JP2010140709A - Low-melting alloy element with lead conductor for thermal fuse, and method for manufacturing the same - Google Patents

Low-melting alloy element with lead conductor for thermal fuse, and method for manufacturing the same Download PDF

Info

Publication number
JP2010140709A
JP2010140709A JP2008314361A JP2008314361A JP2010140709A JP 2010140709 A JP2010140709 A JP 2010140709A JP 2008314361 A JP2008314361 A JP 2008314361A JP 2008314361 A JP2008314361 A JP 2008314361A JP 2010140709 A JP2010140709 A JP 2010140709A
Authority
JP
Japan
Prior art keywords
alloy element
point alloy
lead conductor
low
thermal fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008314361A
Other languages
Japanese (ja)
Inventor
Masanori Mitsube
昌紀 三邉
Kenichi Nobe
健一 野辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2008314361A priority Critical patent/JP2010140709A/en
Publication of JP2010140709A publication Critical patent/JP2010140709A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a property of a parting operation of a thermal fuse by decreasing an oxide content as coming closer to a side welded to a lead conductor end of a thermal fuse element as compared to the center, and by varying a distribution of content density even when the oxide content of the whole thermal fuse remains unchanged. <P>SOLUTION: The low-melting alloy element 2 is welded between the ends of a pair of lead conductors 1, and the oxide content of the low-melting alloy element is decreased as reaching the end side of the lead conductor and is increased as reaching the center of the low-melting alloy element. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、温度ヒューズ用のリード導体付き低融点合金エレメント及びその製作方法に関するものである。   The present invention relates to a low-melting-point alloy element with a lead conductor for a thermal fuse and a manufacturing method thereof.

二次電池、例えばリチウムイオン電池の過熱保護に使用される合金型温度ヒューズを製造するには、線引きまたはロール圧延等によって加工した低融点合金エレメントを両リード導体間に溶接し、この低融点合金エレメントにフラックスを塗布し、このフラックス塗布低融点合金エレメントを耐熱絶縁体で封止している。
近来、環境衛生上、低融点合金エレメントの鉛フリー化が要請され、鉛フリー組成の低融点合金エレメントが多く開発されている。
この鉛フリー組成には、線引き、圧延等の加工が至難なものがあり、鋳込み成型によって低融点合金エレメントを製作することが知られている(例えば、特許文献1)。
特開平10−225754号公報
In order to manufacture an alloy type thermal fuse used for overheating protection of a secondary battery, for example, a lithium ion battery, a low melting point alloy element processed by drawing or roll rolling is welded between both lead conductors, and this low melting point alloy A flux is applied to the element, and the flux-coated low melting point alloy element is sealed with a heat-resistant insulator.
Recently, in view of environmental sanitation, lead-free low melting point alloy elements are required, and many low melting point alloy elements having a lead-free composition have been developed.
Some of these lead-free compositions are difficult to process such as drawing and rolling, and it is known to produce a low melting point alloy element by casting (for example, Patent Document 1).
Japanese Patent Laid-Open No. 10-225754

低融点合金においては、酸化物の生成含有が避けられず、この酸化物が温度ヒューズエレメントの分断動作に支障をきたすことは否めない。
合金型温度ヒューズの動作機構は、温度ヒューズが取り付けられた被保護機器の過熱で低融点合金エレメントが溶融され、その溶融合金のリード導体への濡れにより溶融合金が分断されることにあり、溶融合金中の酸化物はリード導体への濡れを阻害し、特にリード導体に溶接されている低融点合金エレメント端部の可溶合金部分は前記濡れに大きなウエイトで関与するために、その濡れの阻害は温度ヒューズの分断動作を大きく低下させることになる。
In low-melting-point alloys, the formation of oxides is unavoidable, and it cannot be denied that the oxides hinder the operation of dividing the thermal fuse element.
The operating mechanism of the alloy-type thermal fuse is that the low-melting-point alloy element is melted by overheating of the protected device to which the thermal fuse is attached, and the molten alloy is divided by the wetness of the molten alloy to the lead conductor. Oxides in the alloy inhibit the wetting of the lead conductor. In particular, the fusible alloy part at the end of the low melting point alloy element welded to the lead conductor is involved in the wetting with a large weight. This greatly reduces the temperature dividing operation of the thermal fuse.

