JP2010139540A - Display element and method for manufacturing the same - Google Patents

Display element and method for manufacturing the same Download PDF

Info

Publication number
JP2010139540A
JP2010139540A JP2008313063A JP2008313063A JP2010139540A JP 2010139540 A JP2010139540 A JP 2010139540A JP 2008313063 A JP2008313063 A JP 2008313063A JP 2008313063 A JP2008313063 A JP 2008313063A JP 2010139540 A JP2010139540 A JP 2010139540A
Authority
JP
Japan
Prior art keywords
group
electrode
display element
electrolyte
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008313063A
Other languages
Japanese (ja)
Inventor
Satoshi Hisamitsu
聡史 久光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2008313063A priority Critical patent/JP2010139540A/en
Publication of JP2010139540A publication Critical patent/JP2010139540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a display element that can be driven at a low voltage with a simple member configuration and is excellent in driving stability, and to provide a method for manufacturing the same. <P>SOLUTION: The display element has an electrolyte and an oxidation-reduction active substance layer between a pair of electrodes opposite to each other, the oxidation-reduction active substance layer is formed by immersing at least one electrode of the counter electrodes in a processing liquid containing at least (1) an oxidation-reduction active polymer, (2) a metal ion or a nonmetal ion, (3) a ligand, and (4) a precipitation accelerator. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気化学的な表示素子及びその製造方法に関するものである。   The present invention relates to an electrochemical display element and a method for manufacturing the same.

近年、パーソナルコンピューターの動作速度の向上、ネットワークインフラの普及、データストレージの大容量化と低価格化に伴い、従来紙への印刷物で提供されたドキュメントや画像等の情報を、より簡便な電子情報として入手、電子情報を閲覧する機会がますます増大している。   In recent years, with the increase in the operating speed of personal computers, the spread of network infrastructure, the increase in capacity and price of data storage, information such as documents and images provided on printed paper on paper has become easier to use electronic information. Opportunities to obtain and browse electronic information are increasingly increasing.

このような電子情報の閲覧手段として、従来の液晶ディスプレイやCRT、また近年では、有機ELディスプレイ等の発光型が主として用いられているが、特に、電子情報がドキュメント情報の場合、比較的長時間にわたってこの閲覧手段を注視する必要があり、これらの行為は人間に優しい手段とは言い難い。一般に発光型のディスプレイの欠点として、フリッカーで目が疲労する、持ち運びに不便、読む姿勢が制限され、静止画面に視線を合わせる必要が生じる、長時間読むと消費電力が嵩む等が知られている。   As such electronic information browsing means, conventional liquid crystal displays and CRTs, and in recent years, light-emitting types such as organic EL displays are mainly used. Particularly, when electronic information is document information, it is relatively long time. It is necessary to keep an eye on the browsing means over time, and these actions are hardly human-friendly means. In general, light-emitting displays are known to suffer from eye fatigue due to flickering, inconvenient to carry, limited reading posture, need to focus on a static screen, and increase power consumption when read for a long time. .

これらの欠点を補う表示手段として、外光を利用し、像保持のために電力を消費しないいわゆる「メモリー性」を有する反射型ディスプレイが知られているが、下記の理由で十分な性能を有しているとは言い難い。   As a display means to compensate for these drawbacks, a reflective display having a so-called “memory property” that uses external light and does not consume power for image retention is known. However, it has sufficient performance for the following reasons. It ’s hard to say.

すなわち、反射型液晶等の偏光板を用いる方式は、反射率が約40%と低いため白表示に難があり、また構成部材の作製に用いる製法の多くは簡便とは言い難い。また、ポリマー分散型液晶は高い電圧を必要とし、また有機物同士の屈折率差を利用しているため、得られる画像のコントラストが十分でない。また、ポリマーネットワーク型液晶は電圧高いことと、メモリー性を向上させるために複雑なTFT回路が必要である等の課題を抱えている。また、電気泳動法による表示素子は、10V以上の高い電圧が必要となり、電気泳動性粒子凝集による耐久性に懸念がある。   That is, the method using a polarizing plate such as a reflective liquid crystal has a low reflectance of about 40%, which makes it difficult to display white, and it is difficult to say that many of the manufacturing methods used to manufacture the constituent members are simple. In addition, the polymer dispersed liquid crystal requires a high voltage and utilizes the difference in refractive index between organic substances, so that the resulting image has insufficient contrast. In addition, the polymer network type liquid crystal has problems such as a high voltage and a complicated TFT circuit required to improve the memory performance. In addition, a display element based on electrophoresis requires a high voltage of 10 V or more, and there is a concern about durability due to electrophoretic particle aggregation.

これら上述の各方式の欠点を解消する表示方式として、エレクトロクロミック表示素子(以下、EC方式と略す)や金属または金属塩の溶解析出を利用するエレクトロデポジション方式(以下、ED方式と略す)が知られている。EC方式は、およそ3V以下の低電圧でフルカラー表示が可能で、簡易なセル構成、白品質で優れる等の利点があり、ED方式もまた、3V以下の低電圧で駆動が可能で、簡便なセル構成、黒と白のコントラストや黒品質に優れる等の利点があり、様々な方法が開示されている(例えば、特許文献1〜5参照。)。   As a display method for solving the disadvantages of each of the above-mentioned methods, there are an electrochromic display element (hereinafter abbreviated as EC method) and an electrodeposition method (hereinafter abbreviated as ED method) using dissolution precipitation of metal or metal salt. Are known. The EC method has the advantage of being capable of full color display at a low voltage of about 3V or less, and having a simple cell configuration and excellent white quality. The ED method can also be driven at a low voltage of 3V or less and is simple. There are advantages such as excellent cell configuration, black-white contrast and black quality, and various methods have been disclosed (for example, see Patent Documents 1 to 5).

EC方式の表示素子においては、表示の安定性を図るため、エレクトロクロミック化合物や酸化還元されうる補助化合物を電極に固定する方法が開示されている(例えば、特許文献6参照。)。   In an EC display element, a method of fixing an electrochromic compound or an auxiliary compound that can be oxidized / reduced to an electrode is disclosed in order to improve display stability (see, for example, Patent Document 6).

本発明者は、上記各特許文献に開示されている技術を詳細に検討した結果、従来技術では、固定基を有しない化合物を用いた場合、繰返し駆動させたときの反射率の安定性に課題があることが判明した。また、シラノール基やリン酸基などの固定基をもった化合物を用いると、繰返し駆動させたときの反射率の安定性は改善されるものの、使用可能な化合物が限定されるという課題があった。
国際公開第04/068231号明細書 国際公開第04/067673号明細書 米国特許第4,240,716号明細書 特許第3428603号公報 特開2003−241227号公報 特開2008−111941号公報
As a result of examining the techniques disclosed in each of the above patent documents in detail, the present inventor has a problem in the stability of reflectance when repeatedly driving when a compound having no fixing group is used. Turned out to be. Further, when a compound having a fixing group such as a silanol group or a phosphate group is used, the stability of the reflectance when repeatedly driven is improved, but there is a problem that usable compounds are limited. .
International Publication No. 04/068231 Specification International Publication No. 04/066733 U.S. Pat. No. 4,240,716 Japanese Patent No. 3428603 JP 2003-241227 A JP 2008-111941 A

本発明は、上記課題に鑑みなされたものであり、その目的は、簡便な部材構成、低電圧で駆動可能で、駆動安定性に優れた表示素子及びその製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a display element that can be driven with a simple member configuration, a low voltage, and has excellent driving stability, and a method for manufacturing the display element.

本発明の上記目的は、以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

1.一対の対向電極の間に電解質と酸化還元活性物質層とを有し、該酸化還元活性物質層は、少なくとも1)酸化還元活性ポリマーと、2)金属イオンまたは非金属イオンと、3)配位子と、4)析出促進剤とを含有する処理液に、該対向電極の少なくとも一方の電極を浸漬して形成されたものであることを特徴とする表示素子。   1. An electrolyte and a redox active substance layer are provided between a pair of counter electrodes, and the redox active substance layer includes at least 1) a redox active polymer, 2) a metal ion or a nonmetal ion, and 3) a coordination. A display element, wherein the counter element is formed by immersing at least one electrode of the counter electrode in a treatment liquid containing a substrate and 4) a deposition accelerator.

2.前記酸化還元活性物質層が、非表示側電極上に形成されていることを特徴とする前記1に記載の表示素子。   2. 2. The display element according to 1 above, wherein the redox active material layer is formed on a non-display side electrode.

3.前記電解質が金属塩化合物を含有し、かつ前記対向電極の駆動操作により、黒表示と白表示とを行なうことを特徴とする前記1または2に記載の表示素子。   3. 3. The display element as described in 1 or 2 above, wherein the electrolyte contains a metal salt compound and black display and white display are performed by driving the counter electrode.

4.前記金属塩化合物が、銀塩化合物であることを特徴とする前記3に記載の表示素子。   4). 4. The display element according to 3 above, wherein the metal salt compound is a silver salt compound.

5.前記電解質が、下記一般式(G−1)または(G−2)で表される化合物を含有することを特徴とする前記1から4のいずれか1項に記載に表示素子。   5. 5. The display element according to any one of 1 to 4, wherein the electrolyte contains a compound represented by the following general formula (G-1) or (G-2).

一般式(G−1)
Rg11−S−Rg12
〔式中、Rg11、Rg12は各々置換または無置換の炭化水素基を表す。また、これらの炭化水素基は、1個以上の窒素原子、酸素原子、リン原子、硫黄原子またはハロゲン原子を含んでも良く、Rg11とRg12が互いに連結し、環状構造を取っても良い。〕
General formula (G-1)
Rg 11 -S-Rg 12
Wherein, Rg 11, Rg 12 each represents a substituted or unsubstituted hydrocarbon group. Further, these hydrocarbon groups may contain one or more nitrogen atom, oxygen atom, phosphorus atom, sulfur atom or halogen atom, and Rg 11 and Rg 12 may be connected to each other to take a cyclic structure. ]

Figure 2010139540
Figure 2010139540

〔式中、Mは水素原子、金属原子または4級アンモニウムを表す。Zは含窒素複素環を構成するのに必要な原子群表す。nは0〜5の整数を表し、Rg21は、水素原子、ハロゲン原子、アルキル基、アリール基、アルキルカルボンアミド基、アリールカルボンアミド基、アルキルスルホンアミド基、アリールスルホンアミド基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルカルバモイル基、アリールカルバモイル基、カルバモイル基、アルキルスルファモイル基、アリールスルファモイル基、スルファモイル基、シアノ基、アルキルスルホニル基、アリールスルホニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アシルオキシ基、カルボキシル基、カルボニル基、スルホニル基、アミノ基、ヒドロキシ基または複素環基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。〕
6.前記酸化還元活性物質層が、SiOまたはTiOを含有することを特徴とする前記1から5のいずれか1項に記載の表示素子
7.前記1から6のいずれか1項に記載の表示素子の製造方法であって、
酸化還元活性ポリマーと、金属イオンまたは非金属イオンと配位子とから形成した錯体と、該錯体の配位子と反応して溶液中から金属または非金属の酸化物を析出させる析出促進剤とを含む処理液を調製する工程と、
電極を有する基板を該処理液に浸漬して、該電極上に酸化還元活性物質層を形成する工程と、
該酸化還元活性物質層が形成された基板を少なくとも一方の電極として用い、一対の対向する電極間に酸化還元活性物質層と電解質を保持して表示素子を製造する工程とを
有することを特徴とする表示素子の製造方法。
[Wherein, M represents a hydrogen atom, a metal atom or quaternary ammonium. Z represents an atomic group necessary for constituting a nitrogen-containing heterocyclic ring. n represents an integer of 0 to 5, and Rg 21 represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkylcarbonamide group, an arylcarbonamide group, an alkylsulfonamide group, an arylsulfonamide group, an alkoxy group, an aryl Oxy group, alkylthio group, arylthio group, alkylcarbamoyl group, arylcarbamoyl group, carbamoyl group, alkylsulfamoyl group, arylsulfamoyl group, sulfamoyl group, cyano group, alkylsulfonyl group, arylsulfonyl group, alkoxycarbonyl group, Represents an aryloxycarbonyl group, an alkylcarbonyl group, an arylcarbonyl group, an acyloxy group, a carboxyl group, a carbonyl group, a sulfonyl group, an amino group, a hydroxy group or a heterocyclic group, and when n is 2 or more, Of Rg 21 may be the same or different, and may be linked to each other to form a condensed ring. ]
6). 6. The display element according to any one of 1 to 5, wherein the redox active material layer contains SiO 2 or TiO 2 . The method for manufacturing a display element according to any one of 1 to 6,
A redox-active polymer; a complex formed from a metal ion or non-metal ion and a ligand; and a deposition accelerator that reacts with the ligand of the complex to precipitate a metal or non-metal oxide from the solution. A step of preparing a treatment liquid containing:
Immersing a substrate having an electrode in the treatment liquid to form a redox active substance layer on the electrode;
Using the substrate on which the redox active material layer is formed as at least one electrode and holding the redox active material layer and the electrolyte between a pair of opposed electrodes to produce a display element. A method for manufacturing a display element.

本発明により、簡便な部材構成、低電圧で駆動可能で、駆動安定性に優れた表示素子及びその製造方法を提供することができた。   According to the present invention, it is possible to provide a display element that can be driven with a simple member configuration, a low voltage, and has excellent driving stability, and a manufacturing method thereof.

以下、本発明を実施するための最良の形態について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

本発明者は、上記課題に鑑み鋭意検討を行った結果、一対の対向電極の間に電解質と酸化還元活性物質層とを有し、該酸化還元活性物質層は、少なくとも1)酸化還元活性ポリマーと、2)金属イオンまたは非金属イオンと、3)配位子と、4)析出促進剤とを含有する処理液に、該対向電極の少なくとも一方の電極を浸漬して形成されたものであることを特徴とする表示素子により、簡便な部材構成、低電圧で駆動可能で、駆動安定性に優れた表示素子を実現できることを見出し、本発明に至った次第である。   As a result of intensive studies in view of the above problems, the present inventor has an electrolyte and a redox active substance layer between a pair of counter electrodes, and the redox active substance layer is at least 1) a redox active polymer. And 2) a metal ion or non-metal ion, 3) a ligand, and 4) a deposition accelerator, and formed by immersing at least one electrode of the counter electrode. It has been found that a display element that can be driven with a simple member configuration, a low voltage, and has excellent driving stability can be realized by the display element having the characteristics described above.

以下、本発明の表示素子及びその製造方法の詳細について説明する。   Hereinafter, details of the display element and the manufacturing method thereof according to the present invention will be described.

〔表示素子の基本構成〕
本発明の表示素子は、電極を有する基材を、金属イオンまたは非金属イオンと配位子とからなる錯体と、錯体中の配位子と反応して溶液中から金属または非金属の酸化物を析出させる析出促進剤とを含む処理液に浸漬して、電極表面に、酸化還元活性ポリマーが固定化された酸化還元活性物質層を形成し、酸化還元活性物質層を有する電極をいずれか一方の電極として有する一対の対向電極間に、少なくとも上記酸化還元活性物質層と電解質とを保持した表示素子であり、対向電極間に正負両極性の電圧を印加することにより、白表示と黒表示、または白表示と着色表示を可逆的に切り替えることができる。
[Basic structure of display element]
The display element of the present invention is a metal or non-metal oxide from a solution obtained by reacting a substrate having an electrode with a complex comprising a metal ion or non-metal ion and a ligand, and a ligand in the complex. The electrode having a redox active substance layer is formed by immersing the electrode in a treatment solution containing a deposition accelerator for precipitating a redox active substance layer on which the redox active polymer is immobilized. A display element that holds at least the redox active substance layer and the electrolyte between a pair of counter electrodes as an electrode, and by applying a voltage of positive and negative polarity between the counter electrodes, white display and black display, Alternatively, white display and colored display can be switched reversibly.

〔酸化還元活性物質層〕
本発明においては、一対の対向電極を構成する表示側透明電極または非表示側電極の上に、酸化還元活性ポリマーが固定された酸化還元活性物質層を設けることを特徴とする。
[Redox active substance layer]
The present invention is characterized in that an oxidation-reduction active substance layer to which an oxidation-reduction active polymer is fixed is provided on a display-side transparent electrode or a non-display-side electrode constituting a pair of counter electrodes.

本発明に係る酸化還元活性物質層は、微粒子等から構成されているナノ多孔質構造を有していることが好ましく、このナノ多孔質構造内を電解質中に含まれるイオン種が移動可能となっている。例えば、酸化還元活性物質層を表示側透明電極上に設ける場合には、表示素子を形成した際に、酸化還元活性物質層が実質的に透明であることが望ましい。   The redox active substance layer according to the present invention preferably has a nanoporous structure composed of fine particles and the like, and the ionic species contained in the electrolyte can move within the nanoporous structure. ing. For example, when the redox active material layer is provided on the display-side transparent electrode, it is desirable that the redox active material layer is substantially transparent when the display element is formed.

本発明に係る酸化還元活性物質層は、酸化還元活性ポリマーと、金属イオンまたは非金属イオンと配位子と、析出促進剤とを含む処理液に、電極を形成した基板を浸漬することにより形成することができる。   The oxidation-reduction active substance layer according to the present invention is formed by immersing a substrate on which an electrode is formed in a treatment liquid containing an oxidation-reduction active polymer, a metal ion or non-metal ion, a ligand, and a precipitation accelerator. can do.

本発明に好適に用いることのできる酸化還元活性ポリマーとしては、後述するエレクトロクロミック化合物、補助化合物(プロモーター)のうち、高分子化合物であるもの、または低分子のエレクトロクロミック化合物や補助化合物の構造を分子中に有するポリマー(例えば、ポリビニルフェロセンなど)等を挙げることができる。   As the redox active polymer that can be suitably used in the present invention, among electrochromic compounds and auxiliary compounds (promoters) described later, polymers that are high molecular compounds, or structures of low molecular electrochromic compounds and auxiliary compounds are used. Examples thereof include a polymer (for example, polyvinyl ferrocene) and the like in the molecule.

本発明に適用可能な金属イオンまたは非金属イオンは、析出すべき酸化物の種類により適宜選択することができ、例えば、金属イオンとしてはTi、Sn、Zn、Zr、Nb、V、W等の各金属イオンから選択することができ、非金属イオンとしては、Si等の非金属イオンから適宜選択して用いることができ、析出物の安定性の観点から、Si、Ti、Wが好ましい。   Metal ions or non-metal ions applicable to the present invention can be appropriately selected depending on the type of oxide to be deposited. For example, metal ions such as Ti, Sn, Zn, Zr, Nb, V, and W can be used. It can be selected from each metal ion, and as the non-metal ion, it can be appropriately selected from non-metal ions such as Si, and Si, Ti, and W are preferable from the viewpoint of the stability of the precipitate.

本発明に係る配位子は、金属イオンまたは非金属イオンに配位して錯体を形成するものあり、例えば、F、Cl、ClO 、SO 2−、OSO 4−などが挙げられる。本発明に係る配位子においては、多種の金属イオンまたは非金属イオンと錯体を形成することができ、また処理液の安定性がよい観点から、Fを用いることが好ましい。 Ligand according to the present invention, coordinated to a metal ion or nonmetal ions has intended to form a complex, for example, F -, Cl -, ClO 4 -, SO 4 2-, OSO 4 4- and Can be mentioned. In the ligand according to the present invention, it is preferable to use F from the viewpoint that it can form a complex with various metal ions or non-metal ions and the stability of the treatment liquid is good.

本発明に係る金属イオンまたは非金属イオンに配位子が配位した錯体の溶液としては、例えば、フッ化チタン酸アンモニウム水溶液、ケイフッ化アンモニウム水溶液などが市販されており、それらを用いることができる。   As a solution of the complex in which a ligand is coordinated to a metal ion or a non-metal ion according to the present invention, for example, an aqueous ammonium fluoride titanate solution or an aqueous ammonium silicofluoride solution is commercially available, and these can be used. .

本発明に係る析出促進剤は、前記の金属イオンまたは非金属イオンに配位している配位子と、より安定な錯体もしくは化合物を形成する物質であり、例えば、Al、HBO等が好適に用いられる。 Precipitation accelerant agent according to the present invention, a ligand is coordinated to the metal ions or non-metallic ions are materials which form more stable complexes or compounds, e.g., Al, H 3 BO 3 and the like Are preferably used.

本発明に係る酸化還元活性物質層の形成において、析出物の析出量や形状は、処理液の濃度や温度、処理時間などにより調整することができる。酸化還元活性物質層は、電解質中に含まれるイオン種が移動可能な状態に保つことが必要なため、空隙部を完全に埋めてしまわないように、析出物の量や形状を制御する必要がある。処理液の濃度や温度、処理時間はそのような条件を満たせるように設定すればよく、例えば、濃度としては0.01〜1mol/Lの範囲であり、温度は5〜98℃の範囲であり、処理時間は10秒から24時間程度の範囲で設定すればよい。処理終了後には、水などで十分洗浄することが好ましい。   In the formation of the redox active substance layer according to the present invention, the amount and shape of the precipitates can be adjusted by the concentration and temperature of the treatment liquid, the treatment time, and the like. Since the redox active material layer needs to keep the ionic species contained in the electrolyte in a movable state, it is necessary to control the amount and shape of the precipitates so as not to completely fill the voids. is there. The concentration, temperature, and treatment time of the treatment liquid may be set so as to satisfy such conditions. For example, the concentration is in the range of 0.01 to 1 mol / L, and the temperature is in the range of 5 to 98 ° C. The processing time may be set in the range of about 10 seconds to 24 hours. After completion of the treatment, it is preferable to sufficiently wash with water or the like.

本発明に係る処理液には、酸化還元活性ポリマーを良好に分散するため、界面活性剤などをさらに添加してもよい。   In order to satisfactorily disperse the redox active polymer, a surfactant or the like may be further added to the treatment liquid according to the present invention.

本発明に係る酸化還元活性物質層の膜厚は、0.1〜10μmの範囲であることが好ましく、より好ましくは0.25〜5μmの範囲である。   The thickness of the redox active substance layer according to the present invention is preferably in the range of 0.1 to 10 μm, more preferably in the range of 0.25 to 5 μm.

