JP2010141809A - 無線通信システム、基地局、無線通信方法、プログラム - Google Patents

無線通信システム、基地局、無線通信方法、プログラム Download PDF

Info

Publication number
JP2010141809A
JP2010141809A JP2008318505A JP2008318505A JP2010141809A JP 2010141809 A JP2010141809 A JP 2010141809A JP 2008318505 A JP2008318505 A JP 2008318505A JP 2008318505 A JP2008318505 A JP 2008318505A JP 2010141809 A JP2010141809 A JP 2010141809A
Authority
JP
Japan
Prior art keywords
terminal
rate
physical rate
minimum
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008318505A
Other languages
English (en)
Inventor
Tatsuo Niki
健生 仁木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2008318505A priority Critical patent/JP2010141809A/ja
Priority to PCT/JP2009/069239 priority patent/WO2010070997A1/ja
Priority to TW98140857A priority patent/TWI414197B/zh
Publication of JP2010141809A publication Critical patent/JP2010141809A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】帯域保証が必要となるQoSクラスに属し、適応変調を実行した場合に自局に収容可能か否かを判定する制御対象となる端末について、QPSK 1/2よりも大きな物理レートでのサービスを許容し、帯域を占有することを回避する。
【解決手段】本発明の基地局は、制御対象の端末について、当該端末の最低保証レートを予め設定された閾値と比較し、該比較結果を基に帯域保証を行う最低の物理レートを決定する決定部と、制御対象の端末について、決定部で決定された最低の物理レートで適応変調を実行することを前提として上記制御を実行する制御部と、を有する。
【選択図】図1

