JP2010139663A - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
JP2010139663A
JP2010139663A JP2008314997A JP2008314997A JP2010139663A JP 2010139663 A JP2010139663 A JP 2010139663A JP 2008314997 A JP2008314997 A JP 2008314997A JP 2008314997 A JP2008314997 A JP 2008314997A JP 2010139663 A JP2010139663 A JP 2010139663A
Authority
JP
Japan
Prior art keywords
sio
optical element
particles
less
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008314997A
Other languages
Japanese (ja)
Inventor
Shigeru Fujino
茂 藤野
Kohei Nakada
耕平 中田
Michihisa Endo
宙央 遠藤
Kentaro Michiguchi
健太郎 道口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008314997A priority Critical patent/JP2010139663A/en
Publication of JP2010139663A publication Critical patent/JP2010139663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical device having optical characteristics of high refractive index and low dispersion. <P>SOLUTION: The optical device is formed by sintering a molded body of ceramic particles comprising Y<SB>2</SB>SiO<SB>4</SB>, La<SB>2</SB>SiO<SB>4</SB>, Gd<SB>2</SB>SiO<SB>4</SB>or ZrSiO<SB>4</SB>, having average particle diameter of 1-10 μm. The optical device is obtained by sintering the molded body of the ceramic particle at 1,100-1,500°C under vacuum of ≤10<SP>-1</SP>Pa. The optical device has translucency and a refractive index of ≥1.8. The ceramic particle has a spherical shape. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は光学素子に関し、特にレンズ等に使用される高精度な光学素子に関するものである。   The present invention relates to an optical element, and more particularly to a high-precision optical element used for a lens or the like.

近年、デジタルカメラを始めとするカメラの生産量が増し、より高性能の光学レンズが要求されている。特にカメラ等の光学性能を向上させるためには、高屈折低分散の光学材料が必要となってきている。   In recent years, the production volume of cameras such as digital cameras has increased, and higher performance optical lenses have been demanded. In particular, in order to improve the optical performance of a camera or the like, an optical material with high refraction and low dispersion is required.

結晶材料では、従来の光学ガラスには無い高屈折低分散の光学性能が実現できるが、光学用途に適した透過率の良い材料として使用するには、単結晶材料を使用するか、或いは結晶粒子を焼結させて使用する方法があった。   Crystal materials can achieve high refractive and low dispersion optical performance not found in conventional optical glass, but to use as a material with good transmittance suitable for optical applications, use single crystal materials or crystal particles There was a method of sintering and using.

単結晶材料は、非常に高価であり、また光学レンズに適した直径の大きな材料が得られ難いという問題があった。
結晶粒子を焼結させる方法では、粒子直径が大きいと、焼結時に大きな粒界が生じ、光学レンズとして透過率の低下が生じたり、レンズ形状に加工する際に粒界によりレンズ表面に欠陥が生じ、良好な光学レンズが得られ難いという問題があった。
The single crystal material is very expensive and has a problem that it is difficult to obtain a material having a large diameter suitable for an optical lens.
In the method of sintering crystal particles, if the particle diameter is large, a large grain boundary is generated during sintering, and the transmittance of the optical lens is lowered, or when processing into a lens shape, defects on the lens surface are caused by the grain boundary. There arises a problem that it is difficult to obtain a good optical lens.

粒径の小さい結晶粒子として、特許文献1には、結晶粒子径が100nm以下の透光性セラミックスの例が開示されている。
特開平6―56514号公報
As crystal particles having a small particle size, Patent Document 1 discloses an example of a translucent ceramic having a crystal particle size of 100 nm or less.
JP-A-6-56514

特許文献1には、結晶粒径が100nm以下の透光性セラミックスの例が開示されているが、結晶粒径が100nm以下の結晶粒子を焼結させる工程では、焼結前の予備成形体を形成する際に、嵩密度が小さいために取扱が困難となる。また、得られる光学素子中に生成する泡などの欠陥を充分に除去することが困難であった。   Patent Document 1 discloses an example of a translucent ceramic having a crystal grain size of 100 nm or less. In the step of sintering crystal grains having a crystal grain size of 100 nm or less, a preform before sintering is used. When forming, since the bulk density is small, handling becomes difficult. Further, it has been difficult to sufficiently remove defects such as bubbles generated in the obtained optical element.

