JP2012218974A - Method for producing translucent ceramic and optical element - Google Patents

Method for producing translucent ceramic and optical element Download PDF

Info

Publication number
JP2012218974A
JP2012218974A JP2011086142A JP2011086142A JP2012218974A JP 2012218974 A JP2012218974 A JP 2012218974A JP 2011086142 A JP2011086142 A JP 2011086142A JP 2011086142 A JP2011086142 A JP 2011086142A JP 2012218974 A JP2012218974 A JP 2012218974A
Authority
JP
Japan
Prior art keywords
optical element
translucent
producing
refractive index
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011086142A
Other languages
Japanese (ja)
Inventor
Kentaro Michiguchi
健太郎 道口
Michihisa Endo
宙央 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011086142A priority Critical patent/JP2012218974A/en
Publication of JP2012218974A publication Critical patent/JP2012218974A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing translucent ceramics having optical characteristics as a high refractive index and low dispersion and an optical element made of the translucent ceramics obtained by the method for producing the same.SOLUTION: The method for producing the translucent ceramics has a step for sintering a molded body of a crystal grain comprising LaAlO(x represents 0.75≤x≤0.80) at 1,650°C to 1,800°C. The optical element is made of the translucent ceramics obtained by the producing method. It is preferable that the refractive index of the translucent ceramics is 2.00 or more and Abbe number is 35 or more.

Description

本発明は、透光性セラミックスの製造方法および光学素子に関し、特にレンズ等に使用される高精度な光学素子に関するものである。   The present invention relates to a method for producing translucent ceramics and an optical element, and particularly to a high-precision optical element used for a lens or the like.

近年、デジタルカメラを始めとするカメラの生産量が増し、より高性能の光学レンズが要求されており、中でも高屈折率低分散の光学材料が必要となってきている。LaAlO結晶は、従来の光学ガラスには無い高屈折率低分散の性能を有しているが、これまでに光学レンズとして実用化された例はない。 In recent years, the production amount of cameras such as digital cameras has increased, and higher performance optical lenses have been demanded. In particular, optical materials having a high refractive index and low dispersion have been required. LaAlO 3 crystal has a high refractive index and low dispersion performance not found in conventional optical glass, but there has been no practical application as an optical lens so far.

結晶材料を用いて光学レンズを作製するには2つの構造形体が考えられる。ひとつは単結晶、もうひとつは微細な結晶粒を焼結した多結晶体(以下、セラミックスと称す。)である。   Two structural features are conceivable for fabricating an optical lens using a crystalline material. One is a single crystal, and the other is a polycrystalline body (hereinafter referred to as ceramics) obtained by sintering fine crystal grains.

単結晶は、高い透過率を有するが、単結晶の製造には融点以上、例えばLaAlOの場合であれば2000℃以上の耐熱性を持つ特殊な装置が必要となる。更に装置1台から取れる個数も少ない上、結晶成長に時間を要するため製造コストが高くなるという問題があった。 The single crystal has a high transmittance, but for the production of the single crystal, a special apparatus having a heat resistance of not less than the melting point, for example, 2000 ° C. or more in the case of LaAlO 3 is required. In addition, the number of devices that can be taken from one apparatus is small, and it takes time for crystal growth, resulting in high manufacturing costs.

一方のセラミックスは、気孔、粒界、不純物によって透過率の低下が生じたり、レンズ形状に加工する際に粒子が欠落することによりレンズ表面に欠陥が生じたりして、良好な光学レンズが得られにくいという問題があった。   On the other hand, with ceramics, the transmittance decreases due to pores, grain boundaries, and impurities, or when the lens is processed into a lens shape, defects occur on the lens surface, resulting in a good optical lens. There was a problem that it was difficult.

光学部品材料としての透光性セラミックスとしては、特許文献1に記載されているLnAl[x+y]×1.5系(Lnは希土類族元素、xは1≦x≦10、yは1≦y≦5を表す)のものが知られている。 As translucent ceramics as an optical component material, Ln x Al y O [x + y] × 1.5 system described in Patent Document 1 (Ln is a rare earth element, x is 1 ≦ x ≦ 10, y is 1 ≦ y ≦ 5) is known.