〔表示素子の製造方法〕
本発明の表示素子の製造方法においては、
1)酸化還元活性ポリマーと、金属イオンまたは非金属イオンと配位子とから形成した錯体と、該錯体の配位子と反応して溶液中から金属または非金属の酸化物を析出させる析出促進剤とを含む処理液を調製する工程と、
2)電極を有する基板を該処理液に浸漬して、該電極上に酸化還元活性物質層を形成する工程と、
3)該酸化還元活性物質層が形成された基板を少なくとも一方の電極として用い、一対の対向する電極間に酸化還元活性物質層と電解質を保持して表示素子を製造する工程と、
を有することを特徴とする。
[Method for manufacturing display element]
In the manufacturing method of the display element of the present invention,
1) Precipitation promotion in which a complex formed from a redox active polymer, a metal ion or non-metal ion and a ligand, and a ligand of the complex react with the complex to precipitate a metal or non-metal oxide from the solution. A step of preparing a treatment liquid containing an agent;
2) immersing a substrate having an electrode in the treatment liquid to form a redox active substance layer on the electrode;
3) using the substrate on which the redox active material layer is formed as at least one electrode, and manufacturing a display element by holding the redox active material layer and the electrolyte between a pair of opposed electrodes;
It is characterized by having.

1)項である処理液調製工程としては、例えば、金属イオンまたは非金属イオンに、配位子が配位した錯体の溶液としてフッ化チタン酸アンモニウム水溶液を用い、これに析出促進剤としてホウ酸水溶液を混合した溶液を調製する。ホウ酸水溶液のかわりに金属アルミニウム板をフッ化チタン酸アンモニウム水溶液中に挿入しても良い。更に、この溶液中に、界面活性剤(例えば、ドデシルベンゼンスルホン酸ナトリウム)水溶液に酸化還元活性ポリマーとしてポリビニルフェロセンを分散させた分散液を添加、撹拌して、酸化還元活性ポリマーが分散された処理液を調製する。   In the treatment liquid preparation step 1), for example, an aqueous ammonium fluoride titanate solution is used as a complex solution in which a ligand is coordinated to a metal ion or a non-metal ion, and boric acid is used as a precipitation accelerator. Prepare a mixed solution of aqueous solutions. Instead of the boric acid aqueous solution, a metal aluminum plate may be inserted into the ammonium fluoride titanate aqueous solution. Further, a dispersion in which polyvinyl ferrocene is dispersed as a redox active polymer in an aqueous solution of a surfactant (for example, sodium dodecylbenzenesulfonate) is added to this solution and stirred to disperse the redox active polymer. Prepare the solution.

2)項に係る酸化還元活性物質層を形成する工程の具体的な方法としては、例えば、1)項で調製した処理液が入った容器に、電極としてITO(Indium Tin Oxide、インジウム錫酸化物)膜を公知の方法でストライプ状に形成したガラス基板を垂直に挿入した後、吊り下げた状態で一定時間放置する。ガラス基板を処理液より引き上げた後、純水で洗浄し、乾燥させる。次いで、ガラス基板の電極を有する面に、二酸化チタン分散物を塗布し、その後加熱して溶媒を蒸発、乾燥させて、酸化還元活性物質層を形成した電極を作製する。なお、二酸化チタン分散物は、例えば、水/エタノール混合溶液にポリビニルアルコール樹脂を添加して加熱溶解させた後、二酸化チタン粒子を超音波分散機で分散させて調製することにより得ることができる。   As a specific method of the step of forming the redox active substance layer according to 2), for example, ITO (Indium Tin Oxide, Indium Tin Oxide) is used as an electrode in a container containing the treatment liquid prepared in 1). ) A glass substrate on which a film is formed in a stripe shape by a known method is vertically inserted, and then left standing for a certain time in a suspended state. After pulling up the glass substrate from the treatment liquid, it is washed with pure water and dried. Next, a titanium dioxide dispersion is applied to the surface of the glass substrate having the electrode, and then heated to evaporate and dry the solvent to produce an electrode on which a redox active material layer is formed. The titanium dioxide dispersion can be obtained, for example, by adding a polyvinyl alcohol resin to a water / ethanol mixed solution and dissolving by heating, and then dispersing titanium dioxide particles with an ultrasonic disperser.

次いで、3)項の表示素子を組み立てる工程としては、例えば、2)項で作製した酸化還元活性物質層を形成した電極の周辺部を、ガラス製球形ビーズを含む封止剤で縁取りした後、別途用意したITO(Indium Tin Oxide、インジウム錫酸化物)膜を公知の方法に従ってストライプ状に形成したガラス基板と、それぞれのストライプ状の電極が直交するように貼り合わせ、更に加熱押圧して空セルを作製する。この空セルに電解液を注入し、注入口を封止することにより、本発明の表示素子を製造することができる。   Next, as a process for assembling the display element of the item 3), for example, after the periphery of the electrode formed with the redox active substance layer prepared in the item 2) is trimmed with a sealing agent containing glass spherical beads, A separately prepared ITO (Indium Tin Oxide) film is bonded to a glass substrate formed in a stripe shape in accordance with a known method and the stripe electrodes are orthogonally crossed, and further heated and pressed to empty cells. Is made. The display element of the present invention can be manufactured by injecting an electrolytic solution into the empty cell and sealing the injection port.

次いで、本発明の表示素子の各構成要素を説明する。   Next, each component of the display element of the present invention will be described.

〔電解質〕
本発明でいう「電解質」とは、一般に、水などの溶媒に溶けて溶液がイオン伝導性を示す物質(以下、「狭義の電解質」という。)をいうが、本発明の説明においては、狭義の電解質に電解質、非電解質を問わず他の金属、化合物等を含有させた混合物を電解質(「広義の電解質」)という。
〔Electrolytes〕
The “electrolyte” as used in the present invention generally refers to a substance that dissolves in a solvent such as water and exhibits a ionic conductivity in a solution (hereinafter referred to as “narrowly defined electrolyte”). A mixture containing other metals, compounds, or the like, regardless of whether it is an electrolyte or a non-electrolyte, is called an electrolyte (“broadly defined electrolyte”).

本発明の表示素子において用いることができる支持電解質としては、電気化学の分野又は電池の分野で通常使用される塩類、酸類、アルカリ類が使用できる。   As the supporting electrolyte that can be used in the display element of the present invention, salts, acids, and alkalis that are usually used in the field of electrochemistry or the field of batteries can be used.

塩類としては、特に制限はなく、例えば、アルカリ金属塩、アルカリ土類金属塩等の無機イオン塩;4級アンモニウム塩;環状4級アンモニウム塩;4級ホスホニウム塩などが使用できる。   There are no particular limitations on the salts, and for example, inorganic ion salts such as alkali metal salts and alkaline earth metal salts; quaternary ammonium salts; cyclic quaternary ammonium salts; quaternary phosphonium salts and the like can be used.

塩類の具体例としては、ハロゲンイオン、SCN、ClO 、BF 、CFSO 、(CFSO、(CSO、PF 、AsF 、CHCOO、CH(C)SO 、および(CSOから選ばれる対アニオンを有するLi塩、Na塩、あるいはK塩が挙げられる。 Specific examples of the salts include halogen ions, SCN , ClO 4 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , PF 6 -, AsF 6 -, CH 3 COO -, CH 3 (C 6 H 4) SO 3 -, and (C 2 F 5 SO 2) 3 C - Li salt having a counter anion selected from, Na salt or K salt is mentioned.

また、ハロゲンイオン、SCN、ClO 、BF 、CFSO 、(CFSO、(CSO、PF 、AsF 、CHCOO、CH(C)SO 、および(CSOから選ばれる対アニオンを有する4級アンモニウム塩、具体的には、(CHNBF、(CNBF、(n−CNBF、(CNBr、(CNClO、(n−CNClO、CH(CNBF、(CH(CNBF、(CHNSOCF、(CNSOCF、(n−CNSOCF
更には、
Further, halogen ions, SCN , ClO 4 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , PF 6 , AsF 6 -, CH 3 COO -, CH 3 (C 6 H 4) SO 3 -, and (C 2 F 5 SO 2) 3 C - 4 quaternary ammonium salt having a counter anion selected from, specifically, (CH 3 ) 4 NBF 4 , (C 2 H 5 ) 4 NBF 4 , (n-C 4 H 9 ) 4 NBF 4 , (C 2 H 5 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (n- C 4 H 9 ) 4 NClO 4 , CH 3 (C 2 H 5 ) 3 NBF 4 , (CH 3 ) 2 (C 2 H 5 ) 2 NBF 4 , (CH 3 ) 4 NSO 3 CF 3 , (C 2 H 5) 4 NSO 3 CF 3, (n-C 4 H 9 4 NSO 3 CF 3,
Furthermore,

Figure 2010139540
Figure 2010139540

等が挙げられる。 Etc.

また、ハロゲンイオン、SCN、ClO 、BF 、CFSO 、(CFSO、(CSO、PF 、AsF 、CHCOO、CH(C)SO 、および(CSOから選ばれる対アニオンを有するホスホニウム塩、具体的には、(CHPBF、(CPBF、(CPBF、(CPBF等が挙げられる。また、これらの混合物も好適に用いることができる。 Further, halogen ions, SCN , ClO 4 , BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , PF 6 , AsF 6 -, CH 3 COO -, CH 3 (C 6 H 4) SO 3 -, and (C 2 F 5 SO 2) 3 C - phosphonium salt having a counter anion selected from, specifically, (CH 3) 4 PBF 4 , (C 2 H 5 ) 4 PBF 4 , (C 3 H 7 ) 4 PBF 4 , (C 4 H 9 ) 4 PBF 4 and the like. Moreover, these mixtures can also be used suitably.

本発明の支持電解質としては、4級アンモニウム塩が好ましく、特に4級スピロアンモニウム塩が好ましい。また対アニオンとしてはClO 、BF 、CFSO 、(CSO、PF が好ましく、特にBF が好ましい。 The supporting electrolyte of the present invention is preferably a quaternary ammonium salt, particularly preferably a quaternary spiro ammonium salt. The ClO 4 as counter anion -, BF 4 -, CF 3 SO 3 -, (C 2 F 5 SO 2) 2 N -, PF 6 - are preferable, and BF 4 - is preferable.

電解質塩の使用量は任意であるが、一般的には、電解質塩は溶媒中に上限としては20モル/L以下、好ましくは10モル/L以下、さらに好ましくは5モル/L以下存在していることが望ましく、下限としては通常0.01モル/L以上、好ましくは0.05モル/L以上、さらに好ましくは0.1モル/L以上存在していることである。   The amount of the electrolyte salt used is arbitrary, but in general, the electrolyte salt is present in the solvent as an upper limit of 20 mol / L or less, preferably 10 mol / L or less, more preferably 5 mol / L or less. The lower limit is usually 0.01 mol / L or more, preferably 0.05 mol / L or more, more preferably 0.1 mol / L or more.

固体電解質の場合には、電子伝導性やイオン伝導性を示す以下の化合物を、電解質中に含むことができる。   In the case of a solid electrolyte, the following compounds exhibiting electronic conductivity and ionic conductivity can be contained in the electrolyte.

パーフルオロスルフォン酸を含むフッ化ビニル系高分子、ポリチオフェン、ポリアニリン、ポリピロール、トリフェニルアミン類、ポリビニルカルバゾール類、ポリメチルフェニルシラン類、CuS、AgS、CuSe、AgCrSe等のカルコゲニド、CaF、PbF、SrF、LaF、TlSn、CeF等の含フッ素化合物、LiSO、LiSiO、LiPO等のLi塩、ZrO、CaO、Cd、HfO、Y、Nb、WO、Bi、AgBr、AgI、CuCl、CuBr、CuBr、CuI、LiI、LiBr、LiCl、LiAlCl、LiAlF、AgSBr、CNHAg、RbCu16Cl13、RbCuCl10、LiN、LiNI、LiNBr等の化合物が挙げられる。 Vinyl fluoride polymer containing perfluorosulfonic acid, polythiophene, polyaniline, polypyrrole, triphenylamines, polyvinylcarbazoles, polymethylphenylsilanes, Cu 2 S, Ag 2 S, Cu 2 Se, AgCrSe 2, etc. Fluorine-containing compounds such as chalcogenides, CaF 2 , PbF 2 , SrF 2 , LaF 3 , TlSn 2 F 5 , CeF 3 , Li salts such as Li 2 SO 4 , Li 4 SiO 4 , Li 3 PO 4 , ZrO 2 , CaO , Cd 2 O 3 , HfO 2 , Y 2 O 3 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , AgBr, AgI, CuCl, CuBr, CuBr, CuI, LiI, LiBr, LiCl, LiAlCl 4 , LiAlF 4 , AgSBr, C 5 H 5 NHAg 5 I 6, Rb 4 Cu 16 7 Cl 13, Rb 3 Cu 7 Cl 10, LiN, compounds such as Li 5 NI 2, Li 6 NBr 3 , and the like.

〔金属塩化合物〕
本発明に係る電解質に含有される金属塩化合物は、対向電極上の少なくとも1方の電極上で、該対向電極の駆動操作で、溶解・析出を行うことができる金属種を含む塩であれば、如何なる化合物であってもよい。好ましい金属種は、銀、ビスマス、銅、ニッケル、鉄、クロム、亜鉛等であり、特に好ましいのは銀、ビスマスである。
[Metal salt compounds]
The metal salt compound contained in the electrolyte according to the present invention is a salt containing a metal species that can be dissolved and precipitated by driving the counter electrode on at least one electrode on the counter electrode. Any compound may be used. Preferred metal species are silver, bismuth, copper, nickel, iron, chromium, zinc and the like, and particularly preferred are silver and bismuth.

〔銀塩化合物〕
本発明においては、金属塩化合物が銀塩化合物であることが好ましい。本発明に係る銀塩化合物とは、銀または、銀を化学構造中に含む化合物、例えば、酸化銀、硫化銀、金属銀、銀コロイド粒子、ハロゲン化銀、銀錯体化合物、銀イオン等の化合物の総称であり、固体状態や液体への可溶化状態や気体状態等の相の状態種、中性、アニオン性、カチオン性等の荷電状態種は、特に問わない。
[Silver salt compound]
In the present invention, the metal salt compound is preferably a silver salt compound. The silver salt compound according to the present invention is silver or a compound containing silver in the chemical structure, such as silver oxide, silver sulfide, metallic silver, silver colloidal particles, silver halide, silver complex compound, silver ion and the like. There are no particular restrictions on the phase state species such as the solid state, the solubilized state in liquid, and the gas state, and the charged state species such as neutral, anionic, and cationic.

本発明の表示素子においては、ヨウ化銀、塩化銀、臭化銀、酸化銀、硫化銀、クエン酸銀、酢酸銀、ベヘン酸銀、p−トルエンスルホン酸銀、トリフルオロメタンスルホン酸銀、メルカプト類との銀塩、イミノジ酢酸類との銀錯体、等の公知の銀塩化合物を用いることができる。これらの中でハロゲンやカルボン酸や銀との配位性を有する窒素原子を有しない化合物を銀塩として用いるのが好ましく、例えば、p−トルエンスルホン酸銀が好ましい。   In the display element of the present invention, silver iodide, silver chloride, silver bromide, silver oxide, silver sulfide, silver citrate, silver acetate, silver behenate, silver p-toluenesulfonate, silver trifluoromethanesulfonate, mercapto A known silver salt compound such as a silver salt with an acid or a silver complex with iminodiacetic acid can be used. Among these, it is preferable to use, as a silver salt, a compound that does not have a nitrogen atom having coordination properties with halogen, carboxylic acid, or silver, and for example, silver p-toluenesulfonate is preferable.

本発明に係る電解質液に含まれる金属イオン濃度は、0.2モル/kg≦[Metal]≦2.0モル/kgが好ましい。金属イオン濃度が0.2モル/kg以上であれば、十分な濃度の銀溶液となり所望の駆動速度を得ることができ、2モル/kg以下であれば析出を防止し、低温保存時での電解質液の安定性が向上する。   The metal ion concentration contained in the electrolyte solution according to the present invention is preferably 0.2 mol / kg ≦ [Metal] ≦ 2.0 mol / kg. If the metal ion concentration is 0.2 mol / kg or more, a silver solution having a sufficient concentration can be obtained, and a desired driving speed can be obtained. If the metal ion concentration is 2 mol / kg or less, precipitation is prevented, and storage at low temperature is possible. The stability of the electrolyte solution is improved.

〔ハロゲンイオン、金属イオン濃度比〕
本発明の表示素子においては、電解質液に含まれるハロゲンイオンまたはハロゲン原子のモル濃度を[X](モル/kg)とし、前記電解質液に含まれる銀または銀を化学構造中に含む化合物の銀の総モル濃度を[Metal](モル/kg)としたとき、下式(1)で規定する条件を満たすことが好ましい。
[Halogen ion, metal ion concentration ratio]
In the display element of the present invention, the molar concentration of halogen ions or halogen atoms contained in the electrolyte solution is [X] (mol / kg), and the silver or silver contained in the electrolyte solution is a compound that contains silver in the chemical structure. When the total molar concentration of [Metal] (mol / kg) is satisfied, it is preferable that the condition defined by the following formula (1) is satisfied.

式(1):0≦[X]/[Metal]≦0.1
本発明でいうハロゲン原子とは、ヨウ素原子、塩素原子、臭素原子、フッ素原子のことをいう。[X]/[Metal]が0.1よりも大きい場合は、金属の酸化還元反応時に、X→Xが生じ、Xは析出した金属と容易にクロス酸化して析出した金属を溶解させ、メモリー性を低下させる要因の1つになるので、ハロゲン原子のモル濃度は金属銀のモル濃度に対してできるだけ低い方が好ましい。本発明においては、0≦[X]/[Metal]≦0.001がより好ましい。ハロゲンイオンを添加する場合、ハロゲン種については、メモリー性向上の観点から、各ハロゲン種モル濃度総和が[I]<[Br]<[Cl]<[F]であることが好ましい。
Formula (1): 0 ≦ [X] / [Metal] ≦ 0.1
The halogen atom as used in the field of this invention means an iodine atom, a chlorine atom, a bromine atom, and a fluorine atom. When [X] / [Metal] is greater than 0.1, X → X 2 is generated during the oxidation-reduction reaction of the metal, and X 2 easily cross-oxidizes with the deposited metal to dissolve the deposited metal. Therefore, the molar concentration of halogen atoms is preferably as low as possible relative to the molar concentration of metallic silver. In the present invention, 0 ≦ [X] / [Metal] ≦ 0.001 is more preferable. In the case of adding halogen ions, the halogen species preferably have a total molar concentration of [I] <[Br] <[Cl] <[F] from the viewpoint of improving memory properties.

〔銀塩溶剤〕
本発明においては、金属塩(特に銀塩)の溶解析出を促進するために、銀塩溶剤を用いることができる。銀塩溶剤とは、電解質液中で銀を可溶化できる化合物であればいかなる化合物であってもよい。例えば、銀と配位結合を生じさせ、銀と弱い供給結合を生じさせるような、銀と相互作用を示す化学構造種を含む化合物等と共存させて、銀または銀を含む化合物を可溶化物に変換する手段を用いるのが一般的である。前記化学種として、ハロゲン原子、メルカプト基、カルボキシル基、イミノ基等が知られているが、本発明においては、チオエーテル基を含有する化合物及びメルカプトアゾール類は、銀溶剤として有用に作用しかつ、共存化合物への影響が少なく溶媒への溶解度が高い特徴がある。
[Silver salt solvent]
In the present invention, a silver salt solvent can be used to promote dissolution and precipitation of metal salts (particularly silver salts). The silver salt solvent may be any compound that can solubilize silver in the electrolyte solution. For example, coexisting with a compound containing a chemical structural species that interacts with silver, such as a coordinate bond with silver and a weak supply bond with silver, solubilized product of silver or a compound containing silver It is common to use a means for converting to. As the chemical species, a halogen atom, a mercapto group, a carboxyl group, an imino group, and the like are known. It is characterized by low influence on coexisting compounds and high solubility in solvents.

本発明においては、金属塩(特に銀塩)の溶解析出を促進するために、下記一般式(G−1)または一般式(G−2)で表される化合物を含有することが好ましい。   In this invention, in order to accelerate | stimulate melt | dissolution precipitation of metal salt (especially silver salt), it is preferable to contain the compound represented by the following general formula (G-1) or general formula (G-2).

(一般式(G−1)または一般式(G−2)で表される化合物)
本発明の表示素子においては、電解質が、下記一般式(G−1)または一般式(G−2)で表される化合物の少なくとも1種を含有することが好ましい。一般式(G−1)及び(G−2)で表される化合物は、本発明において銀の溶解析出を生じさせるため、電解質中での銀の可溶化を促進する化合物である。
(Compound represented by General Formula (G-1) or General Formula (G-2))
In the display element of this invention, it is preferable that electrolyte contains at least 1 sort (s) of the compound represented by the following general formula (G-1) or general formula (G-2). The compounds represented by the general formulas (G-1) and (G-2) are compounds that promote the solubilization of silver in the electrolyte in order to cause dissolution and precipitation of silver in the present invention.

一般に、銀の溶解析出を生じさせるためには、電解質中で銀を可溶化することが必要であり、例えば、銀と配位結合を生じさせ、銀と弱い共有結合を生じさせるような、銀と相互作用を示す化学構造種を含む化合物が有用である。前記化学構造種として、ハロゲン原子、メルカプト基、カルボキシル基、イミノ基等が知られているが、本発明においては、チオエーテル基を含有する化合物及びメルカプトアゾール類は、銀溶剤として有用に作用しかつ、共存化合物への影響が少なく溶媒への溶解度が高い特徴がある。   In general, in order to cause dissolution and precipitation of silver, it is necessary to solubilize silver in the electrolyte. For example, silver that causes a coordinate bond with silver and a weak covalent bond with silver. A compound containing a chemical structural species that interacts with is useful. As the chemical structural species, halogen atoms, mercapto groups, carboxyl groups, imino groups and the like are known, but in the present invention, compounds containing thioether groups and mercaptoazoles are useful as silver solvents and It has a feature that it has little influence on coexisting compounds and high solubility in a solvent.

前記一般式(G−1)において、Rg11、Rg12は各々置換または無置換の炭化水素基を表す。また、これらの炭化水素基では、1個以上の窒素原子、酸素原子、リン原子、硫黄原子、ハロゲン原子を含んでも良く、Rg11とRg12が互いに連結し、環状構造を取っても良い。 In the general formula (G-1), Rg 11 and Rg 12 each represent a substituted or unsubstituted hydrocarbon group. These hydrocarbon groups may contain one or more nitrogen atoms, oxygen atoms, phosphorus atoms, sulfur atoms, and halogen atoms, and Rg 11 and Rg 12 may be linked to each other to form a cyclic structure.