本発明は、この様な背景技術に鑑みてなされたものであり、高屈折率で低分散の光学特性を有する光学素子を提供することにある。   The present invention has been made in view of such background art, and an object thereof is to provide an optical element having high refractive index and low dispersion optical characteristics.

上記の課題を解決する光学素子は、平均粒子径が1μm以上10μm以下のYSiO、LaSiO、GdSiOまたはZrSiOから成るセラミックス粒子の成形体を焼結してなることを特徴とする。 An optical element that solves the above problems is obtained by sintering a ceramic particle compact made of Y 2 SiO 4 , La 2 SiO 4 , Gd 2 SiO 4, or ZrSiO 4 having an average particle diameter of 1 μm to 10 μm. It is characterized by.

本発明によれば、高屈折率で低分散の光学特性を有する光学素子を提供することができる。   According to the present invention, an optical element having high refractive index and low dispersion optical characteristics can be provided.

以下、本発明を詳細に説明する。
本発明に係る光学素子は、平均粒子径が1μm以上10μm以下のYSiO、LaSiO、GdSiOまたはZrSiOから成るセラミックス粒子の成形体を焼結してなることを特徴とする。
本発明の光学素子は、例えば光学系に用いられるレンズ、プリズムなどが挙げられる。
Hereinafter, the present invention will be described in detail.
The optical element according to the present invention is obtained by sintering a ceramic particle compact made of Y 2 SiO 4 , La 2 SiO 4 , Gd 2 SiO 4 or ZrSiO 4 having an average particle diameter of 1 μm to 10 μm. And
Examples of the optical element of the present invention include lenses and prisms used in optical systems.

本発明の光学素子の製造方法は、下記の第1工程から第3工程により行なわれる。
第1工程として、原料からプラズマ溶融などの方法により、平均粒子径が1μm以上10μm以下の球状のYSiO、LaSiO、GdSiOまたはZrSiOから成るセラミックス粒子を作製する。
The optical element manufacturing method of the present invention is performed by the following first to third steps.
As a first step, ceramic particles made of spherical Y 2 SiO 4 , La 2 SiO 4 , Gd 2 SiO 4 or ZrSiO 4 having an average particle diameter of 1 μm or more and 10 μm or less are produced from a raw material by a method such as plasma melting.

原料には、純度99.9%以上のY,La,Gd,ZrO,SiO等が用いられる。セラミックス粒子の作製において、YSiO粒子は原料としてYとSiOが用いられ、LaSiO粒子は原料としてLaとSiOが用いられ、GdSiO粒子は原料としてGdとSiOが用いられ、ZrSiO粒子は原料としてZrOとSiOが用いられる。 As the raw material, Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , ZrO 2 , SiO 2 or the like having a purity of 99.9% or more is used. In the preparation of ceramic particles, Y 2 SiO 4 particles Y 2 O 3 and SiO 2 are used as starting materials, La 2 SiO 4 grains La 2 O 3 and SiO 2 is used as a raw material, Gd 2 SiO 4 grains Gd 2 O 3 and SiO 2 are used as raw materials, and ZrO 2 and SiO 2 are used as raw materials for ZrSiO 4 particles.

第2工程として、この球状粒子を、鋳込み成形、乾式成形あるいは湿式成形により予備成形体を作製する。
第3工程として、この予備成形体を真空中にて焼結させ、光学素子を作製し、その後に、研削、研磨工程を経て、光学レンズを作製する。
As a second step, a preform is produced from the spherical particles by casting, dry molding or wet molding.
As a third step, the preform is sintered in vacuum to produce an optical element, and then an optical lens is produced through grinding and polishing steps.