特開2010−85736号公報JP 2010-85736 A

透光性セラミックスを作製するには、散乱の原因となる気孔を十分に排除して粉末充填率を100%に近づける必要がある。しかしながら、菱面体構造を有するLaAlO結晶から成るセラミックスは、焼結中に気孔や粒界が残りやすいために散乱が多く、透過率の高いものを得るのが難しかった。 In order to produce a translucent ceramic, it is necessary to sufficiently eliminate pores that cause scattering and bring the powder filling rate close to 100%. However, ceramics composed of LaAlO 3 crystals having a rhombohedral structure have a large amount of scattering because pores and grain boundaries tend to remain during sintering, and it has been difficult to obtain a ceramic with high transmittance.

本発明は、この様な背景技術に鑑みてなされたものであり、高屈折率低分散の光学特性を有する透光性セラミックスの製造方法を提供することにある。   This invention is made | formed in view of such a background art, and provides the manufacturing method of translucent ceramics which has an optical characteristic of a high refractive index low dispersion.

また、本発明は、上記の製造方法により得られた透光性セラミックスからなる光学素子を提供することにある。   Moreover, this invention is providing the optical element which consists of translucent ceramics obtained by said manufacturing method.

上記の課題を解決する透光性セラミックスの製造方法は、LaAl(2−x)(xは0.75≦x≦0.80を表す。)から成る結晶粒子の成形体を1650℃以上1800℃以下で焼結する工程を有することを特徴とする。 A method for producing a light-transmitting ceramic that solves the above-described problem is obtained by using a molded body of crystal particles made of La x Al (2-x) O 3 (x represents 0.75 ≦ x ≦ 0.80) 1650. It has the process of sintering at 1 degreeC or more and 1 degreeC or less.

また、本発明は、上記の製造方法により得られた透光性セラミックスからなることを特徴とする光学素子である。   Moreover, this invention is an optical element characterized by consisting of translucent ceramics obtained by said manufacturing method.

本発明によれば、高屈折率低分散の光学特性を有する透光性セラミックスの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of translucent ceramics which has an optical characteristic of a high refractive index and low dispersion can be provided.

また、本発明によれば、上記の製造方法により得られた透光性セラミックスからなる光学素子を提供することができる。   Moreover, according to this invention, the optical element which consists of translucent ceramics obtained by said manufacturing method can be provided.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に係る透光性セラミックスの製造方法は、LaAl(2−x)(xは0.75≦x≦0.80を表す。)から成る結晶粒子の成形体を1650℃以上1800℃以下で焼結する工程を有することを特徴とする。本発明の製造方法により得られた透光性セラミックスは、高屈折率低分散の光学特性を有する。 In the method for producing a translucent ceramic according to the present invention, a molded body of crystal particles made of La x Al (2-x) O 3 (x represents 0.75 ≦ x ≦ 0.80) is 1650 ° C. or higher. It has the process of sintering at 1800 degrees C or less, It is characterized by the above-mentioned. The translucent ceramic obtained by the production method of the present invention has high refractive index and low dispersion optical characteristics.

また、本発明は、上記の製造方法により得られた透光性セラミックスからなる、高屈折率低分散の光学特性を有する光学素子を提供することを特徴とする。   In addition, the present invention is characterized by providing an optical element having optical characteristics of high refractive index and low dispersion, made of translucent ceramics obtained by the above-described manufacturing method.

本発明の光学素子は、例えば光学系に用いられるレンズ、プリズムなどが挙げられる。   Examples of the optical element of the present invention include lenses and prisms used in optical systems.

本発明に係る透光性セラミックスの製造方法について説明する。   A method for producing a translucent ceramic according to the present invention will be described.

まず、光学グレードの酸化物粉末を用いて、プラズマ溶融などの方法により、平均粒径が10μm以下の球状のLaAl(2−x)(xは0.75≦x≦0.80を表す)結晶粒子を作製する。 First, spherical La x Al (2-x) O 3 (x is 0.75 ≦ x ≦ 0.80 ) having an average particle size of 10 μm or less by a method such as plasma melting using an optical grade oxide powder. Crystal grains are produced.

酸化物粉末には、LaとAlの酸化物を用いるのが好ましい。LaAl(2−x)において、xは0.75≦x≦0.80である。 For the oxide powder, oxides of La 2 O 3 and Al 2 O 3 are preferably used. In La x Al (2-x) O 3 , x satisfies 0.75 ≦ x ≦ 0.80.

