JP2010144186A - High-strength aluminum alloy for lng spherical tank - Google Patents

High-strength aluminum alloy for lng spherical tank Download PDF

Info

Publication number
JP2010144186A
JP2010144186A JP2008319322A JP2008319322A JP2010144186A JP 2010144186 A JP2010144186 A JP 2010144186A JP 2008319322 A JP2008319322 A JP 2008319322A JP 2008319322 A JP2008319322 A JP 2008319322A JP 2010144186 A JP2010144186 A JP 2010144186A
Authority
JP
Japan
Prior art keywords
hot rolling
aluminum alloy
spherical tank
lng
strength aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008319322A
Other languages
Japanese (ja)
Other versions
JP5379463B2 (en
Inventor
Minoru Hayashi
林稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2008319322A priority Critical patent/JP5379463B2/en
Publication of JP2010144186A publication Critical patent/JP2010144186A/en
Application granted granted Critical
Publication of JP5379463B2 publication Critical patent/JP5379463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy for an LNG (Liquefied Natural Gas) spherical tank having excellent strength without remarkably reducing its intergranular corrosion resistance. <P>SOLUTION: An ingot having a composition comprising 5.0 to 6.0% Mg, 0.5 to 1.0% Mn, 0.05 to 0.25% Cr and 0.05 to 0.5% Cu, and in which, as impurities, the content of Si is regulated to <0.25% and the content of Fe is regulated to <0.25%, respectively, and the balance Al with the other inevitable impurities is heated at 460 to 540°C for 1 to 24 hr as homogenizing treatment, thereafter, hot rolling is started at ≥400°C, so as to be a prescribed sheet thickness by the hot rolling, and annealing is performed at 340 to 420°C for ≥1 hr, so as to have a TS (tensile strength) of ≥320 MPa. Further, 0.05 to 0.35% Zn may be incorporated therein, and, it is also possible that, by controlling hot rolling finishing temperature to ≥340°C, annealing treatment may be obviated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はAl-Mg-Mn-Cr-Cu系非熱処理型アルミニウム合金の製造方法に関するものであり、より詳細には成分を最適化することにより、粒界腐食性を大きく低下させること無く強度に優れたLNG球形タンク用アルミニウム合金を得るものである。     The present invention relates to a method for producing an Al—Mg—Mn—Cr—Cu non-heat-treatable aluminum alloy. An excellent aluminum alloy for a LNG spherical tank is obtained.

LNG球形タンク用合金としては5083に代表されるようにAl-Mg-Mn-Cr系合金が用いられている。5083合金はアルミニウム合金中非熱処理型合金としては高強度,高耐食性を有しており、LNG球形タンク以外にも船舶,車両,低温用タンク,圧力容器などの溶接構造用に用いられている。   As an alloy for an LNG spherical tank, an Al—Mg—Mn—Cr alloy is used as represented by 5083. 5083 alloy has high strength and high corrosion resistance as a non-heat-treatable alloy in aluminum alloy, and is used for welding structures such as ships, vehicles, low temperature tanks, pressure vessels, etc. in addition to LNG spherical tanks.

LNG球形タンクは大容量化にともない大型化の要求があるが現行の規格値(TS:275 MPa以上,YS:127MPa以上)では板厚の増加が必要となりタンク重量も増加する問題がある。このため高強度化によるタンク重量の軽減の必要性がある。高強度化の方針としては現行の5083材では膜応力に対する許容応力の計算から引張り強度を向上することが有効であることが分かっている。   The LNG spherical tank is required to be enlarged with an increase in capacity, but the current standard value (TS: 275 MPa or more, YS: 127 MPa or more) requires an increase in the plate thickness and the tank weight also increases. For this reason, there is a need to reduce the tank weight by increasing the strength. As a policy for increasing the strength, it has been found that it is effective to improve the tensile strength of the current 5083 material from calculation of allowable stress with respect to film stress.

