JP2010140963A - Cleaning method for electrostatic chuck - Google Patents

Cleaning method for electrostatic chuck Download PDF

Info

Publication number
JP2010140963A
JP2010140963A JP2008313504A JP2008313504A JP2010140963A JP 2010140963 A JP2010140963 A JP 2010140963A JP 2008313504 A JP2008313504 A JP 2008313504A JP 2008313504 A JP2008313504 A JP 2008313504A JP 2010140963 A JP2010140963 A JP 2010140963A
Authority
JP
Japan
Prior art keywords
substrate
chuck plate
chuck
dummy substrate
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008313504A
Other languages
Japanese (ja)
Other versions
JP5292080B2 (en
Inventor
Koji Sogabe
浩二 曽我部
Naoki Morimoto
森本  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2008313504A priority Critical patent/JP5292080B2/en
Publication of JP2010140963A publication Critical patent/JP2010140963A/en
Application granted granted Critical
Publication of JP5292080B2 publication Critical patent/JP5292080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning method for an electrostatic chuck that can remove, at low cost and readily the contaminants deposited on the front surface of a chuck plate 3 without carrying out plasma etching. <P>SOLUTION: A dummy substrate 6 is heated up or cooled off for cleaning, while the substrate 6 is in a state of being sucked onto the front surface of a chuck plate 3. Hardness of contact surface 6b of the dummy substrate 6, with respect to the chuck plate 3, is made higher than that of the substrate to be processed and lower than that of the chuck plate. When the chuck plate is made of aluminum nitride and the processed substrate is a silicon wafer, the contact surface 6b is formed of silicon nitride. Because of the difference in the thermal expansion between the dummy substrate 6 and the chuck plate 3, the contaminants S deposited on the surface of the chuck plate 3 are scraped off by the dummy substrate 6, when the dummy substrate 6 is heated or cooled. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、シリコンウエハ等の被処理基板を吸着する静電チャックのクリーニング方法に関する。   The present invention relates to a method for cleaning an electrostatic chuck that attracts a substrate to be processed such as a silicon wafer.

半導体製造工程においては、所望のデバイス構造を得るために、PVD法、CVD法等による各種成膜処理、イオン注入処理、エッチング処理等の各種処理が行われる。これらの処理を行う真空処理装置では、真空雰囲気中の処理室にて被処理基板を位置決め保持するために静電チャックが設けられている。   In the semiconductor manufacturing process, various processes such as various film forming processes, ion implantation processes, etching processes, and the like are performed by a PVD method, a CVD method, or the like in order to obtain a desired device structure. In a vacuum processing apparatus that performs these processes, an electrostatic chuck is provided to position and hold a substrate to be processed in a processing chamber in a vacuum atmosphere.

静電チャックは、電極を有するチャック本体と、チャック本体の表面を覆う誘電体から成るチャックプレートとを備えており、電極に電圧を印加することによりチャックプレートの表面に被処理基板を吸着する。また、処理によっては、被処理基板を加熱又は冷却することが必要になるため、被処理基板を加熱又は冷却する熱付与手段を組み込んだ静電チャックも知られている。   The electrostatic chuck includes a chuck body having an electrode and a chuck plate made of a dielectric covering the surface of the chuck body, and applies a voltage to the electrode to attract the substrate to be processed to the surface of the chuck plate. Moreover, since it becomes necessary to heat or cool a to-be-processed substrate depending on a process, the electrostatic chuck incorporating the heat provision means to heat or cool a to-be-processed substrate is also known.

ところで、複数の処理工程を経た被処理基板の裏面には、洗浄液残渣等の汚染物質(主に炭素、酸素を主成分とする)が付着している。このような被処理基板を静電チャックに吸着すると、チャックプレートの表面に汚染物質が転写されてしまう。そして、汚染物質の堆積が進行すると、チャックプレートの表面に汚染物質から成る低抵抗層が形成されて、静電チャックの吸着力が低下してしまう。   Incidentally, contaminants such as cleaning liquid residues (mainly containing carbon and oxygen as main components) adhere to the back surface of the substrate to be processed after a plurality of processing steps. When such a substrate to be processed is attracted to the electrostatic chuck, contaminants are transferred to the surface of the chuck plate. When the deposition of contaminants proceeds, a low resistance layer made of contaminants is formed on the surface of the chuck plate, and the adsorption force of the electrostatic chuck is reduced.