而るに、前記鋳込み成型により製造した温度ヒューズエレメント、線引きまたはロール圧延により加工した温度ヒューズエレメントの何れとも、酸化物含有率がリード導体側部分と中央側部分とにおいて差なく実質的に同等であり、酸化物含有率の分布の観点から温度ヒューズの動作性能を改善する余地が存在する。   Therefore, the oxide content is substantially the same in the lead conductor side portion and the central side portion, both in the thermal fuse element manufactured by the casting and the thermal fuse element processed by wire drawing or roll rolling. There is room for improving the operational performance of thermal fuses from the viewpoint of the distribution of oxide content.

本発明の目的は、温度ヒューズエレメントのリード導体端部に溶接された側ほど酸化物含有率を中央側より低くし、温度ヒューズ全体の酸化物含有量が変わらなくても、その含有密度の分布を改変することにより、温度ヒューズの分断動作特性を向上させることにある。   The object of the present invention is to reduce the oxide content to the side welded to the end of the lead conductor of the thermal fuse element from the center side, and even if the oxide content of the entire thermal fuse does not change, the content density distribution Is to improve the breaking operation characteristics of the thermal fuse.

請求項1に係る温度ヒューズ用のリード導体付き低融点合金エレメントの製作方法は、作業台上に一対のリード導体を所定のギャップ間隔を隔てて配設し、前記ギャップ及び両リード導体端部にわたって低融点合金の溶湯を供給し、この溶湯表面を開放した状態で表面張力を作用させつつ溶湯をリード導体端部側ほど速い速度で、ギャップの中央側ほど遅い速度で冷却させて凝固させると共に各リード導体の端部と凝固合金との間を溶接させることを特徴とする。
請求項2に係る温度ヒューズ用のリード導体付き低融点合金エレメントは、一対のリード導体の端部間に低融点合金エレメントが溶接され、低融点合金エレメントの酸化物含有率がリード導体端部側に至るほど低く、低融点合金エレメントの中央箇所に至るほど高くされていることを特徴とする。
請求項3に係る温度ヒューズ用のリード導体付き低融点合金エレメントは、請求項2の温度ヒューズ用のリード導体付き低融点合金エレメントにおいて、対向するリード導体先端々面間に低融点合金エレメントの一部が入り込んでいることを特徴とする。
According to a first aspect of the present invention, there is provided a method for producing a low-melting-point alloy element with a lead conductor for a thermal fuse, wherein a pair of lead conductors are arranged on a workbench with a predetermined gap interval, and the gap and the ends of both lead conductors are extended. The molten metal of the low melting point alloy is supplied, and the molten metal is cooled at a faster speed toward the end of the lead conductor and solidified by cooling at a slower speed toward the center of the gap while surface tension is applied with the surface of the molten metal open. It is characterized by welding between the end portion of the lead conductor and the solidified alloy.
The low melting point alloy element with a lead conductor for a thermal fuse according to claim 2 has the low melting point alloy element welded between the end portions of the pair of lead conductors, and the oxide content of the low melting point alloy element is on the lead conductor end side. It is characterized by being made so low that it reaches the center of the low melting point alloy element.
A low melting point alloy element with a lead conductor for a thermal fuse according to claim 3 is the low melting point alloy element with a lead conductor for a thermal fuse according to claim 2, wherein one of the low melting point alloy elements is provided between the leading ends of the opposing lead conductors. It is characterized in that the part has entered.