しかしながら本Al-Mg系合金でさらに高強度化を図り軽量化を実施するためには、Mgの添加が有効であることが知られているものの、同時に耐SCC(応力腐食割れ)特性を含む一般耐食性が低下することが知られている。特に本系合金は船舶あるいはLNGタンク用として用いられることも多くSCCの発生は安全上大きな問題となる。   However, in order to further increase the strength and reduce the weight with this Al-Mg alloy, it is known that the addition of Mg is effective, but at the same time, it also includes SCC (stress corrosion cracking) resistance characteristics. It is known that corrosion resistance decreases. In particular, this alloy is often used for ships or LNG tanks, and the occurrence of SCC is a major safety issue.

このため高Mg含有合金の粒界に生じるβ相(AlMg)を低減する目的でZnの添加が提案されており、例えば特許文献1ではZnを0.4〜0.9%添加することで粒界のβ相の体積分率を下げることで耐SCC性ならびに耐層状腐食性の向上を図っている。 Therefore, the addition of Zn has been proposed for the purpose of reducing the β phase (Al 3 Mg 2 ) generated at the grain boundaries of the high Mg content alloy. For example, Patent Document 1 adds 0.4 to 0.9% Zn. Thus, the SCC resistance and the layered corrosion resistance are improved by lowering the volume fraction of the β phase at the grain boundary.

しかしながら特許文献1ではZrが0.05〜0.25%添加され強度上昇および溶接時の耐亀裂性を向上させる旨の効果が挙げられているが、Al-Mg合金は熱間圧延時に再結晶しやすい合金であり、再結晶にともないAl-Zr系析出物(AlZr)とマトリックスの界面は非整合となることが知られている。非整合界面にはその後に析出するβ相やZnを多く含有する場合に形成されるMgZnなどの析出物が生成しやすくなる。またZnの添加によって粒界のβ相の体積分率を下げる効果が挙げられているが、Znの添加量が増加するとβ相に変わってAl-Zn-Mg系化合物やMgZnなどの金属間化合物が粒界に現れるため粒界腐食性の大きな効果は得られにくいことがわかった。 However, Patent Document 1 mentions that Zr is added in an amount of 0.05 to 0.25% to increase the strength and improve the crack resistance during welding. However, Al-Mg alloy is recrystallized during hot rolling. It is known that the interface between the Al—Zr-based precipitate (Al 3 Zr) and the matrix becomes inconsistent with recrystallization. Precipitates such as MgZn 2 that are formed when the β-phase that precipitates later and a large amount of Zn are contained are likely to be generated at the non-matching interface. In addition, the addition of Zn has the effect of lowering the volume fraction of the β phase at the grain boundary, but when the added amount of Zn increases, it changes to the β phase and changes between Al-Zn-Mg compounds, MgZn 2 and other metals. It has been found that since the compound appears at the grain boundary, it is difficult to obtain a great effect of intergranular corrosion.

このため本発明ではさらに機械的特性および耐食性におよぼす成分の影響についてさらに精査を行った。
特許第3262278号公報
For this reason, the present invention further examined the influence of components on mechanical properties and corrosion resistance.
Japanese Patent No. 3262278

本発明はAl-Mg-Mn-Cr-Cu系アルミニウム基合金において、粒界腐食性を大きく低下させることなく、高強度なLNG球形タンク用高強度アルミニウム合金を得るものである。   The present invention provides an Al-Mg-Mn-Cr-Cu-based aluminum-based alloy that provides a high-strength aluminum alloy for LNG spherical tanks that does not significantly reduce intergranular corrosion.

上記課題を解決する為に、請求項1においては、Mg:5.0〜6.0%,Mn:0.5〜1.0%,Cr:0.05〜0.25%,Cu:0.05〜0.5%を含み、不純物としてのSiを0.25%未満,Feを0.25%未満にそれぞれ規制し、残部Alおよびその他の不可避不純物とよりなり、TS(引張強度)が320MPa以上であることを特徴とするLNG球形タンク用高強度アルミニウム合金とする。   In order to solve the above problems, in claim 1, Mg: 5.0 to 6.0%, Mn: 0.5 to 1.0%, Cr: 0.05 to 0.25%, Cu: 0 0.05% to 0.5%, Si as an impurity is controlled to less than 0.25%, Fe is controlled to less than 0.25%, and the balance is Al and other inevitable impurities, and TS (tensile strength) is It is set as the high intensity | strength aluminum alloy for LNG spherical tanks characterized by being 320 Mpa or more.