そこで、従来、チャックプレートの表面に堆積した汚染物質を除去するクリーニング方法として、特許文献1記載のものが知られている。このクリーニング方法では、静電チャックにプラズマエッチングを施して、汚染物質をチャックプレートの表面から剥がし、次に、被処理基板と同材質の基板をチャックプレートの表面に吸着して、汚染物質を基板に転写し、その後、基板を取り去ることで汚染物質を除去している。   Therefore, conventionally, a cleaning method described in Patent Document 1 is known as a cleaning method for removing contaminants accumulated on the surface of the chuck plate. In this cleaning method, plasma etching is performed on the electrostatic chuck to remove contaminants from the surface of the chuck plate, and then a substrate made of the same material as the substrate to be processed is adsorbed to the surface of the chuck plate to remove the contaminants to the substrate. After that, the contaminant is removed by removing the substrate.

然し、上記従来例の方法は、クリーニングのためにプラズマエッチングを行う関係で、設備費及びランニングコストが嵩む不具合がある。
特開2002−280365号公報
However, the conventional method has a problem that the equipment cost and the running cost increase due to the plasma etching for cleaning.
JP 2002-280365 A

本発明は、以上の点に鑑み、チャックプレートの表面に堆積した汚染物質を、プラズマエッチングを行うことなく、安価且つ簡便に除去できるようにした静電チャックのクリーニング方法を提供することをその課題としている。   SUMMARY OF THE INVENTION In view of the above, the present invention provides a cleaning method for an electrostatic chuck that can remove contaminants deposited on the surface of a chuck plate inexpensively and easily without performing plasma etching. It is said.

上記課題を解決するために、本発明は、電極を有するチャック本体と、チャック本体の表面を覆う誘電体から成るチャックプレートと、電極に電圧を印加することでチャックプレートの表面に吸着される被処理基板を加熱又は冷却する熱付与手段とを備える静電チャックのクリーニング方法であって、チャックプレートの表面にダミー基板を吸着した状態で、熱付与手段によりダミー基板を加熱又は冷却するクリーニング工程を有し、ダミー基板のチャックプレートに対する接触面の硬度は、被処理基板の硬度よりも高く、チャックプレートの硬度よりも低いことを特徴とする。   In order to solve the above-described problems, the present invention provides a chuck body having electrodes, a chuck plate made of a dielectric covering the surface of the chuck body, and an object to be attracted to the surface of the chuck plate by applying a voltage to the electrodes. A method for cleaning an electrostatic chuck comprising a heat applying means for heating or cooling a processed substrate, comprising: a cleaning step of heating or cooling the dummy substrate by a heat applying means in a state where the dummy substrate is adsorbed on the surface of the chuck plate. And the hardness of the contact surface of the dummy substrate with respect to the chuck plate is higher than the hardness of the substrate to be processed and lower than the hardness of the chuck plate.

本発明の如くダミー基板を加熱又は冷却すると、ダミー基板とチャックプレートとの熱膨張差により、チャックプレートの表面に堆積した汚染物質がダミー基板で擦られる。ここで、ダミー基板のチャックプレートに対する接触面は被処理基板よりも高硬度であるため、ダミー基板により汚染物質が効率的に擦り取られる。また、ダミー基板のチャックプレートに対する接触面はチャックプレートよりも低硬度であるため、チャックプレートの表面に擦り傷が付くことはない。   When the dummy substrate is heated or cooled as in the present invention, the contaminants deposited on the surface of the chuck plate are rubbed by the dummy substrate due to the difference in thermal expansion between the dummy substrate and the chuck plate. Here, since the contact surface of the dummy substrate with respect to the chuck plate is harder than the substrate to be processed, contaminants are efficiently scraped off by the dummy substrate. Further, since the contact surface of the dummy substrate with respect to the chuck plate is lower in hardness than the chuck plate, the surface of the chuck plate is not scratched.