(1)請求項1では、温度ヒューズエレメント用低融点合金の溶湯を表面開放状態で表面張力を作用させつつリード導体端部側に至るほど速い冷却速度で凝固させており、溶湯中央箇所に至るほどその溶湯表面の接線角が小さくなるために、溶湯に作用する表面張力が溶湯中央箇所に至るほど大きくなり、溶湯表面に浮上し易い酸化物が溶湯中央に集まり、一方、中央に至るほど冷却速度が遅いために中央に至るほど結晶粒界の密度が大となって、前記中央に至りほど高密度となる浮遊性酸化物が高密度の結晶粒界にトラップされるために、低融点合金エレメントの中央からリード導体端との溶接箇所に至るほど酸化物密度が低くなる。
(2)請求項2では、低融点合金エレメントの酸化物含有密度が低融点合金エレメントの中央から端部に至るほど低くなっているから、低融点合金エレメントの球状化分断の初期における低融点合金エレメント端部のリード導体への濡れを効果的に発生させ得、温度ヒューズの迅速な分断動作を保証できる。
(3)合金型温度ヒューズのヒートサイクル時に発生する低融点合金エレメントの熱膨張力が、対向するリード導体先端々面間に入り込んだ低融点合金エレメント部分とリード導体先端々面との接触面でも支承されるから、前記熱膨張力に対し、低融点合金エレメントとリード導体先端部との溶接箇所に作用する反力が低減される。従って、低融点合金エレメントとリード導体先端部との溶接箇所の対ヒートサイクル安定性を向上でき、この点からも温度ヒューズの良好な分断動作を保証できる。
(1) In claim 1, the molten metal of the low-melting point alloy for the thermal fuse element is solidified at a faster cooling rate as it reaches the end portion of the lead conductor while acting the surface tension with the surface open, and reaches the central portion of the molten metal. Since the tangent angle on the surface of the molten metal becomes smaller, the surface tension acting on the molten metal increases as it reaches the center of the molten metal, and oxides that tend to float on the molten metal surface gather in the middle of the molten metal. Since the speed is slow, the density of the grain boundary increases toward the center, and the floating oxide, which becomes denser toward the center, is trapped in the high density grain boundary. The oxide density decreases from the center of the element to the welded portion with the end of the lead conductor.
(2) In claim 2, since the oxide-containing density of the low-melting-point alloy element decreases from the center to the end of the low-melting-point alloy element, the low-melting-point alloy at the initial stage of spheroidization of the low-melting-point alloy element It is possible to effectively generate the wetting of the end of the element to the lead conductor, and to ensure the quick cutting operation of the thermal fuse.
(3) The thermal expansion force of the low-melting-point alloy element generated during the heat cycle of the alloy-type thermal fuse is also the contact surface between the low-melting-point alloy element part and the leading end of the lead conductor that have entered between the leading ends of the opposing lead conductors. Since it is supported, the reaction force acting on the welded portion between the low melting point alloy element and the lead conductor tip is reduced with respect to the thermal expansion force. Accordingly, it is possible to improve the heat cycle stability of the welded portion between the low melting point alloy element and the lead conductor tip, and from this point, it is possible to guarantee a good cutting operation of the thermal fuse.

以下、図面を参照しつつ本発明の実施例について説明する。
図1は本発明に係る温度ヒューズ用のリード導体付き低融点合金エレメントを示す図面である。
図1において、1,1は帯状リード導体であり、ニッケル導体、銅導体等を使用できる。ニッケル導体の表面には、Sn、Au、Cu、Ag等をメッキまたはクラッドすることができ、銅導体には、全面または低融点合金エレメントが溶接される部分以外に銅移行阻止膜として、Niをメッキまたはクラッドすることができ、更にはNiの上にSn、Au、Cu、Ag等をメッキすることもできる。
2は低融点合金エレメントであり、上面は両端部に至るほど接線角を大きくした曲面とされ、中間部の一部20を図2−1に示すように対向するリード導体先端々面11,11間に入り込ませ、両端部21,21のそれぞれが各帯状リード導体端部10,10の上面に溶接されている。
低融点合金エレメントの対向するリード導体先端々面間への入り込み体積は低融点合金エレメント全体積の10〜20%である。図2−2に示するように、入り込み部分20の下面と帯状リード導体1,1の下面とをほぼ面一にすることもできる。図2−1及び図2−2において、mは前記したメッキ膜またはクラッド層を示している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a view showing a low melting point alloy element with a lead conductor for a thermal fuse according to the present invention.
In FIG. 1, reference numerals 1 and 1 denote strip-shaped lead conductors, which can be nickel conductors, copper conductors, or the like. The surface of the nickel conductor can be plated or clad with Sn, Au, Cu, Ag or the like, and the copper conductor can be coated with Ni as a copper migration blocking film in addition to the entire surface or a portion where the low melting point alloy element is welded. It can be plated or clad, and Sn, Au, Cu, Ag, etc. can be plated on Ni.
Reference numeral 2 denotes a low melting point alloy element, and the upper surface is a curved surface with a tangent angle increasing toward both ends, and a part 20 of the intermediate portion faces the leading end surfaces 11 and 11 of the opposing lead conductors as shown in FIG. The both end portions 21 and 21 are welded to the upper surfaces of the respective strip-like lead conductor end portions 10 and 10.
The volume of the low-melting-point alloy element entering between the leading ends of the opposing lead conductors is 10 to 20% of the total volume of the low-melting-point alloy element. As shown in FIG. 2B, the lower surface of the entering portion 20 and the lower surfaces of the strip-shaped lead conductors 1 and 1 can be substantially flush with each other. In FIGS. 2A and 2B, m indicates the above-described plating film or cladding layer.