Description

本発明は、無線通信システム、基地局、無線通信方法、プログラムに関する。
WiMAX(Worldwide Interoperability for Microwave Access) Forumでは、IEEE(Institute of Electrical and Electronic Engineers)802.16e標準を基に、WiMAX System Profileが策定されている。WiMAXの無線通信システムは、例えば、特許文献1に開示されている。
WiMAXの無線通信システムでは、データの送受信がサブフレーム(Sub-frame)単位で行われ、多元接続方式にOFDMA(Orthogonal Frequency Division Multiple Access)方式が採用され、また、複信方式にTDD(Time Division Duplex)方式が採用されている。
OFDMA方式とは、周波数方向をサブチャネル(subchannel)で、時間方向をシンボル(symbol)でそれぞれ区切り、この区切られた領域を表すスロット(Slot)単位で、端末であるMS(Mobile Station)に帯域を割り当てる方式である。
TDD方式とは、基地局であるBS(Base Station)とMSとの間のDL(Down Link)リンクおよびUL(Up Link)リンクに同一の周波数を用いて、時間軸でDLサブフレームおよびULサブフレームを切り替える方式である。
ここで、WiMAXの無線通信システムにおけるフレーム構造の概略について、図4を参照して説明する。
図4を参照すると、WiMAXのフレーム構造は、時間軸でDLサブフレームおよびULサブフレームが切り替えられる構造になっている(TDD方式)。なお、DLサブフレームとULサブフレームとの間には、TTG(Transmit/Receive Transition Gap)およびRTG(Receive/Transmit Transition Gap)と呼ばれるギャップ時間が存在する。
DLサブフレームおよびULサブフレームでは、帯域をスロット単位でMSに割り当て、その割り当てた帯域を用いてデータが送信される(OFDMA方式)。
DLサブフレームは、先頭に、Pilot信号を含むPreamble領域が配置され、続いて、DLサブフレームおよびULサブフレームにおいて各MSにどのスロットを割り当てたかを示す信号を含むMAP領域等が配置される。これ以降の領域(DL Burst)がDLデータを送信するための帯域として各MSに割り当てられる。
一方、ULサブフレームは、先頭に、MS側でタイミング、周波数、パワーを調整するRangingを実行するためのRanging信号を含むRanging領域等が配置される。これ以降の領域(UL Burst)がULデータを送信するための帯域として各MSに割り当てられる。
また、WiMAXの無線通信システムは、適応変調方式に対応している。適応変調方式とは、MSの伝搬環境に応じて、BSとMS間のDLデータおよびULデータの変調方式および符号化率を適応的に制御する方式である。また、WiMAXでは、変調方式および符号化率の組み合わせに応じたデータ伝送速度が規定されており、このデータ伝送速度は物理レートと称されている。
また、WiMAXの無線通信システムは、QoS(Quality of Service)クラスにも対応している。すなわち、WiMAXの無線通信システムでは、UGS(Unsolicited Grant Service)、ERT−VR(Extended Real Time-Variable Rate Service)、RT(Real Time)−VR、NRT(Non Real Time)−VRといった特定のQoSクラスに属するMSに対して帯域保証を行う。
ここで、WiMAXの無線通信システムにおいて、帯域保証が必要となるQoSクラスに属するMSに対する適応変調動作について、図5を参照して説明する。
なお、図5において、下図は、BSと、帯域保証が必要となるQoSクラスに属するMS#1〜MS#3との位置関係を示し、また、上図は、下図の位置関係にある状態で、BSからMS#1〜MS#3へ送信されるDLサブフレームを示している(以下、図3および図6において同じ)。
図5を参照すると、MS#1〜MS#3は、初期状態では、BSの近く、すなわちセルの中心近くに位置しているとする(状態1)。
MSは、セルの中心近くにいる時に、高物理レートでデータの伝送を行うことができる。そのため、状態1では、BSは、MS#1〜MS#3の変調方式および符号化率の組み合わせとして、例えば、高物理レートの16QAM(Quadrature Amplitude Modulation) 3/4(前半部分が変調方式を、後半部分が符号化率を示す。以下、同じ)を適用する。以下、16QAM 3/4が適用されるエリアを16QAMエリアと称する。