請求項1の合金にさらにZn:0.05〜0.35%を含有させたものが請求項2の合金である。   The alloy according to claim 2 is the alloy according to claim 1 further containing Zn: 0.05 to 0.35%.

請求項3においては、請求項1,2記載のLNG球形タンク用高強度アルミニウム合金の製造方法として、 鋳塊に、均質化処理として460〜540℃で1〜24hrの加熱を行った後、400℃以上で熱間圧延を開始し、熱間圧延により所定の板厚とし、340〜420℃の温度で1hr以上の焼鈍を行うことを規定する。   In Claim 3, as a manufacturing method of the high intensity | strength aluminum alloy for LNG spherical tanks of Claims 1 and 2, after heating for 1 to 24 hours at 460-540 degreeC as a homogenization process to an ingot, it is 400 It prescribes that hot rolling is started at a temperature of not lower than 0 ° C., a predetermined thickness is obtained by hot rolling, and annealing is performed at a temperature of 340 to 420 ° C. for 1 hour or longer.

請求項4においては、熱間圧延終了温度を340℃以上とすることで焼鈍処理を省略することを特徴とする。   According to a fourth aspect of the present invention, the annealing treatment is omitted by setting the hot rolling end temperature to 340 ° C. or higher.

粒界腐食性を大きく低下させることなく、高強度なLNG球形タンク用高強度アルミニウム合金を得ることができる。   It is possible to obtain a high-strength high-strength aluminum alloy for LNG spherical tanks without greatly reducing the intergranular corrosion properties.

以上の検討結果から本発明の限定理由について述べる。   The reasons for limitation of the present invention will be described from the above examination results.

まず合金組成の限定理由について述べる。   First, the reasons for limiting the alloy composition will be described.

Mgは本系合金においてアルミニウムに固溶し強度を高める元素である。その添加量は5.0%未満では本発明の目標強度が得られず、6.0%を超えると工業的に製造する際に熱間圧延割れが生じやすくなり困難となる。   Mg is an element that improves the strength by dissolving in aluminum in this alloy. If the addition amount is less than 5.0%, the target strength of the present invention cannot be obtained. If the addition amount exceeds 6.0%, hot rolling cracks are likely to occur during industrial production, making it difficult.

Mnは鋳造時に強制固溶されたMnが均質化処理および熱間圧延工程で微細なAl-Mn系化合物を形成し分散強化として強度向上に寄与し、同時に本系合金においては再結晶粒微細化として働く。その添加量は0.5%未満では十分ではなく、1.0%を超えるとその効果は飽和するとともに凝固時に巨大な金属間化合物を生成しやすくなる。   Mn, which was forcibly dissolved during casting, formed a fine Al-Mn compound in the homogenization process and hot rolling process and contributed to strength improvement as dispersion strengthening. At the same time, recrystallized grains were refined in this alloy. Work as. If the added amount is less than 0.5%, it is not sufficient, and if it exceeds 1.0%, the effect is saturated and a large intermetallic compound is easily formed during solidification.

Crはマトリックス中に微細な金属間化合物を形成し、結晶粒径の微細化として作用する。その効果は0.05%未満では不十分であり、0.25%を超えるとMn同様凝固時に巨大な金属間化合物を生成しやすくなる。   Cr forms fine intermetallic compounds in the matrix and acts as a refinement of the crystal grain size. The effect is insufficient if it is less than 0.05%, and if it exceeds 0.25%, a huge intermetallic compound is likely to be formed during solidification as in the case of Mn.