本発明におけるLaAl(2−x)は、LaAlOよりもAlを多く含む組成からなる。Alを多く含む組成にしているのは、結晶構造を立方晶に近づけて降温過程における立方晶から菱面体晶への相転移が起きないようにするためである。構造変化を抑えることで結晶粒界は低減する。 La x Al (2-x) O 3 in the present invention is a composition containing a large amount of Al than LaAlO 3. The reason why the composition contains a large amount of Al is to prevent the phase transition from cubic to rhombohedral in the cooling process by bringing the crystal structure close to cubic. Grain boundaries are reduced by suppressing structural changes.

次に、結晶粒子の成形体を1650℃以上1800℃以下で焼結する工程を行う。具体的には、球状の結晶粒子を、放電プラズマ焼結法により加圧しながら1650℃以上1800℃以下で焼結する。また、結晶粒子を型に充填し、加圧下で1650℃以上1800℃以下で焼結を行うのが好ましい。   Next, a step of sintering the compact of crystal grains at 1650 ° C. or higher and 1800 ° C. or lower is performed. Specifically, spherical crystal particles are sintered at 1650 ° C. or higher and 1800 ° C. or lower while being pressed by a discharge plasma sintering method. In addition, it is preferable to fill the mold with crystal particles and perform sintering at 1650 ° C. or higher and 1800 ° C. or lower under pressure.

焼結により得られた焼結体を900℃以上1300℃以下の温度でアニールした後、研削、研磨工程を経て、透光性セラミックスを得る。透光性セラミックスは、光学レンズ等の光学素子とする。   After the sintered body obtained by sintering is annealed at a temperature of 900 ° C. or higher and 1300 ° C. or lower, a light-transmitting ceramic is obtained through grinding and polishing processes. The translucent ceramic is an optical element such as an optical lens.

放電プラズマ焼結法などによる焼結温度は、1650℃以上1800℃以下、好ましくは1700℃以上1750℃以下が望ましい。1650℃より低い温度では粒成長が進まないため透光性が得られず、1800℃より高くなると材料の多くが揮発したり焼結型に融着して破損したりする。   The sintering temperature by the discharge plasma sintering method or the like is 1650 ° C. or higher and 1800 ° C. or lower, preferably 1700 ° C. or higher and 1750 ° C. or lower. When the temperature is lower than 1650 ° C., the grain growth does not proceed, so that the translucency cannot be obtained. When the temperature is higher than 1800 ° C., most of the material is volatilized or fused to the sintered mold and damaged.

透光性セラミックスの屈折率は2.00以上、アッべ数は35以上である。透光性セラミックスの透光性は、バリアン社製分光光度計CARY4Gで測定した透過率により確認することができる。   The translucent ceramic has a refractive index of 2.00 or more and an Abbe number of 35 or more. The translucency of the translucent ceramics can be confirmed by the transmittance measured with a spectrophotometer CARY4G manufactured by Varian.

以下、透光性セラミックスの製造方法の実施例を示して、本発明を具体的に説明する。表1には、製造条件、製造したセラミックスを示す。   Hereinafter, the present invention will be specifically described with reference to examples of a method for producing a translucent ceramic. Table 1 shows manufacturing conditions and manufactured ceramics.

<測定方法>
(1)屈折率
屈折率は、エリプソメーター(商品名「M−2000」、ジェー・エー・ウーラム・ジャパン株式会社)を用いて波長587nmで測定して求めた値(nd)を示す。
(2)アッべ数
アッべ数は、エリプソメーターを用いて、波長587nm、486nm、656nmの屈折率nd,nF,nCを求め、アッべ数νdをνd=(nd−1)/(nF−nC)の式で求めた値を示す。
<Measurement method>
(1) Refractive index A refractive index shows the value (nd) calculated | required and measured by wavelength 587nm using the ellipsometer (brand name "M-2000", JA Woollam Japan Co., Ltd.).
(2) Abbe number The Abbe number is obtained by using an ellipsometer to obtain refractive indexes nd, nF, and nC at wavelengths of 587 nm, 486 nm, and 656 nm, and the Abbe number νd is represented by νd = (nd−1) / (nF− The value calculated | required by the type | formula of nC) is shown.

実施例1
純度99.9%以上のLaとAlの酸化物原料を用意し、La0.75Al1.25の比率になるように原料を調整、混合する。この混合原料を反応させるため1500℃で4時間処理した後、ボールミルで粉砕する。粉砕した粉末を熱プラズマ中に導入し、加熱、溶融した後に冷却して平均粒径が2μmの球状粒子に加工する。
Example 1
An oxide raw material of La 2 O 3 and Al 2 O 3 having a purity of 99.9% or more is prepared, and the raw materials are adjusted and mixed so as to have a ratio of La 0.75 Al 1.25 O 3 . In order to make this mixed raw material react, after processing at 1500 degreeC for 4 hours, it grind | pulverizes with a ball mill. The pulverized powder is introduced into thermal plasma, heated, melted and then cooled to be processed into spherical particles having an average particle diameter of 2 μm.