そして、本発明では、静電チャックに従来から付設されている熱付与手段でダミー基板を加熱冷却するだけで済み、プラズマエッチングを行うものに比し、設備費及びランニングコストが安くなり、簡便にクリーニングを行うことができる。   And, in the present invention, it is only necessary to heat and cool the dummy substrate with the heat applying means conventionally provided on the electrostatic chuck, and the equipment cost and running cost are lower than those for performing plasma etching, and it is simple. Cleaning can be performed.

尚、本発明において、チャックプレートが窒化アルミニウム製であり、被処理基板がシリコンウエハである場合、ダミー基板のチャックプレートに対する接触面は窒化シリコンで形成されていることが望ましい。   In the present invention, when the chuck plate is made of aluminum nitride and the substrate to be processed is a silicon wafer, the contact surface of the dummy substrate with respect to the chuck plate is preferably formed of silicon nitride.

図1を参照して、Cは、PVD法、CVD法等による各種成膜処理、イオン注入処理、エッチング処理等の処理を行う真空処理装置の処理室(図示せず)内に配置される静電チャックを示している。静電チャックCは、処理室の底部に配置される金属製のベース板1と、ベース板1上に固定される絶縁体から成るチャック本体2と、チャック本体2の表面を覆う窒化アルミニウム等の誘電体から成るチャックプレート3とを備えている。   Referring to FIG. 1, C is a static chamber disposed in a processing chamber (not shown) of a vacuum processing apparatus that performs various film forming processes such as a PVD method and a CVD method, an ion implantation process, and an etching process. An electric chuck is shown. The electrostatic chuck C includes a metal base plate 1 disposed at the bottom of the processing chamber, a chuck body 2 made of an insulator fixed on the base plate 1, and aluminum nitride covering the surface of the chuck body 2. And a chuck plate 3 made of a dielectric.

チャック本体2の表面には、正負の電極4,4が埋設されている。正電極4と負電極4は、例えば櫛歯状に形成されて、その歯の部分が互いに非接触の状態で噛み合うように配置されている。これら電極4,4間には、図示省略した電源から直流電圧を印加できるようになっている。 Positive and negative electrodes 4 1 and 4 2 are embedded in the surface of the chuck body 2. Positive electrode 4 1 and the negative electrode 4 2 is, for example comb shape is formed, portions of the teeth are arranged so as to mesh in a non-contact state with each other. A DC voltage can be applied between these electrodes 4 1 and 4 2 from a power supply (not shown).

チャックプレート3の表面には、外周部の環状のリブ3aと、リブ3aの内方に位置する多数の突起3bとが形成されており、シリコンウエハ等の被処理基板Wがリブ3a及び突起3bの上端面に接するようにして載置される。そして、正負の電極4,4間に直流電圧を印加することで発生する静電気力により、被処理基板Wがチャックプレート3の表面に吸着される。 On the surface of the chuck plate 3, an annular rib 3a on the outer peripheral portion and a large number of protrusions 3b positioned inside the rib 3a are formed. It is placed so as to be in contact with the upper end surface of. The substrate W to be processed is attracted to the surface of the chuck plate 3 by electrostatic force generated by applying a DC voltage between the positive and negative electrodes 4 1 and 4 2 .