前記の温度ヒューズ用リード導体付きエレメントを本発明により製造するには、図3に示すように、耐熱性、溶融合金に対し離型性の作業台A、例えばステンレス台上に、リード導体基材(前記のメッキまたはクラッドが施されている)100,100を所定のギャップ間隔で配置し、この基材100,100間に低融点合金線材を供給しつつはんだごてで溶融するか、溶融低合金を走行ノズルで供給することにより、ギャップ及びリード導体基材端部にまたがって低融点合金の溶湯200を供給する。
溶湯200は供給と同時にリード導体基材100,100の高熱伝導経路を経ての放熱により冷却され、リード導体基材端部に近い部分ほど速い冷却速度で冷却されて凝固が進行していく。
In order to manufacture the element with a lead conductor for a thermal fuse according to the present invention, as shown in FIG. 3, a lead conductor base material is formed on a worktable A having heat resistance and releasability from a molten alloy, for example, a stainless steel base. 100 and 100 (with the above-mentioned plating or cladding) are arranged at a predetermined gap interval and melted with a soldering iron while supplying a low-melting-point alloy wire between the base materials 100 and 100, or low melting By supplying the alloy with the traveling nozzle, the molten metal 200 of the low melting point alloy is supplied across the gap and the end portion of the lead conductor base material.
The molten metal 200 is cooled by heat radiation through the high heat conduction path of the lead conductor base materials 100 and 100 simultaneously with the supply, and the portion closer to the end portion of the lead conductor base material is cooled at a faster cooling rate and solidification proceeds.

この冷却凝固の進行過程では、溶湯表面の中央側ほど表面接線角が小さくなるために溶湯表面の表面張力が中央側ほど大になり、溶湯表面に浮上した酸化物が中央に向かって移動される。また、中央に至るほど冷却速度が遅いために中央に至るほど結晶粒界密度が高くなり、酸化物のトラップ箇所の密度が多くなるために、中央部に集中した酸化物が中央部の高密度結晶粒界にトラップされて凝固低融点合金の中央部に至るほど酸化物含有密度が高くなり、リード導体端側ほど酸化物含有密度が低くなる。
而して、供給低融点合金溶湯の凝固の完了をまって短冊状にカットし、「一対のリード導体の端部間に低融点合金エレメントが溶接され、低融点合金エレメントの酸化物含有率がリード導体端部側に至るほど低く、低融点合金エレメントの中央箇所に至るほど高くされた温度ヒューズ用のリード導体付き低融点合金エレメント」を得ることができる。
In this process of cooling and solidification, the surface tangent angle decreases toward the center of the melt surface, so the surface tension of the melt surface increases toward the center, and the oxide floating on the surface of the melt moves toward the center. . In addition, since the cooling rate is slower toward the center, the grain boundary density increases toward the center and the density of oxide traps increases, so that the oxide concentrated in the center is high in the center. The oxide-containing density increases as it is trapped by the crystal grain boundary and reaches the center of the solidified low melting point alloy, and the oxide-containing density decreases toward the end of the lead conductor.
Thus, the solidification of the supplied low melting point alloy melt was completed and cut into a strip shape. “The low melting point alloy element was welded between the ends of the pair of lead conductors, and the oxide content of the low melting point alloy element was reduced. A low-melting-point alloy element with a lead conductor for a thermal fuse that is lowered toward the end portion of the lead conductor and raised toward the center of the low-melting-point alloy element can be obtained.