球状粒子をグラファイトからなる型に充填し、真空または窒素雰囲気の下、最高温度1750℃、圧力1MPa以上の圧力で焼結させる。この時、最高温度に到達するまでの昇温速度は40℃/分以上、最高温度での保持時間は30分とした。最高温度での保持時間は3分以上60分以下が好ましい。焼結手段については上記条件で焼結できる方法であれば何を用いてもよいが、今回の実験では放電プラズマ焼結を用いた。   The spherical particles are filled in a mold made of graphite and sintered at a maximum temperature of 1750 ° C. and a pressure of 1 MPa or higher in a vacuum or nitrogen atmosphere. At this time, the rate of temperature increase until reaching the maximum temperature was 40 ° C./min or more, and the holding time at the maximum temperature was 30 minutes. The holding time at the maximum temperature is preferably 3 minutes or more and 60 minutes or less. Any sintering means may be used as long as it can be sintered under the above-mentioned conditions, but in this experiment, discharge plasma sintering was used.

得られた透光性の焼結体に900℃、1時間以上のアニールを施した後、研削、研磨すして厚さ1mmの光学素子とした。光学素子の屈折率およびアッべ数は、それぞれ2.04と35であった。また、光学素子の透光性は、バリアン社製分光光度計CARY4Gで測定した透過率により確認した。   The obtained translucent sintered body was annealed at 900 ° C. for 1 hour or longer, then ground and polished to obtain an optical element having a thickness of 1 mm. The refractive index and Abbe number of the optical element were 2.04 and 35, respectively. Moreover, the translucency of the optical element was confirmed by the transmittance measured with a spectrophotometer CARY4G manufactured by Varian.

実施例2
実施例1と同様の方法で、La0.80Al1.20の球状粒子を作製する。球状粒子を型に充填し、真空または窒素雰囲気の下、最高温度1750℃、圧力1MPa以上の圧力で焼結させた。
Example 2
In the same manner as in Example 1, spherical particles of La 0.80 Al 1.20 O 3 are produced. The spherical particles were filled in a mold and sintered at a maximum temperature of 1750 ° C. and a pressure of 1 MPa or more in a vacuum or nitrogen atmosphere.

得られた透光性の焼結体に900℃、1時間以上のアニールを施した後、研削、研磨して厚さ1mmの光学素子とした。得られた光学素子の屈折率、アッべ数はそれぞれ2.04と36であった。また、光学素子の透光性は、バリアン社製分光光度計CARY4Gで測定した透過率により確認した。   The obtained translucent sintered body was annealed at 900 ° C. for 1 hour or longer, then ground and polished to obtain an optical element having a thickness of 1 mm. The refractive index and Abbe number of the obtained optical element were 2.04 and 36, respectively. Moreover, the translucency of the optical element was confirmed by the transmittance measured with a spectrophotometer CARY4G manufactured by Varian.

比較例1
実施例1と同様の方法で、La0.88Al1.12の球状粒子を作製する。球状粒子を型に充填し、真空または窒素雰囲気の下、最高温度1750℃、圧力1MPa以上の圧力で焼結させた。
Comparative Example 1
In the same manner as in Example 1, spherical particles of La 0.88 Al 1.12 O 3 are produced. The spherical particles were filled in a mold and sintered at a maximum temperature of 1750 ° C. and a pressure of 1 MPa or more in a vacuum or nitrogen atmosphere.

得られた透光性の焼結体に900℃、1時間以上のアニールを施した後、研削、研磨して厚さ1mmの光学素子とした。得られた光学素子は気孔が残存しているため光学素子としての使用には不適切であった。   The obtained translucent sintered body was annealed at 900 ° C. for 1 hour or longer, then ground and polished to obtain an optical element having a thickness of 1 mm. The obtained optical element was unsuitable for use as an optical element because pores remained.

比較例2
実施例1と同様の方法で、LaAlOの球状粒子を作製する。球状粒子を型に充填し、真空または窒素雰囲気の下、最高温度1200℃または1750℃、圧力1MPa以上の圧力で焼結させた。
Comparative Example 2
LaAlO 3 spherical particles are produced in the same manner as in Example 1. The spherical particles were filled in a mold and sintered at a maximum temperature of 1200 ° C. or 1750 ° C. under a pressure of 1 MPa or higher in a vacuum or nitrogen atmosphere.