静電チャックCは、更に、被処理基板Wを加熱又は冷却する熱付与手段5を備えている。熱付与手段5は、ベース板1に形成した、高温又は低温の熱媒体を流すジャケット部5aと、アルゴン等の不活性ガスから成る伝熱用ガスをチャックプレート3の表面の突起3b間の空隙に供給する、ベース板1、チャック本体2及びチャックプレート3に形成したガス供給路5bとで構成されている。ジャケット部5aに高温又は低温の熱媒体を流すと共にガス供給路5bから伝熱用ガスを供給すると、リブ3a及び突起3bの上端面に吸着する被処理基板Wへのジャケット部5aからの熱伝達が伝熱用ガスによりアシストされ、被処理基板Wが効率良く加熱又は冷却される。   The electrostatic chuck C further includes heat applying means 5 for heating or cooling the substrate W to be processed. The heat applying means 5 is a gap formed between the projection 5b on the surface of the chuck plate 3 and a jacket portion 5a formed on the base plate 1 for flowing a high-temperature or low-temperature heat medium and a heat transfer gas made of an inert gas such as argon. The base plate 1, the chuck body 2, and the gas supply path 5 b formed in the chuck plate 3 are provided. When a high-temperature or low-temperature heat medium is supplied to the jacket part 5a and a heat transfer gas is supplied from the gas supply path 5b, heat transfer from the jacket part 5a to the substrate to be processed W adsorbed on the upper end surfaces of the ribs 3a and the protrusions 3b. Is assisted by the heat transfer gas, and the substrate W to be processed is efficiently heated or cooled.

ところで、被処理基板Wの吸着を繰り返すと、チャックプレート3の表面に、被処理基板Wの裏面に付着していた炭素、酸素を主成分とする汚染物質が付着堆積し、チャックプレート3の表面に汚染物質から成る低抵抗層が形成されて、静電チャックCの吸着力が低下してしまう。そこで、被処理基板Wの吸着枚数が所定数(例えば、100枚)に達する度に、チャックプレート3の表面に堆積した汚染物質を除去するクリーニングを行うようにしている。   By the way, when adsorption of the substrate to be processed W is repeated, contaminants mainly composed of carbon and oxygen adhering to the back surface of the substrate to be processed W adhere to and accumulate on the surface of the chuck plate 3. As a result, a low-resistance layer made of a contaminant is formed, and the attractive force of the electrostatic chuck C is reduced. Therefore, cleaning is performed to remove contaminants deposited on the surface of the chuck plate 3 every time the number of substrates to be processed W reaches a predetermined number (for example, 100).

本実施形態では、図2に示す如く、チャックプレート3にダミー基板6を載置し、正負の電極4,4間に直流電圧を印加して、チャックプレート3の表面にダミー基板6を吸着した状態で、熱付与手段5によりダミー基板6を加熱又は冷却することによりクリーニングを行っている。 In the present embodiment, as shown in FIG. 2, a dummy substrate 6 is placed on the chuck plate 3, a DC voltage is applied between the positive and negative electrodes 4 1 , 4 2 , and the dummy substrate 6 is attached to the surface of the chuck plate 3. In the adsorbed state, cleaning is performed by heating or cooling the dummy substrate 6 by the heat applying means 5.

ここで、ダミー基板6は、被処理基板Wと同径、同材質の基材6aのチャックプレート3に対する接触面(下面)に、被処理基板Wの硬度よりも高硬度で、且つ、チャックプレート3の硬度よりも低硬度の被覆層6bを形成して成るものである。   Here, the dummy substrate 6 has a hardness higher than the hardness of the substrate to be processed W on the contact surface (lower surface) of the base material 6a having the same diameter and the same material as the substrate to be processed W with respect to the chuck plate 3, and the chuck plate. 3 is formed by forming a coating layer 6b having a hardness lower than 3.

ダミー基板6を上記の如く加熱又は冷却すると、ダミー基板6とチャックプレート3との熱膨張差により、チャックプレート3の表面に堆積した汚染物質Sがダミー基板6で擦られる。そして、ダミー基板6のチャックプレート3に対する接触面、即ち、被覆層6bは被処理基板Wよりも高硬度であるため、ダミー基板6により汚染物質が効率的に擦り取られる。尚、被覆層6bはチャックプレート3よりも低硬度であるため、チャックプレート3の表面に擦り傷が付くことはない。   When the dummy substrate 6 is heated or cooled as described above, the contaminant S deposited on the surface of the chuck plate 3 is rubbed by the dummy substrate 6 due to a difference in thermal expansion between the dummy substrate 6 and the chuck plate 3. The contact surface of the dummy substrate 6 with respect to the chuck plate 3, that is, the coating layer 6 b is harder than the substrate W to be processed, so that the contaminants are efficiently scraped off by the dummy substrate 6. Since the coating layer 6b has a lower hardness than the chuck plate 3, the surface of the chuck plate 3 is not scratched.

