphomolybdotungstic acid, xymolybdotungstic acid, phosphomolybdovanazine Illustrative are at least one heteropolyacid selected from the group consisting of acids, silicoribed vanadic acid, lintongostavanadic acid, and caitangustovanadic acid. Among these heteropolyacids, phosphomolybdovanadic acid is more preferable. Crystal water may be contained in the heteropolyacid. The counter cation of the heteropoly acid is not particularly limited, but a proton type heteropoly acid having a hydrogen ion as a counter cation is preferable.

本発明で使用することのできるニトリル化合物の量は、使用するニトリル化合物の種類、ならびにヘテロポリ酸の種類、ならびに溶存する白金族金属イオン類の種類及び濃度により適宜決めればよいが、例えば、白金族金属イオン1モルあたり、アセトニトリルは、通常、1モル以上、好ましくは15モル以上、なおさらに好ましくは50モル以上であり、上限は特に限定されないが、通常、800モル以下である。また、白金族金属イオンが溶存する溶液の重量に対し、アセトニトリルは、通常は1重量パーセント以上、好ましくは5重量パーセント以上、さらに好ましくは10重量パーセント以上で使用される。白金族金属イオンが溶存する溶液としては、水溶液が好ましいが、かかる水溶液としては、前記のとおり、有機化合物あるいは有機溶媒であって沈殿を阻害しないものを溶存もしくは含むものも包含される。
また、本発明で使用することのできるヘテロポリ酸の量は、使用するヘテロポリ酸の種類、ならびにニトリル化合物の種類、ならびに溶存する白金族金属イオンの種類及び濃度を考慮して、有効量を設定すればよい。典型的には、例えば、白金族金属イオン1モルあたり、リンモリブドバナジン酸は、通常0.5モル以上、好ましくは1モル以上、なおさらに好ましくは3モル以上の量が使用される。その他へテロポリ酸も、通常、リンモリブドバナジン酸と同様の量を使用すればよい。
The amount of the nitrile compound that can be used in the present invention may be appropriately determined according to the type of nitrile compound to be used, the type of heteropolyacid, and the type and concentration of the dissolved platinum group metal ions. Acetonitrile is usually 1 mol or more, preferably 15 mol or more, and more preferably 50 mol or more, per mol of metal ion, and the upper limit is not particularly limited, but is usually 800 mol or less. Acetonitrile is usually used in an amount of 1 weight percent or more, preferably 5 weight percent or more, more preferably 10 weight percent or more based on the weight of the solution in which the platinum group metal ions are dissolved. As the solution in which the platinum group metal ions are dissolved, an aqueous solution is preferable. However, as described above, the aqueous solution includes an organic compound or an organic solvent that dissolves or contains a substance that does not inhibit precipitation.
The amount of the heteropolyacid that can be used in the present invention should be set in an effective amount in consideration of the type of heteropolyacid used, the type of nitrile compound, and the type and concentration of the platinum group metal ion dissolved. That's fine. Typically, for example, per mol of platinum group metal ion, phosphomolybdovanadic acid is usually used in an amount of 0.5 mol or more, preferably 1 mol or more, and more preferably 3 mol or more. Other heteropolyacids may be used usually in the same amount as that of phosphomolybdovanadic acid.

本発明で使用されるニトリル化合物は、蒸留や抽出等の操作により回収することができるため、過剰量のニトリル化合物を使用した場合でも回収が可能である。また、本発明で使用されるヘテロポリ酸は、炭酸セシウムやアルキルアンモニウムを添加することでヘテロポリ酸塩として沈殿するため、過剰量のヘテロポリ酸を使用した場合でも分離・回収が可能である。   Since the nitrile compound used in the present invention can be recovered by an operation such as distillation or extraction, it can be recovered even when an excessive amount of the nitrile compound is used. In addition, since the heteropolyacid used in the present invention is precipitated as a heteropolyacid salt by adding cesium carbonate or alkylammonium, it can be separated and recovered even when an excessive amount of heteropolyacid is used.