本発明において用いられるセラミックス粒子の粒子径は、平均粒子径が1μm以上10μm以下、好ましくは1μm以上5μm以下の範囲が望ましい。平均粒子径が1μm未満では、粒子が細かく、部分的な凝集が生じるので、加圧の際に充分に緻密化し難く、また、焼結後の素子中に泡が残留し、光学素子としての使用に不適となる。また、平均粒子径が10μmより大きい場合には、加圧の際に空隙が生じやすく、焼結後に得られた結晶内部に粒界が生じやすく、研磨時に粒子の脱落が生じ、良好な表面を有する光学素子が得られない。   The average particle diameter of the ceramic particles used in the present invention is 1 μm or more and 10 μm or less, preferably 1 μm or more and 5 μm or less. When the average particle diameter is less than 1 μm, the particles are fine and partial aggregation occurs, so that it is difficult to be sufficiently densified during pressurization, and bubbles remain in the sintered element, so that it can be used as an optical element. It becomes unsuitable for. In addition, when the average particle size is larger than 10 μm, voids are likely to occur during pressurization, grain boundaries are likely to occur inside the crystal obtained after sintering, particles fall off during polishing, and a good surface is obtained. The optical element which has is not obtained.

また、セラミックス粒子が球形であることが好ましい。なお、球形とは、球の断面形状の縦径/横径=1±0.1が好ましい。セラミックス粒子の形状が球形から不定形に移るほど、加圧の際に空隙が生じやすく、焼結後に得られた結晶内部に粒界が生じやすく、良好な光学素子が得られない。そのために粒子の形状は球形が望ましい。   The ceramic particles are preferably spherical. The spherical shape is preferably the longitudinal / lateral diameter = 1 ± 0.1 of the cross-sectional shape of the sphere. As the shape of the ceramic particles moves from a spherical shape to an indeterminate shape, voids are more likely to be generated during pressurization, grain boundaries are more likely to be formed inside the crystal obtained after sintering, and a good optical element cannot be obtained. Therefore, the shape of the particles is preferably spherical.

本発明の光学素子は、屈折率が1.8以上、好ましくは1.93以上の透光性を有することが好ましい。
本発明の光学素子は、アッベ数が40以上、好ましくは45以上56以下であるのが好ましい。
The optical element of the present invention preferably has a light-transmitting property having a refractive index of 1.8 or more, preferably 1.93 or more.
The optical element of the present invention has an Abbe number of 40 or more, preferably 45 or more and 56 or less.

以下、実施例を示して本発明を具体的に説明する。
実施例1
純度99.9%以上のY,La,Gd,ZrO,SiOを用意し、表1の試料No.1から4に示す化合物のセラミックス粒子となる比率になるように原料を調整し、混合した。
Hereinafter, the present invention will be specifically described with reference to examples.
Example 1
Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , ZrO 2 and SiO 2 having a purity of 99.9% or more were prepared. The raw materials were adjusted and mixed so that the ratio of the compound shown in 1 to 4 was ceramic particles.

セラミックス粒子の作製において、YSiO粒子は原料としてYとSiOが用いられ、LaSiO粒子は原料としてLaとSiOが用いられ、GdSiO粒子は原料としてGdとSiOが用いられ、ZrSiO粒子は原料としてZrOとSiOが用いられる。 In the preparation of ceramic particles, Y 2 SiO 4 particles Y 2 O 3 and SiO 2 are used as starting materials, La 2 SiO 4 grains La 2 O 3 and SiO 2 is used as a raw material, Gd 2 SiO 4 grains Gd 2 O 3 and SiO 2 are used as raw materials, and ZrO 2 and SiO 2 are used as raw materials for ZrSiO 4 particles.

