JP2010139306A - Measuring device - Google Patents

Measuring device Download PDF

Info

Publication number
JP2010139306A
JP2010139306A JP2008314274A JP2008314274A JP2010139306A JP 2010139306 A JP2010139306 A JP 2010139306A JP 2008314274 A JP2008314274 A JP 2008314274A JP 2008314274 A JP2008314274 A JP 2008314274A JP 2010139306 A JP2010139306 A JP 2010139306A
Authority
JP
Japan
Prior art keywords
light
target object
light receiving
light beam
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008314274A
Other languages
Japanese (ja)
Inventor
Shoichi Shimada
尚一 島田
Yutaka Uda
豊 宇田
Satoshi Kiyono
慧 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008314274A priority Critical patent/JP2010139306A/en
Publication of JP2010139306A publication Critical patent/JP2010139306A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a position detection device capable of positioning accurately the tip of an object on a target object surface, such as a processing tool on a processing surface. <P>SOLUTION: A light source light flux is focused on a desired position on the target object surface, and an intensity change of reflected light and a change of a beam direction distribution of a reflected light flux which are generated when bringing the object tip close to the focused point are detected, and the object is brought close to the target object surface with high resolution and positioned. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、測定技術に関し、特に突起部先端の対象物体へ位置決めのための先端位置と先端形状の測定を簡易に高精度に行う測定装置に関する。   The present invention relates to a measurement technique, and more particularly to a measurement apparatus that easily and accurately measures a tip position and a tip shape for positioning on a target object at a tip of a protrusion.

加工精度向上に対する要求の高まりと共に、工作物と工具の相対位置の測定についても、例えば切り始めの精密さの向上などが求められている。現在、工作物の所定の位置に工具の先端を位置決めするために、顕微鏡による工具先端の観察が行われている。更に、工具先端を原子間力顕微鏡の測定可能領域に位置決めできれば、原子間力顕微鏡で先端形状を測定することも出来ることも知られている。しかしながら、顕微鏡観察による工具位置の確認は、その分解能が不十分であることから、試行錯誤による相対位置の確定に多大の時間を要している。   Along with the increasing demand for improvement in machining accuracy, for example, improvement in the precision of the cutting start is required for the measurement of the relative position between the workpiece and the tool. Currently, in order to position the tip of a tool at a predetermined position of a workpiece, the tool tip is observed with a microscope. It is also known that the tip shape can be measured with an atomic force microscope if the tool tip can be positioned in a measurable region of the atomic force microscope. However, since the resolution of the tool position by microscopic observation is insufficient, it takes a long time to determine the relative position by trial and error.

また、光線の焦点位置に工具先端を合わせることで、工具先端の位置原点を知ることも試みられている。この光線の焦点を使った位置決め法では、焦点近傍にある工具先端による光線の遮りによる光量変化を計測する方法が採られている。   It has also been attempted to know the position origin of the tool tip by aligning the tool tip with the focal position of the light beam. In this positioning method using the focal point of the light beam, a method of measuring a change in the amount of light due to the blockage of the light beam by the tool tip near the focal point is employed.

しかしながら、光束の焦点位置を用いる方法では、前記焦点位置と工作機械上の座標と工具先端の位置関係を決めることはできても、工作物の面に対する工具先端の位置は加工を開始するまではわからないという問題がある。また前記焦点に位置決めする際も、工具先端による光線の遮り量だけの計測では位置決め分解能としては十分とはいえなくなっている。   However, in the method using the focal position of the light beam, the positional relationship between the focal position, the coordinates on the machine tool, and the tool tip can be determined. There is a problem of not knowing. Also, when positioning at the focal point, it is not sufficient as positioning resolution to measure only the amount of light shielding by the tool tip.

一方、微小な隙間に入射した光線の回折像から工具先端位置を計測する方法も知られている。この回折像を計測する方法では、図4に示すように、目的物体OBと対象物体面TPとの間の微小隙間に、光源から光束PBを照射して、その回折光線による回折像を受光素子で受光することによって、例えば、正負の一次回折像の間隔と微小隙間の関係から隙間の変化を評価するものである。   On the other hand, a method of measuring the tool tip position from a diffraction image of a light beam incident on a minute gap is also known. In this method of measuring a diffraction image, as shown in FIG. 4, a light beam PB is irradiated from a light source to a minute gap between a target object OB and a target object surface TP, and a diffraction image by the diffraction light is received by a light receiving element. For example, the change in the gap is evaluated from the relationship between the interval between the positive and negative first order diffraction images and the minute gap.

特許文献1には、この原理を用いて、レーザ光源から照射されたレーザ光を、基準プレートの端縁とバイトの端縁とで形成される所定の幅のスリットに照射することで回折光を発生させ、その回折光を光センサで受光して、光強度の差から出る明暗パターンを測定することにより、バイトの位置を求める技術が開示されている。
特開平05−272925号公報
Patent Document 1 uses this principle to irradiate laser light emitted from a laser light source onto a slit having a predetermined width formed by the edge of a reference plate and the edge of a cutting tool. A technique has been disclosed in which the position of a bite is obtained by generating the light, receiving the diffracted light with an optical sensor, and measuring a light / dark pattern resulting from the difference in light intensity.
JP 05-272925 A

しかしながら、特許文献1の従来技術では、光線の波長(例えば青紫色レーザ光では400nm)以下の隙間では光線が透過しないことから、透過光の回折パターンを適切に形成できず、微小な隙間の測定が困難であるという問題がある。又、先端が尖った凸部形状の場合、発生する回折パターンが安定しないため、隙間を測定することが困難であるという問題もある。   However, in the prior art of Patent Document 1, since the light beam does not pass through the gap of the wavelength of the light beam (for example, 400 nm for blue-violet laser light) or less, the diffraction pattern of the transmitted light cannot be appropriately formed, and a minute gap is measured. There is a problem that is difficult. In addition, in the case of a convex shape with a sharp tip, there is also a problem that it is difficult to measure the gap because the generated diffraction pattern is not stable.