本発明で対象とする白金族金属イオンを含む被処理液は、前記のとおり、有機化合物あるいは有機溶媒であって沈殿を阻害しないものを溶存もしくは含むものも包含する。例えば、白金族元素を触媒とするような反応、特開2007−074374に記載されているような、白金族金属イオンであるパラジウムイオンとシクロヘキセン等のオレフィンが共存する場合、パラジウムを触媒として、ケトン化合物が生成する反応が進行し、ニトリル化合物とヘテロポリ酸を添加しても、白金族金属イオン類の分離・回収は低下する。その場合、オレフィン等を沈殿の生成の妨げにならないように除去することで、白金族金属イオンが分離・回収できる。一方、アセトアミドやアジピン酸等の有機化合物や、硫酸鉄等の無機化合物等が白金族金属イオンの水溶液に溶解していても、白金族金属イオンを回収することができる。
本発明の方法では、高濃度から低濃度に至るまで広範囲の白金族金属イオンを含んだ各種溶液に適用でき、溶液の酸性度についても適用範囲が広い。
本発明の白金族金属イオンを被処理溶液から分離する沈殿形成反応は、通常、常温、常圧下で迅速に進行するため、特別な反応装置を用意する必要はなく、白金族金属イオンの溶液、典型的には水溶液にニトリル化合物とヘテロポリ酸を混入後、瞬時に沈殿を形成が確認できる。ニトリル化合物とヘテロポリ酸の添加順や添加形態はとくに限定されない。白金族金属イオンの水溶液とニトリル化合物及びヘテロポリ酸の接触時間は、通常は、沈殿剤の添加と同時に沈殿が生成するので、5分〜30分で十分である。この時間内に沈殿反応は完結する。ニトリル化合物の添加量が、Pd1モルあたり400モル以上の範囲では、沈殿物の溶解が見られる場合も有るが、その後、静置することで、再び沈殿が生成する。生成した白金族金属の沈殿物は固液分離が容易なため、吸引ろ過、遠心分離等の慣用のろ過操作を用いることができる。生成した白金族金属の沈殿物は、通常の方法で加工することにより、種々の利用分野で再利用される。例えば、シクロヘキセンからシクロヘキサノンを製造する反応(特開2007−074374)用のパラジウム触媒として、分離・回収した沈殿物をそのまま使用することもできる。また、生成した白金族金属の沈殿物は、オレフィン(例えば、シクロヘキセン)を含む溶液に添加することで、再度溶解することができる。
As described above, the liquid to be treated containing a platinum group metal ion targeted in the present invention includes an organic compound or an organic solvent that dissolves or contains a substance that does not inhibit precipitation. For example, a reaction using a platinum group element as a catalyst, or a platinum group metal ion such as palladium ion and cyclohexene olefin as described in JP-A-2007-074374 coexist with palladium as a catalyst and a ketone. The reaction for producing the compound proceeds, and even when a nitrile compound and a heteropolyacid are added, the separation and recovery of platinum group metal ions decreases. In that case, platinum group metal ions can be separated and recovered by removing olefins and the like so as not to interfere with the formation of precipitates. On the other hand, even when an organic compound such as acetamide or adipic acid or an inorganic compound such as iron sulfate is dissolved in an aqueous solution of a platinum group metal ion, the platinum group metal ion can be recovered.
The method of the present invention can be applied to various solutions containing a wide range of platinum group metal ions from a high concentration to a low concentration, and has a wide range of application as to the acidity of the solution.
The precipitation formation reaction for separating the platinum group metal ions of the present invention from the solution to be treated usually proceeds rapidly at normal temperature and normal pressure, so there is no need to prepare a special reaction apparatus, a solution of platinum group metal ions, Typically, after the nitrile compound and the heteropolyacid are mixed in the aqueous solution, formation of a precipitate can be confirmed instantaneously. The order of addition and the form of addition of the nitrile compound and the heteropolyacid are not particularly limited. As the contact time of the platinum group metal ion aqueous solution, the nitrile compound, and the heteropolyacid, usually 5 to 30 minutes is sufficient because precipitation is generated simultaneously with the addition of the precipitant. The precipitation reaction is completed within this time. When the amount of the nitrile compound added is in the range of 400 moles or more per mole of Pd, dissolution of the precipitate may be observed, but after that, the precipitate is generated again by standing still. Since the produced platinum group metal precipitate can be easily separated into solid and liquid, conventional filtration operations such as suction filtration and centrifugal separation can be used. The produced platinum group metal precipitate can be reused in various fields of application by processing it in the usual manner. For example, the separated and recovered precipitate can be used as it is as a palladium catalyst for a reaction for producing cyclohexanone from cyclohexene (Japanese Patent Application Laid-Open No. 2007-074374). The produced platinum group metal precipitate can be dissolved again by adding it to a solution containing an olefin (for example, cyclohexene).