前記一般式(G−2)において、Mは水素原子、金属原子または4級アンモニウムを表す。Zは含窒素複素環を構成するのに必要な原子群表す。nは0〜5の整数を表し、Rg21は、水素原子、ハロゲン原子、アルキル基、アリール基、アルキルカルボンアミド基、アリールカルボンアミド基、アルキルスルホンアミド基、アリールスルホンアミド基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルカルバモイル基、アリールカルバモイル基、カルバモイル基、アルキルスルファモイル基、アリールスルファモイル基、スルファモイル基、シアノ基、アルキルスルホニル基、アリールスルホニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アシルオキシ基、カルボキシル基、カルボニル基、スルホニル基、アミノ基、ヒドロキシ基または複素環基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。 In the general formula (G-2), M represents a hydrogen atom, a metal atom, or quaternary ammonium. Z represents an atomic group necessary for constituting a nitrogen-containing heterocyclic ring. n represents an integer of 0 to 5, and Rg 21 represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkylcarbonamide group, an arylcarbonamide group, an alkylsulfonamide group, an arylsulfonamide group, an alkoxy group, an aryl Oxy group, alkylthio group, arylthio group, alkylcarbamoyl group, arylcarbamoyl group, carbamoyl group, alkylsulfamoyl group, arylsulfamoyl group, sulfamoyl group, cyano group, alkylsulfonyl group, arylsulfonyl group, alkoxycarbonyl group, Represents an aryloxycarbonyl group, an alkylcarbonyl group, an arylcarbonyl group, an acyloxy group, a carboxyl group, a carbonyl group, a sulfonyl group, an amino group, a hydroxy group or a heterocyclic group, and when n is 2 or more, Of Rg 21 may be the same or different, and may be linked to each other to form a condensed ring.

前記一般式(G−1)において、Rg11、Rg12は各々置換または無置換の炭化水素基を表すが、これらの炭化水素基では、1個以上の窒素原子、酸素原子、リン原子、硫黄原子を含んでも良く、Rg11とRg12が互いに連結し、環状構造を取っても良い。 In the general formula (G-1), Rg 11 and Rg 12 each represent a substituted or unsubstituted hydrocarbon group. In these hydrocarbon groups, one or more nitrogen atoms, oxygen atoms, phosphorus atoms, sulfur An atom may be included, and Rg 11 and Rg 12 may be connected to each other to take a cyclic structure.

炭化水素基に置換可能な基としては、例えば、アミノ基、グアニジノ基、4級アンモニウム基、ヒドロキシル基、ハロゲン化合物、カルボン酸基、カルボキシレート基、アミド基、スルフィン酸基、スルホン酸基、スルフェート基、ホスホン酸基、ホスフェート基、ニトロ基、シアノ基等を挙げることができる。   Examples of groups that can be substituted for the hydrocarbon group include amino groups, guanidino groups, quaternary ammonium groups, hydroxyl groups, halogen compounds, carboxylic acid groups, carboxylate groups, amide groups, sulfinic acid groups, sulfonic acid groups, and sulfates. Groups, phosphonic acid groups, phosphate groups, nitro groups, cyano groups and the like.

以下、本発明において適用可能な一般式(G−1)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。   Specific examples of the compound represented by General Formula (G-1) that can be applied in the present invention are shown below, but the present invention is not limited to these exemplified compounds.

G1−1:CHSCHCHOH
G1−2:HOCHCHSCHCHOH
G1−3:HOCHCHSCHCHSCHCHOH
G1−4:HOCHCHSCHCHSCHCHSCHCHOH
G1−5:HOCHCHSCHCHOCHCHOCHCHSCHCHOH
G1−6:HOCHCHOCHCHSCHCHSCHCHOCHCHOH
G1−7:HCSCHCHCOOH
G1−8:HOOCCHSCHCOOH
G1−9:HOOCCHCHSCHCHCOOH
G1−10:HOOCCHSCHCHSCHCOOH
G1−11:HOOCCHSCHCHSCHCHSCHCHSCHCOOH
G1−12:HOOCCHCHSCHCHSCHCH(OH)CHSCHCHSCHCHCOOH
G1−13:HOOCCHCHSCHCHSCHCH(OH)CH(OH)CHSCHCHSCHCHCOOH
G1−14:HCSCHCHCHNH
G1−15:HNCHCHSCHCHNH
G1−16:HNCHCHSCHCHSCHCHNH
G1−17:HCSCHCHCH(NH)COOH
G1−18:HNCHCHOCHCHSCHCHSCHCHOCHCHNH
G1−19:HNCHCHSCHCHOCHCHOCHCHSCHCHNH
G1−20:HNCHCHSCHCHSCHCHSCHCHSCHCHNH
G1−21:HOOC(NH)CHCHCHSCHCHSCHCHCH(NH)COOH
G1−22:HOOC(NH)CHCHSCHCHOCHCHOCHCHSCHCH(NH)COOH
G1−23:HOOC(NH)CHCHOCHCHSCHCHSCHCHOCHCH(NH)COOH
G1−24:HN(O=)CCHSCHCHOCHCHOCHCHSCHC(=O)NH
G1−25:HN(O=)CCHSCHCHSCHC(=O)NH
G1−26:HNHN(O=)CCHSCHCHSCHC(=O)NHNH
G1−27:HC(O=)CNHCHCHSCHCHSCHCHNHC(=O)CH
G1−28:HNOSCHCHSCHCHSCHCHSONH
G1−29:NaOSCHCHCHSCHCHSCHCHCHSONa
G1−30:HCSONHCHCHSCHCHSCHCHNHOSCH
G1−31:HN(NH)CSCHCHSC(NH)NH・2HBr
G1−32:H(NH)CSCHCHOCHCHOCHCHSC(NH)NH・2HCl
G1−33:HN(NH)CNHCHCHSCHCHSCHCHNHC(NH)NH・2HBr
G1−34:〔(CHNCHCHSCHCHSCHCHN(CH2+・2Cl
G1-1: CH 3 SCH 2 CH 2 OH
G1-2: HOCH 2 CH 2 SCH 2 CH 2 OH
G1-3: HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OH
G1-4: HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OH
G1-5: HOCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 OH
G1-6: HOCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OH
G1-7: H 3 CSCH 2 CH 2 COOH
G1-8: HOOCCH 2 SCH 2 COOH
G1-9: HOOCCH 2 CH 2 SCH 2 CH 2 COOH
G1-10: HOOCCH 2 SCH 2 CH 2 SCH 2 COOH
G1-11: HOOCCH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 COOH
G1-12: HOOCCH 2 CH 2 SCH 2 CH 2 SCH 2 CH (OH) CH 2 SCH 2 CH 2 SCH 2 CH 2 COOH
G1-13: HOOCCH 2 CH 2 SCH 2 CH 2 SCH 2 CH (OH) CH (OH) CH 2 SCH 2 CH 2 SCH 2 CH 2 COOH
G1-14: H 3 CSCH 2 CH 2 CH 2 NH 2
G1-15: H 2 NCH 2 CH 2 SCH 2 CH 2 NH 2
G1-16: H 2 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NH 2
G1-17: H 3 CSCH 2 CH 2 CH (NH 2) COOH
G1-18: H 2 NCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 NH 2
G1-19: H 2 NCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH 2 NH 2
G1-20: H 2 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NH 2
G1-21: HOOC (NH 2 ) CHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 CH (NH 2 ) COOH
G1-22: HOOC (NH 2 ) CHCH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 CH (NH 2 ) COOH
G1-23: HOOC (NH 2 ) CHCH 2 OCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OCH 2 CH (NH 2 ) COOH
G1-24: H 2 N (O = ) CCH 2 SCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SCH 2 C (= O) NH 2
G1-25: H 2 N (O = ) CCH 2 SCH 2 CH 2 SCH 2 C (= O) NH 2
G1-26: H 2 NHN (O = ) CCH 2 SCH 2 CH 2 SCH 2 C (= O) NHNH 2
G1-27: H 3 C (O = ) CNHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHC (= O) CH 3
G1-28: H 2 NO 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SO 2 NH 2
G1-29: NaO 3 SCH 2 CH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 CH 2 SO 3 Na
G1-30: H 3 CSO 2 NHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHO 2 SCH 3
G1-31: H 2 N (NH) CSCH 2 CH 2 SC (NH) NH 2 .2HBr
G1-32: H 2 (NH) CSCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 SC (NH) NH 2 · 2HCl
G1-33: H 2 N (NH) CNHCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 NHC (NH) NH 2 · 2HBr
G1-34: [(CH 3 ) 3 NCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 N (CH 3 ) 3 ] 2 + · 2Cl

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

上記例示した各化合物の中でも、本発明の目的効果をいかんなく発揮できる観点から、特に、例示化合物G1−2、G1−3が好ましい。   Of the above-exemplified compounds, Exemplified Compounds G1-2 and G1-3 are particularly preferable from the viewpoint that the object and effects of the present invention can be exhibited.

次いで、本発明に係る一般式(G2)で表される化合物について説明する。   Next, the compound represented by formula (G2) according to the present invention will be described.

前記一般式(G2)において、Mは水素原子、金属原子または4級アンモニウムを表す。Zは含窒素複素環を構成するのに必要な原子群表す。nは0〜5の整数を表し、Rg21は、水素原子、ハロゲン原子、アルキル基、アリール基、アルキルカルボンアミド基、アリールカルボンアミド基、アルキルスルホンアミド基、アリールスルホンアミド基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルカルバモイル基、アリールカルバモイル基、カルバモイル基、アルキルスルファモイル基、アリールスルファモイル基、スルファモイル基、シアノ基、アルキルスルホニル基、アリールスルホニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アシルオキシ基、カルボキシル基、カルボニル基、スルホニル基、アミノ基、ヒドロキシ基または複素環基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。 In the general formula (G2), M represents a hydrogen atom, a metal atom, or quaternary ammonium. Z represents an atomic group necessary for constituting a nitrogen-containing heterocyclic ring. n represents an integer of 0 to 5, and Rg 21 represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkylcarbonamide group, an arylcarbonamide group, an alkylsulfonamide group, an arylsulfonamide group, an alkoxy group, an aryl Oxy group, alkylthio group, arylthio group, alkylcarbamoyl group, arylcarbamoyl group, carbamoyl group, alkylsulfamoyl group, arylsulfamoyl group, sulfamoyl group, cyano group, alkylsulfonyl group, arylsulfonyl group, alkoxycarbonyl group, Represents an aryloxycarbonyl group, an alkylcarbonyl group, an arylcarbonyl group, an acyloxy group, a carboxyl group, a carbonyl group, a sulfonyl group, an amino group, a hydroxy group or a heterocyclic group, and when n is 2 or more, Of Rg 21 may be the same or different, and may be linked to each other to form a condensed ring.

一般式(G2)において、Mで表される金属原子としては、例えば、Li、Na、K、Mg、Ca、Zn、Ag等が挙げられ、4級アンモニウムとしては、例えば、NH、N(CH、N(C、N(CH1225、N(CH1633、N(CHCH等が挙げられる。 In the general formula (G2), examples of the metal atom represented by M include Li, Na, K, Mg, Ca, Zn, Ag, and the like. Examples of the quaternary ammonium include NH 4 , N ( CH 3 ) 4 , N (C 4 H 9 ) 4 , N (CH 3 ) 3 C 12 H 25 , N (CH 3 ) 3 C 16 H 33 , N (CH 3 ) 3 CH 2 C 6 H 5 etc. Can be mentioned.

一般式(G2)のZを構成成分とする含窒素複素環としては、例えば、テトラゾール環、トリアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、インドール環、オキサゾール環、ベンゾオキサゾール環、ベンズイミダゾール環、ベンゾチアゾール環、ベンゾセレナゾール環、ナフトオキサゾール環等が挙げられる。   Examples of the nitrogen-containing heterocycle having Z as a constituent in general formula (G2) include, for example, a tetrazole ring, a triazole ring, an imidazole ring, an oxadiazole ring, a thiadiazole ring, an indole ring, an oxazole ring, a benzoxazole ring, and a benzimidazole Ring, benzothiazole ring, benzoselenazole ring, naphthoxazole ring and the like.

一般式(G2)において、Rg21で表される基としては、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)アルキル基(例えば、メチル、エチル、プロピル、i−プロピル、ブチル、t−ブチル、ペンチル、シクロペンチル、ヘキシル、シクロヘキシル、オクチル、ドデシル、ヒドロキシエチル、メトキシエチル、トリフルオロメチル、ベンジル等)、アリール基(例えば、フェニル、ナフチル等)、アルキルカルボンアミド基(例えば、アセチルアミノ、プロピオニルアミノ、ブチロイルアミノ等)、アリールカルボンアミド基(例えば、ベンゾイルアミノ等)、アルキルスルホンアミド基(例えば、メタンスルホニルアミノ基、エタンスルホニルアミノ基等)、アリールスルホンアミド基(例えば、ベンゼンスルホニルアミノ基、トルエンスルホニルアミノ基等)、アリールオキシ基(例えば、フェノキシ等)、アルキルチオ基(例えば、メチルチオ、エチルチオ、ブチルチオ等)、アリールチオ基(例えば、フェニルチオ基、トリルチオ基等)、アルキルカルバモイル基(例えばメチルカルバモイル、ジメチルカルバモイル、エチルカルバモイル、ジエチルカルバモイル、ジブチルカルバモイル、ピペリジルカルバモイル、モルホリルカルバモイル等)、アリールカルバモイル基(例えば、フェニルカルバモイル、メチルフェニルカルバモイル、エチルフェニルカルバモイル、ベンジルフェニルカルバモイル等)、アルキルスルファモイル基(例えば、メチルスルファモイル、ジメチルスルファモイル、エチルスルファモイル、ジエチルスルファモイル、ジブチルスルファモイル、ピペリジルスルファモイル、モルホリルスルファモイル等)、アリールスルファモイル基(例えば、フェニルスルファモイル、メチルフェニルスルファモイル、エチルフェニルスルファモイル、ベンジルフェニルスルファモイル等)、アルキルスルホニル基(例えば、メタンスルホニル基、エタンスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル、4−クロロフェニルスルホニル、p−トルエンスルホニル等)アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、ブトキシカルボニル等)、アリールオキシカルボニル基(例えばフェノキシカルボニル等)、アルキルカルボニル基(例えば、アセチル、プロピオニル、ブチロイル等)、アリールカルボニル基(例えば、ベンゾイル基、アルキルベンゾイル基等)、アシルオキシ基(例えば、アセチルオキシ、プロピオニルオキシ、ブチロイルオキシ等)、複素環基(例えば、オキサゾール環、チアゾール環、トリアゾール環、セレナゾール環、テトラゾール環、オキサジアゾール環、チアジアゾール環、チアジン環、トリアジン環、ベンズオキサゾール環、ベンズチアゾール環、インドレニン環、ベンズセレナゾール環、ナフトチアゾール環、トリアザインドリジン環、ジアザインドリジン環、テトラアザインドリジン環基等)が挙げられる。これらの置換基はさらに置換基を有するものを含む。 In the general formula (G2), examples of the group represented by Rg 21 include a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom) alkyl group (eg, methyl, ethyl, propyl, i-propyl, Butyl, t-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, octyl, dodecyl, hydroxyethyl, methoxyethyl, trifluoromethyl, benzyl, etc.), aryl groups (eg, phenyl, naphthyl etc.), alkylcarbonamide groups (eg, Acetylamino, propionylamino, butyroylamino, etc.), arylcarbonamide groups (eg, benzoylamino, etc.), alkylsulfonamide groups (eg, methanesulfonylamino group, ethanesulfonylamino group, etc.), arylsulfonamide groups (eg, benzene Sulfonylamino group, toluenesulfonylamino group etc.), aryloxy group (eg phenoxy etc.), alkylthio group (eg methylthio, ethylthio, butylthio etc.), arylthio group (eg phenylthio group, tolylthio group etc.), alkylcarbamoyl group (Eg, methylcarbamoyl, dimethylcarbamoyl, ethylcarbamoyl, diethylcarbamoyl, dibutylcarbamoyl, piperidylcarbamoyl, morpholylcarbamoyl, etc.), arylcarbamoyl groups (eg, phenylcarbamoyl, methylphenylcarbamoyl, ethylphenylcarbamoyl, benzylphenylcarbamoyl, etc.), alkyl Sulfamoyl group (for example, methylsulfamoyl, dimethylsulfamoyl, ethylsulfamoyl, diethylsulfamo Yl, dibutylsulfamoyl, piperidylsulfamoyl, morpholylsulfamoyl, etc.), arylsulfamoyl groups (eg, phenylsulfamoyl, methylphenylsulfamoyl, ethylphenylsulfamoyl, benzylphenylsulfamoyl) Etc.), alkylsulfonyl groups (eg, methanesulfonyl group, ethanesulfonyl group, etc.), arylsulfonyl groups (eg, phenylsulfonyl, 4-chlorophenylsulfonyl, p-toluenesulfonyl, etc.) alkoxycarbonyl groups (eg, methoxycarbonyl, ethoxycarbonyl, etc.) , Butoxycarbonyl etc.), aryloxycarbonyl group (eg phenoxycarbonyl etc.), alkylcarbonyl group (eg acetyl, propionyl, butyroyl etc.), arylcarbonyl (For example, benzoyl group, alkylbenzoyl group, etc.), acyloxy group (for example, acetyloxy, propionyloxy, butyroyloxy, etc.), heterocyclic group (for example, oxazole ring, thiazole ring, triazole ring, selenazole ring, tetrazole ring, oxadiene) Azole ring, thiadiazole ring, thiazine ring, triazine ring, benzoxazole ring, benzthiazole ring, indolenine ring, benzselenazole ring, naphthothiazole ring, triazaindolizine ring, diazaindolizine ring, tetraazaindolizine ring Group). These substituents further include those having a substituent.

次に、一般式(G2)で表される化合物の好ましい具体例を示すが、本発明はこれらの化合物に限定されるものではない。   Next, although the preferable specific example of a compound represented by general formula (G2) is shown, this invention is not limited to these compounds.

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

上記例示した各化合物の中でも、本発明の目的効果をいかんなく発揮できる観点から、特に、例示化合物G2−12、G2−18が好ましい。   Among the above-exemplified compounds, Exemplified Compounds G2-12 and G2-18 are particularly preferable from the viewpoint that the object and effects of the present invention can be exhibited.

〔エレクトロクロミック化合物〕
本発明に係る電解質液には、エレクトロクロミック特性を有するエレクトロクロミック化合物を使用することができる。
[Electrochromic compound]
An electrochromic compound having electrochromic characteristics can be used for the electrolyte solution according to the present invention.

本発明に係るエレクトロクロミック化合物(EC化合物)としては、電気化学的な酸化反応及び還元反応の少なくとも一方により発色又は消色する作用を示す限り特に制限はなく、目的に応じて適宜選択することができる。EC化合物としては、酸化タングステン、酸化イリジウム、酸化ニッケル、酸化コバルト、酸化バナジウム、酸化モリブデン、酸化チタン、酸化インジウム、酸化クロム、酸化マンガン、プルシアンブルー、窒化インジウム、窒化錫、窒化塩化ジルコニウム等の無機化合物に加え、有機金属錯体、導電性高分子化合物及び有機色素が知られている。   The electrochromic compound (EC compound) according to the present invention is not particularly limited as long as it exhibits an action of coloring or decoloring by at least one of an electrochemical oxidation reaction and a reduction reaction, and may be appropriately selected according to the purpose. it can. EC compounds include inorganic oxides such as tungsten oxide, iridium oxide, nickel oxide, cobalt oxide, vanadium oxide, molybdenum oxide, titanium oxide, indium oxide, chromium oxide, manganese oxide, Prussian blue, indium nitride, tin nitride, zirconium nitride chloride, etc. In addition to compounds, organometallic complexes, conductive polymer compounds, and organic dyes are known.

エレクトロクロミック特性を示す有機金属錯体としては、例えば、金属−ビピリジル錯体、金属フェナントロリン錯体、金属−フタロシアニン錯体、希土類ジフタロシアニン錯体、フェロセン系色素などが挙げられる。   Examples of the organometallic complex exhibiting electrochromic properties include metal-bipyridyl complexes, metal phenanthroline complexes, metal-phthalocyanine complexes, rare earth diphthalocyanine complexes, and ferrocene dyes.

エレクトロクロミック特性を示す導電性高分子化合物としては、例えば、ポリピロール、ポリチオフェン、ポリイソチアナフテン、ポリアニリン、ポリフェニレンジアミン、ポリベンジジン、ポリアミノフェノール、ポリビニルカルバゾール、ポリカルバゾール及びこれらの誘導体などが挙げられる。   Examples of the conductive polymer compound exhibiting electrochromic properties include polypyrrole, polythiophene, polyisothianaphthene, polyaniline, polyphenylenediamine, polybenzidine, polyaminophenol, polyvinylcarbazole, polycarbazole, and derivatives thereof.

また、例えば、特開2007−112957号に記載されているような、ビスターピリジン誘導体と金属イオンから成る高分子材料もエレクトロクロミック特性を示す。   For example, a polymer material composed of a bisterpyridine derivative and a metal ion as described in JP-A-2007-112957 also exhibits electrochromic properties.

エレクトロクロミック特性を示す有機色素としては、ビオロゲン等ピリジニウム系化合物、フェノチアジン等アジン系色素、スチリル系色素、アントラキノン系色素、ピラゾリン系色素、フルオラン系色素、ドナー/アクセプター型化合物類(例えば、テトラシアノキノジメタン、テトラチアフルバレン)等が挙げられる。その他、酸化還元指示薬、pH指示薬として知られている化合物を用いることもできる。   Examples of organic dyes that exhibit electrochromic properties include pyridinium compounds such as viologen, azine dyes such as phenothiazine, styryl dyes, anthraquinone dyes, pyrazoline dyes, fluorane dyes, donor / acceptor compounds (for example, tetracyanoquino compounds) Dimethane, tetrathiafulvalene) and the like. In addition, compounds known as redox indicators and pH indicators can also be used.

(色調によるEC化合物の分類)
本発明に係るEC化合物は、色調変化の点で分類すると、下記3つのクラスに分けられる。
(Classification of EC compounds by color tone)
The EC compounds according to the present invention are classified into the following three classes when classified in terms of color change.

クラス1:酸化還元によりある特定の色から別の色に変化するEC化合物。   Class 1: EC compounds that change from one specific color to another by redox.

クラス2:酸化状態で実質無色であり、還元状態である特定の着色状態を示すEC化合物。   Class 2: EC compounds that are substantially colorless in the oxidized state and exhibit a specific colored state that is the reduced state.