この原料を熱プラズマ中に導入し、加熱、溶融させた後に冷却して微粒子を得た。熱プラズマ法にて平均粒子径が1μmの球状粒子を得た。このとき、加熱温度は1500℃以上3200℃以下とした。1500℃未満では、熔融が充分に行われず、球状の粒子が得られず、3200℃をこえると、原料の揮発が生じ、粒子径の小さい球形粒子しか得られなかった。   This raw material was introduced into thermal plasma, heated and melted, and then cooled to obtain fine particles. Spherical particles having an average particle diameter of 1 μm were obtained by a thermal plasma method. At this time, the heating temperature was set to 1500 ° C. or more and 3200 ° C. or less. When the temperature was lower than 1500 ° C., melting was not sufficiently performed, and spherical particles were not obtained. When the temperature exceeded 3200 ° C., the raw material was volatilized, and only spherical particles having a small particle diameter were obtained.

この球状粒子を9800000Pa(100kgf)から196000000Pa(2000kgf)の圧力で乾式成形し、直径20mm、厚さ2mmの予備成形体を得た。予備成形体を1100℃以上1500℃以下の下記の表1に示す温度で10−1Pa以下の真空中にて焼結させた。尚、焼結時間は6時間以上24時間以下とした。得られた焼結体を研削、研磨して厚さ1mmの光学素子とした。 The spherical particles were dry-molded at a pressure of 9800000 Pa (100 kgf) to 196,000,000 Pa (2000 kgf) to obtain a preform having a diameter of 20 mm and a thickness of 2 mm. The preform was sintered in a vacuum of 10 −1 Pa or less at a temperature shown in Table 1 below from 1100 ° C. to 1500 ° C. The sintering time was 6 hours or more and 24 hours or less. The obtained sintered body was ground and polished to obtain an optical element having a thickness of 1 mm.

得られた光学素子の屈折率およびアッベ数を測定した結果を表1に示す。なお、アッベ数は分散を示す値である。各光学素子は、高屈折で低分散の光学特性を有していた。また表面を光学顕微鏡で観察したところ、研磨工程において生ずる表面粒子の脱落や表面のキズが無い良好な光学素子が得られた。   Table 1 shows the results of measuring the refractive index and Abbe number of the obtained optical element. The Abbe number is a value indicating dispersion. Each optical element had high refraction and low dispersion optical characteristics. Further, when the surface was observed with an optical microscope, a good optical element free from surface particle dropping and surface scratches generated in the polishing step was obtained.

また、内部透過率を測定したところ、400nmの波長で60%以上と良好な透光性を得ることができた。
<測定方法>
(1)屈折率
屈折率は、プルフリッヒ法屈折率測定装置(商品名「KPR−2000」、島津デバイス製造株式会社)を用いて波長587nmで測定し求めた値(nd)を示す。
(2)アッベ数
アッベ数は、プルフリッヒ法屈折率測定装置を用いて、波長587nm,486nm,656nmの屈折率nd,nF,nCを求め、アッベ数νdをνd=(nd−1)/(nF−nC)の式で求めた値を示す。
Further, when the internal transmittance was measured, it was possible to obtain good translucency of 60% or more at a wavelength of 400 nm.
<Measurement method>
(1) Refractive index A refractive index shows the value (nd) measured and calculated | required with the wavelength 587nm using the Purfrich method refractive index measuring apparatus (brand name "KPR-2000", Shimadzu Device Manufacturing Co., Ltd.).
(2) Abbe number Abbe number is obtained by using refractive index measurement apparatus of Purfrich method to obtain refractive indexes nd, nF, and nC of wavelengths 587 nm, 486 nm, and 656 nm, and Abbe number νd is represented by νd = (nd−1) / (nF -NC) represents the value obtained by the equation.