以下、本発明を、実施例を用いてより詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to a following example.

実施例1
(1)試薬
ニトリル化合物としては、アセトニトリル(ナカライテスク株式会社)をそのまま用いた。ヘテロポリ酸としては、HPMo40またはHPMo40(以上、日本無機化学株式会社)をそのまま用いた。
(2)被処理液の調製
被処理液として、触媒反応(特開2007−074374を参考)の溶液から基質や生成物を蒸留や抽出操作で取り除いた後の、パラジウム触媒、無機化合物、水溶性有機化合物を含む触媒浸出液を、以下のように調製した。
被処理液Aの調製:
イオン交換水(50g)、Fe(SO・nHO(1.2g、関東化学株式会社)、Pd(OAc)(0.23g、Sigma−Aldrich社)、ヘテロポリ酸(7.0g、日本無機化学株式会社:HPMo40)を100mlサンプル瓶に入れ、6時間超音波にかけた。その後、溶液を桐山ロートで吸引ろ過(メンブランフィルター、No.5B、SB−40)し、微量の不溶物を取り除いた。得られた液(以下、被処理液Aと記す。)の化学組成を表1に示す。
被処理液Bの調製:
被処理液A(12g)に、アセトアミド(0.52g、関東化学株式会社)、アジピン酸(0.16g、ナカライテスク株式会社)を溶解させた。得られた溶液(以下、被処理液Bと記す。)の化学組成を表1に示す。
被処理液Cの調製:
イオン交換水(50g)、Fe(SO・nHO(1.2g)、Pd(OAc)(0.23g)、ヘテロポリ酸(7.0g、HPMo40)を100mlサンプル瓶に入れ、6時間超音波にかけた。その後、溶液を吸引ろ過(PTFEメンブランフィルター、細孔0.2μm、47mmφ)で、微量の不溶物を取り除いた。得られた溶液(29g)に、アセトアミド(1.2g)、シクロヘキサノン(0.31g、関東化学株式会社)を溶解させた。得られた溶液(以下、被処理液Cと記す。)の化学組成を表1に示す。
被処理液Dの調製:
イオン交換水(101g)、Fe(SO・nHO(2.36g)、アジピン酸(1.6g)、Pd(OAc)(0.46g)、ヘテロポリ酸(14g:HPMo40)を200ml三角フラスコに入れ、6時間超音波にかけた。その後、溶液を吸引ろ過(PTFEメンブランフィルター、細孔0.2μm、47mmφ)して、微量の不溶物を取り除いた。得られた溶液(以下、被処理液Dと記す。)の化学組成を表1に示す。
Example 1
(1) As a reagent nitrile compound, acetonitrile (Nacalai Tesque) was used as it was. The heteropolyacid, H 7 PMo 8 V 4 O 40 or H 6 PMo 9 V 3 O 40 ( or more, Nippon Inorganic Color & Chemical Co., Ltd.) was used as it.
(2) Preparation of liquid to be treated As a liquid to be treated, a palladium catalyst, an inorganic compound, and a water-soluble product after removing a substrate and a product from a solution of a catalytic reaction (see JP2007-074374) by distillation or extraction operation. A catalyst leachate containing an organic compound was prepared as follows.
Preparation of treatment liquid A:
Ion-exchanged water (50 g), Fe 2 (SO 4 ) 3 .nH 2 O (1.2 g, Kanto Chemical Co., Inc.), Pd (OAc) 2 (0.23 g, Sigma-Aldrich), heteropoly acid (7. 0 g, Nippon Inorganic Chemical Co., Ltd .: H 7 PMo 8 V 4 O 40 ) was placed in a 100 ml sample bottle and subjected to ultrasonic waves for 6 hours. Thereafter, the solution was suction filtered with a Kiriyama funnel (membrane filter, No. 5B, SB-40) to remove a trace amount of insoluble matter. Table 1 shows the chemical composition of the obtained liquid (hereinafter, referred to as liquid A to be treated).
Preparation of treatment liquid B:
Acetamide (0.52 g, Kanto Chemical Co., Inc.) and adipic acid (0.16 g, Nacalai Tesque Co., Ltd.) were dissolved in the liquid A (12 g). Table 1 shows the chemical composition of the obtained solution (hereinafter referred to as a liquid to be treated B).
Preparation of treatment liquid C:
Ion-exchanged water (50 g), Fe 2 (SO 4 ) 3 · nH 2 O (1.2 g), Pd (OAc) 2 (0.23 g), heteropolyacid (7.0 g, H 7 PMo 8 V 4 O 40 ) Was placed in a 100 ml sample bottle and sonicated for 6 hours. Thereafter, the solution was subjected to suction filtration (PTFE membrane filter, pore 0.2 μm, 47 mmφ) to remove a trace amount of insoluble matter. Acetamide (1.2 g) and cyclohexanone (0.31 g, Kanto Chemical Co., Inc.) were dissolved in the resulting solution (29 g). Table 1 shows the chemical composition of the obtained solution (hereinafter referred to as a liquid to be treated C).
Preparation of treatment liquid D:
Ion-exchanged water (101 g), Fe 2 (SO 4 ) 3 .nH 2 O (2.36 g), adipic acid (1.6 g), Pd (OAc) 2 (0.46 g), heteropolyacid (14 g: H 3 PMo 9 V 3 O 40 ) was placed in a 200 ml Erlenmeyer flask and sonicated for 6 hours. Thereafter, the solution was subjected to suction filtration (PTFE membrane filter, pore 0.2 μm, 47 mmφ) to remove a trace amount of insoluble matter. Table 1 shows the chemical composition of the obtained solution (hereinafter referred to as a liquid to be treated D).