CuはMg同様にアルミニウムに固溶し強度を高める働きがある。さらにはAl-Mg系合金で耐食性を劣化させる粒界のβ相(AlMg)の一部がAlMgCu系化合物に変化することで粒界のβ相を分断し粒界耐食性を向上させる働きがある。その効果は0.05%未満では十分ではなく、0.5%を超えるとその効果は飽和すると同時に熱間圧延性を劣化させる。 Cu, like Mg, has a function of increasing the strength by dissolving in aluminum. Furthermore, a part of the grain boundary β phase (Al 3 Mg 2 ), which deteriorates the corrosion resistance of the Al—Mg alloy, changes to an AlMgCu compound, thereby dividing the grain boundary β phase and improving the grain boundary corrosion resistance. There is. If the effect is less than 0.05%, it is not sufficient, and if it exceeds 0.5%, the effect is saturated and the hot rolling property is deteriorated.

ZnはCu同様Al-Mg系合金の粒界β相(AlMg)の一部をAlZnMg系化合物に置換し、粒界腐食性を改善する働きがある。その効果は0.05%未満では十分ではなく、0.35%を超えると効果が飽和すると同時に逆に優先的に腐食しやすくなる。 Zn, like Cu, has a function of substituting a part of the grain boundary β phase (Al 3 Mg 2 ) of the Al—Mg alloy with an AlZnMg compound to improve grain boundary corrosion. The effect is not sufficient if it is less than 0.05%, and if it exceeds 0.35%, the effect is saturated and at the same time, preferentially corrodes easily.

Fe,Siは工業的なアルミニウム合金中に不可避的に含有される不純物元素であるが、いずれも0.25%未満であれば特性を損なうものではない。   Fe and Si are impurity elements inevitably contained in an industrial aluminum alloy, but if both are less than 0.25%, the characteristics are not impaired.

また、特に規定するものではないが一般的に鋳造時の結晶粒微細化の目的でTiBを含んだ微細化剤がTi量で0.01〜0.15%程度添加される。 Although not particularly specified, a finer containing TiB 2 is generally added in an amount of about 0.01 to 0.15% in terms of Ti for the purpose of crystal grain refinement during casting.

上記以外は、Alとその他の不可避不純物とよりなる。   Other than the above, it consists of Al and other inevitable impurities.

次に製造条件について述べる。   Next, manufacturing conditions will be described.

均質化処理は凝固時に生じた成分のミクロ偏析を改善すると同時に、Mn,Crなどをアルミニウム中に微細・均一に分散させる目的がある。その温度は460〜540℃が望ましく、保持時間は工業的には1hr以上24hr以下であれば十分その目的は達成される。また特に規定するものではないがAl-Mg系合金の均質化処理時にはβ相の溶融温度である450℃より低い温度で保持を行い、十分に固溶・拡散させた後に昇温を続ける2段あるいは多段の加熱パターンが用いられることも多い。   The homogenization treatment has the purpose of improving the microsegregation of the components generated during solidification and at the same time finely and uniformly dispersing Mn, Cr, etc. in the aluminum. The temperature is preferably 460 to 540 ° C., and the holding time is industrially sufficiently achieved if it is industrially 1 hr or more and 24 hr or less. In addition, although not particularly specified, a two-stage process in which the temperature is kept at a temperature lower than 450 ° C. which is the melting temperature of the β phase at the time of homogenizing the Al—Mg alloy, and the temperature is increased after sufficiently dissolving and diffusing. Alternatively, a multistage heating pattern is often used.

熱間圧延温度に関しては工業的に均一に圧延加工ができる温度を選択する必要がある。400℃未満では変形抵抗が増加し圧延荷重が高くなりすぎるため板幅の広い材料の圧延が困難となる。特に上限温度に関しては規定するものではないが、融点に近い高温ではマトリックスに比べて結晶粒界が脆弱となるため熱間圧延時に割れが発生することがある。このため440〜520℃で熱間圧延を開始することが好ましい。   Regarding the hot rolling temperature, it is necessary to select a temperature at which the rolling process can be performed uniformly industrially. If it is less than 400 ° C., the deformation resistance increases and the rolling load becomes too high, so that it is difficult to roll a material having a wide plate width. In particular, the upper limit temperature is not stipulated, but at high temperatures close to the melting point, the grain boundary becomes weaker than that of the matrix, and cracking may occur during hot rolling. For this reason, it is preferable to start hot rolling at 440-520 degreeC.