Figure 2010139663
Figure 2010139663

実施例2
純度99.9%以上のY,La,Gd,ZrO,SiOを用意し、表2の試料No.11から14に示す化合物のセラミックス粒子となる比率に原料を調整、混合した。この原料を熱プラズマ中に導入し、加熱、溶融させた後に冷却して微粒子を得る熱プラズマ法にて平均粒子径が3μmの球状粒子を得た。このとき、加熱温度は1500℃以上3000℃以下とした。1500℃未満では、熔融が充分に行われず、球状の粒子が得られず、3000℃をこえると、原料の揮発が生じ、粒子径の小さい球形粒子しか得られなかった。
Example 2
Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , ZrO 2 , SiO 2 having a purity of 99.9% or more were prepared. The raw materials were adjusted and mixed in a ratio to be ceramic particles of the compounds shown in 11 to 14. This raw material was introduced into thermal plasma, heated and melted, and then cooled to obtain spherical particles having an average particle diameter of 3 μm by a thermal plasma method for obtaining fine particles. At this time, the heating temperature was set to 1500 ° C. or more and 3000 ° C. or less. When the temperature was lower than 1500 ° C., melting was not sufficiently performed, and spherical particles were not obtained. When the temperature exceeded 3000 ° C., the raw material was volatilized, and only spherical particles having a small particle diameter were obtained.

この球状粒子を9800000Pa(100kgf)から196000000Pa(2000kgf)の圧力で乾式成形し、直径20mm、厚さ2mmの予備成形体を得た。予備成形体を1100℃以上1500℃以下の表2に示す温度で10−1Pa以下の真空中にて焼結させた。尚、焼結時間は6時間以上24時間以下とした。得られた焼結体を研削、研磨して厚さ1mmの試料とした。 The spherical particles were dry-molded at a pressure of 9800000 Pa (100 kgf) to 196,000,000 Pa (2000 kgf) to obtain a preform having a diameter of 20 mm and a thickness of 2 mm. The preform was sintered in a vacuum of 10 −1 Pa or less at a temperature shown in Table 2 of 1100 ° C. or more and 1500 ° C. or less. The sintering time was 6 hours or more and 24 hours or less. The obtained sintered body was ground and polished to obtain a sample having a thickness of 1 mm.

得られた光学素子の屈折率を光学測定したところ、表2に示す、高屈折で低分散の光学特性を有していた。また表面を光学顕微鏡で観察したところ、研磨工程において生ずる表面粒子の脱落や表面のキズが無い良好な光学素子が得られた。   When the refractive index of the obtained optical element was optically measured, it had optical properties of high refraction and low dispersion shown in Table 2. Further, when the surface was observed with an optical microscope, a good optical element free from surface particle dropping and surface scratches generated in the polishing step was obtained.

また、内部透過率を測定したところ、400nmの波長で60%以上と良好な透光性を得ることができた。   Further, when the internal transmittance was measured, it was possible to obtain good translucency of 60% or more at a wavelength of 400 nm.

Figure 2010139663
Figure 2010139663

実施例3
純度99.9%以上のY,La,Gd,ZrO,SiOを用意し、表3の試料No.21から24に示す化合物のセラミックス粒子となる比率に原料を調整、混合した。この原料を熱プラズマ中に導入し、加熱、溶融させた後に冷却して微粒子を得る熱プラズマ法にて平均粒子径が10μmの球状粒子を得た。このとき、加熱温度は1500℃以上3000℃以下とした。1500℃未満では、熔融が充分に行われず、球状の粒子が得られず、3000℃をこえると、原料の揮発が生じ、粒子径の小さい球形粒子しか得られなかった。
Example 3
Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , ZrO 2 , SiO 2 having a purity of 99.9% or more were prepared. The raw materials were adjusted and mixed in a ratio that would be ceramic particles of the compounds shown in 21 to 24. The raw material was introduced into thermal plasma, heated and melted, and then cooled to obtain spherical particles having an average particle diameter of 10 μm by a thermal plasma method for obtaining fine particles. At this time, the heating temperature was set to 1500 ° C. or more and 3000 ° C. or less. When the temperature was lower than 1500 ° C., melting was not sufficiently performed, and spherical particles were not obtained. When the temperature exceeded 3000 ° C., the raw material was volatilized, and only spherical particles having a small particle diameter were obtained.

