JP2003121123A - Precision shape measuring method using laser beam - Google Patents

Precision shape measuring method using laser beam

Info

Publication number
JP2003121123A
JP2003121123A JP2001317197A JP2001317197A JP2003121123A JP 2003121123 A JP2003121123 A JP 2003121123A JP 2001317197 A JP2001317197 A JP 2001317197A JP 2001317197 A JP2001317197 A JP 2001317197A JP 2003121123 A JP2003121123 A JP 2003121123A
Authority
JP
Japan
Prior art keywords
slit
measured
laser beam
rotary tool
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001317197A
Other languages
Japanese (ja)
Other versions
JP3540301B2 (en
Inventor
Takashi Miyoshi
隆志 三好
Satoru Takahashi
哲 高橋
Soichiro Sagane
総一郎 砂金
Takashi Harada
孝 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MMC Kobelco Tool Co Ltd
Makino Milling Machine Co Ltd
Original Assignee
MMC Kobelco Tool Co Ltd
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MMC Kobelco Tool Co Ltd, Makino Milling Machine Co Ltd filed Critical MMC Kobelco Tool Co Ltd
Priority to JP2001317197A priority Critical patent/JP3540301B2/en
Publication of JP2003121123A publication Critical patent/JP2003121123A/en
Application granted granted Critical
Publication of JP3540301B2 publication Critical patent/JP3540301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a precision shape measuring method using a laser beam in which the laser beam can be irradiated precisely and easily at a prescribed part to be measured in an extremely small region so as to enhance its measurement accuracy. SOLUTION: A reference plate 1 is installed to be adjacent to a measuring object T, a slit S which is extended between the reference plate 1 and the measuring object T is formed, the thin and flat sheetlike laser beam L in a direction in which the slit S is extended is irradiated toward the part Q to be measured at the measuring object T on the slit S, and a diffraction pattern formed by the laser beam L passed through the slit S in the part Q to be measured is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばボールエン
ドミルやエンドミル、ツイストドリル等の回転工具を測
定対象物として、その切刃部の形状を精密に測定したり
するための、レーザ光を用いた精密形状測定方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a laser beam for precisely measuring the shape of a cutting edge portion of a rotary tool such as a ball end mill, an end mill, or a twist drill as an object to be measured. The present invention relates to a precise shape measuring method.

【0002】[0002]

【従来の技術】このような回転工具の切刃部の形状を測
定するものとしては、例えば特開平6−109440号
公報に、レーザ光を切刃部の被測定部位に走査して、遮
蔽されたこのレーザ光の明暗を受光素子によって計測す
ることにより、上記切刃部の寸法を測定するものが提案
されており、また特開平6−137842号公報には、
画像処理装置に接続されたTVカメラを有する工具顕微
鏡を用いて、切刃部輪郭上の複数の被測定部位におい
て、切刃の位置が上記工具顕微鏡の焦点位置に合致する
ように回転工具をその回転軸線回りに回転させ、その座
標を計測することによって切刃部の寸法や形状を測定す
るものが提案されている。しかしながら、これらの測定
方法や装置では、その測定精度が受光素子やTVカメラ
の解像度によって制限されるため、より精密な測定を行
うことは困難である。
2. Description of the Related Art As a method for measuring the shape of the cutting edge portion of such a rotary tool, for example, in Japanese Patent Laid-Open No. 6-109440, laser light is scanned over a measured portion of the cutting edge portion to be shielded. It has been proposed to measure the size of the cutting edge portion by measuring the brightness of the laser light with a light receiving element, and JP-A-6-137842 discloses that
Using a tool microscope having a TV camera connected to the image processing device, a rotary tool is provided so that the positions of the cutting edges match the focal positions of the tool microscope at a plurality of measurement sites on the contour of the cutting edge. It has been proposed to measure the size and shape of the cutting edge portion by rotating around a rotation axis and measuring the coordinates thereof. However, in these measuring methods and devices, the measuring accuracy is limited by the resolution of the light receiving element or the TV camera, and thus it is difficult to perform more precise measuring.