本発明は、かかる問題点に鑑み、基準の光束が目的の先端によって遮られることによる受光装置での光量変化だけでなく、基準光束内の光線方向の変化をも検出することで目的物先端の位置を高精度に検出できる装置を提供することを目的とする。   In view of such a problem, the present invention detects not only the change in the amount of light in the light receiving device due to the reference light beam being blocked by the target tip, but also the change in the direction of the light beam in the reference light beam. An object is to provide an apparatus capable of detecting a position with high accuracy.

第1の本発明の測定装置は、小さな点状あるいは細い線状に収束する基準光束を、凸部先端を接近させる対象物体面上の位置に収束させる光源と、前記対象物体面からの反射光束を受光して、前記反射光束の光線方向分布、光束内光線全体の平均的方向、光束の強度および強度分布の少なくとも一つの量を計測する受光装置を備え、前記受光装置の出力に基づいて、前記対象物体面と前記凸部先端との距離を求めることを特徴とする。   The measuring apparatus according to the first aspect of the present invention includes a light source for converging a reference light beam that converges into a small dot or thin line at a position on a target object surface that approaches the tip of a convex portion, and a reflected light beam from the target object surface. A light receiving device that measures at least one of the light beam direction distribution of the reflected light beam, the average direction of all the light rays in the light beam, the intensity of the light beam, and the intensity distribution, and based on the output of the light receiving device, A distance between the target object surface and the tip of the convex portion is obtained.

第2の本発明の測定装置は、小さな点状あるいは細い線状に収束する基準光束を、凸部先端を押し付けた膜状面の反対側面に収束させる光源と、前記膜状面の反対側面からの反射光束を受光して、前記反射光束の光線方向分布、光束内光線全体の平均的方向、光束の強度および強度分布の少なくとも一つの量を計測する受光装置を備え、前記受光装置の出力に応じて、変形した前記膜状面の反対側面の形状を求めることを特徴とする。   A measuring apparatus according to a second aspect of the present invention includes a light source for converging a reference light beam that converges in a small dot shape or a thin line shape on an opposite side surface of a film-like surface pressed against a convex tip, and an opposite side surface of the film-like surface. A light receiving device that measures at least one of the light beam direction distribution of the reflected light beam, the average direction of all the light rays in the light beam, the intensity of the light beam, and the intensity distribution, and outputs to the output of the light receiving device. Accordingly, the shape of the side surface opposite to the deformed film-like surface is obtained.

第1の本発明によれば、前記受光装置が、前記対象物体面からの反射光束を受光して、前記反射光束の光線方向分布、光束内光線全体の平均的方向、光束の強度および強度分布の少なくとも一つの量を計測し、前記受光装置の出力に基づいて、精度良く前記対象物体面と前記凸部先端との距離を求めることができる。   According to the first aspect of the present invention, the light receiving device receives the reflected light beam from the target object surface, and the light beam direction distribution of the reflected light beam, the average direction of all the light beams in the light beam, the intensity and intensity distribution of the light beam. And measuring the distance between the target object surface and the tip of the convex portion with high accuracy based on the output of the light receiving device.

更に、前記受光装置の出力に基づいて、前記凸部先端の形状を求めることもできる。   Furthermore, the shape of the tip of the convex portion can be obtained based on the output of the light receiving device.

第2の本発明によれば、前記受光装置が、前記膜状面の反対側面からの反射光束を受光して、前記反射光束の光線方向分布、光束内光線全体の平均的方向、光束の強度および強度分布の少なくとも一つの量を計測する受光装置を備え、前記受光装置の出力に応じて、精度良く変形した前記膜状面の反対側面の形状を求めることができるので、前記膜状面の変形が前記凸部先端の形状を転写したものであれば、前記凸部先端の形状を求めることができる。   According to the second aspect of the present invention, the light receiving device receives a reflected light beam from an opposite side surface of the film-like surface, and distributes the direction of the reflected light beam, the average direction of all the light rays in the light beam, and the intensity of the light beam. And a light-receiving device that measures at least one amount of the intensity distribution, and according to the output of the light-receiving device, the shape of the opposite side surface of the film-shaped surface can be obtained with high accuracy. If the deformation is a transfer of the shape of the tip of the convex portion, the shape of the tip of the convex portion can be obtained.

前記受光装置は、屈折率の異なる境界面での反射率と入射角度の関係を利用して入射光線の角度を測定すると好ましい。   The light receiving device preferably measures the angle of incident light using the relationship between the reflectance and the incident angle at the boundary surfaces having different refractive indexes.

前記受光装置は、入射光線の平均的な方向と、入射光線の方向分布とを測定すると好ましい。   The light receiving device preferably measures an average direction of incident light and a direction distribution of incident light.

前記受光装置は、分割フォトダイオードを利用した光電式オートコリメータの原理を採用している角度センサであると好ましい。   The light receiving device is preferably an angle sensor that adopts the principle of a photoelectric autocollimator using a split photodiode.

前記受光装置が複数の受光部を有すると好ましい。   The light receiving device preferably has a plurality of light receiving portions.

本発明は、位置決めの目標となる面上の所定の点で小さな点状あるいは細い線状に収束して反射する基準光束の一部または全部が、目的の対象物体先端部によって影響を受けて光線進行方向を変えたことを検知するために、光量検出センサだけでなく、光線方向計測センサによって計測することを特徴とする。   According to the present invention, a part or all of a reference light beam that converges and is reflected in a small dot or thin line at a predetermined point on a positioning target surface is affected by the tip of a target object and is a light beam. In order to detect that the traveling direction has been changed, not only the light quantity detection sensor but also the light beam direction measurement sensor is used.

本発明はまた、位置決めの基準となる目標面が変形可能な薄板であり、前記目標面上の所定の点で小さな点状あるいは細い線状に収束して反射する基準光束の一部または全部が、前記目標面の裏側から押し込まれる目的の対象物体先端部によって影響を受けて光線進行方向を変えたことを検知するために、光量検出センサだけでなく、光線方向計測センサによって計測することを特徴とする。   The present invention is also a thin plate in which a target surface serving as a positioning reference can be deformed, and a part or all of a reference light beam that converges and reflects into a small dot or thin line at a predetermined point on the target surface. In order to detect that the traveling direction of the light beam has been changed by being influenced by the tip of the target object that is pushed from the back side of the target surface, measurement is performed not only by the light amount detection sensor but also by the light beam direction measurement sensor. And

本発明は、前記受光装置における角度検出の原理が分割フォトダイオードを利用した光電式オートコリメータの原理を採用している角度センサであることを特徴とする。   The present invention is characterized in that the principle of angle detection in the light receiving device is an angle sensor adopting the principle of a photoelectric autocollimator using a divided photodiode.