この球状粒子を9800000Pa(100kgf)から196000000Pa(2000kgf)の圧力で乾式成形し、直径20mm、厚さ2mmの予備成形体を得た。予備成形体を1100℃以上1500℃以下の下記の表に示す温度で10−1Pa以下の真空中にて焼結させた。尚、焼結時間は6時間以上24時間以下とした。得られた焼結体を研削、研磨して厚さ1mmの試料とした。 The spherical particles were dry-molded at a pressure of 9800000 Pa (100 kgf) to 196,000,000 Pa (2000 kgf) to obtain a preform having a diameter of 20 mm and a thickness of 2 mm. The preform was sintered in a vacuum of 10 −1 Pa or less at a temperature shown in the following table of 1100 ° C. or more and 1500 ° C. or less. The sintering time was 6 hours or more and 24 hours or less. The obtained sintered body was ground and polished to obtain a sample having a thickness of 1 mm.

得られた光学素子の屈折率を光学測定したところ、表3に示す、高屈折で低分散の光学特性を有していた。また表面を光学顕微鏡で観察したところ、研磨工程において生ずる表面粒子の脱落や表面のキズが無い良好な光学素子が得られた。   When the refractive index of the obtained optical element was optically measured, it had optical properties of high refraction and low dispersion shown in Table 3. Further, when the surface was observed with an optical microscope, a good optical element free from surface particle dropping and surface scratches generated in the polishing step was obtained.

また、内部透過率を測定したところ、400nmの波長で60%以上と良好な透光性を得ることができた。   Further, when the internal transmittance was measured, it was possible to obtain good translucency of 60% or more at a wavelength of 400 nm.

Figure 2010139663
Figure 2010139663

比較例1
純度99.9%以上のY,La,Gd,ZrOを用意し、表1の試料No.1から4に示す化合物のセラミックス粒子となる比率に原料を調整、混合した。この原料を熱プラズマ中に導入し、加熱、溶融させた後に冷却することで微粒子を得る熱プラズマ法にて平均粒子径が0.1μmの球状粒子を得た。このとき、加熱温度は3500℃以上とした。
Comparative Example 1
Y 2 O 3 , La 2 O 3 , Gd 2 O 3 and ZrO 2 having a purity of 99.9% or more were prepared. The raw materials were adjusted and mixed in a ratio that would be ceramic particles of the compounds shown in 1 to 4. Spherical particles having an average particle diameter of 0.1 μm were obtained by a thermal plasma method in which the raw material was introduced into thermal plasma, heated, melted and then cooled to obtain fine particles. At this time, the heating temperature was 3500 ° C. or higher.

この球状粒子を9800000Pa(100kgf)から196000000Pa(2000kgf)の圧力で乾式成形し、直径20mm、厚さ2mmの予備成形体を得た。予備成形体を1100℃以上1500℃以下の表1に示す温度で10−1Pa以下の真空中にて焼結させた。尚、焼結時間は6時間以上24時間以下とした。得られた焼結体を研削、研磨して厚さ1mmの試料とした。 The spherical particles were dry-molded at a pressure of 9800000 Pa (100 kgf) to 196,000,000 Pa (2000 kgf) to obtain a preform having a diameter of 20 mm and a thickness of 2 mm. The preform was sintered in a vacuum of 10 −1 Pa or less at a temperature shown in Table 1 of 1100 ° C. or more and 1500 ° C. or less. The sintering time was 6 hours or more and 24 hours or less. The obtained sintered body was ground and polished to obtain a sample having a thickness of 1 mm.

得られた光学素子を光学顕微鏡で観察したところ、素子中に泡が多数観察され、光学素子としての使用には不適切であった。   When the obtained optical element was observed with an optical microscope, many bubbles were observed in the element, which was inappropriate for use as an optical element.