低融点合金溶湯の材質としては、In−Bi系、Sn−In−Bi系、これらの合金系に機械的強度の向上や温度特性の調整のためにCu、Ag、Sb、Zn等の元素を0.1〜4.0質量%添加したものを使用できる。   As the material of the low melting point alloy molten metal, elements such as Cu, Ag, Sb, Zn are used for improving mechanical strength and adjusting temperature characteristics in the In-Bi system, Sn-In-Bi system, and these alloy systems. What added 0.1-4.0 mass% can be used.

上記リード導体基材の熱伝導経路を得ての放熱による冷却速度を調整するために、ギャップの裏側を保温したり、リード導体基材をエアブローしたり、リード導体基材を熱伝導性の部材で支持したりすることができる。   In order to adjust the cooling rate by heat dissipation by obtaining the heat conduction path of the lead conductor base material, the back side of the gap is kept warm, the lead conductor base material is air blown, or the lead conductor base material is a heat conductive member. Or can be supported.

前記製造方法により得られた温度ヒューズ用リード導体付きエレメントにおいては、図1に示すように、対向するリード導体先端々面11,11間に低融点合金エレメントの一部20が入り込んでいる。
この温度ヒューズ用リード導体付きエレメントを使用して合金型温度ヒューズを製造するには、図1に示すようにフラックスを、低融点合金エレメント2の上面側に符合31で示すように塗布し、低融点合金エレメントの入り込み部20の下面及び該下面に燐在する帯状リード導体下面部分に符合32で示すように塗布する。
上側フラックス31は、帯状リード導体の端部上面に溶接された低融点合金エレメント部分の70%以上を覆うように塗布されており、帯状リード導体の上面に達せさせることもできる。上面側フラックス31の塗布厚みは、帯状リード導体の端部上面に溶接された低融点合金エレメント部分の平均厚みの70〜100%とすることが好ましい。
下側フラックス32の塗布厚みは、温度ヒューズ本体の下面側から低融点合金エレメントへの熱伝達性(感温性)を保証するために、下面側絶縁体厚み(下側フィルムと下側接着剤との総厚み)の50%以下とすることが好ましい。
フラックスには、ロジン系を主成分とし、活性剤例えばジカルボン酸(例えば、フマル酸、マレイン酸、シュウ酸)を添加したものを使用できる。
In the element with the lead conductor for thermal fuse obtained by the manufacturing method, as shown in FIG. 1, a part 20 of the low melting point alloy element is inserted between the leading end faces 11 and 11 of the opposing lead conductor.
In order to manufacture an alloy-type thermal fuse using this element with a lead conductor for thermal fuse, a flux is applied to the upper surface side of the low melting point alloy element 2 as shown by reference numeral 31 as shown in FIG. The melting point alloy element is applied to the lower surface of the entry portion 20 of the melting point alloy element and the lower surface portion of the strip-shaped lead conductor that is present on the lower surface as indicated by reference numeral 32.
The upper flux 31 is applied so as to cover 70% or more of the low melting point alloy element portion welded to the upper surface of the end portion of the strip-shaped lead conductor, and can also reach the upper surface of the strip-shaped lead conductor. The coating thickness of the upper surface side flux 31 is preferably 70 to 100% of the average thickness of the low melting point alloy element portion welded to the upper surface of the end portion of the strip-shaped lead conductor.
The coating thickness of the lower flux 32 is the thickness of the lower surface insulator (lower film and lower adhesive) in order to ensure heat transfer (temperature sensitivity) from the lower surface side of the thermal fuse body to the low melting point alloy element. The total thickness is preferably 50% or less.
As the flux, a rosin-based component and an activator such as a dicarboxylic acid (for example, fumaric acid, maleic acid, or oxalic acid) can be used.