本発明はまた、前記受光装置における角度検出の原理が、屈折率の異なる境界面での反射率と入射角度の関係を利用する角度センサであることを特徴とする。   The present invention is also characterized in that the principle of angle detection in the light receiving device is an angle sensor that uses the relationship between the reflectance and the incident angle at the boundary surfaces having different refractive indexes.

本発明はまた、前記受光装置が複数の受光部からなることを特徴とする。   The present invention is also characterized in that the light receiving device comprises a plurality of light receiving portions.

以下、図面を参照して本発明の実施の形態を参照する。図1(a)は、本発明の測定装置を利用して、凸部先端の一例である工具(以下、目的物体OBとする)を、ワークの被加工面(以下、対象物体面TPとする)に接近させた状態で両者の距離を測定する状態を示す図である。図1(b)は、矢印IAで示す部位を拡大して示す図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A illustrates a workpiece surface (hereinafter referred to as a target object surface TP), which is an example of a tip of a convex portion (hereinafter referred to as a target object OB), using the measurement apparatus of the present invention. It is a figure which shows the state which measures both distance in the state made to approach. FIG.1 (b) is a figure which expands and shows the site | part shown by arrow IA.

図1(a)に示すように、目的物体OBを挟んで対称的に(同じ側でも良い)、対象物体面TPに対して3次元方向に移動可能な保持具(不図示)に、レーザ等の光源LSとレンズLSとからなる光源光束発生部SBGと、受光した光の位置と強度を測定できる受光素子(CCD等)を備えた受光装置RSとが保持されている。目的物体OBは、3次元方向に移動可能な別の保持具(不図示)に保持されて、独立に移動可能となっている。光源LSから出射されたレーザ光LBは、レンズLSを介して収束光となり(小さな点状あるいは細い線状に収束し)、目的物体OBの先端が対象物体面TPに対向する位置に集光され、対象物体面TPの反射光RBは、発散光として受光部RSの受光素子に入射するようになっている。   As shown in FIG. 1A, a holder (not shown) that can move in a three-dimensional direction symmetrically with respect to the target object plane TP, laser, etc. A light source luminous flux generation unit SBG composed of a light source LS and a lens LS and a light receiving device RS including a light receiving element (CCD or the like) capable of measuring the position and intensity of received light are held. The target object OB is held by another holder (not shown) that can move in the three-dimensional direction and can move independently. The laser light LB emitted from the light source LS becomes convergent light via the lens LS (converges into small dots or thin lines), and is condensed at a position where the tip of the target object OB faces the target object plane TP. The reflected light RB of the target object surface TP is incident on the light receiving element of the light receiving unit RS as divergent light.

ここで、不図示の保持具に取り付けた目的物体OBを、図1(b)に示すように、対象物体面TPに接近させるものとする。目的物体OBが、図の実線で示す位置より対象物体面TPより遠いときは、収束光であるレーザ光LBは、目的物体OBに遮られることはなく、よって受光装置RSの受光素子に入射した反射光RBは、いわゆるガウシアン分布の光強度分布を持つ。これを初期状態とする。   Here, it is assumed that the target object OB attached to a holder (not shown) is brought close to the target object plane TP as shown in FIG. When the target object OB is farther from the target object plane TP than the position indicated by the solid line in the figure, the laser beam LB that is convergent light is not blocked by the target object OB, and is thus incident on the light receiving element of the light receiving device RS. The reflected light RB has a light intensity distribution having a so-called Gaussian distribution. This is the initial state.

一方、目的物体OBが、図の実線で示す位置より対象物体面TPに接近したときは、レーザ光LBの一部(図1(b)において斜線で示す部分)が目的物体OBに遮られることとなる。この遮られたレーザ光は、目的物体OBが鏡面に近ければ殆ど吸収されることなく反射する。その反射光の一部は光源LS側に戻るが、その残りは対象物体面TP上で反射したりしながら、目的物体OBの先端と対象物体面TPとの隙間、或いは目的物体OBの先端の周囲を回り込むようにして、受光装置RS側に至り、その受光素子で検出されることとなる。   On the other hand, when the target object OB approaches the target object plane TP from the position indicated by the solid line in the figure, a part of the laser light LB (the part indicated by the oblique line in FIG. 1B) is blocked by the target object OB. It becomes. The blocked laser light is reflected with almost no absorption if the target object OB is close to a mirror surface. A part of the reflected light returns to the light source LS side, and the rest of the reflected light is reflected on the target object surface TP, while the gap between the tip of the target object OB and the target object surface TP or the tip of the target object OB. It goes around the periphery, reaches the light receiving device RS side, and is detected by the light receiving element.

このとき、目的物体OBに遮られなかった残りのレーザ光LBは、対象物体面TPのみで反射して、受光素子RSに入射するので、受光素子から出力される信号は、両者の和に対応するものとなる。即ち、受光装置RSの受光素子に入射した反射光RBの和は、初期状態のガウシアン分布に対し、一方に偏った非対称の形状の光強度分布を持つこととなる(図1(b)の点線参照)。この光強度分布の形状は、目的物体OBの先端と対象物体面TPとの距離に応じて一義的に決定されるので、予め実験やシミュレーション等で、光強度分布の形状と、目的物体OBの先端と対象物体面TPとの距離との関係を求めておくことで、実際の距離を、光強度分布の形状から精度良く求めることができる。尚、目的物体OBや対象物体面TPの表面の反射率に応じて、反射光の光強度分布は変わりうるが、反射率をパラメータとして設定し、実際に用いる目的物体OBや対象物体面TPの反射率を適用すると良い。   At this time, the remaining laser light LB not blocked by the target object OB is reflected only by the target object surface TP and is incident on the light receiving element RS, so that the signal output from the light receiving element corresponds to the sum of the two. To be. That is, the sum of the reflected light RB incident on the light receiving element of the light receiving device RS has a light intensity distribution having an asymmetric shape that is biased toward the Gaussian distribution in the initial state (dotted line in FIG. 1B). reference). Since the shape of the light intensity distribution is uniquely determined according to the distance between the tip of the target object OB and the target object surface TP, the shape of the light intensity distribution and the shape of the target object OB are determined in advance through experiments or simulations. By obtaining the relationship between the distance between the tip and the target object surface TP, the actual distance can be obtained with high accuracy from the shape of the light intensity distribution. Note that the light intensity distribution of the reflected light can be changed according to the reflectance of the surface of the target object OB or the target object plane TP, but the reflectance is set as a parameter and the target object OB or target object plane TP actually used is set. Reflectivity should be applied.