比較例2
純度99.9%以上のY,La,Gd,ZrO,を用意し、表1の試料No.1から4に示す化合物のセラミックス粒子となる比率に原料を調整、混合した。この原料を熱プラズマ中に導入し、加熱、溶融させた後に冷却して微粒子を得る熱プラズマ法にて平均粒子径が100μmの球状粒子を得た。このとき、加熱温度は1500℃以上3200℃以下とした。
Comparative Example 2
Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , ZrO 2 having a purity of 99.9% or more were prepared. The raw materials were adjusted and mixed in a ratio that would be ceramic particles of the compounds shown in 1 to 4. This raw material was introduced into thermal plasma, heated and melted, and then cooled to obtain spherical particles having an average particle diameter of 100 μm by a thermal plasma method for obtaining fine particles. At this time, the heating temperature was set to 1500 ° C. or more and 3200 ° C. or less.

この球状粒子を9800000Pa(100kgf)から196000000Pa(2000kgf)の圧力で乾式成形し、直径20mm、厚さ2mmの予備成形体を得た。予備成形体を1100℃以上1500℃以下の表1に示す温度で10−1Pa以下の真空中にて焼結させた。尚、焼結時間は6時間以上24時間以下とした。得られた焼結体を研削、研磨して厚さ1mmの試料とした。 The spherical particles were dry-molded at a pressure of 9800000 Pa (100 kgf) to 196,000,000 Pa (2000 kgf) to obtain a preform having a diameter of 20 mm and a thickness of 2 mm. The preform was sintered in a vacuum of 10 −1 Pa or less at a temperature shown in Table 1 of 1100 ° C. or more and 1500 ° C. or less. The sintering time was 6 hours or more and 24 hours or less. The obtained sintered body was ground and polished to obtain a sample having a thickness of 1 mm.

得られた光学素子の表面を光学顕微鏡で観察したところ、研磨工程において生ずる表面粒子の脱落や表面のキズが多数存在し、光学素子としての使用には不適切であった。
本発明は上記実施例に限定されるものではない。原料に例えば、LaSiOのような複合合酸化物を用いてもよく、酸化物以外に炭酸塩、硝酸塩も用いることができる。予備成形体作製は鋳込み成形、湿式成形でも可能である。その際に少量の有機バインダーを加えることもできる。
When the surface of the obtained optical element was observed with an optical microscope, there were many surface particle dropouts and surface scratches that occurred in the polishing step, which was inappropriate for use as an optical element.
The present invention is not limited to the above embodiments. For example, a composite composite oxide such as La 2 SiO 4 may be used as the raw material, and carbonates and nitrates may be used in addition to the oxides. The preform can be produced by cast molding or wet molding. At that time, a small amount of an organic binder can be added.

また、乾式成形、真空加熱の2段階の工程に換えて、HIP(熱間静水圧成形)により加熱時間を3から24期間に短縮することが可能である。
予備成形体、焼結体それぞれの直径は20mm以上、厚さは2mm以上の作製も可能であった。
In addition, the heating time can be shortened from 3 to 24 periods by HIP (hot isostatic pressing) instead of the two-stage process of dry molding and vacuum heating.
Each of the preform and the sintered body could be produced with a diameter of 20 mm or more and a thickness of 2 mm or more.

本発明の光学素子は、高屈折率、低分散の光学特性を有するので、レンズ、プリズムとして利用することができる。   Since the optical element of the present invention has high refractive index and low dispersion optical characteristics, it can be used as a lens or a prism.