図4−1は本発明に係る温度ヒューズ用のリード導体付き低融点合金エレメントを使用した温度ヒューズの斜視図を、図4−2は図4−1におけるイ−イ断面図をそれぞれ示している。
図4−1及び図4−2において、1,1は帯状リード導体、2は低融点合金エレメントであり、前記した通り、対向するリード導体先端々面間のスペースに低融点合金エレメントの中間部を入り込ませ、低融点合金エレメントの上面のみならず低融点合金エレメントの入り込み表面及びその表面に臨むリード導体部分にもフラックスを塗布してある。
4,4は上下の耐熱フィルム、5は上下フィルム4,4間の空間を埋めた接着剤であり、上側フラックス31、上側フラックス31に対する低融点合金エレメント2の露出面、下側フラックス32が接着剤に接している。
4A is a perspective view of a thermal fuse using a low melting point alloy element with a lead conductor for the thermal fuse according to the present invention, and FIG. 4-2 is a sectional view taken along the line II in FIG. .
In FIGS. 4A and 4B, 1 and 1 are strip-shaped lead conductors, and 2 is a low-melting point alloy element. As described above, an intermediate portion of the low-melting point alloy element is located in the space between the leading ends of the opposing lead conductors. The flux is applied not only to the upper surface of the low melting point alloy element but also to the entering surface of the low melting point alloy element and the lead conductor portion facing the surface.
4 and 4 are heat-resistant films for upper and lower films, and 5 is an adhesive that fills the space between the upper and lower films 4 and 4. The upper flux 31, the exposed surface of the low melting point alloy element 2 with respect to the upper flux 31, and the lower flux 32 are bonded. It is in contact with the agent.

本発明に係る温度ヒューズの製造は、(1)作業台上において、リード導体付きフラックス塗布低融点合金エレメントを下側耐熱フィルム上に配置し、下側塗布フラックスの粘着力でその配置位置への固定状態を担保し、次いで未硬化接着剤塗布耐熱フィルムを接着剤面を下側にして前記下側配置耐熱フィルム上に配置し、この上側の配置耐熱フィルムを治具で押えた状態で接着剤を硬化させる方法、または(2)作業台上に、未硬化接着剤塗布耐熱フィルムを接着剤面を上側にして配置し、フラックス塗布低融点合金エレメント接続リード導体を下側耐熱フィルム上に配置し、未硬化接着剤の粘着力でその配置位置への固定状態を担保し、次いで未硬化接着剤塗布耐熱フィルムを接着剤面を下側にして前記下側配置耐熱フィルム上に配置し、この上側の配置耐熱フィルムを治具で押えた状態で接着剤を硬化させる方法により行うことができる。
前記上下の耐熱フィルムには、PET、PC、PEN等のエンジニアリングプラスチックフィルム、ガラスクロス基材エポキシ樹脂フィルム等を使用できる。一枚もので挾んで使用するものを用いることもできる。
接着剤としては、エポキシ樹脂、紫外線硬化樹脂、シリコン樹脂等を使用できる。
The thermal fuse according to the present invention is manufactured by (1) placing a flux-coated low-melting-point alloy element with a lead conductor on the lower heat-resistant film on the workbench, and applying the adhesive force of the lower-coated flux to the placement position. Secure the fixed state, then place the uncured adhesive-coated heat-resistant film on the lower heat-resistant film with the adhesive side down, and hold the upper heat-resistant film on the upper side with a jig. (2) An uncured adhesive-coated heat-resistant film is placed on the workbench with the adhesive side facing up, and a flux-coated low-melting-point alloy element connection lead conductor is placed on the lower heat-resistant film. The adhesive strength of the uncured adhesive ensures the fixed state at the position, and then the uncured adhesive-coated heat-resistant film is disposed on the lower heat-resistant film with the adhesive surface facing downward. Disposed heat-resistant film of the upper can be conducted by a method of curing the adhesive in a state of pressing by a jig.
As the upper and lower heat-resistant films, engineering plastic films such as PET, PC, and PEN, glass cloth base epoxy resin films, and the like can be used. It is also possible to use a single sheet that is used.
As the adhesive, epoxy resin, ultraviolet curable resin, silicon resin, or the like can be used.