得られた透光性の焼結体に900℃、1時間以上のアニールを施した後、研削、研磨して厚さ1mmの光学素子とした。得られた光学素子は気孔が残存しているため光学素子としての使用には不適切であった。   The obtained translucent sintered body was annealed at 900 ° C. for 1 hour or longer, then ground and polished to obtain an optical element having a thickness of 1 mm. The obtained optical element was unsuitable for use as an optical element because pores remained.

実施例3
実施例1と同様の方法で、La0.75Al1.25の球状粒子を作製する。球状粒子を型に充填し、真空または窒素雰囲気の下、最高温度1650℃、圧力1MPa以上の圧力で焼結させた。
Example 3
In the same manner as in Example 1, spherical particles of La 0.75 Al 1.25 O 3 are produced. The spherical particles were filled in a mold and sintered at a maximum temperature of 1650 ° C. and a pressure of 1 MPa or higher in a vacuum or nitrogen atmosphere.

得られた透光性の焼結体に900℃、1時間以上のアニールを施した後、研削、研磨して厚さ1mmの光学素子とした。得られた光学素子の屈折率、アッべ数は実施例1と同様であった。また、光学素子の透光性は、バリアン社製分光光度計CARY4Gで測定した透過率により確認した。   The obtained translucent sintered body was annealed at 900 ° C. for 1 hour or longer, then ground and polished to obtain an optical element having a thickness of 1 mm. The refractive index and Abbe number of the obtained optical element were the same as those in Example 1. Moreover, the translucency of the optical element was confirmed by the transmittance measured with a spectrophotometer CARY4G manufactured by Varian.

実施例4
実施例1と同様の方法で、La0.75Al1.25の球状粒子を作製する。
球状粒子を型に充填し、真空または窒素雰囲気の下、最高温度1800℃、圧力1MPa以上の圧力で焼結させた。
Example 4
In the same manner as in Example 1, spherical particles of La 0.75 Al 1.25 O 3 are produced.
The spherical particles were filled in a mold and sintered at a maximum temperature of 1800 ° C. and a pressure of 1 MPa or higher in a vacuum or nitrogen atmosphere.

得られた透光性の焼結体に900℃、1時間以上のアニールを施した後、研削、研磨して厚さ1mmの光学素子とした。得られた光学素子の屈折率、アッべ数は実施例1と同様であった。また、光学素子の透光性は、バリアン社製分光光度計CARY4Gで測定した透過率により確認した。   The obtained translucent sintered body was annealed at 900 ° C. for 1 hour or longer, then ground and polished to obtain an optical element having a thickness of 1 mm. The refractive index and Abbe number of the obtained optical element were the same as those in Example 1. Moreover, the translucency of the optical element was confirmed by the transmittance measured with a spectrophotometer CARY4G manufactured by Varian.

比較例3
実施例1と同様の方法で、La0.75Al1.25の球状粒子を作製する。球状粒子を型に充填し、真空または窒素雰囲気の下、最高温度1250℃または1600℃、圧力1MPa以上の圧力で焼結させた。
Comparative Example 3
In the same manner as in Example 1, spherical particles of La 0.75 Al 1.25 O 3 are produced. The spherical particles were filled in a mold and sintered at a maximum temperature of 1250 ° C. or 1600 ° C. and a pressure of 1 MPa or higher in a vacuum or nitrogen atmosphere.

得られた焼結体は焼結温度が低いため気孔が多数残存し、光学素子としての使用には不適切であった。   Since the obtained sintered body had a low sintering temperature, a large number of pores remained, which was inappropriate for use as an optical element.

比較例4
実施例1と同様の方法で、La0.75Al1.25の球状粒子を作製する。球状粒子を型に充填し、真空または窒素雰囲気の下、最高温度1850℃、圧力1MPa以上の圧力で焼結させた。
Comparative Example 4
In the same manner as in Example 1, spherical particles of La 0.75 Al 1.25 O 3 are produced. The spherical particles were filled in a mold and sintered at a maximum temperature of 1850 ° C. and a pressure of 1 MPa or higher in a vacuum or nitrogen atmosphere.

得られた焼結体は焼結温度が高いため型に融着して破損してしまい、光学素子としての使用には不適切であった。   Since the obtained sintered body has a high sintering temperature, it is fused to the mold and damaged, and is inappropriate for use as an optical element.