Claims (3)

平均粒子径が1μm以上10μm以下のYSiO、LaSiO、GdSiOまたはZrSiOから成るセラミックス粒子の成形体を焼結してなることを特徴とする光学素子。 An optical element obtained by sintering a ceramic particle compact made of Y 2 SiO 4 , La 2 SiO 4 , Gd 2 SiO 4 or ZrSiO 4 having an average particle diameter of 1 μm or more and 10 μm or less. 前記光学素子は、屈折率が1.8以上の透光性を有することを特徴とする請求項1に記載の光学素子。   The optical element according to claim 1, wherein the optical element has translucency with a refractive index of 1.8 or more. 前記セラミックス粒子が球形であることを特徴とする請求項1に記載の光学素子。   The optical element according to claim 1, wherein the ceramic particles are spherical.
JP2008314997A 2008-12-10 2008-12-10 Optical device Pending JP2010139663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314997A JP2010139663A (en) 2008-12-10 2008-12-10 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314997A JP2010139663A (en) 2008-12-10 2008-12-10 Optical device

Publications (1)

Publication Number Publication Date
JP2010139663A true JP2010139663A (en) 2010-06-24

Family

ID=42349881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314997A Pending JP2010139663A (en) 2008-12-10 2008-12-10 Optical device

Country Status (1)

Country Link
JP (1) JP2010139663A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063868A (en) * 2011-09-16 2013-04-11 Shin-Etsu Chemical Co Ltd Sintered compact for magnetooptic element, and magnetooptic device
JP2020073421A (en) * 2018-08-22 2020-05-14 一般財団法人ファインセラミックスセンター Heat-reflecting structure and heat-reflecting material including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063868A (en) * 2011-09-16 2013-04-11 Shin-Etsu Chemical Co Ltd Sintered compact for magnetooptic element, and magnetooptic device
JP2020073421A (en) * 2018-08-22 2020-05-14 一般財団法人ファインセラミックスセンター Heat-reflecting structure and heat-reflecting material including the same
JP7345755B2 (en) 2018-08-22 2023-09-19 一般財団法人ファインセラミックスセンター Heat reflective structure and heat reflective material equipped with the same

Similar Documents

Publication Publication Date Title
JP5029365B2 (en) Translucent ceramic, method for producing the same, optical component and optical device
JP6179731B2 (en) Optical element using spinel optoceramics and manufacturing method
JP2007091537A (en) Near-infrared light absorbing glass material lot and method for manufacturing optical element by using the same
JP2008168634A (en) Molding die for molding ceramic unsintered substance and use of same molding die
JP4245047B2 (en) Translucent ceramic, method for producing the same, optical component and optical device
JP5235584B2 (en) Optical element
JPWO2006038378A1 (en) Hybrid lens using translucent ceramic
JP2010139663A (en) Optical device
JP4548422B2 (en) Translucent ceramic, method for producing the same, optical component and optical device
JP4605220B2 (en) Translucent ceramic, method for producing the same, optical component and optical device
JP4941288B2 (en) Translucent ceramic, method for producing the same, optical component and optical device
JP5493419B2 (en) ZnS sintered body, ZnS sintered body group and optical member, and manufacturing method thereof
JP2019099429A (en) Method of producing transparent ceramic for faraday rotator
JP4747892B2 (en) Translucent ceramic, method for producing the same, optical component and optical device
JP2018090440A (en) Method for manufacturing optical component having acute part
JP7250434B6 (en) Optical glass, optical elements, optical instruments, methods for manufacturing optical glasses, and methods for manufacturing optical elements
WO2007148513A1 (en) Light transparent ceramic, and optical component and optical device
JP4831073B2 (en) Translucent ceramic, optical component and optical device
JP2006327847A (en) Optical glass element forming die
JP2012218973A (en) METHOD FOR PRODUCING LaAlO3 CERAMIC
JP4186519B2 (en) Translucent ceramics and optical components and optical elements using the same
JP2012218974A (en) Method for producing translucent ceramic and optical element
CN1826300A (en) Translucent ceramic, process for producing the same, optical part and optical apparatus
JP2011184257A (en) Method for manufacturing glass lens
JP2004018287A (en) Translucent ceramic and optical part and optical device using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100331

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100621