表1
被処理液液の化学組成

Figure 2010144240
Table 1
Chemical composition of liquid to be treated
Figure 2010144240

実施例2
(1)分離・回収方法
各種被処理液に対し、所定量のアセトニトリルを添加した。どの系もアセトニトリル添加と同時に沈殿の生成が目視で確認できた。吸引ろ過(PTFEメンブランフィルター、細孔0.1μm、25mmφ)を行った。これらの操作は、常温常圧下で行った。得られた沈殿は、アセトニトリル(4ml)で洗浄後、80℃で3時間減圧乾燥した。沈殿物中のPd:P:Nの平均モル比は、約2:1:8であった(マイクロウェーブ分解−ICP発光分析法)。ろ液中の化学組成及び回収率を表2に示す。なお、回収率は以下の式で算出した。
回収率(%)={(アセトニトリル添加前の被処理液中の含有量)−(ろ液中の含有量)}/(アセトニトリル添加前の被処理液中の含有量)×100%
(2)分析方法
各種溶液中の組成成分の定量は、以下の方法で行った。
Pd、Fe(被処理液A、B、C、及びそれらを処理した後のろ液):マイクロウェーブ分解−ICP発光分析法
S(被処理液A、B、C、及びそれらを処理した後のろ液):酸素燃焼−イオンクロマトグラフ法
Pd、Fe、S(被処理液D及びそれを処理した後のろ液):蛍光X線分析法
アジピン酸:イオンクロマトグラフ法
アセトアミド、シクロヘキサノン:FID−ガスクロマトグラフ法
Example 2
(1) Separation / recovery method A predetermined amount of acetonitrile was added to various liquids to be treated. In any system, the formation of precipitates was visually confirmed simultaneously with the addition of acetonitrile. Suction filtration (PTFE membrane filter, pore 0.1 μm, 25 mmφ) was performed. These operations were performed under normal temperature and normal pressure. The obtained precipitate was washed with acetonitrile (4 ml) and then dried under reduced pressure at 80 ° C. for 3 hours. The average molar ratio of Pd: P: N in the precipitate was about 2: 1: 8 (microwave decomposition-ICP emission spectrometry). Table 2 shows the chemical composition and the recovery rate in the filtrate. The recovery rate was calculated by the following formula.
Recovery rate (%) = {(content in the liquid to be treated before adding acetonitrile) − (content in the filtrate)} / (content in the liquid to be treated before adding acetonitrile) × 100%
(2) Analytical method Composition components in various solutions were quantified by the following method.
Pd, Fe (treatment liquids A, B, C, and filtrate after treatment thereof): Microwave decomposition-ICP emission analysis method S (treatment liquids A, B, C, and after treatment thereof) Filtrate): Oxygen combustion-ion chromatography Pd, Fe, S (liquid D to be treated and filtrate after treatment): X-ray fluorescence analysis adipic acid: ion chromatography acetamide, cyclohexanone: FID- Gas chromatographic method