クラス3:還元状態で実質無色であり、酸化状態である特定の着色状態を示すEC化合物。   Class 3: EC compounds that are substantially colorless in the reduced state and exhibit a particular colored state that is the oxidized state.

本発明の表示素子においては、目的及び用途により上記クラス1からクラス3のEC化合物を適宜選択することができる。   In the display element of the present invention, the class 1 to class 3 EC compounds can be appropriately selected depending on the purpose and application.

〈クラス1のEC化合物〉
クラス1のEC化合物は、酸化還元によりある特定の色から別の色に変化するEC化合物であり、その取り得る酸化状態において、二色以上の表示が可能な化合物である。
<Class 1 EC compounds>
Class 1 EC compounds are EC compounds that change from a specific color to another color by oxidation-reduction, and are compounds capable of displaying two or more colors in their possible oxidation states.

クラス1に分類される化合物としては、例えば、Vは酸化状態から還元状態へ変化することで橙色から緑色に変化し、同様にRhは黄色から暗緑色に変化する。 As a compound classified into class 1, for example, V 2 O 5 changes from an orange state to a green color by changing from an oxidation state to a reduction state, and similarly Rh 2 O 3 changes from a yellow color to a dark green color.

有機金属錯体の多くはクラス1に分類され、ルテニウム(II)ビピリジン錯体、例えばトリス(5,5′−ジカルボキシルエチル−2,2′−ビピリジン)ルテニウム錯体は+2〜−4価の間で、順にオレンジ色から、紫、青、緑青色、褐色、赤錆色、赤へと変化する。希土類ジフタロシアニン類の多くも、このようなマルチカラー特性を示す。例えばルテチウムジフタロシアニンの場合、酸化に従い順次、紫色から青、緑、赤橙色へと変化する。   Many of the organometallic complexes are classified as class 1, and ruthenium (II) bipyridine complexes, such as tris (5,5'-dicarboxylethyl-2,2'-bipyridine) ruthenium complexes, are between +2 and -4 valences, The color changes from orange to purple, blue, green blue, brown, red rust and red. Many of the rare earth diphthalocyanines also exhibit such multicolor characteristics. For example, in the case of lutetium diphthalocyanine, the color gradually changes from purple to blue, green, and red-orange according to oxidation.

また、導電性ポリマーもその多くは、クラス1に分類される。例えば、ポリチオフェンは酸化状態から還元状態へ変化することで青から赤へと変化し、ポリピロールは褐色から黄色へと変化する。また、ポリアニリン等では、マルチカラー特性を示し酸化状態の紺色から順に青色、緑色、淡黄色へと変化する。   Many of the conductive polymers are also classified as class 1. For example, polythiophene changes from blue to red by changing from an oxidized state to a reduced state, and polypyrrole changes from brown to yellow. In addition, polyaniline or the like exhibits multicolor characteristics and changes from an amber color in an oxidation state to blue, green, and light yellow in order.

クラス1に分類されるEC化合物は、単一の化合物で、多色表示が可能であると言うメリットを有するが、反面実質無色と言える状態を作れないと言う欠点を有する。   EC compounds classified as class 1 have a merit that multicolor display is possible with a single compound, but on the other hand, they have a drawback that a state that can be said to be substantially colorless cannot be made.

〈クラス2のEC化合物〉
クラス2のEC化合物は、酸化状態で無色乃至は極淡色であり、還元状態である特定の着色状態を示す化合物である。
<Class 2 EC compounds>
Class 2 EC compounds are compounds that are colorless or extremely light in an oxidized state and exhibit a specific colored state that is a reduced state.

クラス2に分類される無機化合物としては、下記化合物が挙げられ、各々還元状態でカッコ内に示した色を示す。WO(青)、MnO(青)、Nb(青)、TiO(青)等。 Examples of the inorganic compounds classified as class 2 include the following compounds, each of which shows the color shown in parentheses in the reduced state. WO 3 (blue), MnO 3 (blue), Nb 2 O 5 (blue), TiO 2 (blue) and the like.

クラス2に分類される有機金属錯体としては、例えば、トリス(バソフェナントロリン)鉄(II)錯体が挙げられ、還元状態で赤色を示す。   As an organometallic complex classified into class 2, for example, a tris (vasophenanthroline) iron (II) complex can be mentioned, which shows red in a reduced state.

クラス2に分類される有機色素としては、特開昭62−71934号、特開2006−71765号等に記載されている化合物、例えば、テレフタル酸ジメチル(赤)、4,4′−ビフェニルカルボン酸ジエチル(黄色)、1,4−ジアセチルベンゼン(シアン)、あるいは特開平1−230026号、特表2000−504764号等に記載されているテトラゾリウム塩化合物等が挙げられる。   Examples of organic dyes classified as class 2 include compounds described in JP-A Nos. 62-71934 and 2006-71765, such as dimethyl terephthalate (red), 4,4'-biphenylcarboxylic acid. Examples thereof include diethyl (yellow), 1,4-diacetylbenzene (cyan), and tetrazolium salt compounds described in JP-A-1-230026, JP-T 2000-504964, and the like.

クラス2に分類される色素として、最も代表的な化合物はビオロゲン等ピリジニウム系化合物で有る。ビオロゲン系化合物は表示が鮮明であること、置換基を変えることなどにより色のバリエーションを持たせることが可能であることなどの長所を有しているため、有機色素の中では最も盛んに研究されている。発色は、還元で生じた有機ラジカルに基く。   The most typical compounds classified as class 2 are pyridinium compounds such as viologen. Viologen compounds have the advantages of vivid display and the ability to have color variations by changing substituents. Therefore, they are the most actively studied among organic dyes. ing. Color development is based on organic radicals generated by reduction.

ビオロゲン等ピリジニウム系化合物としては、例えば、特表2000−506629号を初めとして下記特許に記載されている化合物が挙げられる。   Examples of pyridinium-based compounds such as viologen include compounds described in the following patents, starting with JP 2000-506629 A.

特開平5−70455号、特開平5−170738号、特開2000−235198号、特開2001−114769号、特開2001−172293号、特開2001−181292号、特開2001−181293号、特表2001−510590号、特開2004−101729号、特開2006−154683号、特表2006−519222号、特開2007−31708号、2007−171781号、2007−219271号、2007−219272号、特開2007−279659号、特開2007−279570号、特開2007−279571号、特開2007−279572号等。   JP-A-5-70455, JP-A-5-170738, JP-A-2000-235198, JP-A-2001-114769, JP-A-2001-172293, JP-A-2001-181292, JP-A-2001-181293, Table 2001-510590, JP-A-2004-101729, JP-A-2006-154683, JP-T-2006-519222, JP-A-2007-31708, 2007-171817, 2007-219271, 2007-219272, JP-T JP 2007-279659, JP 2007-279570, JP 2007-279571, JP 2007-279572, and the like.

以下に、本発明に用いることができるビオロゲン等のピリジニウム化合物を例示するが、これらに限定されるものでは無い。   Examples of pyridinium compounds such as viologen that can be used in the present invention are shown below, but are not limited thereto.

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

〈クラス3のEC化合物〉
クラス3のEC化合物は、還元状態で無色乃至は極淡色であり、酸化状態である特定の着色状態を示す化合物である。
<Class 3 EC compounds>
Class 3 EC compounds are compounds that are colorless or extremely pale in the reduced state and exhibit a specific colored state that is an oxidized state.

クラス3に分類される無機化合物としては、例えば、酸化イリジウム(暗青色)、プルシアンブルー(青)等が挙げられる(各々酸化状態でカッコ内に示した色を呈する)。   Examples of inorganic compounds classified as class 3 include iridium oxide (dark blue), Prussian blue (blue), and the like (each exhibiting the color shown in parentheses in the oxidized state).

クラス3に分類される導電性ポリマーとしては、例は少ないが、例えば、特開平6−263846号に記載のフェニルエーテル系化合物が挙げられる。   There are few examples of conductive polymers classified into class 3, but examples include phenyl ether compounds described in JP-A-6-263846.

クラス3に分類される色素としては多数の色素が知られているが、スチリル系色素、フェナジン、フェノチアジン、フェノキサジン、アクリジン等のアジン系色素、イミダゾール、オキサゾール、チアゾール等のアゾール系色素等が好ましい。   Many dyes are known as class 3 dyes, styryl dyes, azine dyes such as phenazine, phenothiazine, phenoxazine, and acridine, azole dyes such as imidazole, oxazole, and thiazole are preferable. .

以下に、本発明に用いることができるスチリル系色素、及びアジン系色素、アゾール系色素を例示するが、これらに限定されるものでは無い。   Examples of styryl dyes, azine dyes, and azole dyes that can be used in the present invention are shown below, but are not limited thereto.

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

本発明の好ましい態様においては、前記EC色素と共に電気化学的な酸化還元反応により可逆的に溶解析出する金属塩を併用し、黒表示、白表示及び黒以外の着色表示の3色以上の多色表示を行う。この場合、該金属塩が還元されて黒表示を行う為、EC色素としては酸化により発色するクラス3のEC化合物が好ましく、特に、発色の多様性、低駆動電圧、メモリー性等の点でアゾール系色素が好ましい。   In a preferred embodiment of the present invention, a metal salt that reversibly dissolves and precipitates by an electrochemical redox reaction is used in combination with the EC dye, and a multicolor of three or more colors of black display, white display, and non-black color display. Display. In this case, since the metal salt is reduced to give a black display, the EC dye is preferably a class 3 EC compound that develops color by oxidation, and in particular, azoles in terms of color development diversity, low driving voltage, memory properties, and the like. System dyes are preferred.

〔一般式(L)で表される化合物〕
本発明において、最も好ましい色素は、下記一般式(L)で表される化合物である。
[Compound represented by formula (L)]
In the present invention, the most preferred dye is a compound represented by the following general formula (L).

以下、本発明に係る前記一般式(L)で表されるエレクトロクロミック化合物について説明する。   Hereinafter, the electrochromic compound represented by the general formula (L) according to the present invention will be described.

Figure 2010139540
Figure 2010139540

上記一般式(L)において、Rlは置換もしくは無置換のアリール基を表し、Rl、Rlは各々水素原子または置換基を表す。Xは>N−Rl、酸素原子または硫黄原子を表し、Rlは水素原子、または置換基を表す。 In the general formula (L), Rl 1 represents a substituted or unsubstituted aryl group, and Rl 2 and Rl 3 each represent a hydrogen atom or a substituent. X represents> N—Rl 4 , an oxygen atom or a sulfur atom, and Rl 4 represents a hydrogen atom or a substituent.

Rlが置換基を有するアリール基を表す場合、置換基としては特に制限は無く、例えば以下のような置換基が挙げられる。 When Rl 1 represents an aryl group having a substituent, the substituent is not particularly limited, and examples thereof include the following substituents.

アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基等)、シクロアルキル基(例えば、シクロヘキシル基、シクロペンチル基等)、アルケニル基、シクロアルケニル基、アルキニル基(例えば、プロパルギル基等)、グリシジル基、アクリレート基、メタクリレート基、芳香族基(例えば、フェニル基、ナフチル基、アントラセニル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スリホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、シクロペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基等)、スルホンアミド基(例えば、メタンスルホンアミド基、エタンスルホンアミド基、ブタンスルホンアミド基、ヘキサンスルホンアミド基、シクロヘキサンスルホンアミド基、ベンゼンスルホンアミド基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、フェニルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、ウレタン基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、フェニルウレイド基、2−ピリジルウレイド基等)、アシル基(例えば、アセチル基、プロピオニル基、ブタノイル基、ヘキサノイル基、シクロヘキサノイル基、ベンゾイル基、ピリジノイル基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基、メチルウレイド基等)、スルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、フェニルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、アニリノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、塩素原子、臭素原子、沃素原子等)、シアノ基、ニトロ基、スルホ基、カルボキシル基、ヒドロキシル基、ホスホノ基(例えば、ホスホノエチル基、ホスホノプロピル基、ホスホノオキシエチル基)等を挙げることができる。また、これらの基はさらにこれらの基で置換されていてもよい。   Alkyl groups (eg, methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, etc.), cycloalkyl groups (eg, cyclohexyl, cyclopentyl, etc.), alkenyl groups, cycloalkenyl groups , Alkynyl groups (for example, propargyl group), glycidyl groups, acrylate groups, methacrylate groups, aromatic groups (for example, phenyl group, naphthyl group, anthracenyl group, etc.), heterocyclic groups (for example, pyridyl group, thiazolyl group, oxazolyl group) Group, imidazolyl group, furyl group, pyrrolyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, selenazolyl group, sriphoranyl group, piperidinyl group, pyrazolyl group, tetrazolyl group, etc.), alkoxy group (for example, methoxy group, ethoxy group, propyloxy) Group, pliers Oxy group, cyclopentyloxy group, hexyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, etc.) , Aryloxycarbonyl group (for example, phenyloxycarbonyl group), sulfonamide group (for example, methanesulfonamide group, ethanesulfonamide group, butanesulfonamide group, hexanesulfonamide group, cyclohexanesulfonamide group, benzenesulfonamide group ), Sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylamino) Sulfonyl group, phenylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), urethane group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, phenylureido group, 2-pyridylureido group, etc.), acyl Groups (eg, acetyl, propionyl, butanoyl, hexanoyl, cyclohexanoyl, benzoyl, pyridinoyl, etc.), carbamoyl groups (eg, aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl, propylamino) Carbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, phenylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), acylamino group (for example, acetylamino group, benzoyla) Mino group, methylureido group etc.), sulfonyl group (eg methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, phenylsulfonyl group, 2-pyridylsulfonyl group etc.), amino group (eg amino group, Ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, anilino group, 2-pyridylamino group, etc.), halogen atom (eg chlorine atom, bromine atom, iodine atom etc.), cyano group, nitro group, sulfo group Carboxyl group, hydroxyl group, phosphono group (for example, phosphonoethyl group, phosphonopropyl group, phosphonooxyethyl group) and the like. Further, these groups may be further substituted with these groups.

Rlとしては、置換もしくは無置換のフェニル基が好ましく、更に好ましくは置換もしくは無置換の2−ヒドロキシフェニル基または4−ヒドロキシフェニル基である。 Rl 1 is preferably a substituted or unsubstituted phenyl group, more preferably a substituted or unsubstituted 2-hydroxyphenyl group or 4-hydroxyphenyl group.

R1、Rlで表される置換基としては特に制限は無く、前記Rlのアリール基上への置換基として例示した置換基等が挙げられる。好ましくはRl、Rlは置換基を有しても良い、アルキル基、シクロアルキル基、芳香族基、複素環基である。Rl、Rlは互いに連結して、環構造を形成しても良いRl、Rlの組み合わせとしては、双方共に置換基を有しても良いフェニル基、複素環基である場合、若しくは何れか一方が置換基を有しても良いフェニル基、複素環基であり、他方が置換基を有しても良いアルキル基の組み合わせである。 The substituent represented by R1 2 or Rl 3 is not particularly limited, and examples thereof include the substituents exemplified as the substituent on the aryl group of Rl 1 . Rl 2 and Rl 3 are preferably an alkyl group, a cycloalkyl group, an aromatic group, or a heterocyclic group, which may have a substituent. Rl 2 and Rl 3 may be linked to each other to form a ring structure. The combination of Rl 2 and Rl 3 may be a phenyl group or a heterocyclic group, both of which may have a substituent, or Either one is a phenyl group or a heterocyclic group which may have a substituent, and the other is a combination of an alkyl group which may have a substituent.

Xとして好ましくは>N−Rlである。Rlとして好ましくは、水素原子、アルキル基、芳香族基、複素環基、アシル基であり、より好ましくは水素原子、炭素数1〜10のアルキル基、炭素数5〜10のアリール基、アシル基である。 X is preferably a> N-Rl 4. Rl 4 is preferably a hydrogen atom, an alkyl group, an aromatic group, a heterocyclic group, or an acyl group, more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms, or acyl. It is a group.

本発明の表示素子においては、上記一般式(L)で表される化合物が、電極表面と化学吸着または物理吸着する吸着性基を有していることが好ましい。本発明でいう化学吸着とは、電極表面との化学結合による比較的強い吸着状態であり、本発明でいう物理吸着とは、電極表面と吸着物質との間に働くファンデルワールス力による比較的弱い吸着状態である。   In the display element of the present invention, the compound represented by the general formula (L) preferably has an adsorptive group that is chemically or physically adsorbed to the electrode surface. The chemical adsorption referred to in the present invention is a relatively strong adsorption state due to a chemical bond with the electrode surface, and the physical adsorption referred to in the present invention is a relatively strong van der Waals force acting between the electrode surface and the adsorbed substance. It is weakly adsorbed.

本発明において、吸着性基としては化学吸着性の基である方が好ましく、化学吸着する吸着性基としては、−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)が好ましい。 In the present invention, the adsorptive group is preferably a chemisorbable group, and as the adsorptive group to be chemisorbed, —COOH, —P═O (OH) 2 , —OP═O (OH) 2 and -Si (OR) 3 (R represents an alkyl group) is preferable.

一般式(L)で表されるアゾール色素の中でも、特に下記一般式(L2)で表されるイミダゾール系色素が特に好ましい。   Among the azole dyes represented by the general formula (L), an imidazole dye represented by the following general formula (L2) is particularly preferable.

Figure 2010139540
Figure 2010139540

上記一般式(L2)において、Rl21、Rl22は脂肪族基、脂肪族オキシ基、アシルアミノ基、カルバモイル基、アシル基、スルホンアミド基、スルファモイル基を表し、R123は芳香族基または芳香族複素環基を表し、Rl24は水素原子、脂肪族基、芳香族基、芳香族複素環基を表し、RL25は水素原子、脂肪族基、芳香族基、アシル基を表す。 In the general formula (L2), Rl 21 and Rl 22 represent an aliphatic group, an aliphatic oxy group, an acylamino group, a carbamoyl group, an acyl group, a sulfonamide group, and a sulfamoyl group, and R1 23 represents an aromatic group or an aromatic group. R1 24 represents a hydrogen atom, an aliphatic group, an aromatic group or an aromatic heterocyclic group, and RL 25 represents a hydrogen atom, an aliphatic group, an aromatic group or an acyl group.

これらRl21からRl25で表される基は、更に任意の置換基で置換されていても良い。ただし、Rl21からRl25で表される基の少なくとも1つは、その部分構造として−COOH、−P=O(OH)、−OP=O(OH)及び−Si(OR)(Rは、アルキル基を表す)を有する。 These groups represented by Rl 21 to Rl 25 may be further substituted with an arbitrary substituent. However, at least one of the groups represented by Rl 21 to Rl 25 has, as its partial structure, —COOH, —P═O (OH) 2 , —OP═O (OH) 2 and —Si (OR) 3 ( R represents an alkyl group.

一般式(L2)において、Rl21、Rl22で表される基としては、アルキル基(特に分岐アルキル基)、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基が好ましい。Rl23としては置換若しくは無置換のフェニル基、5員もしくは6員環複素環基(例えばチエニル基、フリル基、ピロリル基、ピリジル基等)が好ましい。Rl24としては置換若しくは無置換の、フェニル基、5員もしくは6員環複素環基、アルキル基が好ましい。Rl25としては、特に、水素原子またはアリール基が好ましい。 In the general formula (L2), the group represented by Rl 21 or Rl 22 is preferably an alkyl group (particularly a branched alkyl group), a cycloalkyl group, an alkyloxy group, or a cycloalkyloxy group. Rl 23 is preferably a substituted or unsubstituted phenyl group, a 5-membered or 6-membered heterocyclic group (for example, thienyl group, furyl group, pyrrolyl group, pyridyl group, etc.). Rl 24 is preferably a substituted or unsubstituted phenyl group, a 5-membered or 6-membered heterocyclic group, or an alkyl group. Rl 25 is particularly preferably a hydrogen atom or an aryl group.

また、一般式(L2)で表される化合物を電極上に固定する際、これらRl21〜Rl25で示される基の少なくともひとつに、部分構造として、−P=O(OH)、−Si(OR)(Rは、アルキル基を表す)を有することが好ましく、特に、Rl23若しくはRl24で示される基の部分構造として−Si(OR)(Rは、アルキル基を表す)を有することが好ましい。 In addition, when the compound represented by the general formula (L2) is fixed on the electrode, at least one of the groups represented by Rl 21 to Rl 25 includes —P═O (OH) 2 , —Si as a partial structure. It is preferable to have (OR) 3 (R represents an alkyl group), and in particular, —Si (OR) 3 (R represents an alkyl group) as a partial structure of the group represented by Rl 23 or Rl 24. It is preferable to have.

以下、一般式(L2)で表されるEC色素の具体的化合物例、及び一般式(L2)には該当しないが、一般式(L)に含まれるEC色素の具体例を示すが、本発明はこれら例示する化合物にのみ限定されるものではない。   Specific examples of the EC dye represented by the general formula (L2) and specific examples of the EC dye included in the general formula (L) are shown below, although they do not correspond to the general formula (L2). Is not limited to these exemplified compounds.

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

これらエレクトロクロミック化合物は、電極、特に閲覧側(表示側)の電極に固定化させることが好ましい。閲覧側電極に固定化されることにより、閲覧濃度の向上を得ることができる。   These electrochromic compounds are preferably immobilized on electrodes, particularly on the viewing side (display side). By fixing to the viewing side electrode, the viewing density can be improved.

〔補助化合物〕
本発明の表示素子においては、電気化学的な酸化還元反応により可逆的に変色する化合物の電気化学反応を促進するために、酸化還元されうる補助化合物を添加することが好ましい。補助化合物は酸化還元反応の結果として、可視領域(400〜700nm)の光学濃度が変化しないものでもよいし、変化するもの、即ちEC化合物であっても良い。
[Auxiliary compound]
In the display device of the present invention, it is preferable to add an auxiliary compound that can be oxidized and reduced in order to promote the electrochemical reaction of the compound that is reversibly discolored by the electrochemical oxidation and reduction reaction. The auxiliary compound may be one that does not change the optical density in the visible region (400 to 700 nm) as a result of the oxidation-reduction reaction, or may be one that changes, that is, an EC compound.

本発明の表示素子においては、単一の補助化合物を用いても良いし、複数の補助化合物を組み合わせて用いても良い。本発明において補助化合物を用いる場合、酸化還元活性物質層に固定化して用いることが好ましい。   In the display device of the present invention, a single auxiliary compound may be used, or a plurality of auxiliary compounds may be used in combination. In the present invention, when an auxiliary compound is used, it is preferably immobilized on the redox active substance layer.