本発明に係る温度ヒューズ用リード導体付きエレメントを用いた合金型温度ヒューズにおいては、ヒートサイクル時に発生する低融点合金エレメントの熱膨張力が、対向するリード導体先端々面間に入り込んだ低融点合金エレメント部分とリード導体先端々面との接触面でも支持されるから、前記熱膨張力に対し、低融点合金エレメントとリード導体先端部との溶接箇所に作用する反力が低減される。従って、低融点合金エレメントとリード導体先端部との溶接箇所の対ヒートサイクル安定性を向上できる。
また、温度ヒューズ本体の下面側からの熱伝達に対し、低融点合金エレメントの入り込み厚みだけ低熱伝達物(フラックス)の厚みを薄くできるから、下面側からの感熱性をそれだけアップできる。
In the alloy-type thermal fuse using the element with the lead conductor for the thermal fuse according to the present invention, the low-melting-point alloy in which the thermal expansion force of the low-melting-point alloy element generated during the heat cycle enters between the tips of the opposing lead conductors Since the contact surface between the element portion and the leading end of the lead conductor is also supported, the reaction force acting on the welded portion between the low melting point alloy element and the leading end of the lead conductor is reduced against the thermal expansion force. Therefore, the heat cycle stability of the welded portion between the low melting point alloy element and the lead conductor tip can be improved.
In addition, since the thickness of the low heat transfer material (flux) can be reduced by the penetration depth of the low melting point alloy element with respect to the heat transfer from the lower surface side of the thermal fuse body, the heat sensitivity from the lower surface side can be increased accordingly.

図5は本発明に係る合金型温度ヒューズの低融点合金エレメントの分断動作状態を示し、硬化接着剤で確保されたキャビティ50内に低融点合金エレメントとフラックスとが空き空間なく納められ、この空きのない状態で低融点合金エレメントが分断され、その分断魂200,200間に溶融フラックス30が食い込んで分断間距離が拡大されていく。而るに、低融点合金エレメントの対向するリード導体先端々面間への入り込み部分の下面及びその下面に燐在するリード導体先端部下面にもフラックスを塗布し、前記キャビティ50の容積を大きくしてあるから、分断間距離を長くでき、分断間絶縁距離を充分に確保し得、確実な電流遮断を保証できる。   FIG. 5 shows the cutting operation state of the low melting point alloy element of the alloy type thermal fuse according to the present invention, in which the low melting point alloy element and the flux are accommodated in the cavity 50 secured by the hardened adhesive without any empty space. The low melting point alloy element is divided in a state where there is no gap, and the molten flux 30 bites between the divided souls 200, 200, and the distance between the divisions is increased. Accordingly, the flux is applied to the lower surface of the portion where the low melting point alloy element enters between the leading ends of the opposing lead conductors and the lower surface of the leading end portion of the lead conductor existing on the lower surface, thereby increasing the volume of the cavity 50. Therefore, the distance between the splits can be increased, the insulation distance between the splits can be sufficiently secured, and reliable current interruption can be guaranteed.

本発明に係るリード導体付き低融点合金エレメントを示す斜視図である。It is a perspective view which shows the low melting-point alloy element with a lead conductor which concerns on this invention. 本発明に係るリード導体付き低融点合金エレメントの入り込み部を示す図面である。It is drawing which shows the penetration part of the low melting-point alloy element with a lead conductor based on this invention. 前記入り込み部の別例を示す図面である。It is drawing which shows another example of the said penetration part. 本発明に係るリード導体付き低融点合金エレメントの製造方法を示す図面である。It is drawing which shows the manufacturing method of the low melting-point alloy element with a lead conductor based on this invention. 本発明に係るリード導体付き低融点合金エレメントを使用した合金型温度ヒューズを示す斜視図である。It is a perspective view which shows the alloy type | mold thermal fuse which uses the low melting-point alloy element with a lead conductor based on this invention. 図4−1におけるイ−イ断面図である。FIG. 4 is a cross-sectional view taken along the line II in FIG. 4-1. 本発明に係るリード導体付き低融点合金エレメントを使用した合金型温度ヒューズの分断作動状態を示す図面である。It is drawing which shows the cutting | disconnection operation state of the alloy type thermal fuse using the low melting-point alloy element with a lead conductor based on this invention.