表2

Figure 2010144240
Table 2
Figure 2010144240

実施例3
回収沈殿物の使用
分離・回収した白金族金属イオンの再利用方法として、シクロヘキセンのシクロヘキサノンへの酸化反応(特開2007−074374)を以下のように行った。
シクロヘキセン(1.6g、関東化学株式会社)、アセトニトリル(3ml)、イオン交換水(2ml)、被処理液Aから回収した沈殿物(24mg:Pd含有量8wt%)、H7PMo8440(0.1g)およびFe(SO・nHO(27mg)を120mlのオートクレーブに入れ、窒素ガス3MPa及び加圧空気2MPaを導入し、323Kで2時間反応させ、シクロヘキサノンを得た。シクロヘキセンの転化率は32%、シクロヘキサノンの選択率は93%で、ターンオーバー数(パラジウム1モルあたりに生成したシクロヘキサノンのモル数)は、354であった。
Example 3
Use of recovered precipitates As a method for reusing separated / recovered platinum group metal ions, an oxidation reaction of cyclohexene to cyclohexanone (Japanese Patent Application Laid-Open No. 2007-074374) was performed as follows.
Cyclohexene (1.6 g, Kanto Chemical Co., Inc.), acetonitrile (3 ml), ion-exchanged water (2 ml), precipitate recovered from treatment liquid A (24 mg: Pd content 8 wt%), H 7 PMo 8 V 4 O 40 (0.1 g) and Fe 2 a (SO 4) 3 · nH 2 O (27mg) was placed in an autoclave of 120 ml, a nitrogen gas was introduced 3MPa and pressurized air 2 MPa, and reacted for 2 hours at 323 K, to obtain a cyclohexanone It was. The conversion rate of cyclohexene was 32%, the selectivity of cyclohexanone was 93%, and the turnover number (number of moles of cyclohexanone produced per mole of palladium) was 354.

本発明は、種々の廃触媒の浸出液、装飾品等の各種金属の酸洗浄液や各種鉱・工業排水中に微量含まれる白金族金属イオン類の分離・回収法として有用である。貴重な金属である白金族金属を回収し、資源として再利用するとともに、環境問題を解消することを可能とするものである。   INDUSTRIAL APPLICABILITY The present invention is useful as a method for separating and recovering platinum group metal ions contained in trace amounts in various metal pickling solutions such as leachate of various waste catalysts, ornamental products, and various mineral and industrial effluents. The platinum group metal, which is a precious metal, is recovered and reused as a resource, and environmental problems can be solved.