補助化合物としては、特に制限はなく、目的に応じて適宜選択することができる。補助化合物として、上記のEC化合物を利用することも可能である。   There is no restriction | limiting in particular as an auxiliary compound, According to the objective, it can select suitably. It is also possible to use the above EC compound as an auxiliary compound.

本発明に用いることができる好ましい補助化合物としては、例えば、以下のような化合物が挙げられる。   Preferable auxiliary compounds that can be used in the present invention include, for example, the following compounds.

1)TEMPO(2,2,6,6−テトラメチルピペリジニル−N−オキシル)等に代表されるN−オキシル誘導体、N−ヒドロキシフタルイミド誘導体、ヒドロキサム酸誘導体等、N−O結合を有する化合物、
2)ガルビノキシル等、0−位に嵩高い置換基を導入したアリロキシ遊離基を有する化合物、
3)フェロセン等のメタロセン誘導体、
4)ベンジル(ジフェニルエタンジオン)誘導体、
5)テトラゾリウム塩/ホルマザン誘導体、
6)フェナジン、フェノチアジン、フェノキサジン、アクリジン等のアジン系化合物、
7)ビオロゲン等ピリジニウム化合物、
その他、ベンゾキノン誘導体、ベルダジル等ヒドラジル遊離基化合物、チアジル遊離基化合物、ヒドラゾン誘導体、フェニレンジアミン誘導体、トリアリルアミン誘導体、テトラチアフルバレン誘導体、テトラシアノキノジメタン誘導体、チアントレン誘導体等も補助化合物として用いることができる。
1) N-oxyl derivatives such as TEMPO (2,2,6,6-tetramethylpiperidinyl-N-oxyl), N-hydroxyphthalimide derivatives, hydroxamic acid derivatives, etc., compounds having an N—O bond ,
2) a compound having an allyloxy free radical having a bulky substituent introduced at the 0-position, such as galvinoxyl;
3) metallocene derivatives such as ferrocene,
4) benzyl (diphenylethanedione) derivative,
5) Tetrazolium salt / formazan derivative,
6) Azine compounds such as phenazine, phenothiazine, phenoxazine, acridine,
7) pyridinium compounds such as viologen,
In addition, benzoquinone derivatives, hydrazyl free radical compounds such as verdazil, thiazyl free radical compounds, hydrazone derivatives, phenylenediamine derivatives, triallylamine derivatives, tetrathiafulvalene derivatives, tetracyanoquinodimethane derivatives, thianthrene derivatives, etc. can also be used as auxiliary compounds. it can.

本発明の表示素子においては、上記1)から7)の範疇の補助化合物が好ましく、特に1)、3)が好ましい。   In the display device of the present invention, auxiliary compounds in the categories 1) to 7) are preferable, and 1) and 3) are particularly preferable.

以下に、本発明で用いることのできる補助化合物の具体例を示すが、これらに限定されるものでは無い。   Specific examples of auxiliary compounds that can be used in the present invention are shown below, but are not limited thereto.

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

Figure 2010139540
Figure 2010139540

〔有機溶媒〕
本発明に係る電解質には、溶媒としては、一般に電気化学セルや電池に用いられ、本発明で用いられるエレクトロクロミック化合物を初め、電気化学的な酸化還元反応により可逆的に溶解析出する金属塩化合物、プロモーター等各種添加剤を溶解できる溶媒を使用することができる。
[Organic solvent]
In the electrolyte according to the present invention, as a solvent, a metal salt compound that is generally used in an electrochemical cell or a battery and is reversibly dissolved and precipitated by an electrochemical redox reaction, including an electrochromic compound used in the present invention. A solvent capable of dissolving various additives such as a promoter can be used.

具体的には、無水酢酸、メタノール、エタノール、テトラヒドロフラン、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジメチルカーボネート、ブチレンカーボネート、プロピレンカーボネート、ニトロメタン、アセトニトリル、アセチルアセトン、N−メチルホルムアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホアミド、ジメトキシエタン、ジエトキシフラン、γ−ブチロラクトン、γ−バレロラクトン、スルホラン、プロピオニトリル、ブチロニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド、メチルピロリジノン、2−(N−メチル)−2−ピロリジノン、ジメチルスルホキシド、ジオキソラン、トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、エチルジメチルホスフェート、トリブチルホスフェート、トリペンチルホスフェート、トリへキシルホスフェート、トリヘプチルホスフェート、トリオクチルホスフェート、トリノニルホスフェート、トリデシルホスフェート、トリス(トリフフロロメチル)ホスフェート、トリス(ペンタフロロエチル)ホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、2−エチルヘキシルホスフェート、テトラメチル尿素、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホルトリアミド、4−メチル−2−ペンタノン、ジオクチルフタレート、ジオクチルセバケート、及びエチレングリコール、ジエチレングリコール、トリエチレングリコールモノブチルエーテル等のポリエチレングリコール類などが使用可能である。   Specifically, acetic anhydride, methanol, ethanol, tetrahydrofuran, ethylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, butylene carbonate, propylene carbonate, nitromethane, acetonitrile, acetylacetone, N-methylformamide, N, N-dimethylformamide , Dimethyl sulfoxide, hexamethylphosphoamide, dimethoxyethane, diethoxyfuran, γ-butyrolactone, γ-valerolactone, sulfolane, propionitrile, butyronitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, N-methylacetamide, N, N -Dimethylacetamide, N-methylpropionamide, methylpyrrolidinone, 2- (N-methyl) -2-pyrrolidi Non, dimethyl sulfoxide, dioxolane, trimethyl phosphate, triethyl phosphate, tripropyl phosphate, ethyl dimethyl phosphate, tributyl phosphate, tripentyl phosphate, trihexyl phosphate, triheptyl phosphate, trioctyl phosphate, trinonyl phosphate, tridecyl phosphate, tris (Trifluoromethyl) phosphate, tris (pentafluoroethyl) phosphate, triphenyl phosphate, tricresyl phosphate, 2-ethylhexyl phosphate, tetramethylurea, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphotriamide 4-methyl-2-pentanone, dioctyl phthalate, dioctyl sebacate, and ethylene glycol Lumpur, diethylene glycol, polyethylene glycols such as triethylene glycol monobutyl ether and the like can be used.

さらに、常温溶融塩も溶媒として使用可能である。前記常温溶融塩とは、溶媒成分が含まれないイオン対のみからなる常温において溶融している(即ち液状の)イオン対からなる塩であり、通常、融点が20℃以下であり、20℃を越える温度で液状であるイオン対からなる塩を示す。常温溶融塩はその1種を単独で使用することができ、また2種以上を混合しても使用することもできる。   Furthermore, room temperature molten salts can also be used as solvents. The room temperature molten salt is a salt composed of ion pairs that are melted at room temperature (that is, in a liquid state) consisting only of ion pairs that do not contain a solvent component, and usually has a melting point of 20 ° C. or lower, A salt consisting of an ion pair that is liquid at a temperature above. The room temperature molten salt can be used alone or in combination of two or more.

本発明に用いる電解質溶媒としては、非プロトン性極性溶媒が好ましく、特にプロピレンカーボネート、エチレンカーボネート、ジメチルスルホキシド、ジメトキシエタン、アセトニトリル、γ−ブチロラクトン、スルホラン、ジオキソラン、ジメチルホルムアミド、ジメトキシエタン、テトラヒドロフラン、アジポニトリル、メトキシアセトニトリル、ジメチルアセトアミド、メチルピロリジノン、ジメチルスルホキシド、ジオキソラン、スルホラン、トリメチルホスフェート、トリエチルホスフェートが好ましい。溶媒はその1種を単独で使用しても良いし、また2種以上を混合して使用しても良い。   The electrolyte solvent used in the present invention is preferably an aprotic polar solvent, particularly propylene carbonate, ethylene carbonate, dimethyl sulfoxide, dimethoxyethane, acetonitrile, γ-butyrolactone, sulfolane, dioxolane, dimethylformamide, dimethoxyethane, tetrahydrofuran, adiponitrile, Methoxyacetonitrile, dimethylacetamide, methylpyrrolidinone, dimethyl sulfoxide, dioxolane, sulfolane, trimethyl phosphate and triethyl phosphate are preferred. The solvent may be used alone or in combination of two or more.

本発明において、特に好ましく用いられる溶媒は、下記一般式(S1)または(S2)で表される化合物である。   In the present invention, particularly preferably used solvents are compounds represented by the following general formula (S1) or (S2).

〈一般式(S1)、(S2)で表される化合物〉   <Compounds Represented by General Formulas (S1) and (S2)>

Figure 2010139540
Figure 2010139540

上記一般式(S1)において、Lは酸素原子またはアルキレン基を表し、Rs11からRs14は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the general formula (S1), L represents an oxygen atom or an alkylene group, and Rs 11 to Rs 14 each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group.

Figure 2010139540
Figure 2010139540

一般式(S2)において、Rs21,Rs22は各々アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the general formula (S2), Rs 21 and Rs 22 each represents an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group.

はじめに、一般式(S1)で表される化合物の詳細について説明する。   First, the detail of the compound represented by general formula (S1) is demonstrated.

前記一般式(S1)において、Lは酸素原子またはCHを表し、Rs11からRs14は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表し、これらの置換基は更に任意の置換基で置換されていても良い。 In the general formula (S1), L represents an oxygen atom or CH 2 , and Rs 11 to Rs 14 each represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group, These substituents may be further substituted with an arbitrary substituent.

アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等、アリール基としては、例えば、フェニル基、ナフチル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等、アルコキシアルキル基として、例えば、β−メトキシエチル基、γ−メトキシプロピル基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等を挙げることができる。   Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl, and the like as aryl groups. Examples of the cycloalkyl group such as phenyl group, naphthyl group and the like include, for example, a cyclopentyl group, cyclohexyl group and the like, an alkoxyalkyl group, for example, a β-methoxyethyl group, a γ-methoxypropyl group and the like, as an alkoxy group, Examples thereof include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group.

以下、一般式(S1)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。   Hereinafter, although the specific example of a compound represented by general formula (S1) is shown, in this invention, it is not limited only to these illustrated compounds.

Figure 2010139540
Figure 2010139540

次いで、本発明に係る一般式(S2)で表される化合物の詳細について説明する。   Next, details of the compound represented by formula (S2) according to the present invention will be described.

前記一般式(S2)において、Rs21,Rs22は各々水素原子、アルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。 In the general formula (S2), Rs 21 and Rs 22 each represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxyalkyl group, or an alkoxy group.

アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等、アリール基としては、例えば、フェニル基、ナフチル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等、アルコキシアルキル基として、例えば、β−メトキシエチル基、γ−メトキシプロピル基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等を挙げることができる。   Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl, and the like as aryl groups. Examples of the cycloalkyl group such as phenyl group, naphthyl group and the like include, for example, a cyclopentyl group, cyclohexyl group and the like, an alkoxyalkyl group, for example, a β-methoxyethyl group, a γ-methoxypropyl group and the like, as an alkoxy group, Examples thereof include a methoxy group, an ethoxy group, a propyloxy group, a pentyloxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group.

以下、一般式(S2)で表される化合物の具体例を示すが、本発明ではこれら例示する化合物にのみ限定されるものではない。   Hereinafter, although the specific example of a compound represented by general formula (S2) is shown, in this invention, it is not limited only to these illustrated compounds.

Figure 2010139540
Figure 2010139540

上記例示した一般式(S1)及び一般式(S2)で表される化合物の中でも、特に、例示化合物(S1−1)、(S1−2)、(S2−3)が好ましい。   Of the compounds represented by the general formulas (S1) and (S2) exemplified above, the exemplary compounds (S1-1), (S1-2), and (S2-3) are particularly preferable.

本発明に係る一般式(S1)、(S2)で表される化合物は電解質溶媒の1種であるが、本発明の表示素子においては、本発明の目的効果を損なわない範囲でさらに別の溶媒を併せて用いることができる。具体的には、テトラメチル尿素、スルホラン、ジメチルスルホキシド、1,3−ジメチル−2−イミダゾリジノン、2−(N−メチル)−2−ピロリジノン、ヘキサメチルホスホルトリアミド、N−メチルプロピオンアミド、N,N−ジメチルアセトアミド、N−メチルアセトアミド、N,Nジメチルホルムアミド、N−メチルホルムアミド、ブチロニトリル、プロピオニトリル、アセトニトリル、アセチルアセトン、4−メチル−2−ペンタノン、2−ブタノール、1−ブタノール、2−プロパノール、1−プロパノール、エタノール、メタノール、無水酢酸、酢酸エチル、プロピオン酸エチル、ジメトキシエタン、ジエトキシフラン、テトラヒドロフラン、エチレングリコール、ジエチレングリコール、トリエチレングリコールモノブチルエーテル、水等が挙げられる。これらの溶媒の内、凝固点が−20℃以下、かつ沸点が120℃以上の溶媒を少なくとも1種含むことが好ましい。   The compounds represented by the general formulas (S1) and (S2) according to the present invention are one type of electrolyte solvent. However, in the display element of the present invention, another solvent is used as long as the object effects of the present invention are not impaired. Can be used together. Specifically, tetramethylurea, sulfolane, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, 2- (N-methyl) -2-pyrrolidinone, hexamethylphosphortriamide, N-methylpropionamide, N, N-dimethylacetamide, N-methylacetamide, N, N dimethylformamide, N-methylformamide, butyronitrile, propionitrile, acetonitrile, acetylacetone, 4-methyl-2-pentanone, 2-butanol, 1-butanol, 2 -Propanol, 1-propanol, ethanol, methanol, acetic anhydride, ethyl acetate, ethyl propionate, dimethoxyethane, diethoxyfuran, tetrahydrofuran, ethylene glycol, diethylene glycol, triethylene glycol monobuty Ether, water and the like. Among these solvents, it is preferable to include at least one solvent having a freezing point of −20 ° C. or lower and a boiling point of 120 ° C. or higher.

さらに本発明で用いることのできる溶媒としては、J.A.Riddick,W.B.Bunger,T.K.Sakano,“Organic Solvents”,4th ed.,John Wiley & Sons(1986)、Y.Marcus,“Ion Solvation”,John Wiley & Sons(1985)、C.Reichardt,“Solvents and Solvent Effects in Chemistry”,2nd ed.,VCH(1988)、G.J.Janz,R.P.T.Tomkins,“Nonaqueous Electorlytes Handbook”,Vol.1,Academic Press(1972)に記載の化合物を挙げることができる。   Furthermore, as a solvent which can be used in the present invention, J.P. A. Riddick, W.M. B. Bunger, T.A. K. Sakano, “Organic Solvents”, 4th ed. , John Wiley & Sons (1986). Marcus, “Ion Solvation”, John Wiley & Sons (1985), C.I. Reichardt, “Solvents and Solvent Effects in Chemistry”, 2nd ed. VCH (1988), G .; J. et al. Janz, R.A. P. T.A. Tomkins, “Nonqueous Electronics Handbook”, Vol. 1, Academic Press (1972).

本発明において、電解質溶媒は単一種であっても、溶媒の混合物であってもよいが、エチレンカーボネートを含む混合溶媒が好ましい。エチレンカーボネートの添加量は、全電解質溶媒質量の10質量%以上、90質量%以下が好ましい。特に好ましい電解質溶媒は、プロピレンカーボネート/エチレンカーボネートの質量比が7/3〜3/7の混合溶媒である。プロピレンカーボネート比が7/3より大きいとイオン伝導性が劣り応答速度が低下し、3/7より小さいと低温時に電解質が析出しやすくなる。   In the present invention, the electrolyte solvent may be a single type or a mixture of solvents, but a mixed solvent containing ethylene carbonate is preferred. The addition amount of ethylene carbonate is preferably 10% by mass or more and 90% by mass or less of the total electrolyte solvent mass. A particularly preferable electrolyte solvent is a mixed solvent having a mass ratio of propylene carbonate / ethylene carbonate of 7/3 to 3/7. When the propylene carbonate ratio is larger than 7/3, the ionic conductivity is inferior and the response speed is lowered. When the propylene carbonate ratio is smaller than 3/7, the electrolyte tends to be deposited at a low temperature.

〔多孔質白色散乱層〕
本発明においては、表示コントラスト及び白表示反射率をより高める観点から、白色散乱物を含有する多孔質白色散乱層を有することができる。
(Porous white scattering layer)
In the present invention, a porous white scattering layer containing a white scattering material can be provided from the viewpoint of further increasing display contrast and white display reflectance.

本発明に適用可能な多孔質白色散乱層は、電解質溶媒に実質的に溶解しない水系高分子と白色顔料との水混和物を塗布乾燥して形成することができる。   The porous white scattering layer applicable to the present invention can be formed by applying and drying an aqueous mixture of an aqueous polymer and a white pigment that is substantially insoluble in the electrolyte solvent.

本発明でいう電解質溶媒に実質的に溶解しないとは、−20℃から120℃の温度において、電解質溶媒1kgあたりの溶解量が0g以上、10g以下である状態と定義し、質量測定法、液体クロマトグラムやガスクロマトグラムによる成分定量法等の公知の方法により溶解量を求めることができる。   In the present invention, “substantially insoluble in an electrolyte solvent” is defined as a state in which the dissolved amount per kg of electrolyte solvent is 0 g or more and 10 g or less at a temperature of −20 ° C. to 120 ° C. The amount of dissolution can be determined by a known method such as a component determination method using a chromatogram or a gas chromatogram.

本発明において、電解質溶媒に実質的に溶解しない水系高分子としては、水溶性高分子、水系溶媒に分散した高分子を挙げることができる。   In the present invention, examples of the water-based polymer that does not substantially dissolve in the electrolyte solvent include a water-soluble polymer and a polymer dispersed in the water-based solvent.

水溶性化合物としては、ゼラチン、ゼラチン誘導体等の蛋白質またはセルロース誘導体、澱粉、アラビアゴム、デキストラン、プルラン、カラギーナン等の多糖類のような天然化合物や、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン、アクリルアミド重合体やそれらの誘導体等の合成高分子化合物が挙げられる。ゼラチン誘導体としては、アセチル化ゼラチン、フタル化ゼラチン、ポリビニルアルコール誘導体としては、末端アルキル基変性ポリビニルアルコール、末端メルカプト基変性ポリビニルアルコール、セルロース誘導体としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース等が挙げられる。更に、リサーチ・ディスクロージャー及び特開昭64−13546号の(71)頁〜(75)頁に記載されたもの、また、米国特許第4,960,681号、特開昭62−245260号等に記載の高吸水性ポリマー、すなわち−COOMまたは−SOM(Mは水素原子またはアルカリ金属)を有するビニルモノマーの単独重合体またはこのビニルモノマー同士もしくは他のビニルモノマー(例えばメタクリル酸ナトリウム、メタクリル酸アンモニウム、アクリル酸カリウム等)との共重合体も使用される。これらのバインダは2種以上組み合わせて用いることもできる。 Examples of water-soluble compounds include proteins such as gelatin and gelatin derivatives, or cellulose derivatives, natural compounds such as starch, gum arabic, dextran, pullulan, and carrageenan polysaccharides, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidone, and acrylamide polymers. And synthetic polymer compounds such as derivatives thereof. As gelatin derivatives, acetylated gelatin, phthalated gelatin, polyvinyl alcohol derivatives as terminal alkyl group-modified polyvinyl alcohol, terminal mercapto group-modified polyvinyl alcohol, and cellulose derivatives include hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose and the like. It is done. Furthermore, Research Disclosure and those described in pages (71) to (75) of JP-A No. 64-13546, US Pat. No. 4,960,681, JP-A No. 62-245260, etc. superabsorbent polymers described, namely -COOM or -SO 3 M (M is a hydrogen atom or an alkali metal) homopolymer or a vinyl monomer together or with other vinyl monomers (e.g., sodium methacrylate in the vinyl monomer having a methacrylic acid Copolymers with ammonium, potassium acrylate, etc.) are also used. These binders can be used in combination of two or more.

本発明においては、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン系化合物を好ましく用いることができる。   In the present invention, polyvinyl alcohol, polyethylene glycol, and polyvinylpyrrolidone compounds can be preferably used.

水系溶媒に分散した高分子としては、天然ゴムラテックス、スチレンブタジエンゴム、ブタジエンゴム、ニトリルゴム、クロロプレンゴム、イソプレンゴム等のラテックス類、ポリイソシアネート系、エポキシ系、アクリル系、シリコーン系、ポリウレタン系、尿素系、フェノール系、ホルムアルデヒド系、エポキシ−ポリアミド系、メラミン系、アルキド系樹脂、ビニル系樹脂等を水系溶媒に分散した熱硬化性樹脂を挙げることができる。これらの高分子のうち、特開平10−76621号に記載の水系ポリウレタン樹脂を用いることが好ましい。   Polymers dispersed in aqueous solvents include natural rubber latex, styrene butadiene rubber, butadiene rubber, nitrile rubber, chloroprene rubber, isoprene rubber and other latexes, polyisocyanate, epoxy, acrylic, silicone, polyurethane, Examples thereof include a thermosetting resin in which urea, phenol, formaldehyde, epoxy-polyamide, melamine, alkyd resin, vinyl resin and the like are dispersed in an aqueous solvent. Of these polymers, it is preferable to use an aqueous polyurethane resin described in JP-A-10-76621.

本発明の水系高分子の平均分子量は、重量平均で10,000〜2,000,000の範囲が好ましく、より好ましくは30,000〜500,000の範囲である。   The average molecular weight of the water-based polymer of the present invention is preferably in the range of 10,000 to 2,000,000, more preferably in the range of 30,000 to 500,000 on a weight average basis.

本発明で適用可能な白色顔料としては、例えば、二酸化チタン(アナターゼ型あるいはルチル型)、硫酸バリウム、炭酸カルシウム、酸化アルミニウム、酸化亜鉛、酸化マグネシウムおよび水酸化亜鉛、水酸化マグネシウム、リン酸マグネシウム、リン酸水素マグネシウム、アルカリ土類金属塩、タルク、カオリン、ゼオライト、酸性白土、ガラス、有機化合物としてポリエチレン、ポリスチレン、アクリル樹脂、アイオノマー、エチレン−酢酸ビニル共重合樹脂、ベンゾグアナミン樹脂、尿素−ホルマリン樹脂、メラミン−ホルマリン樹脂、ポリアミド樹脂などが単体または複合混合で、または粒子中に屈折率を変化させるボイドを有する状態で使用されてもよい。   Examples of the white pigment applicable in the present invention include titanium dioxide (anatase type or rutile type), barium sulfate, calcium carbonate, aluminum oxide, zinc oxide, magnesium oxide and zinc hydroxide, magnesium hydroxide, magnesium phosphate, Magnesium hydrogen phosphate, alkaline earth metal salt, talc, kaolin, zeolite, acidic clay, glass, organic compounds such as polyethylene, polystyrene, acrylic resin, ionomer, ethylene-vinyl acetate copolymer resin, benzoguanamine resin, urea-formalin resin, A melamine-formalin resin, a polyamide resin, or the like may be used alone or in combination, or in a state having voids that change the refractive index in the particles.