また、帯域保証に必要となるスロット数は、物理レートに応じて異なり、低物理レートの時に、より多くのスロット数が必要となる。状態1では、MS#1〜MS#3に適用する16QAM 3/4が高物理レートであるため、MS#1〜MS#3の帯域保証に必要となるスロット数は少ない。そのため、BSは、MS#1〜MS#3を全て収容可能であり、また、DLサブフレームの帯域の空きは多くなっている。
続いて、MS#1が、16QAMエリアを出て、セルのエッジ方向に向けて移動したとする(状態2)。
すると、BSは、適応変調により、MS#1の変調方式および符号化率の組み合わせとして、例えば、低物理レートのQPSK(Quadrature Phase Shift Keying) 1/2を適用する。以下、QPSK 1/2が適用されるエリアをQPSKエリアと称する。また、MS#1に適用するQPSK 1/2は低物理レートであるため、MS#1の帯域保証に必要となるスロット数は増える。
ただし、状態1では、DLサブフレームに帯域の空きが多いため、状態2で、MS#1の帯域保証に必要となるスロット数が増えてもなお、BSは、MS#1〜MS#3を全て収容可能である。しかし、MS#1が帯域を占有するため、DLサブフレームの帯域の空きは少なくなる。
続いて、MS#2が、16QAMエリアからQPSKエリアに移動したとする(状態3)。
すると、BSは、適応変調により、MS#2の変調方式および符号化率の組み合わせとして低物理レートのQPSK 1/2を適用する。
しかし、状態2では、DLサブフレームに帯域の空きが少ないため、状態3で、BSは、QPSK 1/2の物理レートに応じた帯域をMS#2に割り当てることができず、MS#2の物理レートが低下してしまう。また、MS#3に対しては、割り当てるスロットがないため、次のサブフレームまでスロットを割り当てることができない。
そこで、WiMAXの無線通信システムでは、上述した問題を回避すべく、BSにおいて、Admission Controlと称される制御を行うことが可能である。ここでいうAdmission Controlとは、適応変調に対する受付制御のことであり、BSにおいて、適応変調を実行するMSのうち帯域保証が必要となるQoSクラスに属するMSを制御対象とし、その制御対象のMSについて、適応変調を実行した場合に自局に収容可能か否かを判定する制御をいう。判定の結果、収容不可能と判断されたMSに対しては、BSは物理レートの変更を実施しない。
ここで、WiMAXの無線通信システムにおいて、帯域保証が必要となるQoSクラスに属するMSに対する、Admission Controlを伴う適応変調動作について、図6を参照して説明する。なお、図6において、下図の位置関係は図5と同様である。
図6を参照すると、MS#1〜MS#3は、図5と同様に、初期状態では、16QAMエリアに位置しているとする(状態1)。このとき、MS#1〜MS#3に対しては、図5と同様に、帯域が割り当てられており、帯域の空きは多くなっている。
続いて、MS#1が、16QAMエリアからQPSKエリアに移動したとする(状態2)。
すると、BSは、MS#1に対してAdmission Controlを実行し、Admission Controlにおいて、MS#1に対してQPSK 1/2で適応変調を実行した場合に、QPSK 1/2の物理レートに応じた帯域をMS#1に割り当て可能であるか否かを判定する。このとき、状態1では、DLサブフレームに帯域の空きが多いため、BSは、MS#1について、帯域の割り当て可能で、自局に収容可能と判定する。よって、BSは、状態2でも、MS#1〜MS#3を全て収容する。しかし、MS#1が帯域を占有するため、DLサブフレームの帯域の空きは少なくなる。
続いて、MS#2が、16QAMエリアからQPSKエリアに移動したとする(状態3)。
すると、BSは、MS#1の場合と同様に、MS#2に対してAdmission Controlを実行する。しかし、状態2では、DLサブフレームの帯域の空きが少ないため、BSは、MS#2への帯域の割り当てが不可能と判定する。これにより、適切な物理レートを使用できなくなったMS#2は、通信エラーが多発し、BSのエントリから外れてしまう。この場合、MS#2は、MS#1と優先度が同じであるので、不公平である。
特開2007−266719号公報
上述したように、WiMAXの無線通信システムにおいて、Admission Controlを実行する場合、BSは、全てのMSについて一律に物理レートが最低のQPSK 1/2で運用することを前提としていた。
したがって、あるMSがセルのエッジに位置する場合、物理レートが最低のQPSK 1/2に応じた帯域を保証することは可能であるものの、その反面、QPSK 1/2よりも大きな物理レートを前提としたサービスが許容できなくなってしまうという課題がある。