以上のことを確かめるため試験を行った。試験では、被処理基板Wをシリコンウエハとし、チャックプレート3として、直径300mmの窒化アルミニウム製のものを用い、ダミー基板6として、直径300mmのシリコン製の基材6aに窒化シリコンから成る被覆層6bを形成して成るものを用いた。尚、シリコンの硬度は733Hv、窒化アルミニウムの硬度と熱膨張係数は夫々1100Hv、6.0×10−6/℃、窒化シリコンの硬度と熱膨張係数は夫々957Hv、3.0×10−6/℃である。 A test was conducted to confirm the above. In the test, the substrate W to be processed is a silicon wafer, the chuck plate 3 is made of aluminum nitride having a diameter of 300 mm, and the dummy substrate 6 is a silicon base material 6a having a diameter of 300 mm and a coating layer 6b made of silicon nitride. The one formed by forming was used. The hardness of silicon is 733 Hv, the hardness and thermal expansion coefficient of aluminum nitride are 1100 Hv and 6.0 × 10 −6 / ° C., and the hardness and thermal expansion coefficient of silicon nitride are 957 Hv and 3.0 × 10 −6 / respectively. ° C.

試験は、チャックプレート3の表面に汚染物質として(C)(N)(O)(H)から成る厚さ10nmの膜を形成し、このチャックプレート3の表面にダミー基板6を吸着した状態で、ダミー基板6を450℃に加熱して3分間保持した後、吸着を終了してダミー基板6をチャックプレート3上から回収するという作業を数回繰り返し、クリーニングを行った。比較のため、上記と同様の膜を形成したチャックプレート3の表面にシリコンウエハを吸着した状態で、シリコンウエハを上記と同様に加熱することを数回繰り返した。そして、クリーニングをする前と後で、チャックプレート3の表面に新品のシリコンウエハ(直径300mm)を載置し、正負の電極4,4間に0.6kVの直流電圧を印加して、吸着力を測定した。吸着力の測定は、シリコンウエハ裏面にArガスを充填させ、シリコンウエハとチャックプレート3との隙間から洩れるArガス量を計測することで行った。 In the test, a 10 nm thick film made of (C) (N) (O) (H) as a contaminant is formed on the surface of the chuck plate 3, and the dummy substrate 6 is adsorbed on the surface of the chuck plate 3. Then, after the dummy substrate 6 was heated to 450 ° C. and held for 3 minutes, the operation of completing the suction and collecting the dummy substrate 6 from the chuck plate 3 was repeated several times to perform cleaning. For comparison, heating the silicon wafer in the same manner as described above was repeated several times with the silicon wafer adsorbed on the surface of the chuck plate 3 on which a film similar to the above was formed. Before and after cleaning, a new silicon wafer (diameter: 300 mm) is placed on the surface of the chuck plate 3 and a DC voltage of 0.6 kV is applied between the positive and negative electrodes 4 1 and 4 2 . The adsorptive power was measured. The adsorption force was measured by filling the back surface of the silicon wafer with Ar gas and measuring the amount of Ar gas leaking from the gap between the silicon wafer and the chuck plate 3.

この漏れ量は、クリーニング前は0.36sccmであったが、上記ダミー基板6を用いてクリーニングを行った後は0.036sccmになり、シリコンウエハを用いてクリーニングを行った後は0.08sccmになった。このことから、チャックプレート3に対する接触面の硬度が被処理基板Wよりも高硬度のダミー基板6を用いてクリーニングを行うことにより、吸着力が回復すること、即ち、チャックプレート3の表面に堆積した汚染物質を効率的に除去できることが分かる。   The amount of leakage was 0.36 sccm before cleaning, but became 0.036 sccm after cleaning using the dummy substrate 6, and 0.08 sccm after cleaning using a silicon wafer. became. From this, the suction force is recovered by performing cleaning using the dummy substrate 6 whose contact surface hardness with respect to the chuck plate 3 is higher than that of the substrate W to be processed, that is, deposited on the surface of the chuck plate 3. It can be seen that the contaminated contaminants can be removed efficiently.