本発明では、上記白色粒子の中でも、二酸化チタンが好ましく用いられ、特に無機酸化物(Al、AlO(OH)、SiO等)で表面処理した二酸化チタン、これらの表面処理に加えてトリメチロールエタン、トリエタノールアミン酢酸塩、トリメチルシクロシラン等の有機物処理を施した二酸化チタンがより好ましく用いられる。 In the present invention, among the white particles, titanium dioxide is preferably used. In particular, titanium dioxide surface-treated with an inorganic oxide (Al 2 O 3 , AlO (OH), SiO 2, etc.), in addition to these surface treatments. Titanium dioxide that has been treated with an organic substance such as trimethylolethane, triethanolamine acetate, or trimethylcyclosilane is more preferably used.

これらの白色粒子のうち、高温時の着色防止、屈折率に起因する素子の反射率の観点から、酸化チタンまたは酸化亜鉛を用いることがより好ましい。   Of these white particles, it is more preferable to use titanium oxide or zinc oxide from the viewpoint of coloring prevention at high temperature and the reflectance of the element due to the refractive index.

本発明において、水系化合物と白色顔料との水混和物は、公知の分散方法に従って白色顔料が水中分散された形態が好ましい。水系化合物/白色顔料の混合比は、容積比で1〜0.01が好ましく、より好ましくは、0.3〜0.05の範囲である。   In the present invention, the water mixture of the water-based compound and the white pigment is preferably in a form in which the white pigment is dispersed in water according to a known dispersion method. The mixing ratio of the aqueous compound / white pigment is preferably 1 to 0.01, more preferably 0.3 to 0.05 in terms of volume ratio.

多孔質白色散乱層の膜厚は、5〜50μmの範囲であることが好ましく、より好ましくは10〜30μmの範囲である。   The thickness of the porous white scattering layer is preferably in the range of 5 to 50 μm, more preferably in the range of 10 to 30 μm.

アルコール系溶剤としては、メタノール、エタノール、イソプロパノール等の水との溶解性が高い化合物が好ましく用いられ、水/アルコール系溶剤との混合比は、質量比で0.5〜20の範囲が好ましく、より好ましくは2〜10の範囲である。   As the alcohol solvent, a compound having high solubility in water such as methanol, ethanol, isopropanol is preferably used, and the mixing ratio with the water / alcohol solvent is preferably in the range of 0.5 to 20 by mass ratio, More preferably, it is the range of 2-10.

本発明において、水系化合物と白色顔料との水混和物を塗布する媒体は、表示素子の対向電極間の構成要素上であればいずれの位置でもよいが、対向電極の少なくとも1方の電極面上に付与することが好ましい。   In the present invention, the medium for applying the water mixture of the water-based compound and the white pigment may be at any position as long as it is on the component between the counter electrodes of the display element, but on the electrode surface of at least one of the counter electrodes. It is preferable to give to.

媒体への付与の方法としては、例えば、塗布方式、液噴霧方式、気相を介する噴霧方式として、圧電素子の振動を利用して液滴を飛翔させる方式、例えば、ピエゾ方式のインクジェットヘッドや、突沸を利用したサーマルヘッドを用いて液滴を飛翔させるバブルジェット(登録商標)方式のインクジェットヘッド、また空気圧や液圧により液を噴霧するスプレー方式等が挙げられる。   As a method for applying to a medium, for example, a coating method, a liquid spraying method, a spraying method via a gas phase, a method of flying droplets using vibration of a piezoelectric element, for example, a piezoelectric inkjet head, Examples thereof include a bubble jet (registered trademark) type ink jet head that causes droplets to fly using a thermal head that uses bumping, and a spray type that sprays liquid by air pressure or liquid pressure.

塗布方式としては、公知の塗布方式より適宜選択することができる。例えば、エアードクターコーター、ブレードコーター、ロッドコーター、ナイフコーター、スクイズコーター、含浸コーター、リバースローラーコーター、トランスファーローラーコーター、カーテンコーター、ダブルローラーコーター、スライドホッパーコーター、グラビアコーター、キスロールコーター、ビードコーター、キャストコーター、スプレイコーター、カレンダーコーター、押し出しコーター等が挙げられる。   As a coating method, it can select suitably from a well-known coating method. For example, air doctor coater, blade coater, rod coater, knife coater, squeeze coater, impregnation coater, reverse roller coater, transfer roller coater, curtain coater, double roller coater, slide hopper coater, gravure coater, kiss roll coater, bead coater, Examples include cast coaters, spray coaters, calendar coaters, and extrusion coaters.

媒体上に付与した水系化合物と白色顔料との水混和物の乾燥は、水を蒸発できる方法であればいかなる方法であってもよい。例えば、熱源からの加熱、赤外光を用いた加熱法、電磁誘導による加熱法等が挙げられる。また、水蒸発は減圧下で行ってもよい。   Drying of the water mixture of the aqueous compound and the white pigment applied on the medium may be performed by any method as long as water can be evaporated. For example, heating from a heat source, a heating method using infrared light, a heating method using electromagnetic induction, and the like can be given. Further, water evaporation may be performed under reduced pressure.

本発明でいう多孔質とは、前記水系化合物と白色顔料との水混和物を電極上に塗布乾燥して多孔質の白色散乱物を形成した後、該散乱物上に、銀または銀を化学構造中に含む化合物を含有する電解質液を与えた後に対向電極で挟み込み、対向電極間に電位差を与え、銀の溶解析出反応を生じさせることが可能で、イオン種が電極間で移動可能な貫通状態のことを言う。   Porous as used in the present invention refers to the formation of a porous white scattering material by applying a water admixture of the water-based compound and the white pigment onto the electrode and drying it, and then the silver or silver is chemically treated on the scattering material. After supplying an electrolyte solution containing the compound contained in the structure, it can be sandwiched between opposing electrodes, giving a potential difference between the opposing electrodes, causing a silver dissolution precipitation reaction, and penetrating ions that can move between the electrodes Tell the state.

本発明の表示素子では、上記説明した水混和物を塗布乾燥中または乾燥後に、硬化剤により水系化合物の硬化反応を行うことが望ましい。   In the display element of the present invention, it is desirable to carry out a curing reaction of the water-based compound with a curing agent during or after applying and drying the water mixture described above.

本発明で用いられる硬膜剤の例としては、例えば、米国特許第4,678,739号の第41欄、同第4,791,042号、特開昭59−116655号、同62−245261号、同61−18942号、同61−249054号、同61−245153号、特開平4−218044号等に記載の硬膜剤が挙げられる。より具体的には、アルデヒド系硬膜剤(ホルムアルデヒド等)、アジリジン系硬膜剤、エポキシ系硬膜剤、ビニルスルホン系硬膜剤(N,N′−エチレン−ビス(ビニルスルホニルアセタミド)エタン等)、N−メチロール系硬膜剤(ジメチロール尿素等)、ほう酸、メタほう酸あるいは高分子硬膜剤(特開昭62−234157号等に記載の化合物)が挙げられる。水系化合物としてゼラチンを用いる場合は、硬膜剤の中で、ビニルスルホン型硬膜剤やクロロトリアジン型硬膜剤を単独または併用して使用することが好ましい。また、ポリビニルアルコールを用いる場合はホウ酸やメタホウ酸等の含ホウ素化合物の使用が好ましい。   Examples of the hardener used in the present invention include, for example, U.S. Pat. No. 4,678,739, column 41, 4,791,042, JP-A-59-116655, and 62-245261. No. 61-18942, 61-249054, 61-245153, JP-A-4-218044, and the like. More specifically, aldehyde hardeners (formaldehyde, etc.), aziridine hardeners, epoxy hardeners, vinyl sulfone hardeners (N, N'-ethylene-bis (vinylsulfonylacetamide) Ethane, etc.), N-methylol hardeners (dimethylolurea, etc.), boric acid, metaboric acid or polymer hardeners (compounds described in JP-A-62-234157). When gelatin is used as the aqueous compound, it is preferable to use a vinyl sulfone type hardener or a chlorotriazine type hardener alone or in combination. Moreover, when using polyvinyl alcohol, it is preferable to use boron-containing compounds such as boric acid and metaboric acid.

これらの硬膜剤は、水系化合物1g当たり0.001〜1g、好ましくは0.005〜0.5gが用いられる。また、膜強度を上げるため熱処理や、硬化反応時の湿度調整を行うことも可能である。   These hardeners are used in an amount of 0.001 to 1 g, preferably 0.005 to 0.5 g, per 1 g of the aqueous compound. In addition, it is possible to perform heat treatment and humidity adjustment during the curing reaction in order to increase the film strength.

〔電子絶縁層〕
本発明の表示素子においては、電子絶縁層を設けることができる。
(Electronic insulation layer)
In the display element of the present invention, an electronic insulating layer can be provided.

本発明に適用可能な電子絶縁層は、イオン電導性、電子絶縁性を合わせて有する層であればよく、例えば、極性基を有する高分子や塩をフィルム状にした固体電解質膜、電子絶縁性の高い多孔質膜とその空隙に電解質を担持する擬固体電解質膜、空隙を有する高分子多孔質膜、含ケイ素化合物の様な比誘電率が低い無機材料の多孔質体、等が挙げられる。   The electronic insulating layer applicable to the present invention may be a layer having both ionic conductivity and electronic insulating properties. For example, a solid electrolyte membrane in which a polymer or salt having a polar group is formed into a film, electronic insulating properties And a porous solid body having a low relative dielectric constant, such as a silicon-containing compound, and the like.

多孔質膜の形成方法としては、燒結法(融着法)(高分子微粒子や無機粒子をバインダ等を添加して部分的に融着させ粒子間に生じた孔を利用する)、抽出法(溶剤に可溶な有機物又は無機物類と溶剤に溶解しないバインダ等で構成層を形成した後に、溶剤で有機物又は無機物類を溶解させ細孔を得る)、高分子重合体等を加熱や脱気するなどして発泡させる発泡法、良溶媒と貧溶媒を操作して高分子類の混合物を相分離させる相転換法、各種放射線を輻射して細孔を形成させる放射線照射法等の公知の形成方法を用いることができる。具体的には、特開平10−30181号、特開2003−107626号、特公平7−95403号、特許第2635715号、同第2849523号、同第2987474号、同第3066426号、同第3464513号、同第3483644号、同第3535942号、同第3062203号等に記載の電子絶縁層を挙げることができる。   As a method for forming a porous film, a sintering method (fusing method) (using fine pores formed between particles by partially fusing polymer fine particles or inorganic particles by adding a binder, etc.), extraction method ( After forming a constituent layer with a solvent-soluble organic substance or inorganic substance and a binder that does not dissolve in the solvent, the organic substance or inorganic substance is dissolved with the solvent to obtain pores), and the polymer is heated or degassed Known forming methods such as a foaming method in which foaming is performed, a phase change method in which a mixture of polymers is phase-separated by operating a good solvent and a poor solvent, and a radiation irradiation method in which pores are formed by radiating various types of radiation Can be used. Specifically, JP-A-10-30181, JP-A-2003-107626, JP-B-7-95403, JP-A-2635715, JP-A-2894523, JP-A-2987474, JP-A-3066426, and JP-A-3464513. No. 3,483,464, No. 3535942, No. 30622203, and the like.

〔電解質添加の増粘剤〕
本発明の表示素子においては、電解質に増粘剤を使用することができ、例えば、ゼラチン、アラビアゴム、ポリ(ビニルアルコール)、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、セルロースアセテート、セルロースアセテートブチレート、ポリ(ビニルピロリドン)、ポリ(アルキレングリコール)、カゼイン、デンプン、ポリ(アクリル酸)、ポリ(メチルメタクリル酸)、ポリ(塩化ビニル)、ポリ(メタクリル酸)、コポリ(スチレン−無水マレイン酸)、コポリ(スチレン−アクリロニトリル)、コポリ(スチレン−ブタジエン)、ポリ(ビニルアセタール)類(例えば、ポリ(ビニルホルマール)及びポリ(ビニルブチラール))、ポリ(エステル)類、ポリ(ウレタン)類、フェノキシ樹脂、ポリ(塩化ビニリデン)、ポリ(エポキシド)類、ポリ(カーボネート)類、ポリ(ビニルアセテート)、セルロースエステル類、ポリ(アミド)類、疎水性透明バインダとして、ポリビニルブチラール、セルロースアセテート、セルロースアセテートブチレート、ポリエステル、ポリカーボネート、ポリアクリル酸、ポリウレタン等が挙げられる。
[Thickener added with electrolyte]
In the display element of the present invention, a thickener can be used for the electrolyte. For example, gelatin, gum arabic, poly (vinyl alcohol), hydroxyethyl cellulose, hydroxypropyl cellulose, cellulose acetate, cellulose acetate butyrate, poly ( Vinylpyrrolidone), poly (alkylene glycol), casein, starch, poly (acrylic acid), poly (methyl methacrylic acid), poly (vinyl chloride), poly (methacrylic acid), copoly (styrene-maleic anhydride), copoly ( Styrene-acrylonitrile), copoly (styrene-butadiene), poly (vinyl acetal) s (eg, poly (vinyl formal) and poly (vinyl butyral)), poly (esters), poly (urethanes), phenoxy resins, poly (PVC Redene), poly (epoxide) s, poly (carbonates), poly (vinyl acetate), cellulose esters, poly (amides), hydrophobic transparent binders such as polyvinyl butyral, cellulose acetate, cellulose acetate butyrate, polyester, Examples include polycarbonate, polyacrylic acid, polyurethane and the like.

これらの増粘剤は2種以上を併用して用いてもよい。また、特開昭64−13546号公報の71〜75頁に記載の化合物を挙げることができる。これらの中で好ましく用いられる化合物は、各種添加剤との相溶性と白色粒子の分散安定性向上の観点から、ポリビニルアルコール類、ポリビニルピロリドン類、ヒドロキシプロピルセルロース類、ポリアルキレングリコール類である。   These thickeners may be used in combination of two or more. Moreover, the compound as described in pages 71-75 of Unexamined-Japanese-Patent No. 64-13546 can be mentioned. Among these, the compounds preferably used are polyvinyl alcohols, polyvinyl pyrrolidones, hydroxypropyl celluloses, and polyalkylene glycols from the viewpoint of compatibility with various additives and improvement in dispersion stability of white particles.

本発明の表示素子において、増粘剤として好ましいのは、平均重合度100〜500のポリエチレングリコールであり、電解質の有機溶媒に対して質量比で5〜20%の範囲で添加するのが好ましい。   In the display element of the present invention, polyethylene glycol having an average degree of polymerization of 100 to 500 is preferable as the thickener, and it is preferably added in a range of 5 to 20% by mass ratio with respect to the organic solvent of the electrolyte.

〔その他の添加剤〕
本発明の表示素子の製造方法で作製される表示素子の電解質液には、その他各種性能を向上させる目的で、様々な添加剤を使用することができる。それらは目的に応じて選択され、特に制限されるものではない。
[Other additives]
Various additives can be used for the electrolyte solution of the display element produced with the manufacturing method of the display element of this invention for the purpose of improving other various performances. They are selected according to the purpose and are not particularly limited.

各種の化学増感剤、貴金属増感剤、感光色素、強色増感剤、カプラー、高沸点溶剤、カブリ防止剤、安定剤、現像抑制剤、漂白促進剤、定着促進剤、混色防止剤、ホルマリンスカベンジャー、色調剤、硬膜剤、界面活性剤、増粘剤、可塑剤、スベリ剤、紫外線吸収剤、イラジエーション防止染料、フィルター光吸収染料、防ばい剤、ポリマーラテックス、重金属、帯電防止剤、マット剤等を、必要に応じて含有させることができる。   Various chemical sensitizers, noble metal sensitizers, photosensitive dyes, supersensitizers, couplers, high boiling point solvents, antifoggants, stabilizers, development inhibitors, bleach accelerators, fixing accelerators, color mixing inhibitors, Formalin Scavenger, Toning Agent, Hardener, Surfactant, Thickener, Plasticizer, Slipper, UV Absorber, Irradiation Dye, Filter Light Absorber Dye, Antibacterial Agent, Polymer Latex, Heavy Metal, Antistatic Agent Further, a matting agent and the like can be contained as necessary.

上述したこれらの添加剤は、より詳しくは、リサーチ・ディスクロージャー(以下、RDと略す)第176巻Item/17643(1978年12月)、同184巻Item/18431(1979年8月)、同187巻Item/18716(1979年11月)及び同308巻Item/308119(1989年12月)に記載されている。   These additives mentioned above are more specifically described in Research Disclosure (hereinafter abbreviated as RD), Volume 176 Item / 17643 (December 1978), Volume 184, Item / 18431 (August 1979), 187. Volume Item / 18716 (November 1979) and Volume 308 Item / 308119 (December 1989).

これら三つのリサーチ・ディスクロージャーに示されている化合物種類と記載箇所を以下に掲載した。   The types of compounds and their descriptions shown in these three research disclosures are listed below.

添加剤 RD17643 RD18716 RD308119
頁 分類 頁 分類 頁 分類
化学増感剤 23 III 648右上 96 III
増感色素 23 IV 648〜649 996〜8 IV
減感色素 23 IV 998 IV
染料 25〜26 VIII 649〜650 1003 VIII
現像促進剤 29 XXI 648右上
カブリ抑制剤・安定剤
24 IV 649右上 1006〜7 VI
増白剤 24 V 998 V
硬膜剤 26 X 651左 1004〜5 X
界面活性剤 26〜7 XI 650右 1005〜6 XI
帯電防止剤 27 XII 650右 1006〜7XIII
可塑剤 27 XII 650右 1006 XII
スベリ剤 27 XII
マット剤 28 XVI 650右 1008〜9 XVI
バインダ 26 XXII 1003〜4 IX
支持体 28 XVII 1009 XVII
上記の添加剤は、保護層、フィルター層、ハレーション防止層、クロスオーバー光カット層、バッキング層等の補助層を設け、それら補助層中に含有させることも可能である。
Additive RD17643 RD18716 RD308119
Page Classification Page Classification Page Classification Chemical sensitizer 23 III 648 Upper right 96 III
Sensitizing dye 23 IV 648-649 996-8 IV
Desensitizing dye 23 IV 998 IV
Dye 25-26 VIII 649-650 1003 VIII
Development accelerator 29 XXI 648 Upper right Anti-fogging agent / stabilizer
24 IV 649 Upper right 1006-7 VI
Brightener 24 V 998 V
Hardener 26 X 651 Left 1004-5 X
Surfactant 26-7 XI 650 Right 1005-6 XI
Antistatic agent 27 XII 650 Right 1006-7XIII
Plasticizer 27 XII 650 Right 1006 XII
Slipper 27 XII
Matting agent 28 XVI 650 Right 1008-9 XVI
Binder 26 XXII 1003-4 IX
Support 28 XVII 1009 XVII
The above additives may be provided in auxiliary layers such as a protective layer, a filter layer, an antihalation layer, a crossover light cut layer, and a backing layer, and may be contained in these auxiliary layers.

〔基板〕
本発明で用いることのできる基板としては、透明基板であることが好ましく、このような透明基板としては、ポリエステル(例えば、ポリエチレンテレフタレート等)、ポリイミド、ポリメタクリル酸メチル、ポリスチレン、ポリプロピレン、ポリエチレン、ポリアミド、ナイロン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート、ポリエーテルスルフォン、シリコーン樹脂、ポリアセタール樹脂、フッ素樹脂、セルロース誘導体、ポリオレフィンなどの高分子のフィルムや板状基板、ガラス基板などが好ましく用いられる。本発明に用いられる透明な基板とは、可視光に対する透過率が少なくとも50%以上の基板をいう。
〔substrate〕
The substrate that can be used in the present invention is preferably a transparent substrate. Examples of such a transparent substrate include polyester (for example, polyethylene terephthalate), polyimide, polymethyl methacrylate, polystyrene, polypropylene, polyethylene, and polyamide. Nylon, polyvinyl chloride, polyvinylidene chloride, polycarbonate, polyether sulfone, silicone resin, polyacetal resin, fluororesin, cellulose derivative, polyolefin and other polymer films, plate substrates, glass substrates and the like are preferably used. The transparent substrate used in the present invention refers to a substrate having a transmittance for visible light of at least 50%.

また、対向基板としては、例えば、金属基板、セラミック基板等の無機基板など不透明な基板を用いることもできる。   Further, as the counter substrate, for example, an opaque substrate such as an inorganic substrate such as a metal substrate or a ceramic substrate can be used.

〔電極〕
(透明電極)
本発明の表示素子では、対向電極の少なくとも1種が透明電極であることが好ましい。透明電極としては、透明で電気を通じるものであれば特に制限はない。例えば、Indium Tin Oxide(ITO:インジウム錫酸化物)、Indium Zinc Oxide(IZO:インジウム亜鉛酸化物)、フッ素ドープ酸化スズ(FTO)、酸化インジウム、酸化亜鉛等が挙げられる。 電極をこのように形成するには、例えば、基板上にITO膜をスパッタリング法等でマスク蒸着するか、ITO膜を全面形成した後、フォトリソグラフィ法でパターニングすればよい。表面抵抗値としては、100Ω/□以下が好ましく、10Ω/□以下がより好ましい。透明電極の厚みは特に制限はないが、0.1〜20μmであるのが一般的である。
〔electrode〕
(Transparent electrode)
In the display element of the present invention, it is preferable that at least one of the counter electrodes is a transparent electrode. The transparent electrode is not particularly limited as long as it is transparent and conducts electricity. For example, indium tin oxide (ITO: indium tin oxide), indium zinc oxide (IZO: indium zinc oxide), fluorine-doped tin oxide (FTO), indium oxide, zinc oxide, and the like can be given. In order to form the electrode in this manner, for example, an ITO film may be vapor-deposited on the substrate by a sputtering method or the like, or an ITO film may be formed on the entire surface and then patterned by a photolithography method. The surface resistance value is preferably 100Ω / □ or less, and more preferably 10Ω / □ or less. The thickness of the transparent electrode is not particularly limited, but is generally 0.1 to 20 μm.