本実施の形態においては、レーザ光LBの焦点位置近傍の目的物体OBによる擾乱を、受光装置RSで観察することになるが、前記焦点を目的物体OBを位置決めする対象である対象物体面TP上に置く事、しかも、前記焦点位置を対象物体面TP上の所定の位置に置くことで、焦点近傍への前記目的物体OBの位置決めがそのまま、目標面に対する3次元的な位置決めとなるので、対象物体面TPが加工面で、目的物体OBが工具先端であれば高精度に工具先端位置を加工面の所定位置に位置決めすることが出来る。例えば、光の特性から、その波長以下の隙間を通過できないため、そのような微小な隙間を光学的に測定することは困難であるとされている。しかしながら本実施の形態によれば、目的物体OBと対象物体面TPとの距離が波長以下となった場合でも、目的物体OBの先端の周囲を回り込んで受光装置RSに到達する光は存在するので、その状態を検出することで、目的物体OBと対象物体面TPとの微小な距離を精度良く測定できる。尚、受光装置にて反射光の強度そのものを測定しても良い。   In the present embodiment, the disturbance due to the target object OB in the vicinity of the focal position of the laser beam LB is observed by the light receiving device RS, but the focus is on the target object plane TP that is a target for positioning the target object OB. In addition, by placing the focal position at a predetermined position on the target object plane TP, the positioning of the target object OB near the focal point becomes the three-dimensional positioning with respect to the target plane. If the object surface TP is the machining surface and the target object OB is the tool tip, the tool tip position can be positioned at a predetermined position on the machining surface with high accuracy. For example, it is said that it is difficult to optically measure such a minute gap because it cannot pass through a gap of the wavelength or less because of the characteristics of light. However, according to the present embodiment, even when the distance between the target object OB and the target object plane TP is equal to or less than the wavelength, there is light that travels around the tip of the target object OB and reaches the light receiving device RS. Therefore, by detecting the state, a minute distance between the target object OB and the target object surface TP can be measured with high accuracy. The intensity of the reflected light itself may be measured with a light receiving device.

図2は、本実施の形態の受光装置RSの一例を説明するための図であり、ここでは反射光の方向を求める。図2において、光源光束発生部SBGは同様であり、受光装置RSは、対物レンズOLと、空気とは屈折率が異なるプリズムPSと、第1の受光部RP1と、第2の受光部RP2とを有する。対象物体面TPからの反射光RBは、対物レンズOLで反射された後、プリズムPS内に入射し、境界面DSで一部の光RB1が反射され、残りの光RB2は屈折して透過する。一部の光RB1は第1の受光部RP1で検出され、残りの光RB2は第2の受光部RP2で検出される。これにより反射光線の角度分を検出する角度センサとして機能する。その原理について説明する。   FIG. 2 is a diagram for explaining an example of the light receiving device RS of the present embodiment. Here, the direction of reflected light is obtained. In FIG. 2, the light source beam generation unit SBG is the same, and the light receiving device RS includes an objective lens OL, a prism PS having a refractive index different from that of air, a first light receiving unit RP1, and a second light receiving unit RP2. Have The reflected light RB from the target object surface TP is reflected by the objective lens OL, then enters the prism PS, a part of the light RB1 is reflected by the boundary surface DS, and the remaining light RB2 is refracted and transmitted. . A part of the light RB1 is detected by the first light receiving unit RP1, and the remaining light RB2 is detected by the second light receiving unit RP2. This functions as an angle sensor that detects the angle of the reflected light beam. The principle will be described.

図7に、高屈折率から低屈折率の境界面における入射角と反射率の関係の一例を示す。図7に示すように、臨界角以上の角度で境界面に入射した光は、100%反射されることとなる。この性質を利用し、図2において、方向を測定すべき拡散する反射光RBを、対物レンズOLを介してプリズムPSに入射させたとき、(図7の例では、p偏光を使うとして、ブリュースター角から臨界角までの約8度が上限で、測定範囲での角度の振れ幅を考慮するとそれより狭くなる)に変えると、その光束内のいずれの光線の前記境界面への入射角が臨界角以上になることも、ブリュースター角以下になることもない状態を実現することができる。従って、測定すべき光束の内のそれぞれの光線は、その方向に応じた反射率で分岐される。また、光束全体としての反射光量(第1の受光部RP1の信号)と透過光量(第2の受光部RP2の信号)の差から、境界面に対する光束全体の平均的な入射角を知ることができるようになる。   FIG. 7 shows an example of the relationship between the incident angle and the reflectance at the boundary surface between the high refractive index and the low refractive index. As shown in FIG. 7, light incident on the boundary surface at an angle greater than the critical angle is reflected by 100%. Using this property, when the diffused reflected light RB whose direction is to be measured in FIG. 2 is incident on the prism PS via the objective lens OL (in the example of FIG. The upper limit is about 8 degrees from the star angle to the critical angle, and it becomes narrower when considering the fluctuation width of the angle in the measurement range.) The incident angle of any ray in the luminous flux to the boundary surface is It is possible to realize a state in which the angle is not greater than the critical angle or less than the Brewster angle. Accordingly, each light beam in the light beam to be measured is branched with a reflectance corresponding to the direction. Further, the average incident angle of the entire light beam with respect to the boundary surface can be known from the difference between the reflected light amount (signal of the first light receiving unit RP1) and the transmitted light amount (signal of the second light receiving unit RP2) as the entire light beam. become able to.