Claims (11)

ニトリル化合物とヘテロポリ酸を、白金族金属イオンが溶存する溶液に添加し、白金族金属イオンを沈殿させ、回収することを特徴とする白金族金属の回収方法。 A method for recovering a platinum group metal, comprising adding a nitrile compound and a heteropolyacid to a solution in which the platinum group metal ion is dissolved to precipitate and recover the platinum group metal ion. 前記白金族金属イオンがパラジウムイオンである請求項1に記載の回収方法。 The recovery method according to claim 1, wherein the platinum group metal ion is a palladium ion. 前記ニトリル化合物がアセトニトリルである請求項1又は2に記載の回収方法。 The recovery method according to claim 1 or 2, wherein the nitrile compound is acetonitrile. 白金族金属イオン1モルに対しアセトニトリルが4モル以上で、白金族金属イオンを含む溶液の重量に対しアセトニトリルが1重量%以上である請求項3に記載の回収方法。 The recovery method according to claim 3, wherein acetonitrile is 4 mol or more per 1 mol of platinum group metal ions, and acetonitrile is 1 wt% or more with respect to the weight of the solution containing platinum group metal ions. ヘテロポリ酸が、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸、リンモリブドタングステン酸、ケイモリブドタングステン酸、リンモリブドバナジン酸、ケイモリブドバナジン酸、リンタングストバナジン酸およびケイタングストバナジン酸からなる群から選ばれる少なくとも一つのヘテロポリ酸である請求項1〜4のいずれかに記載の回収方法。 Heteropolyacids are phosphomolybdic acid, silicomolybdic acid, phosphotungstic acid, silicotungstic acid, phosphomolybdotungstic acid, cinnamolybdotungstic acid, phosphomolybdovanadic acid, cinnamolybdovanadic acid, lintongue tovanadic acid, and kaitan The recovery method according to any one of claims 1 to 4, which is at least one heteropolyacid selected from the group consisting of gustovanadic acid. 白金族金属イオン1モルに対しヘテロポリ酸が0.5モル以上である請求項1〜5いずれかに記載の回収方法。 The recovery method according to any one of claims 1 to 5, wherein the heteropolyacid is 0.5 mol or more per 1 mol of platinum group metal ions. 前記白金族金属イオンが溶存する溶液が、水溶性無機化合物及び/又は水溶性有機化合物が溶存している溶液である請求項1〜6のいずれかに記載の回収方法。 The recovery method according to claim 1, wherein the solution in which the platinum group metal ions are dissolved is a solution in which a water-soluble inorganic compound and / or a water-soluble organic compound is dissolved. 前記水溶性無機化合物が硫酸鉄、および硫酸アンモニウム鉄から選ばれる少なくとも一つの水溶性化合物である請求項7に記載の回収方法。 The recovery method according to claim 7, wherein the water-soluble inorganic compound is at least one water-soluble compound selected from iron sulfate and ammonium iron sulfate. 前記水溶性有機化合物がアセトアミド、アジピン酸、およびシクロヘキサノンからなる群から選ばれる少なくとも一つの水溶性化合物である請求項7又は8に記載の回収方法。 The recovery method according to claim 7 or 8, wherein the water-soluble organic compound is at least one water-soluble compound selected from the group consisting of acetamide, adipic acid, and cyclohexanone. 白金族金属イオンの溶液が、廃触媒の浸出液、又は均一系触媒の反応溶液である請求項1〜9のいずれかに記載の回収方法。 The recovery method according to claim 1, wherein the platinum group metal ion solution is a waste catalyst leachate or a homogeneous catalyst reaction solution. 請求項1〜10のいずれかに記載の方法で分離回収した白金族金属イオンの触媒としての使用。 Use of a platinum group metal ion separated and recovered by the method according to claim 1 as a catalyst.
JP2008325296A 2008-12-22 2008-12-22 Method for recovering platinum group metal ion Pending JP2010144240A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008325296A JP2010144240A (en) 2008-12-22 2008-12-22 Method for recovering platinum group metal ion
TW098143845A TW201033374A (en) 2008-12-22 2009-12-21 Method for making a platinum family metal-containing composition
PCT/JP2009/071828 WO2010074294A1 (en) 2008-12-22 2009-12-21 Method for manufacturing composition containing platinum group metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008325296A JP2010144240A (en) 2008-12-22 2008-12-22 Method for recovering platinum group metal ion