以上、本発明の実施形態について説明したが、本発明はこれに限定されない。例えば、熱付与手段5として、上記実施形態のジャケット部5aに代えてヒータを用いることも可能である。また、クリーニングに際し、ダミー基板6を例えば−20℃程度まで冷却してから常温に戻すようにしてもよい。また、チャックプレート3の材質は窒化アルミニウム以外の誘電体であってもよい。この場合、ダミー基板6の被覆層6bの材質は、硬度がチャックプレート3よりも低く、被処理基板Wより高くなるという条件を満たす限り、窒化シリコン以外のものであってもよい。また、上記実施形態の静電チャックCは正負の電極4,4を有する双極型であるが、単極型の静電チャックのクリーニングにも同様に本発明を適用できる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this. For example, a heater can be used as the heat application means 5 instead of the jacket portion 5a of the above embodiment. In cleaning, the dummy substrate 6 may be cooled to, for example, about −20 ° C. and then returned to room temperature. The material of the chuck plate 3 may be a dielectric other than aluminum nitride. In this case, the material of the coating layer 6b of the dummy substrate 6 may be other than silicon nitride as long as the condition that the hardness is lower than that of the chuck plate 3 and higher than that of the substrate W to be processed. Further, although the electrostatic chuck C of the above embodiment is a bipolar type having positive and negative electrodes 4 1 and 4 2 , the present invention can be similarly applied to cleaning of a monopolar type electrostatic chuck.

静電チャックの構成を示す模式的断面図。The typical sectional view showing the composition of an electrostatic chuck. 本発明のクリーニング方法の実施に用いるダミー基板の模式的断面図。The typical sectional view of the dummy substrate used for implementation of the cleaning method of the present invention.

符号の説明Explanation of symbols

W…被処理基板、C…静電チャック、2…チャック本体、3…チャックプレート、4,4…電極、5…熱付与手段、6…ダミー基板、6b…被覆層(ダミー基板のチャックプレートに対する接触面)。 W: substrate to be processed, C: electrostatic chuck, 2 ... chuck body, 3 ... chuck plate, 4 1 , 4 2 ... electrode, 5 ... heat applying means, 6 ... dummy substrate, 6b ... coating layer (dummy substrate chuck) Contact surface to the plate).

Claims (2)

電極を有するチャック本体と、チャック本体の表面を覆う誘電体から成るチャックプレートと、電極に電圧を印加することでチャックプレートの表面に吸着される被処理基板を加熱又は冷却する熱付与手段とを備える静電チャックのクリーニング方法であって、
チャックプレートの表面にダミー基板を吸着した状態で、熱付与手段によりダミー基板を加熱又は冷却するクリーニング工程を有し、
ダミー基板のチャックプレートに対する接触面の硬度は、被処理基板の硬度よりも高く、チャックプレートの硬度よりも低いことを特徴とする静電チャックのクリーニング方法。
A chuck body having electrodes, a chuck plate made of a dielectric covering the surface of the chuck body, and a heat applying means for heating or cooling a substrate to be processed adsorbed on the surface of the chuck plate by applying a voltage to the electrodes. An electrostatic chuck cleaning method comprising:
In a state where the dummy substrate is adsorbed on the surface of the chuck plate, it has a cleaning step of heating or cooling the dummy substrate by the heat applying means,
An electrostatic chuck cleaning method, wherein the hardness of the contact surface of the dummy substrate with respect to the chuck plate is higher than the hardness of the substrate to be processed and lower than the hardness of the chuck plate.
請求項1記載の静電チャックのクリーニング方法であって、前記チャックプレートは窒化アルミニウム製であり、前記被処理基板はシリコンウエハであるものにおいて、前記ダミー基板のチャックプレートに対する接触面は窒化シリコンで形成されていることを特徴とする静電チャックのクリーニング方法。   2. The method for cleaning an electrostatic chuck according to claim 1, wherein the chuck plate is made of aluminum nitride, and the substrate to be processed is a silicon wafer, and the contact surface of the dummy substrate with respect to the chuck plate is silicon nitride. A method for cleaning an electrostatic chuck, wherein the electrostatic chuck is formed.
JP2008313504A 2008-12-09 2008-12-09 Cleaning method for electrostatic chuck Active JP5292080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313504A JP5292080B2 (en) 2008-12-09 2008-12-09 Cleaning method for electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313504A JP5292080B2 (en) 2008-12-09 2008-12-09 Cleaning method for electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2010140963A true JP2010140963A (en) 2010-06-24
JP5292080B2 JP5292080B2 (en) 2013-09-18