このように、図2に示すような角度検出のできる屈折率の変化する境界面DSを介して光線を受光する構造にすると、第1の受光部RP1と第2の受光部RP2の出力の和から受光部に到達する全光量がわかり、また第1の受光部RP1と第2の受光部RP2の出力の差から対物レンズOLに到達した反射光線の方向がわかる。この光線の方向は、目的物体OBの先端と対象物体面TPとの距離に応じて一義的に決定されるので、光線の方向を求めることで、目的物体OBの先端と対象物体面TPとの距離を精度良く求めることができる。光線の方向は、平均的なものだけを知るものや、方向分布を詳細に知るものまで、受光装置RPに用いる受光素子の選択によって選ぶことが出来るので、必要に応じて精細な光線方向角度情報を得ることが出来る。このような受光装置RSは、分割フォトダイオード(RP1,RP2)を利用した光電式オートコリメータの原理を採用した角度センサとして機能する。尚、受光装置にて反射光束内光線全体の平均的方向を求めても良い。   As described above, when the light is received through the boundary surface DS where the refractive index is changed as shown in FIG. 2, the sum of the outputs of the first light receiving unit RP1 and the second light receiving unit RP2 is obtained. Thus, the total amount of light reaching the light receiving portion can be determined, and the direction of the reflected light beam reaching the objective lens OL can be determined from the difference between the outputs of the first light receiving portion RP1 and the second light receiving portion RP2. Since the direction of this light beam is uniquely determined according to the distance between the tip of the target object OB and the target object surface TP, the direction of the light beam determines the direction between the tip of the target object OB and the target object surface TP. The distance can be obtained with high accuracy. The direction of the light ray can be selected by selecting the light receiving element used for the light receiving device RP, from the one that knows only the average one to the one that knows the direction distribution in detail. Can be obtained. Such a light receiving device RS functions as an angle sensor that adopts the principle of a photoelectric autocollimator that uses split photodiodes (RP1, RP2). Note that an average direction of all rays in the reflected light beam may be obtained by the light receiving device.

幾何光学的理論によれば、目的物体OBが垂直軸線に関して対称な形状であり、図の水平方向に関して合焦点(集光スポット)上にあれば、目的物体が垂直方向に沿って目標点に近づくとき、目的物体OBの表面で反射して方向変化をするレーザ光LBは、光源側と受光装置側とで対称的に生じることになる。水平方向に関して合焦点からずれているときに、目的物体OBを垂直方向に沿って合焦点に近づけると、レーザ光LBと反射光RBの一方だけが影響を受け始めることとなる。   According to the geometric optical theory, if the target object OB has a symmetrical shape with respect to the vertical axis and is on the focal point (condensing spot) with respect to the horizontal direction in the figure, the target object approaches the target point along the vertical direction. At this time, the laser beam LB that is reflected by the surface of the target object OB and changes its direction is generated symmetrically on the light source side and the light receiving device side. When the target object OB is brought close to the focal point along the vertical direction when it is deviated from the focal point in the horizontal direction, only one of the laser beam LB and the reflected light RB starts to be affected.

また別な実施の形態として、受光装置RSの光軸を目的物体OBのない状態での反射光の光軸(基準光軸と呼ぶ)に合わせるだけでなく、目的物体OBからの反射光を異なる方向にある複数の受光装置RSで受光することで、目的物体の影響を受けるために前記基準光軸上にある受光装置RSには届かない方向の光も受光することができるので、立体的な位置情報を高精度に得られることになる。   As another embodiment, not only the optical axis of the light receiving device RS is aligned with the optical axis of the reflected light without the target object OB (referred to as the reference optical axis), but also the reflected light from the target object OB is different. By receiving light with a plurality of light receiving devices RS in the direction, it is possible to receive light in a direction that does not reach the light receiving device RS on the reference optical axis because it is affected by the target object. Position information can be obtained with high accuracy.

図8に示す別な実施の形態では、2次元分岐とその後の検出分岐の様子を光束の中心光線だけで示している。図8において、対物レンズOLを通過した入射光(反射光RB)を50%透過(z方向)させ、50%反射(x方向)させるハーフプリズムHPの透過側に、xz面内で傾斜したプリズム斜面PSyを有するプリズムPS1を配置し、ビームスプリッタBSの反射側に、yz面内で傾斜したプリズム斜面PSxを有するプリズムPS2を配置している。プリズム斜面PSy、PSxは、それより屈折率の低い媒体である空気に接している角度検出境界面であり、分割前の光線の光軸回りに互いに90度回転した関係にある。   In another embodiment shown in FIG. 8, the state of the two-dimensional branch and the subsequent detection branch is shown only by the central ray of the light beam. In FIG. 8, the prism inclined in the xz plane on the transmission side of the half prism HP that transmits incident light (reflected light RB) that has passed through the objective lens OL by 50% (z direction) and reflects 50% (x direction). A prism PS1 having a slope PSy is arranged, and a prism PS2 having a prism slope PSx inclined in the yz plane is arranged on the reflection side of the beam splitter BS. The prism slopes PSy and PSx are angle detection boundary surfaces in contact with air, which is a medium having a lower refractive index, and are in a relationship of being rotated by 90 degrees around the optical axis of the light beam before the division.

ここで、方向を検出すべき入射光が、ビームスプリッタBSに下方より入射した後、z、x方向に分けられ、(検出分岐のための境界面を構成する)プリズムPS1,PS2にそれぞれ向かうものとする。それぞれの光は、(検出分岐のための境界面としての)プリズム斜面PSx、PSyに所定の角度で入射し、反射光と透過光に分けられる。このとき、プリズム斜面PSyの反射光は、受光装置RLD1yで検出され、プリズム斜面PSyの透過光は、受光装置RLD2yで検出される。又、プリズム斜面PSxの反射光は、受光装置RLD1xで検出され、プリズム斜面PSxの透過光は、受光装置RLD2xで検出され、それぞれ受光装置内の受光素子で光強度が電流に変換される。この後、図示されていないが、電流電圧変換回路、差動演算素子により、それぞれの斜面での反射光と透過光の差分が取られるので、これを用いて入射光束の角度を精度良く測定できる。又、この差動演算素子の出力がゼロになるように、プリズムPS1をx軸に平行な軸線回りに回転し、プリズムPS2をy軸に平行な軸線回りに回転し、光線の方向の原点を容易に定めることができる。   Here, incident light whose direction is to be detected is incident on the beam splitter BS from below, and is then divided into z and x directions and directed to the prisms PS1 and PS2 (which constitute a boundary surface for detection branching), respectively. And Each light is incident on the prism inclined surfaces PSx and PSy (as boundary surfaces for detection branching) at a predetermined angle, and is divided into reflected light and transmitted light. At this time, the reflected light of the prism slope PSy is detected by the light receiving device RLD1y, and the transmitted light of the prism slope PSy is detected by the light receiving device RLD2y. The reflected light of the prism inclined surface PSx is detected by the light receiving device RLD1x, and the transmitted light of the prism inclined surface PSx is detected by the light receiving device RLD2x, and the light intensity is converted into a current by the light receiving element in the light receiving device. Thereafter, although not shown in the figure, the difference between the reflected light and the transmitted light on each slope is taken by the current-voltage conversion circuit and the differential arithmetic element, and this can be used to accurately measure the angle of the incident light beam. . Further, the prism PS1 is rotated around an axis parallel to the x axis so that the output of the differential arithmetic element becomes zero, the prism PS2 is rotated around an axis parallel to the y axis, and the origin of the light beam direction is set. Can be easily determined.