Publications (1)

Publication Number Publication Date
JP2010144240A true JP2010144240A (en) 2010-07-01

Family

ID=42287896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008325296A Pending JP2010144240A (en) 2008-12-22 2008-12-22 Method for recovering platinum group metal ion

Country Status (3)

Country Link
JP (1) JP2010144240A (en)
TW (1) TW201033374A (en)
WO (1) WO2010074294A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020190022A (en) * 2019-05-23 2020-11-26 国立研究開発法人量子科学技術研究開発機構 Recovery device, recovery system, and recovery method
WO2021106372A1 (en) * 2019-11-26 2021-06-03 宇部興産株式会社 Method for recovering palladium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69122859T2 (en) * 1990-12-26 1997-03-13 Mitsui Toatsu Chemicals METHOD FOR THE SIMULTANEOUS PRODUCTION OF AN AROMATIC HYDROXY COMPOUND AND A CARBONYL COMPOUND
JPH0672920A (en) * 1992-08-26 1994-03-15 Mitsui Toatsu Chem Inc Simultaneous production of aromatic hydroxy compound and carbonyl compound
JP4182217B2 (en) * 2003-12-26 2008-11-19 独立行政法人産業技術総合研究所 Selective recovery agent and selective recovery method for platinum group metal ions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020190022A (en) * 2019-05-23 2020-11-26 国立研究開発法人量子科学技術研究開発機構 Recovery device, recovery system, and recovery method
JP7307460B2 (en) 2019-05-23 2023-07-12 国立研究開発法人量子科学技術研究開発機構 Recovery device, recovery system, and recovery method
WO2021106372A1 (en) * 2019-11-26 2021-06-03 宇部興産株式会社 Method for recovering palladium
JP2021084053A (en) * 2019-11-26 2021-06-03 宇部興産株式会社 Method for recovering palladium

Also Published As

Publication number Publication date
TW201033374A (en) 2010-09-16
WO2010074294A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
RU2338802C2 (en) Extraction of metallic compounds
EP2677047B1 (en) Method for collection of ruthenium or ruthenium compound
JP2010144240A (en) Method for recovering platinum group metal ion
JP4182217B2 (en) Selective recovery agent and selective recovery method for platinum group metal ions
GB2110655A (en) Recovery of noble metal values from carbonylation residues
RU2618874C1 (en) Method for silver recovery from nitrate actinoid containing solutions (versions)
JP5542378B2 (en) Platinum separation solution and platinum separation and recovery method
JPH1043596A (en) Method for reactivating catalyst system containing metal of platinum group
EP2110371B1 (en) Method for preparing cycloalkanone
JP2009084673A (en) Selective separation/recovery method for specified metal ion
RU2083280C1 (en) Method of isolation of precious metal from inorganic and/or organic residue
CN108821354A (en) A method of preparing nitric acid iridium solution
JP5172150B2 (en) Method for removing inorganic acids and metal impurities present in a substantially alcoholic solution of H2O2 derived from direct synthesis
JP2006117576A (en) Process of glycolic acid
CN1337933A (en) Removal of lead from organic diaryl carbonate reaction mixtures
CN102976913B (en) Method for preparing high-purity acetylacetonatodicarbonyl rhodium through using rhodium trichloride
JP3391836B2 (en) Method for producing 5-formylimidazoles
JP5799340B2 (en) Method for recovering precious metals from liquid containing precious metals
JP4502877B2 (en) Nitric acid reduction catalyst composition and nitric acid solution treatment method using the same
US3536443A (en) Process for recovering metal compounds
CN104028311B (en) A kind of octyl alconyl oxo catalyst chemical regeneration method
AU654597B2 (en) Process for working up waste waters comprising rhodium compounds, derivatives or organic phosphines and other impurities in dissolved form
RU2436874C1 (en) Method for removing copper cations from acid solutions containing strong oxidisers
CN1256320C (en) Synthesis of p-cyanoacetophenone by direct catalyst selective oxidation
EP4129967A1 (en) Method for producing glycolic acid salt and method for producing glycolic acid