LNG球形タンク用材料は球形タンクに組上げるために曲げ加工が行われるため、完全焼き鈍し状態(いわゆるO材調質)で製造される。最終焼鈍の条件としては340〜420℃で1hr以上の保持を行えば所望の特性が得られる。   The LNG spherical tank material is manufactured in a completely annealed state (so-called O material tempering) because it is bent to assemble it into a spherical tank. As final annealing conditions, desired characteristics can be obtained by holding at 340 to 420 ° C. for 1 hour or more.

また球形タンク用材料は板厚が20mm以上の熱間圧延板が用いられており、熱間圧延終了時の温度が340℃以上の場合は自己熱により最終焼鈍を実施した場合と同様に完全焼き鈍し材と同等の機械的特性が得られるため改めて最終焼鈍を実施しなくても所望の特性が得られる。   The spherical tank material is a hot-rolled sheet with a thickness of 20 mm or more. When the temperature at the end of hot-rolling is 340 ° C or more, complete annealing is performed as in the case of final annealing by self-heating. Since mechanical characteristics equivalent to those of the material can be obtained, desired characteristics can be obtained without performing final annealing again.

表1に示す11種類のAl-Mg系合金をDC鋳造にてt70xw200xL180mmの鋳塊を作製し、続いて表2に示す製造条件にて均質化処理および熱間圧延を行い最終板厚20mmの板材を作製した。これら板材に完全焼き鈍し処理(O材調質)として360℃×2hrの焼鈍処理を行った。   An ingot of t70xw200xL180mm is produced by DC casting of 11 types of Al-Mg alloys shown in Table 1, and then homogenized and hot-rolled under the production conditions shown in Table 2 to obtain a plate with a final thickness of 20 mm Was made. These plate materials were subjected to an annealing treatment of 360 ° C. × 2 hr as a complete annealing treatment (O material refining).

Figure 2010144186
Figure 2010144186

Figure 2010144186
Figure 2010144186

得られた板材の特性評価として、圧延方向直角(LT)方向よりφ6mmの丸棒引張り試験片を採取し、機械的特性を調査した。また耐食性評価としてASTM G67に準拠して粒界腐食試験を行い重量減少量を測定した。   As a characteristic evaluation of the obtained plate material, a round bar tensile test piece having a diameter of 6 mm was taken from the direction perpendicular to the rolling direction (LT), and the mechanical characteristics were investigated. Further, as a corrosion resistance evaluation, a grain boundary corrosion test was performed in accordance with ASTM G67, and the weight loss was measured.

Figure 2010144186
Figure 2010144186

表3に特性評価結果を示すが、これより本発明では引張り強度がいずれも320MPa以上の高強度が得られており、かつ粒界腐食性も十分な結果が得られている。またNo.11も高い強度が得られているが粒界腐食性の劣化が認められている。   Table 3 shows the results of characteristic evaluation. From this, it can be seen that in the present invention, high tensile strength of 320 MPa or more is obtained and sufficient intergranular corrosion properties are obtained. No. No. 11 has a high strength, but the intergranular corrosive deterioration is recognized.

Claims (4)