図3は、膜状の面を用いて工具の先端のような凸部先端の形状を測定する実施の形態を説明するための図である。膜状の面(あるいは薄い板状の面)EBを目的物体OBの位置決め対象として用いるときは、目的物体OBの先端の位置変化を膜状の面EBの微小変形に置き換えて極小部の角度変化として検出することができるため、目的物体OBの先端を直接観察してその位置を求める場合よりも、先端の位置が高感度に検出できることが期待される。また、光線方向角度の分布を計測する受光装置を用いれば、バイトの先端等の磨耗前後の形状変化なども、変化前後の形状も評価することが出来る。   FIG. 3 is a diagram for explaining an embodiment in which the shape of the tip of a convex portion such as the tip of a tool is measured using a film-like surface. When the film-like surface (or thin plate-like surface) EB is used as a target for positioning the target object OB, the change in the position of the tip of the target object OB is replaced with a minute deformation of the film-like surface EB, and the angle change of the minimum part Therefore, it is expected that the position of the tip can be detected with higher sensitivity than when the tip of the target object OB is directly observed to obtain the position. Further, if a light receiving device that measures the distribution of the light beam direction angle is used, the shape change before and after the wear, such as the tip of the cutting tool, can be evaluated.

ここで、光源装置と受光装置は、上述した実施の形態のものを用いるものとする。図3に示すように、膜状の面EBの背面側から目的物体OBを当接させ、膜状の面EBを押し上げると、目的物体OBの先端形状が膜状の面EBの表面に転写された突出部PPが形成される。かかる変形は弾性変形であると好ましいが、塑性変形でも良い。   Here, the light source device and the light receiving device used in the above-described embodiment are used. As shown in FIG. 3, when the target object OB is brought into contact from the back side of the film-shaped surface EB and the film-shaped surface EB is pushed up, the tip shape of the target object OB is transferred to the surface of the film-shaped surface EB. A protruding portion PP is formed. Such deformation is preferably elastic deformation, but may be plastic deformation.

かかる状態で、膜状の面EBの表面の突出部PPに、不図示の光源からのレーザ光束を集光させ、その際の膜状の面EB上の投射スポットPSの反射光の光強度分布、或いは反射光の方向分布を受光装置RSで測定することで、突出部PPの形状即ち目的物体OBの先端形状を精度良く求めることができる。   In this state, a laser beam from a light source (not shown) is condensed on the protrusion PP on the surface of the film-like surface EB, and the light intensity distribution of the reflected light of the projection spot PS on the film-like surface EB at that time Alternatively, by measuring the direction distribution of the reflected light with the light receiving device RS, the shape of the protrusion PP, that is, the tip shape of the target object OB can be obtained with high accuracy.

尚、目的物体OBの先端を膜状の面EBに近づけながら受光装置での測定を行うと、裏面に接した瞬間から膜状の面EBが変形し始め、それが合焦点からの反射光束の光線方向分布などに現れるので、目的物体OBを膜の裏面に極めて高い位置分解能で接触させることが出来る。合焦点に関する面方向の2次元位置についても、反射光束の光線方向分布の対称性から確認できることになる。   Note that when measurement is performed with the light receiving device while bringing the tip of the target object OB close to the film-shaped surface EB, the film-shaped surface EB starts to be deformed from the moment of contact with the back surface, and this reflects the reflected light beam from the focal point. Since it appears in the light beam direction distribution, the target object OB can be brought into contact with the back surface of the film with extremely high position resolution. The two-dimensional position in the plane direction with respect to the focal point can also be confirmed from the symmetry of the light beam direction distribution of the reflected light beam.

図5は、光源と受光装置とが一体となった先端形状計測装置の概略を示す図であり、予め定めた位置に目的物体OBの先端を置いた状態を示している。光源及び受光装置RSは上述した実施の形態と同様である。ここで、目的物体OBの先端形状によって、その表面で反射するレーザ光LBの反射光の向きが変わり、受光装置RSで求める光線方向分布や光強度分布が変化する。形状そのものを定量的に測定するときの精度は高くなくても、工具などが使用と共に磨耗変形するときには、使用中に、その先端を図5の先端形状計測装置の測定場所に、同じ位置に同じ姿勢で置くと、先端の磨耗の進行が光線方向分布と光強度分布の計測から判定できる。   FIG. 5 is a diagram showing an outline of a tip shape measuring apparatus in which a light source and a light receiving device are integrated, and shows a state where the tip of the target object OB is placed at a predetermined position. The light source and the light receiving device RS are the same as those in the above-described embodiment. Here, depending on the tip shape of the target object OB, the direction of the reflected light of the laser beam LB reflected on the surface of the target object OB changes, and the light beam direction distribution and the light intensity distribution obtained by the light receiving device RS change. Even if the accuracy of measuring the shape itself is not high, when a tool or the like wears and deforms with use, its tip is the same as the measurement position of the tip shape measuring device in FIG. When placed in a posture, the progress of wear of the tip can be determined from the measurement of the light direction distribution and the light intensity distribution.