また、物理レートが最低のQPSK 1/2での運用を前提とするため、高い物理レートを必要とするMSを収容した場合、Admission Controlを実行した場合においても、残りのMSは、帯域が圧迫され、適応変調ができなくなり、エントリから外れる等の不公平さが生じることがあるという課題がある。
そこで、本発明の目的は、上述した課題を解決する無線通信システム、基地局、無線通信方法、プログラムを提供することにある。
本発明の無線通信システムは、
端末と、変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoS(Quality of Service)クラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局と、を有してなる無線通信システムであって、
前記基地局は、
前記制御対象の端末について、当該端末の最低保証レートを予め設定された閾値と比較し、該比較結果を基に帯域保証を行う最低物理レートを決定する決定部と、
前記制御対象の端末について、前記決定部で決定された最低物理レートで適応変調を実行することを前提として前記制御を実行する制御部と、を有する。
本発明の基地局は、
変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoSクラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局であって、
前記制御対象の端末について、当該端末の最低保証レートを予め設定された閾値と比較し、該比較結果を基に帯域保証を行う最低物理レートを決定する決定部と、
前記制御対象の端末について、前記決定部で決定された最低物理レートで適応変調を実行することを前提として前記制御を実行する制御部と、を有する。
本発明の無線通信方法は、
変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoSクラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局による無線通信方法であって、
前記制御対象の端末について、当該端末の最低保証レートを予め設定された閾値と比較し、該比較結果を基に帯域保証を行う最低物理レートを決定する決定ステップと、
前記制御対象の端末について、前記決定された最低物理レートで適応変調を実行することを前提として前記制御を実行する制御ステップと、を有する。
本発明のプログラムは、
変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoSクラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局に、
前記制御対象の端末について、当該端末の最低保証レートを予め設定された閾値と比較し、該比較結果を基に帯域保証を行う最低物理レートを決定する決定手順と、
前記制御対象の端末について、前記決定された最低物理レートで適応変調を実行することを前提として前記制御を実行する制御手順と、を実行させる。
本発明においては、帯域保証が必要となるQoSクラスに属する制御対象の端末について、適応変調を実行した場合に自局に収容可能か否かを判定する制御において、制御対象の端末の最低保証レートに応じた最低限の物理レートで運用することを前提としている。
そのため、制御対象の端末は、最低保障レートに基づく最低物理レートに応じた帯域が保証され、その最低物理レートを前提としたサービスを許容することができるという効果が得られる。
また、制御対象の端末の最低保証レートに応じた最低限の物理レートでの運用を前提とするため、高い物理レートを必要とする端末を収容した場合、上記制御を実行した場合においても、制御対象の端末が帯域を占有することを回避することができるという効果が得られる。
以下に、本発明を実施するための最良の形態について図面を参照して説明する。
なお、以下の実施形態では、無線通信システムが、WiMAXの無線通信システムである場合を例に挙げて説明するが、本発明はこれに限定されない。
図1に示すように、本実施形態の無線通信システムは、基地局であるBSと、端末であるMS#1〜#3と、を有している。なお、図1においては、説明を簡単にするため、BSとMSの台数を、それぞれ1台と3台としたが、本発明はこれに限定されない。また、MS#1〜#3は、帯域保証が必要となるQoSクラスに属する端末であるとする。
BSは、無線通信部11と、基地局動作部12と、を有している。
無線通信部11は、MS#1〜#3との間で無線通信を行う。
基地局動作部12は、最低物理レート決定部13と、制御部となるAdmission Control部14と、を有している。
最低物理レート決定部13は、MS#1〜#3ごとに、帯域保証を行う最低の物理レートである最低物理レートを決定する。なお、最低物理レートの決定方法は後述する。