Mg:5.0〜6.0%(mass%、以下同じ),Mn:0.5〜1.0%,Cr:0.05〜0.25%,Cu:0.05〜0.5%を含み、不純物としてのSiを0.25%未満,Feを0.25%未満にそれぞれ規制し、残部Alおよびその他の不可避不純物とよりなり、TS(引張強度)が320MPa以上であることを特徴とするLNG球形タンク用高強度アルミニウム合金。 Mg: 5.0 to 6.0% (mass%, the same applies hereinafter), Mn: 0.5 to 1.0%, Cr: 0.05 to 0.25%, Cu: 0.05 to 0.5% Characterized in that Si as an impurity is controlled to less than 0.25%, Fe is controlled to less than 0.25%, the balance is Al and other inevitable impurities, and TS (tensile strength) is 320 MPa or more. High strength aluminum alloy for LNG spherical tank. さらにZn:0.05〜0.35%を含有することを特徴とする請求項1記載のLNG球形タンク用高強度アルミニウム合金。 The high strength aluminum alloy for LNG spherical tank according to claim 1, further comprising Zn: 0.05 to 0.35%. 鋳塊に、均質化処理として460〜540℃で1〜24hrの加熱を行った後、400℃以上で熱間圧延を開始し、熱間圧延により所定の板厚とし、340〜420℃の温度で1hr以上の焼鈍を行うことを特徴とする請求項1、2に記載のLNG球形タンク用高強度アルミニウム合金の製造方法。 The ingot is heated at 460 to 540 ° C. for 1 to 24 hours as a homogenization treatment, and then hot rolling is started at 400 ° C. or more, and a predetermined plate thickness is obtained by hot rolling, and a temperature of 340 to 420 ° C. The method for producing a high-strength aluminum alloy for an LNG spherical tank according to claim 1, wherein annealing is performed for 1 hour or more. 鋳塊に、均質化処理として460〜540℃で1〜24hrの加熱を行った後、400℃以上で熱間圧延を開始し、熱間圧延により所定の板厚とするに際し、熱間圧延終了温度を340℃以上とすることで焼鈍処理を省略することを特徴とする請求項1,2記載のLNG球形タンク用高強度アルミニウム合金の製造方法。
After the ingot is heated at 460 to 540 ° C. for 1 to 24 hours as a homogenization treatment, hot rolling is started at 400 ° C. or higher, and the hot rolling is completed to obtain a predetermined plate thickness. The method for producing a high-strength aluminum alloy for an LNG spherical tank according to claim 1, wherein the annealing treatment is omitted by setting the temperature to 340 ° C or higher.
JP2008319322A 2008-12-16 2008-12-16 Method for producing high-strength aluminum alloy for LNG spherical tank Active JP5379463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008319322A JP5379463B2 (en) 2008-12-16 2008-12-16 Method for producing high-strength aluminum alloy for LNG spherical tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008319322A JP5379463B2 (en) 2008-12-16 2008-12-16 Method for producing high-strength aluminum alloy for LNG spherical tank

Publications (2)

Publication Number Publication Date
JP2010144186A true JP2010144186A (en) 2010-07-01
JP5379463B2 JP5379463B2 (en) 2013-12-25

Family

ID=42564906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008319322A Active JP5379463B2 (en) 2008-12-16 2008-12-16 Method for producing high-strength aluminum alloy for LNG spherical tank

Country Status (1)

Country Link
JP (1) JP5379463B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113414A (en) * 2011-11-30 2013-06-10 Nippon Steel & Sumikin Engineering Co Ltd Pressure vessel
JP2014009398A (en) * 2012-07-03 2014-01-20 Uacj Corp Al-Mg BASED ALLOY FOR HIGH PRESSURE HYDROGEN GAS VESSEL
JP2018199854A (en) * 2017-05-29 2018-12-20 株式会社Uacj Aluminum alloy plate for welding and method for producing aluminum alloy plate for welding
JP2018199157A (en) * 2017-05-29 2018-12-20 三菱造船株式会社 Welding method of aluminium alloy
EP3569721A1 (en) * 2018-05-18 2019-11-20 Aleris Rolled Products Germany GmbH Method of manufacturing an al-mg-mn alloy plate product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036651A (en) * 1983-06-27 1985-02-25 レイノルズ メタルス コムパニ− Aluminum armor plate
JPH0463255A (en) * 1990-02-01 1992-02-28 Kobe Steel Ltd Production of al-mg alloy plate having high strength and high corrosion resistance
JPH04232225A (en) * 1990-12-28 1992-08-20 Furukawa Alum Co Ltd Aluminum alloy plate having superior formability and corrosion resistance, and production thereof
JP3262278B2 (en) * 1996-04-04 2002-03-04 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Aluminum or magnesium alloy plate or extruded product
JP2003502167A (en) * 1998-10-30 2003-01-21 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Synthetic aluminum panel
US20040091386A1 (en) * 2002-07-30 2004-05-13 Carroll Mark C. 5000 series alloys with improved corrosion properties and methods for their manufacture and use
EP1443123A1 (en) * 2003-01-28 2004-08-04 Hydro Aluminium Deutschland GmbH Aluminum alloy for the production of can end sheet for cans