図6に、スリット幅を測定する計測装置の概略を示す。光源及び受光装置RSは上述した実施の形態と同様である。同様に、スリットSTの幅によって、スリットST内で反射するレーザ光LBの反射光の向きが変わり、受光装置RSで求める光線方向分布や光強度分布が変化する。図6に示すように、光線方向分布と光強度分布を同時に計測する装置では、スリットSTの幅の測定も従来行われている光束の強度のみの計測や回折像の計測よりも高い精度の測定が可能になる。   FIG. 6 shows an outline of a measuring apparatus for measuring the slit width. The light source and the light receiving device RS are the same as those in the above-described embodiment. Similarly, the direction of the reflected light of the laser light LB reflected in the slit ST changes depending on the width of the slit ST, and the light beam direction distribution and the light intensity distribution obtained by the light receiving device RS change. As shown in FIG. 6, in the apparatus that measures the light beam direction distribution and the light intensity distribution at the same time, the measurement of the width of the slit ST is more accurate than the conventional measurement of the intensity of the light beam or the measurement of the diffraction image. Is possible.

対象物体面に光源光束を合焦させて、その号焦点に目的物体を近づけるときの様子を示す図である。It is a figure which shows a mode when a light source light beam is focused on a target object surface, and a target object is brought close to the focal point. 受光部の角度センサとして屈折率の変わる境界面を利用する実施の形態を示す図である。It is a figure which shows embodiment using the interface which a refractive index changes as an angle sensor of a light-receiving part. 目的物体の先端位置と形状により薄膜上に投射されたスポットの反射光の変化を説明する図である。It is a figure explaining the change of the reflected light of the spot projected on the thin film with the front-end | tip position and shape of a target object. 目的物体と対象物体面との隙間における回折像の発生の様子を示す図である。It is a figure which shows the mode of the generation | occurrence | production of the diffraction image in the clearance gap between a target object and a target object surface. 目的物体先端形状の変化を検出する計測装置の概略を示す図である。It is a figure which shows the outline of the measuring device which detects the change of the target object front-end | tip shape. スリット幅を検出する計測装置の概略を示す図である。It is a figure which shows the outline of the measuring device which detects slit width. 高屈折率から低屈折率の境界面における入射角と反射率の関係の一例を示す図である。It is a figure which shows an example of the relationship between the incident angle and the reflectance in the interface surface of a high refractive index to a low refractive index. 2次元的に光線方向角度分布を検出する角度センサの例を示す図である。It is a figure which shows the example of the angle sensor which detects a light beam direction angle distribution two-dimensionally.

符号の説明Explanation of symbols

OB 目的物体
TP 対象物体面
SBG 光源光束発生部
SL 光源
SB 光源光束
SOA 光源光束光軸
RS 受光装置
ROA 受光装置光軸
OL 対物レンズ
DS 角度検出境界面
RP1,RP2 受光部
EB 薄い板、膜
PS 投射スポット
DB 回折光束
ID 回折強度分布
OB target object
TP target object surface
SBG light source beam generator
SL light source
SB luminous flux
SOA light source luminous flux optical axis
RS receiver
ROA receiver optical axis
OL objective lens
DS Angle detection interface
RP1, RP2 light receiving part
EB Thin plate, membrane
PS projection spot
DB Diffracted beam
ID diffraction intensity distribution

Claims (7)

小さな点状あるいは細い線状に収束する基準光束を、凸部先端を接近させる対象物体面上の位置に収束させる光源と、前記対象物体面からの反射光束を受光して、前記反射光束の光線方向分布、光束内光線全体の平均的方向、光束の強度および強度分布の少なくとも一つの量を計測する受光装置を備え、前記受光装置の出力に基づいて、前記対象物体面と前記凸部先端との距離を求めることを特徴とする測定装置。   A light source for converging a reference light beam that converges into a small dot or thin line to a position on the target object surface where the tip of the convex portion approaches, and a reflected light beam from the target object surface is received, and the light beam of the reflected light beam A light receiving device that measures at least one of a direction distribution, an average direction of all rays in the light beam, an intensity of the light beam, and an intensity distribution, and based on an output of the light receiving device, the target object surface and the tip of the convex portion A measuring device characterized by obtaining a distance of 前記受光装置の出力に基づいて、前記凸部先端の形状を求めることを特徴とする請求項1に記載の測定装置。   The measuring device according to claim 1, wherein the shape of the tip of the convex portion is obtained based on the output of the light receiving device. 小さな点状あるいは細い線状に収束する基準光束を、凸部先端を押し付けた膜状面の反対側面に収束させる光源と、前記膜状面の反対側面からの反射光束を受光して、前記反射光束の光線方向分布、光束内光線全体の平均的方向、光束の強度および強度分布の少なくとも一つの量を計測する受光装置を備え、前記受光装置の出力に応じて、変形した前記膜状面の反対側面の形状を求めることを特徴とする測定装置。   A reference light beam that converges into a small dot or thin line is converged on the opposite side of the film-like surface against which the tip of the convex portion is pressed, and a reflected light beam from the opposite side of the film-like surface is received and reflected. A light receiving device that measures at least one of the light beam direction distribution, the average direction of all the light rays in the light beam, the intensity of the light beam, and the intensity distribution; and, depending on the output of the light receiving device, A measuring apparatus characterized by obtaining a shape of an opposite side surface. 前記受光装置は、屈折率の異なる境界面での反射率と入射角度の関係を利用して入射光線の角度を測定することを特徴とする請求項1〜3のいずれかに記載の測定装置。   The measuring device according to claim 1, wherein the light receiving device measures an angle of incident light using a relationship between a reflectance at a boundary surface having a different refractive index and an incident angle. 前記受光装置は、入射光線の平均的な方向と、入射光線の方向分布とを測定することを特徴とする請求項4に記載の測定装置。   The measuring device according to claim 4, wherein the light receiving device measures an average direction of incident light and a direction distribution of incident light. 前記受光装置は、分割フォトダイオードを利用した光電式オートコリメータの原理を採用している角度センサであることを特徴とする請求項1〜5のいずれかに記載の測定装置。   The measuring device according to claim 1, wherein the light receiving device is an angle sensor adopting a principle of a photoelectric autocollimator using a divided photodiode. 前記受光装置が複数の受光部を有することを特徴とする請求項1〜6のいずれかに記載の測定装置。   The measuring device according to claim 1, wherein the light receiving device has a plurality of light receiving portions.
JP2008314274A 2008-12-10 2008-12-10 Measuring device Pending JP2010139306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314274A JP2010139306A (en) 2008-12-10 2008-12-10 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314274A JP2010139306A (en) 2008-12-10 2008-12-10 Measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012286552A Division JP5600730B2 (en) 2012-12-28 2012-12-28 measuring device