(対極側画素電極)
対極側画素電極は、電気が通じるものであれば、特に制限されず用いることができる。前記透明電極と同じ材料に加え、白金、金、銀、銅、アルミニウム、亜鉛、ニッケル、チタン、ビスマスなどの金属およびそれらの合金、カーボン等、透明性を有しない材料でも好ましく用いることができる。
(Counter electrode pixel electrode)
The counter-side pixel electrode can be used without particular limitation as long as electricity can be passed. In addition to the same material as the transparent electrode, metals having no transparency such as platinum, gold, silver, copper, aluminum, zinc, nickel, titanium, bismuth and the like, alloys thereof, carbon and the like can be preferably used.

電極の作製方法は、電解メッキ法、無電解メッキ法、置換メッキ法、蒸着法、印刷法、インクジェット法、スピンコート法、CVD法等の既存の方法を用いることができる。   As an electrode manufacturing method, an existing method such as an electrolytic plating method, an electroless plating method, a displacement plating method, a vapor deposition method, a printing method, an ink jet method, a spin coating method, or a CVD method can be used.

(多孔質電極)
上記表示側透明電極または対向電極の上にナノ多孔質化構造を有する多孔質電極を設けることができる。この多孔質電極は、エレクトロクロミック色素等の電気活性物質を担持することができる。表示側透明電極上に設ける場合は、表示素子を形成した際に実質的に透明であることが望ましい。
(Porous electrode)
A porous electrode having a nanoporous structure can be provided on the display-side transparent electrode or the counter electrode. This porous electrode can carry an electroactive substance such as an electrochromic dye. When it is provided on the display-side transparent electrode, it is desirable that it is substantially transparent when the display element is formed.

本発明でいうナノ多孔質化構造とは、層中にナノメートルサイズの孔が無数に存在し、ナノ多孔質化構造内を電解質中に含まれるイオン種が移動可能な状態のことを言う。   The nanoporous structure as used in the present invention refers to a state in which an infinite number of nanometer-sized pores exist in a layer and ionic species contained in the electrolyte can move within the nanoporous structure.

ナノ多孔質電極が透明性を有するためには、平均粒子径が5nm〜10μm程度の微粒子を用いることが好ましい。微粒子の形状は不定形、針状、球形など任意の形状のものを用いることができる。   In order for the nanoporous electrode to have transparency, it is preferable to use fine particles having an average particle diameter of about 5 nm to 10 μm. As the shape of the fine particles, those having an arbitrary shape such as an indefinite shape, a needle shape, and a spherical shape can be used.

このようなナノ多孔質電極の形成方法としては、ナノ多孔質電極を構成する微粒子を含んだ分散物をインクジェット法、スクリーン印刷法、ブレード塗布法などで塗布した後に、乾燥する方法がある。   As a method for forming such a nanoporous electrode, there is a method in which a dispersion containing fine particles constituting the nanoporous electrode is applied by an inkjet method, a screen printing method, a blade coating method or the like and then dried.

ナノ多孔質電極を構成する微粒子の主成分は、Cu、Al、Pt、Ag、Pd、Au等の金属やITO、SnO、TiO、ZnO等の金属酸化物やカーボンナノチューブ、グラッシーカーボン、ダイヤモンドライクカーボン、窒素含有カーボン等の炭素電極から選択することができ、好ましくは、ITO、SnO、TiO、ZnO等の金属酸化物から選択されることである。 The main components of the fine particles constituting the nanoporous electrode are metals such as Cu, Al, Pt, Ag, Pd and Au, metal oxides such as ITO, SnO 2 , TiO 2 and ZnO, carbon nanotubes, glassy carbon, and diamond. It can be selected from carbon electrodes such as like carbon and nitrogen-containing carbon, and is preferably selected from metal oxides such as ITO, SnO 2 , TiO 2 , and ZnO.

ナノ多孔質電極の膜厚は、0.1〜10μmの範囲であることが好ましく、より好ましくは0.25〜5μmの範囲である。   The film thickness of the nanoporous electrode is preferably in the range of 0.1 to 10 μm, more preferably in the range of 0.25 to 5 μm.

(グリッド電極:補助電極)
本発明においては、対向電極のうち少なくとも一方の電極に、補助電極を付帯させることができる。
(Grid electrode: auxiliary electrode)
In the present invention, an auxiliary electrode can be attached to at least one of the counter electrodes.

補助電極は、主となる電極部より電気抵抗が低い材料を用いることが好ましい。例えば、白金、金、銀、銅、アルミニウム、亜鉛、ニッケル、チタン、ビスマスなどの金属およびそれらの合金等を好ましく用いることができる。   The auxiliary electrode is preferably made of a material having a lower electrical resistance than the main electrode portion. For example, metals such as platinum, gold, silver, copper, aluminum, zinc, nickel, titanium, and bismuth and alloys thereof can be preferably used.

補助電極は、主となる電極部と基板との間と、主となる電極部の基板と反対側の表面とのいずれに設置することもできる。いずれにしても、補助電極が主となる電極部と電気的に接続していればよい。   The auxiliary electrode can be installed either between the main electrode portion and the substrate, or on the surface of the main electrode portion opposite to the substrate. In any case, it is only necessary that the auxiliary electrode is electrically connected to the main electrode portion.

補助電極の配置パターンには、特に制限はない。直線状、メッシュ状、円形など、求められる性能に応じて適宜形成することが可能である。主となる電極部が複数の部分に分割されている場合には、分割された電極部同士を接続する形で設けてもよい。ただし、主となる電極部が表示側の基板に設けられた透明電極の場合、補助電極は、表示素子の視認性を阻害しない形状と頻度で設けることが求められる。   There are no particular restrictions on the arrangement pattern of the auxiliary electrodes. It can be appropriately formed according to the required performance, such as linear, mesh, or circular. When the main electrode part is divided into a plurality of parts, the divided electrode parts may be connected to each other. However, in the case where the main electrode portion is a transparent electrode provided on the substrate on the display side, the auxiliary electrode is required to be provided with a shape and frequency that do not impair the visibility of the display element.

補助電極を形成する方法としては、公知の方法を用いることができる。例えば、フォトリソグラフィ法でパターニングし、印刷法やインクジェット法、電解メッキや無電解メッキ、銀塩感光材料を用いて露光、現像処理してパターン形成する方法でも良い。   As a method of forming the auxiliary electrode, a known method can be used. For example, patterning may be performed by photolithography, followed by printing, ink-jet printing, electrolytic plating or electroless plating, and exposure and development using a silver salt photosensitive material to form a pattern.

補助電極パターンのライン幅やライン間隔は、任意の値で構わないが、導電性を高くするためにはライン幅を太くする必要がある。一方、透明電極に補助電極を付帯させる場合には、視認性の観点から、表示素子観察側から見た補助電極の面積被覆率は30%以下が好ましく、さらに好ましくは10%以下である。   The line width and line spacing of the auxiliary electrode pattern may be arbitrary values, but the line width needs to be increased in order to increase the conductivity. On the other hand, when an auxiliary electrode is attached to the transparent electrode, from the viewpoint of visibility, the area coverage of the auxiliary electrode viewed from the display element observation side is preferably 30% or less, and more preferably 10% or less.

このように透過率と導電性の点から、補助電極のライン幅は1μm以上、100μm以下が好ましく、ライン間隔は50μmから1000μmが好ましい。   Thus, from the viewpoint of transmittance and conductivity, the line width of the auxiliary electrode is preferably 1 μm or more and 100 μm or less, and the line interval is preferably 50 μm to 1000 μm.

(電極の形成方法)
透明電極、金属補助電極を形成するには、公知の方法を用いることができる。例えば、基板上にスパッタリング法等でマスク蒸着する方法や、全面形成した後に、フォトリソグラフィ法でパターニングする方法等が挙げられる。
(Method of forming electrode)
A known method can be used to form the transparent electrode and the metal auxiliary electrode. For example, a method of depositing a mask on a substrate by a sputtering method or the like, a method of patterning by a photolithography method after forming the entire surface, and the like can be given.

また、電解メッキや無電解メッキ、印刷法や、インクジェット法によっても電極形成が可能である。   Electrodes can also be formed by electrolytic plating, electroless plating, printing methods, and ink jet methods.

インクジェット方式を用いて基板上にモノマー重合能を有する触媒層を含む電極パターンを形成した後に、該触媒により重合されて重合後に導電性高分子層になりうるモノマー成分を付与して、モノマー成分を重合し、さらに、該導電性高分子層の上に銀等の金属メッキを行うことにより金属電極パターンを形成することもでき、フォトレジストやマスクパターンを使用することがないので、工程を大幅に簡略化できる。   After forming an electrode pattern including a catalyst layer having a monomer polymerization ability on a substrate using an inkjet method, a monomer component that is polymerized by the catalyst and becomes a conductive polymer layer after polymerization is added, It is also possible to form a metal electrode pattern by polymerizing and further performing metal plating such as silver on the conductive polymer layer, and the process is greatly reduced because no photoresist or mask pattern is used. It can be simplified.

電極材料を塗布方式で形成する場合には、例えば、ディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法、スクリーン印刷法等の公知の方法を用いることができる。   When the electrode material is formed by a coating method, for example, a known method such as a dipping method, a spinner method, a spray method, a roll coater method, a flexographic printing method, a screen printing method, or the like can be used.

インクジェット方式の中でも、下記の静電インクジェット方式は高粘度の液体を高精度に連続的に印字することが可能であり、本発明の透明電極や金属補助電極の形成に好ましく用いられる。インクの粘度は、好ましくは30mPa・s以上であり、更に好ましくは100mPa・s以上である。   Among the ink jet methods, the following electrostatic ink jet method is capable of continuously printing a highly viscous liquid with high accuracy and is preferably used for forming the transparent electrode and the metal auxiliary electrode of the present invention. The viscosity of the ink is preferably 30 mPa · s or more, and more preferably 100 mPa · s or more.

〈静電インクジェット方式〉
本発明の表示素子においては、複合電極の透明電極及び金属補助電極の少なくとも1方が、帯電した液体を吐出する内部直径が30μm以下のノズルを有する液体吐出ヘッドと、前記ノズル内に溶液を供給する供給手段と、前記ノズル内の溶液に吐出電圧を印加する吐出電圧印加手段とを備えた液体吐出装置を用いて形成されることが好ましい態様の1つである。さらにノズル内の溶液がノズル先端部から凸状に盛り上がった状態を形成する凸状メニスカス形成手段を設けた吐出装置を用いて形成されることが好ましい。
<Electrostatic inkjet method>
In the display element of the present invention, at least one of the transparent electrode of the composite electrode and the metal auxiliary electrode has a liquid discharge head having a nozzle with an internal diameter of 30 μm or less for discharging a charged liquid, and supplies a solution into the nozzle. It is one of the preferable embodiments that the liquid discharge device is provided with a supply unit that performs the discharge and a discharge voltage application unit that applies a discharge voltage to the solution in the nozzle. Further, it is preferable that the solution in the nozzle is formed by using a discharge device provided with a convex meniscus forming means for forming a state where the solution rises from the nozzle tip.

また、凸状メニスカス形成手段を駆動する駆動電圧の印加及び吐出電圧印加手段による吐出電圧の印加を制御する動作制御手段を備え、この動作制御手段は、前記吐出電圧印加手段による吐出電圧の印加を行わせつつ液滴の吐出に際して、凸状メニスカス形成手段の駆動電圧の印加を行わせる第一の吐出制御部を有する液体吐出装置を用いることも好ましい。   In addition, it comprises operation control means for controlling application of drive voltage for driving the convex meniscus forming means and application of discharge voltage by the discharge voltage application means, and this operation control means applies application of the discharge voltage by the discharge voltage application means. It is also preferable to use a liquid ejection apparatus having a first ejection control unit that applies a driving voltage to the convex meniscus forming means when ejecting liquid droplets.

また、凸状メニスカス形成手段の駆動及び吐出電圧印加手段による電圧印加を制御する動作制御手段を備え、この動作制御手段は、前記凸状メニスカス形成手段による溶液の盛り上げ動作と前記吐出電圧の印加とを同期させて行う第二の吐出制御部を有することを特徴とする液体吐出装置を用いること、前記動作制御手段は、前記溶液の盛り上げ動作及び吐出電圧の印加の後に前記ノズル先端部の液面を内側に引き込ませる動作制御を行う液面安定化制御部を有する液体吐出装置を用いることも好ましい形態である。   In addition, an operation control unit that controls driving of the convex meniscus forming unit and voltage application by the discharge voltage applying unit is provided, and the operation control unit includes an operation for raising the solution by the convex meniscus forming unit, and application of the discharge voltage. A liquid discharge device having a second discharge control unit that synchronizes the liquid, and the operation control means includes a liquid level at the tip of the nozzle after the swell operation of the solution and the application of the discharge voltage. It is also a preferred form to use a liquid ejection apparatus having a liquid level stabilization control unit that performs operation control for drawing in the inside.

この様な静電インクジェットを用いて電極パターンを作製することにより、オンデマンド性に優れ、廃棄材料が少なく、寸法精度に優れた電極を得ることができ有利である。   By producing an electrode pattern using such an electrostatic inkjet, it is advantageous that an electrode having excellent on-demand characteristics, little waste material, and excellent dimensional accuracy can be obtained.

〔表示素子のその他の構成要素〕
本発明の表示素子には、必要に応じて、シール剤、柱状構造物、スペーサー粒子を用いる。
[Other components of the display element]
In the display element of the present invention, a sealant, a columnar structure, and spacer particles are used as necessary.

(シール剤)
シール剤は、外に漏れないように封入するためのものであり封止剤とも呼ばれ、エポキシ樹脂、ウレタン系樹脂、アクリル系樹脂、酢酸ビニル系樹脂、エン−チオール系樹脂、シリコーン系樹脂、変性ポリマー樹脂等の、熱硬化型、光硬化型、湿気硬化型、嫌気硬化型等の硬化タイプを用いることができる。
(Sealant)
The sealing agent is for sealing so as not to leak outside and is also called a sealing agent, and is an epoxy resin, urethane resin, acrylic resin, vinyl acetate resin, ene-thiol resin, silicone resin, Curing types such as a thermosetting type, a photo-curing type, a moisture-curing type, and an anaerobic curing type such as a modified polymer resin can be used.

(柱状構造物)
柱状構造物は、基板間の強い自己保持性(強度)を付与し、例えば、格子配列等の所定のパターンに一定の間隔で配列された、円柱状体、四角柱状体、楕円柱状体、台形柱状体等の柱状構造物を挙げることができる。また、所定間隔で配置されたストライプ状のものでもよい。この柱状構造物はランダムな配列ではなく、等間隔な配列、間隔が徐々に変化する配列、所定の配置パターンが一定の周期で繰り返される配列等、基板の間隔を適切に保持でき、且つ、画像表示を妨げないように考慮された配列であることが好ましい。柱状構造物は表示素子の表示領域に占める面積の割合が1〜40%であれば、表示素子として実用上十分な強度が得られる。
(Columnar structure)
The columnar structure provides strong self-holding (strength) between the substrates, for example, a columnar body, a quadrangular columnar body, an elliptical columnar body, a trapezoidal array arranged in a predetermined pattern such as a lattice arrangement. A columnar structure such as a columnar body can be given. Alternatively, stripes arranged at predetermined intervals may be used. This columnar structure is not a random array, but can be properly maintained at intervals of the substrate, such as an evenly spaced array, an array in which the interval gradually changes, and an array in which a predetermined arrangement pattern is repeated at a constant period. The arrangement is preferably considered so as not to disturb the display. If the ratio of the area occupied by the columnar structure in the display area of the display element is 1 to 40%, a practically sufficient strength as a display element can be obtained.

(スペーサー)
一対の基板間には、該基板間のギャップを均一に保持するためのスペーサーが設けられていてもよい。このスペーサーとしては、樹脂製または無機酸化物製の球体を例示できる。また、表面に熱可塑性の樹脂がコーティングしてある固着スペーサーも好適に用いられる。基板間のギャップを均一に保持するために柱状構造物のみを設けてもよいが、スペーサー及び柱状構造物をいずれも設けてもよいし、柱状構造物に代えて、スペーサーのみをスペース保持部材として使用してもよい。スペーサーの直径は柱状構造物を形成する場合はその高さ以下、好ましくは当該高さに等しい。柱状構造物を形成しない場合はスペーサーの直径がセルギャップの厚みに相当する。
(spacer)
A spacer may be provided between the pair of substrates for uniformly maintaining a gap between the substrates. Examples of the spacer include a sphere made of resin or inorganic oxide. Further, a fixed spacer having a surface coated with a thermoplastic resin is also preferably used. In order to hold the gap between the substrates uniformly, only the columnar structure may be provided, but both the spacer and the columnar structure may be provided, or instead of the columnar structure, only the spacer is used as the space holding member. May be used. The diameter of the spacer is equal to or less than the height of the columnar structure, preferably equal to the height. When the columnar structure is not formed, the diameter of the spacer corresponds to the thickness of the cell gap.

〔表示素子駆動方法〕
本発明の表示素子の駆動操作は、単純マトリックス駆動であっても、アクティブマトリック駆動であってもよい。本発明でいう単純マトリックス駆動とは、複数の正極を含む正極ラインと複数の負極を含む負極ラインとが対向する形で互いのラインが垂直方向に交差した回路に、順次電流を印加する駆動方法のことを言う。単純マトリックス駆動を用いることにより、回路構成や駆動ICを簡略化でき安価に製造できるメリットがある。アクティブマトリックス駆動は、走査線、データライン、電流供給ラインが碁盤目状に形成され、各碁盤目に設けられたTFT回路により駆動させる方式である。画素毎にスイッチングが行えるので、階調やメモリー機能などのメリットがあり、例えば、特開2004−29327号の図5に記載されている回路を用いることができる。
[Display element driving method]
The driving operation of the display element of the present invention may be simple matrix driving or active matrix driving. The simple matrix driving in the present invention is a driving method in which a current is sequentially applied to a circuit in which a positive line including a plurality of positive electrodes and a negative electrode line including a plurality of negative electrodes are opposed to each other in a vertical direction. Say that. By using simple matrix driving, there is an advantage that the circuit configuration and driving IC can be simplified and manufactured at low cost. The active matrix drive is a system in which scanning lines, data lines, and current supply lines are formed in a grid pattern, and are driven by TFT circuits provided in each grid pattern. Since switching can be performed for each pixel, there are merits such as gradation and memory function. For example, a circuit described in FIG. 5 of JP-A-2004-29327 can be used.

〔商品適用〕
本発明の表示素子は、電子書籍分野、IDカード関連分野、公共関連分野、交通関連分野、放送関連分野、決済関連分野、流通物流関連分野等の用いることができる。具体的には、ドア用のキー、学生証、社員証、各種会員カード、コンビニストアー用カード、デパート用カード、自動販売機用カード、ガソリンステーション用カード、地下鉄や鉄道用のカード、バスカード、キャッシュカード、クレジットカード、ハイウェーカード、運転免許証、病院の診察カード、電子カルテ、健康保険証、住民基本台帳、パスポート、ワンタイムパスワード、電子ブック、携帯電話のカバー等各種機器の筐体装飾、キーボード表示、電子棚札、電子POP、電子広告等が挙げられる。特に大画面の表示が求められる電子ブック、電子広告、電子POP等の製造に有効である。
[Product application]
The display element of the present invention can be used in an electronic book field, an ID card field, a public field, a traffic field, a broadcast field, a payment field, a distribution logistics field, and the like. Specifically, keys for doors, student ID cards, employee ID cards, various membership cards, convenience store cards, department store cards, vending machine cards, gas station cards, subway and railway cards, bus cards, Case decoration of various equipment such as cash card, credit card, highway card, driver's license, hospital examination card, electronic medical record, health insurance card, basic resident register, passport, one-time password, electronic book, mobile phone cover, etc. Examples include a keyboard display, an electronic shelf label, an electronic POP, and an electronic advertisement. In particular, it is effective for manufacturing electronic books, electronic advertisements, electronic POPs, and the like that require display on a large screen.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.

《表示素子の作製》
〔電解質の調製〕
(電解質1の調製)
ジメチルスルホキシド2.5質量部中に、テトラブチルアンモニウムパークロレート0.025質量部を溶解して、電解質1を調製した。
<< Production of display element >>
(Preparation of electrolyte)
(Preparation of electrolyte 1)
Electrolyte 1 was prepared by dissolving 0.025 parts by mass of tetrabutylammonium perchlorate in 2.5 parts by mass of dimethyl sulfoxide.

(電解質2の調製)
2−メトキシエタノール2.5質量部中に、ヘプチルビオロゲン0.5質量部と硝酸0.0025質量部とを溶解させて、電解質2を調製した。
(Preparation of electrolyte 2)
Electrolyte 2 was prepared by dissolving 0.5 parts by mass of heptyl viologen and 0.0025 parts by mass of nitric acid in 2.5 parts by mass of 2-methoxyethanol.

Figure 2010139540
Figure 2010139540

(電解質3の調製)
ジメチルスルホキシド2.5質量部中に、塩化ビスマス0.1質量部と臭化リチウム0.2質量部とテトラブチルアンモニウムパークロレート0.025質量部とを溶解させて、電解質3を調製した。
(Preparation of electrolyte 3)
Electrolyte 3 was prepared by dissolving 0.1 part by mass of bismuth chloride, 0.2 part by mass of lithium bromide, and 0.025 part by mass of tetrabutylammonium perchlorate in 2.5 parts by mass of dimethyl sulfoxide.

(電解質4の調製)
ジメチルスルホキシド2.5質量部中に、テトラフルオロホウ酸スピロ−(1,1′)−ビピロリジニウム0.025質量部とカルボキシTEMPO(4−カルボキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル フリーラジカル)0.05質量部、p−トルエンスルホン酸銀0.1質量部を溶解して、電解質4を調製した。
(Preparation of electrolyte 4)
In 2.5 parts by mass of dimethyl sulfoxide, 0.025 parts by mass of spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate and carboxy TEMPO (4-carboxy-2,2,6,6-tetramethylpiperidine-1 -Oxyl free radical) 0.05 parts by mass and 0.1 parts by mass of silver p-toluenesulfonate were dissolved to prepare an electrolyte 4.