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036651A (en) * 1983-06-27 1985-02-25 レイノルズ メタルス コムパニ− Aluminum armor plate
JPH0463255A (en) * 1990-02-01 1992-02-28 Kobe Steel Ltd Production of al-mg alloy plate having high strength and high corrosion resistance
JPH04232225A (en) * 1990-12-28 1992-08-20 Furukawa Alum Co Ltd Aluminum alloy plate having superior formability and corrosion resistance, and production thereof
JP3262278B2 (en) * 1996-04-04 2002-03-04 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Aluminum or magnesium alloy plate or extruded product
JP2003502167A (en) * 1998-10-30 2003-01-21 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Synthetic aluminum panel
US20040091386A1 (en) * 2002-07-30 2004-05-13 Carroll Mark C. 5000 series alloys with improved corrosion properties and methods for their manufacture and use
EP1443123A1 (en) * 2003-01-28 2004-08-04 Hydro Aluminium Deutschland GmbH Aluminum alloy for the production of can end sheet for cans

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113414A (en) * 2011-11-30 2013-06-10 Nippon Steel & Sumikin Engineering Co Ltd Pressure vessel
JP2014009398A (en) * 2012-07-03 2014-01-20 Uacj Corp Al-Mg BASED ALLOY FOR HIGH PRESSURE HYDROGEN GAS VESSEL
JP2018199854A (en) * 2017-05-29 2018-12-20 株式会社Uacj Aluminum alloy plate for welding and method for producing aluminum alloy plate for welding
JP2018199157A (en) * 2017-05-29 2018-12-20 三菱造船株式会社 Welding method of aluminium alloy
EP3569721A1 (en) * 2018-05-18 2019-11-20 Aleris Rolled Products Germany GmbH Method of manufacturing an al-mg-mn alloy plate product
WO2019219453A1 (en) * 2018-05-18 2019-11-21 Aleris Rolled Products Germany Gmbh Method of manufacturing an al-mg-mn alloy plate product

Also Published As

Publication number Publication date
JP5379463B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP4535731B2 (en) AL-ZN-MG-CU alloy product with improved harmony between static mechanical properties and damage resistance
EP2548984B1 (en) Aluminum alloy material for storage container for high-pressure hydrogen gas
JP6412103B2 (en) Structural aluminum alloy plate and manufacturing method thereof
WO2009062866A1 (en) Al-mg-zn wrought alloy product and method of its manufacture
JP5379463B2 (en) Method for producing high-strength aluminum alloy for LNG spherical tank
JP4498180B2 (en) Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same
WO2020232873A1 (en) High-strength aluminum magnesium alloy wire for rivet and preparation method for high-strength aluminum magnesium alloy wire
JP2012001756A (en) HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
JPWO2019189576A1 (en) Alloy plate and manufacturing method thereof
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
EP1078109B1 (en) Formable, high strength aluminium-magnesium alloy material for application in welded structures
TWI723464B (en) Aluminum alloy plate for battery cover for forming integral explosion-proof valve and manufacturing method thereof
EP3802901B1 (en) Method of manufacturing an al-mg-mn alloy plate product having an improved corrosion resistance
TW201823484A (en) High manganese steel sheet and production method therefor capable of satisfactorily resisting erosion in a salt water environment
JP2007070672A (en) Method for producing aluminum alloy thick plate having excellent fatigue property
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP5159360B2 (en) Aluminum alloy for high pressure hydrogen gas and aluminum alloy clad material for high pressure hydrogen gas
RU2735846C1 (en) Aluminum-based alloy
JP4452630B2 (en) Manufacturing method of aluminum alloy hot-rolled sheet for welded structure
JP4201745B2 (en) 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same
KR101808450B1 (en) Aluminum alloy sheet and method of manufacturing the same
EP3662092A1 (en) Automotive outer panel made from a 6xxx-series aluminium alloy sheet product
JP6902821B2 (en) Manufacturing method of aluminum alloy foil and aluminum alloy foil
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JPS63270446A (en) Production of al-mg base alloy thick plate for welded structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130927

R150 Certificate of patent or registration of utility model

Ref document number: 5379463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350