Publications (1)

Publication Number Publication Date
JP2010139306A true JP2010139306A (en) 2010-06-24

Family

ID=42349571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314274A Pending JP2010139306A (en) 2008-12-10 2008-12-10 Measuring device

Country Status (1)

Country Link
JP (1) JP2010139306A (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172208A (en) * 1986-01-27 1987-07-29 Osaka Seimitsu Kikai Kk Method for optically measuring shape
JPH04299204A (en) * 1991-03-27 1992-10-22 Toyoda Mach Works Ltd Device for detecting edge of turning tool
JPH05272925A (en) * 1992-03-25 1993-10-22 Toyoda Mach Works Ltd Apparatus for detecting edge of cutting tool
JPH06137847A (en) * 1992-10-23 1994-05-20 Senri Oyo Keisoku Kenkyusho:Kk Scanning optical microscope device
JPH0954099A (en) * 1995-06-05 1997-02-25 Olympus Optical Co Ltd Scanning probe microscope
JP2001269781A (en) * 2000-03-27 2001-10-02 Sumitomo Heavy Ind Ltd Etching method and device stimulated by laser beam and using proximity field optical probe
JP2001305038A (en) * 2000-04-21 2001-10-31 Olympus Optical Co Ltd Scanning near field optical microscope and probe for it
JP2002055041A (en) * 2000-05-29 2002-02-20 Jasco Corp Apparatus for measuring opening of probe and near-field optical microscope using the same
JP2003121123A (en) * 2001-10-15 2003-04-23 Mmc Kobelco Tool Kk Precision shape measuring method using laser beam
JP2003161610A (en) * 2001-11-29 2003-06-06 Satoshi Kiyono Optical measurement device
JP2006184200A (en) * 2004-12-28 2006-07-13 Jasco Corp System for measuring near-field film thickness
JP2007260900A (en) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd Nanometer contact detection method and apparatus for precision machining
JP2008134245A (en) * 2006-11-01 2008-06-12 Hikari Physics Kenkyusho:Kk Instrument and method for measuring tip shape of cutting edge
WO2008129952A1 (en) * 2007-04-17 2008-10-30 Satoshi Kiyono Angle sensor
JP2009156671A (en) * 2007-12-26 2009-07-16 Satoshi Kiyono Light beam direction measuring apparatus and surface shape measuring apparatus

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172208A (en) * 1986-01-27 1987-07-29 Osaka Seimitsu Kikai Kk Method for optically measuring shape
JPH04299204A (en) * 1991-03-27 1992-10-22 Toyoda Mach Works Ltd Device for detecting edge of turning tool
JPH05272925A (en) * 1992-03-25 1993-10-22 Toyoda Mach Works Ltd Apparatus for detecting edge of cutting tool
JPH06137847A (en) * 1992-10-23 1994-05-20 Senri Oyo Keisoku Kenkyusho:Kk Scanning optical microscope device
JPH0954099A (en) * 1995-06-05 1997-02-25 Olympus Optical Co Ltd Scanning probe microscope
JP2001269781A (en) * 2000-03-27 2001-10-02 Sumitomo Heavy Ind Ltd Etching method and device stimulated by laser beam and using proximity field optical probe
JP2001305038A (en) * 2000-04-21 2001-10-31 Olympus Optical Co Ltd Scanning near field optical microscope and probe for it
JP2002055041A (en) * 2000-05-29 2002-02-20 Jasco Corp Apparatus for measuring opening of probe and near-field optical microscope using the same
JP2003121123A (en) * 2001-10-15 2003-04-23 Mmc Kobelco Tool Kk Precision shape measuring method using laser beam
JP2003161610A (en) * 2001-11-29 2003-06-06 Satoshi Kiyono Optical measurement device
JP2006184200A (en) * 2004-12-28 2006-07-13 Jasco Corp System for measuring near-field film thickness
JP2007260900A (en) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd Nanometer contact detection method and apparatus for precision machining
JP2008134245A (en) * 2006-11-01 2008-06-12 Hikari Physics Kenkyusho:Kk Instrument and method for measuring tip shape of cutting edge
WO2008129952A1 (en) * 2007-04-17 2008-10-30 Satoshi Kiyono Angle sensor
JP2009156671A (en) * 2007-12-26 2009-07-16 Satoshi Kiyono Light beam direction measuring apparatus and surface shape measuring apparatus

Similar Documents

Publication Publication Date Title
JP5743123B1 (en) Laser dicing apparatus and dicing method
CN100535767C (en) Focusing leveling measuring method and device
JP2018014510A (en) Position detector and laser processing device
SG173479A1 (en) Method for noncontact measurement of surface shape and device thereof
JP2008275453A (en) Optical displacement measuring apparatus
US20050206905A1 (en) Optical displacement measurement device
TWI411860B (en) Focal position detecting method
KR20160102244A (en) Non-imaging coherent line scanner systems and methods for optical inspection
CN104460247A (en) Alignment device and alignment method
EP3187822B1 (en) Surface shape measuring device
JP6056798B2 (en) Edge detection device
CN104976953A (en) Laser focusing deviation detection device
CN204064260U (en) A kind of optics self-focusing for free form surface topography measurement is popped one&#39;s head in
JP2016139726A (en) Laser dicing device
JP2012194085A (en) Edge detection apparatus
TW201222055A (en) Auto-focusing module and method applicable thereto
JP5600730B2 (en) measuring device
JP4652745B2 (en) Optical displacement measuring instrument
JP5295900B2 (en) Tilt sensor
JP2010139306A (en) Measuring device
JP2010096570A (en) Profilometer
JP6569187B2 (en) Position detection device
TWI617384B (en) Focusing point detecting device
JP2005326324A (en) Apparatus surface roughness measuring device and method
JP6791788B2 (en) Shape measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820