符号の説明Explanation of symbols

1 リード導体
100 リード導体基材
2 低融点合金エレメント
20 入り込み部
200 溶湯
DESCRIPTION OF SYMBOLS 1 Lead conductor 100 Lead conductor base material 2 Low melting-point alloy element 20 Entering part 200 Molten metal

Claims (3)

作業台上に一対のリード導体を所定のギャップ間隔を隔てて配設し、前記ギャップ及び両リード導体端部にわたって低融点合金の溶湯を供給し、この溶湯表面を開放した状態で表面張力を作用させつつ、その溶湯をリード導体端部側ほど速い速度で、ギャップの中央側ほど遅い速度で冷却させて凝固させると共に各リード導体の端部と凝固合金との間を溶接させることを特徴とする温度ヒューズ用のリード導体付き低融点合金エレメントの製作方法。 A pair of lead conductors are arranged on the workbench with a predetermined gap interval, and a molten metal of a low melting point alloy is supplied across the gap and the ends of both lead conductors, and surface tension is applied with the molten metal surface open. The molten metal is cooled at a higher speed toward the end of the lead conductor and solidified at a lower speed toward the center of the gap, and is welded between the end of each lead conductor and the solidified alloy. Manufacturing method of low melting point alloy element with lead conductor for thermal fuse. 一対のリード導体の端部間に低融点合金エレメントが溶接され、低融点合金エレメントの酸化物含有率がリード導体端部側に至るほど低く、低融点合金エレメントの中央箇所に至るほど高くされていることを特徴とする温度ヒューズ用のリード導体付き低融点合金エレメント。 A low melting point alloy element is welded between the ends of a pair of lead conductors, and the oxide content of the low melting point alloy element decreases as it reaches the end of the lead conductor and increases as it reaches the center of the low melting point alloy element. A low-melting-point alloy element with a lead conductor for a thermal fuse. 対向するリード導体先端々面間に低融点合金エレメントの一部が入り込んでいることを特徴とする請求項2記載の温度ヒューズ用のリード導体付き低融点合金エレメント。 3. A low-melting-point alloy element with a lead conductor for a thermal fuse according to claim 2, wherein a part of the low-melting-point alloy element is inserted between the leading ends of the opposing lead conductors.
JP2008314361A 2008-12-10 2008-12-10 Low-melting alloy element with lead conductor for thermal fuse, and method for manufacturing the same Pending JP2010140709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314361A JP2010140709A (en) 2008-12-10 2008-12-10 Low-melting alloy element with lead conductor for thermal fuse, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314361A JP2010140709A (en) 2008-12-10 2008-12-10 Low-melting alloy element with lead conductor for thermal fuse, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010140709A true JP2010140709A (en) 2010-06-24

Family

ID=42350667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314361A Pending JP2010140709A (en) 2008-12-10 2008-12-10 Low-melting alloy element with lead conductor for thermal fuse, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010140709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117983962A (en) * 2024-04-03 2024-05-07 成都环龙智能机器人有限公司 Working method of full-flow automatic welding intelligent workstation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117983962A (en) * 2024-04-03 2024-05-07 成都环龙智能机器人有限公司 Working method of full-flow automatic welding intelligent workstation

Similar Documents

Publication Publication Date Title
JP4290426B2 (en) Thermal fuse
JP2011249128A (en) Thermal fuse and method for manufacturing thermal fuse
JP4912447B2 (en) Alloy type thermal fuse
JP2009295567A (en) Protective element
JP5552367B2 (en) Thermal fuse and method of manufacturing thermal fuse
JP4369008B2 (en) Alloy type temperature fuse
JP2010140709A (en) Low-melting alloy element with lead conductor for thermal fuse, and method for manufacturing the same
JP5743970B2 (en) Molded solder containing metal wire and manufacturing method thereof
JP2004071552A (en) Thin thermal fuse
JP4943408B2 (en) Alloy type thermal fuse
JPH0412428A (en) Fuse element
JP4409747B2 (en) Alloy type thermal fuse
JPS6166329A (en) Block type fuse
JP5681389B2 (en) Fusible link
KR102297961B1 (en) Thermal and conductive path-forming adhesive including low melting point filler and high melting point filler and soldering method using same
JPH05258653A (en) Substrate type temperature fuse
JP4112297B2 (en) Thermo protector and method of manufacturing thermo protector
JP2799996B2 (en) Temperature sensor
JP2010140710A (en) Alloy type thermal fuse
JP2007035280A (en) Laser welding method of copper lead wire and fuse element
JP2011243388A (en) Alloy type thermal fuse
JPS6239568Y2 (en)
JPH076677A (en) Substrate type thermal fuse
JP2004014195A (en) Flat fuse and manufacturing method of the same
JP2911793B2 (en) Alloy type temperature fuse