Admission Control部14は、適応変調を実行するMSのうち帯域保証が必要となるQoSに属する制御対象のMSについて、最低物理レート決定部13で決定された最低物理レートで適応変調を実行することを前提とした場合に、自局に収容可能か否かを判定するAdmission Controlを実行する。
具体的には、Admission Control部14は、制御対象のMSについて、最低物理レート決定部13で決定された最低物理レートに応じた帯域を割り当て可能であれば、自局に収容可能と判定する。
その他にも、基地局動作部12は、図示していないが、WiMAXの無線通信システムにおいて一般的に用いられているBSと同等の手段を有している。例えば、MS#1〜#3との間でネットワークエントリ処理を実行する手段や、MS#1〜#3との間でサービスフロー(Service Flow)を生成する手段等である。ただし、こうした手段は、本発明の本質的部分ではなく、また、周知の手段を利用できるので、詳細な説明を省略する。
MS#1は、無線通信部21と、端末動作部22と、を有している。図示していないが、MS#2,#3も、MS#1と同様の手段を有している。
無線通信部21は、BSとの間で無線通信を行う。
端末動作部22は、図示していないが、WiMAXの無線通信システムにおいて一般的に用いられているMSと同等の手段を有している。例えば、BSとの間でネットワークエントリ処理を実行する手段や、BSとの間でサービスフローを生成する手段等である。ただし、こうした手段は、本発明の本質的部分ではなく、また、周知の手段を利用できるので、詳細な説明を省略する。
以下、本実施形態の無線通信システムの動作について説明する。
[サービスフローを生成するまでの動作]
最初に、BSとMS#1〜#3との間でサービスフローを生成するまでの動作について、図2を参照して説明する。ここでは、BSとMS#1との間でサービスフローを生成する場合を例に挙げる。
まず、BSは、MS#1との間で、MS#1を不図示のASN(Access Service Network)およびCSN(Connectivity Service Network)へエントリさせるためのネットワークエントリ処理を行う(ステップS201)。
ネットワークエントリ処理が完了すると、サービスフロー生成処理に移行する。
サービスフロー生成処理においては、まず、BSは、MS#1に対し、MS#1へのサービス提供時に必要となる付加情報(例えば、MS#1の最低保証レート(Minimum reserved traffic rate))の情報等)を含むDSA(Dynamic Service Addition)−REQ(Request)メッセージを送信する(ステップS202)。
これを受けて、MS#1は、BSに対し、DSA−REQメッセージに対する応答として、DSA−RSP(Response)メッセージを送信する(ステップS203)。なお、MS#1は、BSから指定された付加情報を変更したい場合には、変更する付加情報をDSA−RSPメッセージに含めてBSに返信し、付加情報を変更しない場合には、DSA−RSPメッセージ本体のみをBSに返信する。
その後、BSは、MS#1に対し、DSA−RSPメッセージの受信が完了した旨のDSA−ACK(Acknowledgement)メッセージを送信する(ステップS204)。
以上で、サービスフロー生成処理が完了する。
[Admission Controlを伴う適応変調動作]
次に、Admission Controlを伴う適応変調動作について、図3を参照して説明する。なお、図3において、下図の位置関係は図5および図6と同様である。
図3を参照すると、MS#1〜MS#3は、初期状態では、16QAMエリアに位置しているとする(状態1)。
このとき、BSは、各MS#1〜MS#3との間で上述のサービスフロー生成処理がすでに完了している。
そこで、BSの最低物理レート決定部13は、各MS#1〜#3について、サービスフロー生成処理が完了した時点で、最低保証レートを予め設定された閾値と比較し、その比較結果に基づいて最低物理レートを決定する。
なお、最低物理レート決定部13に設定する閾値は、変調方式および符号化率の組み合わせまたはQoSクラスに応じた最低物理レートごとに設定される。
例えば、QPSK 3/4の閾値を2Mbpsに、16QAM 1/2の閾値を6Mbpsに設定した場合、あるMSの最低保証レートが2Mbpsを超えていれば、最低物理レートをQPSK 3/4の物理レートに決定し、最低保証レートが6Mbpsを超えていれば、最低物理レートを16QAM 1/2の物理レートに決定する。
したがって、各MS#1〜MS#3について、Admission Controlが発生した場合に必要となる帯域は、最低物理レート決定部13で決定された最低物理レートを用いることで予め見積もることができ、図3のようになる。