Family

ID=42350869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313504A Active JP5292080B2 (en) 2008-12-09 2008-12-09 Cleaning method for electrostatic chuck

Country Status (1)

Country Link
JP (1) JP5292080B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085104A (en) * 2015-10-28 2017-05-18 漢辰科技股▲ふん▼有限公司 Method of cleaning electrostatic chuck
JP2021118323A (en) * 2020-01-29 2021-08-10 Hoya株式会社 Electrostatic Chuck Cleaner and Cleaning Method for Electrostatic Chuck

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280365A (en) * 2001-03-19 2002-09-27 Applied Materials Inc Method of cleaning electrostatic chuck

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280365A (en) * 2001-03-19 2002-09-27 Applied Materials Inc Method of cleaning electrostatic chuck

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085104A (en) * 2015-10-28 2017-05-18 漢辰科技股▲ふん▼有限公司 Method of cleaning electrostatic chuck
US10699876B2 (en) 2015-10-28 2020-06-30 Advanced Ion Beam Technology, Inc. Method of cleaning electrostatic chuck
JP2021118323A (en) * 2020-01-29 2021-08-10 Hoya株式会社 Electrostatic Chuck Cleaner and Cleaning Method for Electrostatic Chuck

Also Published As

Publication number Publication date
JP5292080B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP3114419U (en) Cleaning the substrate support
CN101752224B (en) Component cleaning method
TWI525676B (en) Substrate mounting stage and surface treatment method therefor
TWI390588B (en) Cleaning of electrostatic chucks using ultrasonic agitation and applied electric fields
US7655579B2 (en) Method for improving heat transfer of a focus ring to a target substrate mounting device
US9087676B2 (en) Plasma processing method and plasma processing apparatus
JP5117500B2 (en) Manufacturing method of electrostatic chuck mechanism
JP2001284442A (en) Electrostatic chuck and its manufacturing method
US7993465B2 (en) Electrostatic chuck cleaning during semiconductor substrate processing
JP2013162084A (en) Electrostatic chuck regenerating method
KR101820976B1 (en) Methodology for cleaning of surface metal contamination from an upper electrode used in a plasma chamber
JP5232868B2 (en) Board management method
JP2009224385A (en) Annular component for plasma processing, plasma processing apparatus, and outer annular member
JP5292080B2 (en) Cleaning method for electrostatic chuck
JPH09330895A (en) Electrostatic particle remover
JP2006080509A (en) Thin substrate support
JP2009099957A (en) Display substrate manufacturing method and vacuum processing apparatus
JP5515365B2 (en) Electrostatic chuck and method of manufacturing electrostatic chuck
JP2006066857A (en) Bipolar electrostatic chuck
TWI804834B (en) Method for cleaning and etching apparatus
JP6142305B2 (en) Electrostatic adsorption method and electrostatic adsorption device
JP4495687B2 (en) Electrostatic chuck
JP5335421B2 (en) Vacuum processing equipment
JP2011071211A (en) Method of measuring self-bias of processing object, and method and device for separating processing object using the same
KR200397550Y1 (en) Cleaning of a substrate support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5292080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250