Figure 2012218974
Figure 2012218974

本発明の製造方法により得られた透光性セラミックスは高屈折率低分散の光学特性を有するので、光学系に用いられるレンズ、プリズムなどの光学素子に利用することができる。   Since the translucent ceramic obtained by the production method of the present invention has high refractive index and low dispersion optical characteristics, it can be used for optical elements such as lenses and prisms used in optical systems.

Claims (4)

LaAl(2−x)(xは0.75≦x≦0.80を表す。)から成る結晶粒子の成形体を1650℃以上1800℃以下で焼結する工程を有することを特徴とする透光性セラミックスの製造方法。 La x Al (2-x) O 3 (x represents. A 0.75 ≦ x ≦ 0.80), comprising a step of sintering at 1650 ° C. or higher 1800 ° C. or less compact of crystal particles made of A method for producing translucent ceramics. 前記結晶粒子を型に充填し、加圧下で1650℃以上1800℃以下で焼結することを特徴とする請求項1に記載の透光性セラミックスの製造方法。   The method for producing a translucent ceramic according to claim 1, wherein the crystal particles are filled in a mold and sintered at 1650 ° C or higher and 1800 ° C or lower under pressure. 前記透光性セラミックスの屈折率が2.00以上、アッべ数が35以上であることを特徴とする請求項1または2記載の透光性セラミックスの製造方法。   The method for producing a translucent ceramic according to claim 1 or 2, wherein the translucent ceramic has a refractive index of 2.00 or more and an Abbe number of 35 or more. 請求項1乃至3のいずれかに記載の製造方法により得られた透光性セラミックスからなることを特徴とする光学素子。   An optical element comprising a translucent ceramic obtained by the manufacturing method according to claim 1.
JP2011086142A 2011-04-08 2011-04-08 Method for producing translucent ceramic and optical element Withdrawn JP2012218974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011086142A JP2012218974A (en) 2011-04-08 2011-04-08 Method for producing translucent ceramic and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011086142A JP2012218974A (en) 2011-04-08 2011-04-08 Method for producing translucent ceramic and optical element

Publications (1)

Publication Number Publication Date
JP2012218974A true JP2012218974A (en) 2012-11-12

Family

ID=47270888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011086142A Withdrawn JP2012218974A (en) 2011-04-08 2011-04-08 Method for producing translucent ceramic and optical element

Country Status (1)

Country Link
JP (1) JP2012218974A (en)

Similar Documents

Publication Publication Date Title
JP6179731B2 (en) Optical element using spinel optoceramics and manufacturing method
US11053166B2 (en) Transparent rare earth aluminum garnet ceramics
CN110467453B (en) Method for producing ceramic molded body for sintering and method for producing ceramic sintered body
CN101851094A (en) The method for preparing crystalline ceramics
EP2716616A1 (en) Method of Manufacturing Transparent Sesquioxide Sintered Body, and Transparent Sesquioxide Sintered Body Manufactured by the Method
US9422196B2 (en) Transparent polycrystalline ceramic material
CN110467464B (en) Method for producing ceramic molded body for sintering and method for producing ceramic sintered body
JP2019199078A (en) Method for manufacturing ceramic molding for sintering and method for manufacturing ceramic sintered body
JP6341284B2 (en) Method for producing transparent ceramics
JP2009126750A (en) Method for producing polycrystal transparent ceramic substrate, and method for producing spinel substrate
US8202813B2 (en) Optical material and optical element
JP5448238B2 (en) TeO2-ZnO-B2O3 optical glass
JP6835748B2 (en) Transparent ceramic as a component for fracture-resistant optics
JP2012218974A (en) Method for producing translucent ceramic and optical element
JP2014062007A (en) Translucent ceramic, method of producing the same, optical element and method of producing the same
JP2012218973A (en) METHOD FOR PRODUCING LaAlO3 CERAMIC
JP4747892B2 (en) Translucent ceramic, method for producing the same, optical component and optical device
JP7056625B2 (en) Method for manufacturing ceramic molded body for sintering and method for manufacturing ceramic sintered body
KR20210035455A (en) Method for manufacturing polycrystalline ceramic sinters of mid-infrared windows
CN112189000A (en) Optical glass, optical element, optical device, method for producing optical glass, and method for producing optical lens
JPWO2007122985A1 (en) Translucent ceramic, method for producing the same, optical component and optical device
JP2010030820A (en) Translucent fused spinel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701