続いて、MS#1が、16QAMエリアからQPSKエリアに移動したとする(状態2)。
すると、BSのAdmission Control部14は、MS#1について、最低物理レート決定部13で決定された最低物理レートで適応変調を実行することを前提として、Admission Controlを実行する。
このときに前提とする最低物理レートは、一律にQPSK 1/2の物理レートとはならず、MS#1の最低保証レートに応じた最低限の物理レートになる。そのため、MS#1は、最低物理レートに応じた帯域が保証され、その最低物理レートを前提としたサービスを許容することができる。
また、その最低物理レートがQPSK 1/2の物理レートよりも高ければ、MS#1の帯域保証に必要となるスロット数は、QPSK 1/2の場合のスロット数と比較して多くはならない。よって、MS#1に対する適応変調を行っても、MS#1を収容可能であり、また、MS#1が帯域を占有することは回避される。
続いて、MS#2が、16QAMエリアからQPSKエリアに移動したとする(状態3)。
すると、BSのAdmission Control部14は、MS#2について、最低物理レート決定部13で決定された最低物理レートで適応変調を実行することを前提として、Admission Controlを実行する。
このときに前提とする最低物理レートも、MS#1の場合と同様に、一律にQPSK 1/2の物理レートとはならず、MS#2の最低保証レートに応じた最低限の物理レートになる。そのため、MS#2は、最低物理レートに応じた帯域が保証され、その最低物理レートを前提としたサービスを許容することができる。
また、その最低物理レートがQPSK 1/2の物理レートよりも高ければ、MS#1の場合と同様に、MS#2の帯域保証に必要となるスロット数は、QPSK 1/2の場合のスロット数と比較して多くはならない。また、状態2ではMS#1が帯域を占有していない。よって、MS#2に対する適応変調を行っても、MS#2を収容可能であり、MS#1とMS#2との間に不公平さは生じない。また、MS#1およびMS#2が帯域を占有することが回避されるため、MS#3にも帯域を割り当てることができる。
上述したように本実施形態においては、BSは、Admission Controlの制御対象のMSについて、そのMSの最低保証レートと予め設定された閾値との比較結果に基づいて最低物理レートを決定し、決定した最低物理レートで適応変調を実行することを前提としてAdmission Controlを実行する。
このように、Admission Controlにおいて前提とする最低物理レートは、一律にQPSK 1/2の物理レートとはならず、制御対象のMSの最低保証レートに応じた最低限の物理レートになる。そのため、制御対象のMSは、最低物理レートに応じた帯域が保証され、その最低物理レートを前提としたサービスを許容することができる。
また、その最低物理レートがQPSK 1/2の物理レートよりも高ければ、制御対象のMSの帯域保証に必要となるスロット数は、QPSK 1/2の場合のスロット数と比較して多くはならない。よって、制御対象のMSに対する適応変調を行っても、制御対象のMSが帯域を占有することを回避することができる。
また、制御対象のMSによる帯域の占有を回避できるため、高い物理レートを必要とするMSを収容した場合、Admission Controlを実行した場合においても、残りのMSが、帯域が圧迫され、適応変調ができなくなり、エントリから外れる等の不公平さが生じる可能性を低減できる。また、余剰な帯域が生じるため、その余剰な帯域を、帯域保証を必要としないBE(Best Effort Service)等のQoSクラスに属するMSに割り当てることもできる。
なお、本実施形態においては、DLを例に挙げて説明したが、本発明の上述した方法は、ULにも適用可能である。
また、本発明のBSにて行われる方法は、コンピュータに実行させるためのプログラムに適用してもよい。また、そのプログラムを記憶媒体に格納することも可能であり、ネットワークを介して外部に提供することも可能である。
本発明の一実施形態の無線通信システムの構成を示すブロック図である。 図1に示した無線通信システムにおける、ネットワークエントリ処理からサービスフロー生成処理までの動作の一例を説明するフローチャートである。 図1に示した無線通信システムにおける適応変調動作の一例を説明する図である。 WiMAXのフレーム構造を説明する図である。 関連する無線通信システムにおける適応変調動作の一例を説明する図である。 関連する無線通信システムにおける適応変調動作の他の例を説明する図である。
符号の説明
BS 基地局
MS#1〜MS#3 端末
11 無線通信部
12 基地局動作部
13 最低物理レート決定部
14 Admission Control部
21 無線通信部
22 端末動作部