(電解質5の調製)
ジメチルスルホキシド2.5質量部中に、テトラフルオロホウ酸スピロ−(1,1′)−ビピロリジニウム0.025質量部とカルボキシTEMPO(4−カルボキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル フリーラジカル)0.05質量部、p−トルエンスルホン酸銀0.1質量部、3−メルカプト−1,2,4−トリアゾール0.2質量部を溶解して、電解質5を調製した。
(Preparation of electrolyte 5)
In 2.5 parts by mass of dimethyl sulfoxide, 0.025 parts by mass of spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate and carboxy TEMPO (4-carboxy-2,2,6,6-tetramethylpiperidine-1 -Oxyl free radical) 0.05 parts by mass, 0.1 parts by mass of silver p-toluenesulfonate, and 0.2 parts by mass of 3-mercapto-1,2,4-triazole were dissolved to prepare an electrolyte 5.

(電解質6の調製)
ジメチルスルホキシド2.5質量部中に、テトラフルオロホウ酸スピロ−(1,1′)−ビピロリジニウム0.025質量部、カルボキシTEMPO(4−カルボキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル フリーラジカル)0.05質量部、p−トルエンスルホン酸銀0.1質量部、3,6−ジチア−1,8−オクタンジオール0.2質量部を溶解して、電解質6を調製した。
(Preparation of electrolyte 6)
In 2.5 parts by mass of dimethyl sulfoxide, 0.025 parts by mass of tetrafluoroborate spiro- (1,1 ′)-bipyrrolidinium, carboxy TEMPO (4-carboxy-2,2,6,6-tetramethylpiperidine-1 -Oxyl free radical) 0.05 parts by mass, 0.1 parts by mass of silver p-toluenesulfonate, 0.2 parts by mass of 3,6-dithia-1,8-octanediol were dissolved to prepare an electrolyte 6. .

〔電極の作製〕
(電極1の作製)
厚さ1.5mmで2cm×4cmのガラス基板上に、導電層としてピッチ145μm、幅130μmのITO(Indium Tin Oxide、インジウム錫酸化物)膜を公知の方法に従って形成して、電極1を作製した。
[Production of electrodes]
(Production of electrode 1)
An ITO (Indium Tin Oxide) film having a pitch of 145 μm and a width of 130 μm was formed as a conductive layer on a glass substrate having a thickness of 1.5 mm and a size of 2 cm × 4 cm according to a known method. .

(電極2の作製)
フッ化スズ(II)水溶液に過酸化水素水を加えて析出した沈殿物を回収して乾燥した。この乾燥した沈殿物を55%フッ化水素酸に溶解して調製した溶液(0.1mol/L)と、ホウ酸水溶液(0.2mol/L)とを等量混合した溶液10質量部中に、1質量部のBaytron P(PEDOT(ポリ−3,4−エチレンジオキシチオフェン)−PSS(ポリスチレンスルホン酸)の水系分散液、H.C.スタルク社製)を添加、撹拌して得た処理液に、電極1を垂直に吊り下げ、室温で30分間浸漬した。引き上げたのち純水で洗浄し、85℃の雰囲気中で1時間乾燥して電極2を作製した。
(Preparation of electrode 2)
Hydrogen peroxide water was added to the tin (II) fluoride aqueous solution, and the deposited precipitate was collected and dried. In 10 parts by mass of a solution prepared by dissolving this dried precipitate in 55% hydrofluoric acid (0.1 mol / L) and an equal amount of an aqueous boric acid solution (0.2 mol / L). 1 part by weight of Baytron P (PEDOT (poly-3,4-ethylenedioxythiophene) -PSS (polystyrene sulfonic acid) aqueous dispersion, manufactured by HC Starck) was added and stirred to obtain a treatment. The electrode 1 was suspended vertically in the solution and immersed at room temperature for 30 minutes. After being pulled up, it was washed with pure water and dried in an atmosphere at 85 ° C. for 1 hour to produce an electrode 2.

(電極3の作製)
上記電極1上に、下記二酸化チタン分散物を乾燥後の平均膜厚が20μmになるようにスクリーン印刷し、その後50℃で30分間乾燥して溶媒を蒸発させた後、85℃の雰囲気中で1時間乾燥させて多孔質白色散乱層を形成した電極3を作製した。
(Preparation of electrode 3)
On the electrode 1, the following titanium dioxide dispersion was screen-printed so that the average film thickness after drying was 20 μm, then dried at 50 ° C. for 30 minutes to evaporate the solvent, and then in an atmosphere at 85 ° C. Electrode 3 having a porous white scattering layer formed by drying for 1 hour was produced.

〈二酸化チタン分散物の調製〉
水/エタノール混合溶液に、クラレポバールPVA235(クラレ社製、ポリビニルアルコール樹脂)を固形分濃度で2質量%になるように添加し、加熱溶解させた後、二酸化チタンCR−90(石原産業社製)を20質量%となるように超音波分散機で分散させて、二酸化チタン分散物を得た。
<Preparation of titanium dioxide dispersion>
After adding Kuraraypoval PVA235 (made by Kuraray Co., Ltd., polyvinyl alcohol resin) to a water / ethanol mixed solution so as to have a solid content concentration of 2% by mass and dissolving by heating, titanium dioxide CR-90 (made by Ishihara Sangyo Co., Ltd.) ) Was dispersed with an ultrasonic disperser so as to be 20% by mass to obtain a titanium dioxide dispersion.

(電極4の作製)
フッ化チタン酸アンモニウム水溶液(0.1mol/L)とホウ酸水溶液(0.2mol/L)を等量混合した溶液10質量部中に、1質量部のBaytron P(前出)を添加、撹拌して得た処理液に、電極1を垂直に吊り下げ、室温で30分間浸漬した。引き上げたのち純水で洗浄し、85℃の雰囲気中で1時間乾燥して電極4を作製した。
(Preparation of electrode 4)
1 part by weight of Baytron P (supra) is added to 10 parts by weight of a mixed solution of an ammonium fluoride titanate aqueous solution (0.1 mol / L) and an aqueous boric acid solution (0.2 mol / L) and stirred. The electrode 1 was suspended vertically in the treatment solution thus obtained and immersed at room temperature for 30 minutes. After being pulled up, it was washed with pure water and dried in an atmosphere at 85 ° C. for 1 hour to produce an electrode 4.

(電極5の作製)
ケイフッ化アンモニウム水溶液(0.1mol/L)とホウ酸水溶液(0.2mol/L)を等量混合した溶液10質量部中に、1質量部のBaytron P(前出)を添加、撹拌して得た処理液に、電極1を垂直に吊り下げ、室温で30分間浸漬した。引き上げたのち純水で洗浄し、85℃の雰囲気中で1時間乾燥して電極5を作製した。
(Preparation of electrode 5)
1 part by weight of Baytron P (supra) was added and stirred in 10 parts by weight of a mixed solution of ammonium silicofluoride aqueous solution (0.1 mol / L) and boric acid aqueous solution (0.2 mol / L). The electrode 1 was suspended vertically in the obtained treatment liquid and immersed at room temperature for 30 minutes. After being pulled up, it was washed with pure water and dried in an atmosphere at 85 ° C. for 1 hour to produce an electrode 5.

(電極6の作製)
フッ化チタン酸アンモニウム水溶液(0.1mol/L)とホウ酸水溶液(0.2mol/L)を等量混合した溶液10質量部中に、3質量%ドデシルベンゼンスルホン酸ナトリウム水溶液にポリビニルフェロセンを分散させた分散液1質量部を添加、撹拌して得た処理液に、電極1を垂直に吊り下げ、室温で30分間浸漬した。引き上げたのち純水で洗浄し、85℃の雰囲気中で1時間乾燥した。さらに、電極3の作製で用いた二酸化チタン分散物を、乾燥後の平均膜厚が20μmになるようにスクリーン印刷し、その後50℃で30分間乾燥して溶媒を蒸発させた後、85℃の雰囲気中で1時間乾燥させて電極6を作製した。
(Preparation of electrode 6)
Disperse polyvinyl ferrocene in a 3% by weight aqueous sodium dodecylbenzenesulfonate solution in 10 parts by weight of a mixed solution of ammonium fluoride titanate aqueous solution (0.1 mol / L) and boric acid aqueous solution (0.2 mol / L). The electrode 1 was suspended vertically in a treatment liquid obtained by adding and stirring 1 part by mass of the dispersion, and immersed for 30 minutes at room temperature. After being pulled up, it was washed with pure water and dried in an atmosphere at 85 ° C. for 1 hour. Furthermore, the titanium dioxide dispersion used in the production of the electrode 3 was screen-printed so that the average film thickness after drying was 20 μm, then dried at 50 ° C. for 30 minutes to evaporate the solvent, and then the 85 ° C. The electrode 6 was produced by drying in an atmosphere for 1 hour.

(電極7の作製)
電極1上に、Baytron P(前出)を乾燥後の平均膜厚が0.3μmになるようにスピンコートし、その後50℃で30分間乾燥した後、85℃の雰囲気中で1時間乾燥させて電極7を作製した。
(Preparation of electrode 7)
On the electrode 1, Baytron P (supra) is spin-coated so that the average film thickness after drying is 0.3 μm, then dried at 50 ° C. for 30 minutes, and then dried in an atmosphere at 85 ° C. for 1 hour. Thus, an electrode 7 was produced.

(電極8の作製)
電極1上に、ポリビニルフェロセンのテトラヒドロフラン溶液を乾燥後の平均膜厚が0.3μmになるようにスピンコートし、その後85℃の雰囲気中で1時間乾燥させて電極8を作製した。
(Preparation of electrode 8)
On electrode 1, a tetrahydrofuran solution of polyvinyl ferrocene was spin-coated so that the average film thickness after drying was 0.3 μm, and then dried in an atmosphere at 85 ° C. for 1 hour to prepare electrode 8.

〔表示素子の作製〕
(表示素子1の作製)
電極3の周辺部を、平均粒径40μmのガラス製球形ビーズを体積分率として10%含むオレフィン系封止剤で縁取りした後に、電極3と電極2とを、それぞれストライプ状の電極が直交するように貼り合わせ、さらに加熱押圧して空セルを作製した。該空セルに電解液1を真空注入し、注入口をエポキシ系の紫外線硬化樹脂にて封止し、表示素子1を作製した。
[Production of display element]
(Preparation of display element 1)
After the periphery of the electrode 3 is edged with an olefin-based sealant containing glass spherical beads having an average particle size of 40 μm as a volume fraction of 10%, the striped electrodes are orthogonal to the electrodes 3 and 2 respectively. The cells were bonded together and further heated and pressed to produce an empty cell. The electrolytic solution 1 was vacuum-injected into the empty cell, and the injection port was sealed with an epoxy-based ultraviolet curable resin to produce a display element 1.

(表示素子2〜11の作製)
上記表示素子1の作製において、対向電極を構成する表示側電極と非表示側電極の種類、電解液の種類を表1に記載の組み合わせに変更した以外は同様にして、表示素子2〜11を作製した。
(Production of display elements 2 to 11)
In the production of the display element 1, the display elements 2 to 11 were similarly manufactured except that the types of the display side electrode and the non-display side electrode constituting the counter electrode and the type of the electrolyte were changed to the combinations shown in Table 1. Produced.

《表示素子の評価》
〔耐久性の評価〕
(表示素子1〜5の評価)
表示素子1〜5については、以下のようにして耐久性を評価した。
<< Evaluation of display element >>
[Evaluation of durability]
(Evaluation of display elements 1 to 5)
About display elements 1-5, durability was evaluated as follows.

定電圧電源の両端子に作製した各表示素子の両電極を接続し、表示側の電極に+1.5Vの電圧を1.5秒間印加した後に各表示素子の表示部の反射率をコニカミノルタセンシング社製の分光測色計CM−3700dで測定した。そのときの可視光領域(波長400nm〜700nm)での極大吸収波長での反射率をR1(0)とした。 Connect both electrodes of each display element to both terminals of the constant voltage power supply, apply a voltage of +1.5 V to the display-side electrode for 1.5 seconds, and then reflect the reflectance of the display part of each display element to Konica Minolta Sensing The measurement was performed with a spectrocolorimeter CM-3700d manufactured by the company. The reflectance at the maximum absorption wavelength in the visible light region (wavelength 400 nm to 700 nm) at that time was defined as R 1 (0) .

その後、各表示素子に+1.5V0.5秒・−1.5V0.5秒を1周期として1万周期繰返し電圧を印加し、その後上記と同様にして測定し、得られた反射率をそれぞれR1(10000)とした。 Thereafter, a voltage of 10,000 cycles was applied to each display element with +1.5 V 0.5 seconds and -1.5 V 0.5 seconds as one cycle, and then measured in the same manner as described above. 1 (10000) .

繰返し電圧印加前後のコントラスト比の変化を、ΔR=|R1(0)−R1(10000)|と定義し、繰返し駆動させたときの反射率の安定性の指標とした。ここでは、ΔRの値が小さいほど、繰返し駆動させたときの反射率の安定性に優れることになる。 The change in the contrast ratio before and after the repetitive voltage application was defined as ΔR 1 = | R 1 (0) −R 1 (10000) |, which was used as an index of the stability of the reflectance when repeatedly driven. Here, as the value of [Delta] R 1 is small, so that the excellent stability of the reflectance when obtained by repeatedly driving.

(表示素子6〜11の評価)
表示素子6〜11については、以下のようにして耐久性を評価した。
(Evaluation of display elements 6 to 11)
About display elements 6-11, durability was evaluated as follows.

定電圧電源の両端子に作製した各表示素子の両電極を接続し、表示側の電極に−1.5Vの電圧を1.5秒間印加した後に各表示素子の表示部の反射率をコニカミノルタセンシング社製の分光測色計CM−3700dで測定した。波長550nmでの反射率をR2(0)とした。 Connect both electrodes of each display element to both terminals of the constant voltage power supply, apply a voltage of -1.5 V to the display-side electrode for 1.5 seconds, and then change the reflectance of the display portion of each display element to Konica Minolta Measurement was performed with a spectral colorimeter CM-3700d manufactured by Sensing Corporation. The reflectance at a wavelength of 550 nm was R 2 (0) .

その後、各表示素子に+1.5V0.5秒と−1.5V0.5秒を1周期として1万周期繰返し電圧を印加し、その後上記と同様にして測定し、得られた反射率をそれぞれR2(10000)とした。 Thereafter, a voltage of 10,000 cycles is applied to each display element with +1.5 V 0.5 seconds and -1.5 V 0.5 seconds as one cycle, and then measured in the same manner as described above. 2 (10000) .

繰返し電圧印加前後のコントラスト比の変化を、ΔR=|R2(0)−R2(10000)|と定義し、繰返し駆動させたときの反射率の安定性の指標とした。ここでは、ΔRの値が小さいほど、繰返し駆動させたときの反射率の安定性に優れることになる。 The change in contrast ratio before and after the repetitive voltage application was defined as ΔR 2 = | R 2 (0) −R 2 (10000) | Here, the smaller the value of ΔR 2, the better the stability of the reflectance when it is repeatedly driven.

各表示素子の構成と、得られた耐久性の評価結果を、表1に示す。   Table 1 shows the configuration of each display element and the obtained durability evaluation results.

Figure 2010139540
Figure 2010139540

表1に記載の結果より明らかなように、本発明で規定する方法により作製した表示素子は、比較例に対し、繰返し駆動させたときの反射率の安定性が良好であり、耐久性に優れていることが分かる。   As is apparent from the results shown in Table 1, the display element produced by the method defined in the present invention has good reflectance stability when it is repeatedly driven and excellent durability compared to the comparative example. I understand that

Claims (7)

一対の対向電極の間に電解質と酸化還元活性物質層とを有し、該酸化還元活性物質層は、少なくとも1)酸化還元活性ポリマーと、2)金属イオンまたは非金属イオンと、3)配位子と、4)析出促進剤とを含有する処理液に、該対向電極の少なくとも一方の電極を浸漬して形成されたものであることを特徴とする表示素子。 An electrolyte and a redox active substance layer are provided between a pair of counter electrodes, and the redox active substance layer includes at least 1) a redox active polymer, 2) a metal ion or a nonmetal ion, and 3) a coordination. A display element, wherein the counter element is formed by immersing at least one electrode of the counter electrode in a treatment liquid containing a substrate and 4) a deposition accelerator. 前記酸化還元活性物質層が、非表示側電極上に形成されていることを特徴とする請求項1に記載の表示素子。 The display element according to claim 1, wherein the redox active material layer is formed on a non-display side electrode. 前記電解質が金属塩化合物を含有し、かつ前記対向電極の駆動操作により、黒表示と白表示とを行なうことを特徴とする請求項1または2に記載の表示素子。 The display element according to claim 1, wherein the electrolyte contains a metal salt compound, and performs black display and white display by a driving operation of the counter electrode. 前記金属塩化合物が、銀塩化合物であることを特徴とする請求項3に記載の表示素子。 The display element according to claim 3, wherein the metal salt compound is a silver salt compound. 前記電解質が、下記一般式(G−1)または(G−2)で表される化合物を含有することを特徴とする請求項1から4のいずれか1項に記載に表示素子。
一般式(G−1)
Rg11−S−Rg12
〔式中、Rg11、Rg12は各々置換または無置換の炭化水素基を表す。また、これらの炭化水素基は、1個以上の窒素原子、酸素原子、リン原子、硫黄原子またはハロゲン原子を含んでも良く、Rg11とRg12が互いに連結し、環状構造を取っても良い。〕
Figure 2010139540
〔式中、Mは水素原子、金属原子または4級アンモニウムを表す。Zは含窒素複素環を構成するのに必要な原子群表す。nは0〜5の整数を表し、Rg21は、水素原子、ハロゲン原子、アルキル基、アリール基、アルキルカルボンアミド基、アリールカルボンアミド基、アルキルスルホンアミド基、アリールスルホンアミド基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルカルバモイル基、アリールカルバモイル基、カルバモイル基、アルキルスルファモイル基、アリールスルファモイル基、スルファモイル基、シアノ基、アルキルスルホニル基、アリールスルホニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アシルオキシ基、カルボキシル基、カルボニル基、スルホニル基、アミノ基、ヒドロキシ基または複素環基を表し、nが2以上の場合、それぞれのRg21は同じであってもよく、異なってもよく、お互いに連結して縮合環を形成してもよい。〕
The display element according to any one of claims 1 to 4, wherein the electrolyte contains a compound represented by the following general formula (G-1) or (G-2).
General formula (G-1)
Rg 11 -S-Rg 12
Wherein, Rg 11, Rg 12 each represents a substituted or unsubstituted hydrocarbon group. Further, these hydrocarbon groups may contain one or more nitrogen atom, oxygen atom, phosphorus atom, sulfur atom or halogen atom, and Rg 11 and Rg 12 may be connected to each other to take a cyclic structure. ]
Figure 2010139540
[Wherein, M represents a hydrogen atom, a metal atom or quaternary ammonium. Z represents an atomic group necessary for constituting a nitrogen-containing heterocyclic ring. n represents an integer of 0 to 5, and Rg 21 represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkylcarbonamide group, an arylcarbonamide group, an alkylsulfonamide group, an arylsulfonamide group, an alkoxy group, an aryl Oxy group, alkylthio group, arylthio group, alkylcarbamoyl group, arylcarbamoyl group, carbamoyl group, alkylsulfamoyl group, arylsulfamoyl group, sulfamoyl group, cyano group, alkylsulfonyl group, arylsulfonyl group, alkoxycarbonyl group, Represents an aryloxycarbonyl group, an alkylcarbonyl group, an arylcarbonyl group, an acyloxy group, a carboxyl group, a carbonyl group, a sulfonyl group, an amino group, a hydroxy group or a heterocyclic group, and when n is 2 or more, Of Rg 21 may be the same or different, and may be linked to each other to form a condensed ring. ]
前記酸化還元活性物質層が、SiOまたはTiOを含有することを特徴とする請求項1から5のいずれか1項に記載の表示素子 The display element according to claim 1, wherein the redox active material layer contains SiO 2 or TiO 2. 請求項1から6のいずれか1項に記載の表示素子の製造方法であって、
酸化還元活性ポリマーと、金属イオンまたは非金属イオンと配位子とから形成した錯体と、該錯体の配位子と反応して溶液中から金属または非金属の酸化物を析出させる析出促進剤とを含む処理液を調製する工程と、
電極を有する基板を該処理液に浸漬して、該電極上に酸化還元活性物質層を形成する工程と、
該酸化還元活性物質層が形成された基板を少なくとも一方の電極として用い、一対の対向する電極間に酸化還元活性物質層と電解質を保持して表示素子を製造する工程とを
有することを特徴とする表示素子の製造方法。
It is a manufacturing method of a display element given in any 1 paragraph of Claims 1-6,
A redox-active polymer; a complex formed from a metal ion or non-metal ion and a ligand; and a deposition accelerator that reacts with the ligand of the complex to precipitate a metal or non-metal oxide from the solution. A step of preparing a treatment liquid containing:
Immersing a substrate having an electrode in the treatment liquid to form a redox active substance layer on the electrode;
Using the substrate on which the redox active material layer is formed as at least one electrode and holding the redox active material layer and the electrolyte between a pair of opposed electrodes to produce a display element. A method for manufacturing a display element.
JP2008313063A 2008-12-09 2008-12-09 Display element and method for manufacturing the same Pending JP2010139540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313063A JP2010139540A (en) 2008-12-09 2008-12-09 Display element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313063A JP2010139540A (en) 2008-12-09 2008-12-09 Display element and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010139540A true JP2010139540A (en) 2010-06-24

Family

ID=42349777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313063A Pending JP2010139540A (en) 2008-12-09 2008-12-09 Display element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010139540A (en)

Similar Documents

Publication Publication Date Title
JP2010122651A (en) Display element
JP5177219B2 (en) Electrochemical display element
JP5131278B2 (en) Display element
JP2011085622A (en) Electrolyte and electrochemical device
WO2011096298A1 (en) Display element
JP2010117635A (en) Display element
JP2010085570A (en) Electrochemical device and polymeric material
JP2010085569A (en) Electrochemical device and polymeric material
JPWO2009013976A1 (en) Display element
JP2009300494A (en) Electrode for electrochemical display element and display element
JP2011150054A (en) Display element
JP2011081194A (en) Display element
JP2010085568A (en) Electrochemical device and polymeric material
JPWO2010058684A1 (en) Display element
JP2010243632A (en) Method of driving display element and display element
JP2009288409A (en) Display element
JP2009163177A (en) Display element
JP2010139540A (en) Display element and method for manufacturing the same
JP5488600B2 (en) Display element
JP5347516B2 (en) Method for manufacturing electrochemical display element
JP2010139541A (en) Display element
JP2011017837A (en) Display element
JPWO2010010814A1 (en) Display element and method for forming porous layer of display element
JP2011048234A (en) Display element
JP2010164861A (en) Display element