Claims (16)

  1. 端末と、変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoS(Quality of Service)クラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局と、を有してなる無線通信システムであって、
    前記基地局は、
    前記制御対象の端末について、当該端末の最低保証レートを予め設定された閾値と比較し、該比較結果を基に帯域保証を行う最低物理レートを決定する決定部と、
    前記制御対象の端末について、前記決定部で決定された最低物理レートで適応変調を実行することを前提として前記制御を実行する制御部と、を有する無線通信システム。
  2. 前記決定部は、前記最低保証レートが前記閾値を超えているか否かに応じて予め定められている前記組み合わせの物理レートを、前記最低物理レートに決定する、請求項1に記載の無線通信システム。
  3. 前記制御部は、前記制御対象の端末について、前記決定部で決定された最低物理レートに応じた帯域を割り当て可能であれば、自局に収容可能と判定する、請求項1または2に記載の無線通信システム。
  4. 前記決定部は、前記閾値が最低物理レートごとに設定される、請求項1から3のいずれか1項に記載の無線通信システム。
  5. 変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoSクラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局であって、
    前記制御対象の端末について、当該端末の最低保証レートを予め設定された閾値と比較し、該比較結果を基に帯域保証を行う最低物理レートを決定する決定部と、
    前記制御対象の端末について、前記決定部で決定された最低物理レートで適応変調を実行することを前提として前記制御を実行する制御部と、を有する基地局。
  6. 前記決定部は、前記最低保証レートが前記閾値を超えているか否かに応じて予め定められている前記組み合わせの物理レートを、前記最低物理レートに決定する、請求項5に記載の基地局。
  7. 前記制御部は、前記制御対象の端末について、前記決定部で決定された最低物理レートに応じた帯域を割り当て可能であれば、自局に収容可能と判定する、請求項5または6に記載の基地局。
  8. 前記決定部は、前記閾値が最低物理レートごとに設定される、請求項5から7のいずれか1項に記載の基地局。
  9. 変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoSクラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局による無線通信方法であって、
    前記制御対象の端末について、当該端末の最低保証レートを予め設定された閾値と比較し、該比較結果を基に帯域保証を行う最低物理レートを決定する決定ステップと、
    前記制御対象の端末について、前記決定された最低物理レートで適応変調を実行することを前提として前記制御を実行する制御ステップと、を有する無線通信方法。
  10. 前記決定ステップでは、前記最低保証レートが前記閾値を超えているか否かに応じて予め定められている前記組み合わせの物理レートを、前記最低物理レートに決定する、請求項9に記載の無線通信方法。
  11. 前記制御ステップでは、前記制御対象の端末について、前記決定された最低物理レートに応じた帯域を割り当て可能であれば、自局に収容可能と判定する、請求項9または10に記載の無線通信方法。
  12. 前記決定ステップでは、前記閾値が最低物理レートごとに設定される、請求項9から11のいずれか1項に記載の無線通信方法。
  13. 変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoSクラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局に、
    前記制御対象の端末について、当該端末の最低保証レートを予め設定された閾値と比較し、該比較結果を基に帯域保証を行う最低物理レートを決定する決定手順と、
    前記制御対象の端末について、前記決定された最低物理レートで適応変調を実行することを前提として前記制御を実行する制御手順と、を実行させるプログラム。
  14. 前記決定手順では、前記最低保証レートが前記閾値を超えているか否かに応じて予め定められている前記組み合わせの物理レートを、前記最低物理レートに決定する、請求項13に記載のプログラム。
  15. 前記制御手順では、前記制御対象の端末について、前記決定された最低物理レートに応じた帯域を割り当て可能であれば、自局に収容可能と判定する、請求項13または14に記載のプログラム。
  16. 前記決定手順では、前記閾値が最低物理レートごとに設定される、請求項13から15のいずれか1項に記載のプログラム。
JP2008318505A 2008-12-15 2008-12-15 無線通信システム、基地局、無線通信方法、プログラム Pending JP2010141809A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008318505A JP2010141809A (ja) 2008-12-15 2008-12-15 無線通信システム、基地局、無線通信方法、プログラム
PCT/JP2009/069239 WO2010070997A1 (ja) 2008-12-15 2009-11-12 無線通信システム、基地局、無線通信方法、プログラム
TW98140857A TWI414197B (zh) 2008-12-15 2009-11-30 無線通信系統、基地台、無線通信方法、程式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008318505A JP2010141809A (ja) 2008-12-15 2008-12-15 無線通信システム、基地局、無線通信方法、プログラム

Publications (1)

Publication Number Publication Date
JP2010141809A true JP2010141809A (ja) 2010-06-24

Family

ID=42268672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318505A Pending JP2010141809A (ja) 2008-12-15 2008-12-15 無線通信システム、基地局、無線通信方法、プログラム

Country Status (3)

Country Link
JP (1) JP2010141809A (ja)
TW (1) TWI414197B (ja)
WO (1) WO2010070997A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259447A (ja) * 2002-02-28 2003-09-12 Ntt Docomo Inc 適応無線パラメータ制御方法、QoS制御装置、基地局及び無線通信システム
JP2008252514A (ja) * 2007-03-30 2008-10-16 Kddi Corp 無線パケット制御装置、無線パケット制御方法、および無線通信装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741412B (zh) * 2004-08-27 2011-06-08 清华大学 无线网络中子信道分配的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259447A (ja) * 2002-02-28 2003-09-12 Ntt Docomo Inc 適応無線パラメータ制御方法、QoS制御装置、基地局及び無線通信システム
JP2008252514A (ja) * 2007-03-30 2008-10-16 Kddi Corp 無線パケット制御装置、無線パケット制御方法、および無線通信装置

Also Published As

Publication number Publication date
WO2010070997A1 (ja) 2010-06-24
TW201101907A (en) 2011-01-01
TWI414197B (zh) 2013-11-01

Similar Documents

Publication Publication Date Title
CN110858958B (zh) V2x的通信方法和装置
RU2709285C1 (ru) Способ планирования ресурсов, планировщик, базовая станция, терминал и система
US20190260623A1 (en) Data Transmission Method and Apparatus
US8559364B2 (en) Method and system for transmitting/receiving data in a communication system
JP5003818B2 (ja) 受信装置、送信装置、受信方法および送信方法
US20100238895A1 (en) Scheduling Method, Wireless Base Station, And Wireless Terminal
CN113632565A (zh) 数据传输方法及装置
KR101362060B1 (ko) 인지 무선 단말 장치 및 인지 무선 통신 방법
US20120099512A1 (en) Radio communication system, radio base station, and radio communication method
KR20180057621A (ko) 무선 통신 시스템에서의 디바이스 및 방법
EP2797373B1 (en) Transmission subframe determination method, system and device
US8374211B2 (en) Method for data transmission and communication system
CN113475033A (zh) 5g无线通信系统中用于传输物理下行链路控制信道的基于位置的corset配置
CN112449431A (zh) 无线通信系统中的基站及其控制方法
JP4507021B2 (ja) 無線通信システム、基地局、無線通信方法、プログラム
US9198165B2 (en) Sounding reference signal to determine antenna weight and frequency bands
JP4911168B2 (ja) 無線通信システム、基地局、無線通信方法、プログラム
CN114828237A (zh) 一种调度请求的传输方法及装置
KR101517617B1 (ko) 이동 통신 시스템에서 프레임 운용 방법 및 그 시스템
WO2006059827A1 (en) Methods for managing the band adaptive modulation and coding (band amc) in portable internet system
WO2010070997A1 (ja) 無線通信システム、基地局、無線通信方法、プログラム
CN107889239B (zh) 一种上行控制信息发送、接收方法及设备
KR102586390B1 (ko) 무선 통신 시스템에서 비선호 자원의 결정을 위한 방법 및 그 장치
CN110602784A (zh) 一种上下行配置方法、基站及终端
WO2023137768A1 (zh) 侧行反馈信道的传输方法、装置、终端及存储介质

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410