【0003】その一方で、例えば特開平5−27292
5号公報には、バイトの端縁(切刃)の形状を測定する
ものとして、このバイト端縁形状に略対応した形状の端
縁を有する基準プレートを設けてこれらの端縁同士の間
に幅の狭いスリットを形成し、このスリット上の被測定
部位にレーザ光源からレーザ光を照射して回折させるこ
とにより、その回折パターンをCCD等の光センサによ
って計測して演算処理するものが提案されている。しか
して、このような回折パターンにおいては、その明暗の
光強度の分布が上記スリットの大きさによって決定され
るので、当該公報記載の測定方法および測定装置では、
予め1つの基準プレートでスリット幅を変えて回折パタ
ーンのスリット幅方向各位置における光強度とスリット
幅とを計測して入力しておき、同じ基準プレートを用い
て測定対象物となるバイトの端縁を測定することによ
り、この入力されたデータに基づいて基準プレートに対
するバイト端縁の位置を算出するようにしている。
On the other hand, for example, Japanese Unexamined Patent Publication No. 5-27292.
In Japanese Patent No. 5 publication, as a means for measuring the shape of the edge (cutting edge) of a cutting tool, a reference plate having an edge having a shape substantially corresponding to the shape of the cutting edge is provided, and a reference plate is provided between these edges. A method is proposed in which a narrow slit is formed, laser light is emitted from a laser light source to a measurement site on the slit to diffract it, and the diffraction pattern is measured by an optical sensor such as a CCD to perform arithmetic processing. ing. However, in such a diffraction pattern, since the distribution of the light intensity of the light and darkness thereof is determined by the size of the slit, in the measurement method and the measurement device described in the publication,
The slit width is changed in advance by one reference plate, and the light intensity and the slit width at each position in the slit width direction of the diffraction pattern are measured and input, and the edge of the bite to be measured using the same reference plate. Is measured to calculate the position of the bite edge with respect to the reference plate based on the input data.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この公
報(特開平5−272925号)に記載された測定方法
では、レーザ光源から発せられたレーザ光を上記スリッ
トを通過させて回折させるに際し、このスリット上に円
形の領域が形成されるように上記レーザ光を照射してい
る。しかるに、このように円形の領域が形成されるよう
にレーザ光を照射する場合において、明瞭な回折パター
ンが得られるようにレーザ光が照射される円形領域を小
さく限定すると、そのような照射領域の小さいレーザ光
を幅の狭い上記スリットに正確に照射するには、高度の
熟練を要するような微妙な調整が余儀なくされ、この調
整作業に多くの時間と労力とを要したり、場合によって
はレーザ光が所定に被測定部位からずれて回折パターン
を得られなくなったりするおそれがある。その一方で、
これとは逆に、このスリットを十分網羅する広い円形領
域にレーザ光を照射するようにしたのでは、このスリッ
トが延びる方向において該スリットを通過するレーザ光
の範囲も広がってしまい、所定の被測定部位における回
折パターンを正確に得ることが困難となってしまう。
However, in the measuring method described in this publication (Japanese Patent Laid-Open No. 5-272925), when the laser light emitted from the laser light source is passed through the slit and diffracted, this slit is used. The laser light is applied so that a circular region is formed on the top. However, in the case of irradiating a laser beam so that a circular region is formed as described above, if the circular region irradiated with the laser beam is limited to be small so as to obtain a clear diffraction pattern, such an irradiation region is In order to accurately irradiate the narrow slit with a small laser beam, delicate adjustment that requires a high degree of skill is inevitable, and this adjustment work requires a lot of time and labor, and in some cases laser There is a possibility that the light may deviate from the measurement site in a predetermined manner and a diffraction pattern may not be obtained. On the other hand,
On the contrary, if the laser light is irradiated to a wide circular area that sufficiently covers the slit, the range of the laser light passing through the slit in the extending direction of the slit is also widened, and a predetermined target area is irradiated. It becomes difficult to accurately obtain the diffraction pattern at the measurement site.

【0005】本発明は、このような背景の下になされた
もので、このようなレーザ光を用いた精密形状測定方法
において、レーザ光を所定の被測定部位に極小さな範囲
で確実に、しかも容易に照射することを可能として、測
定精度のより一層の向上を図ることを目的としている。
The present invention has been made under such a background, and in a precision shape measuring method using such a laser beam, the laser beam can be reliably applied to a predetermined measurement site in an extremely small range, and further, The purpose is to make it possible to easily irradiate and to further improve the measurement accuracy.

【0006】[0006]

【課題を解決するための手段】上記課題を解決して、こ
のような目的を達成するために、本発明は、測定対象物
に隣接して基準プレートを設けて、この基準プレートと
上記測定対象物との間に延びるスリットを形成し、この
スリット上における上記測定対象物の被測定部位に向け
て、該スリットが延びる方向に薄く偏平したシート状の
レーザ光を照射することにより、上記被測定部位におい
てスリットを通過した上記レーザ光がなす回折パターン
を計測することを特徴とする。すなわち、本発明では、
測定対象物と基準プレートとの間に形成される上記スリ
ットに、このスリットが延びる方向に潰れるように薄く
偏平したシート状のレーザ光を照射してその回折パター
ンを計測しているので、このシート状のレーザ光をスリ
ットに交差させるように照射することにより、狭い幅の
スリットにも確実にレーザ光を照射して確実に回折パタ
ーンを計測することができる一方、レーザ光の照射範囲
がスリットの延びる方向に広がることはなく、所定の被
測定部位において明瞭な回折パターンを得ることができ
る。
In order to solve the above problems and to achieve such an object, the present invention provides a reference plate adjacent to an object to be measured, and the reference plate and the object to be measured. By forming a slit extending between the object and the measurement site of the measurement object on the slit, by irradiating a thin flat sheet laser light in the direction in which the slit extends, the measurement target It is characterized in that a diffraction pattern formed by the laser light that has passed through the slit at the site is measured. That is, in the present invention,
Since the slit formed between the object to be measured and the reference plate is irradiated with thin flat sheet-like laser light so as to be crushed in the direction in which the slit extends, its diffraction pattern is measured, so this sheet By irradiating the slit-shaped laser light so that it crosses the slit, it is possible to reliably irradiate the narrow-width slit with the laser light and measure the diffraction pattern with certainty. It does not spread in the extending direction, and a clear diffraction pattern can be obtained at a predetermined measurement site.

【0007】さらに、上記測定対象物が、特開平5−2
72925号公報のバイトのように被測定部位となる切
刃が平面上に位置する単純な形状のものではなく、上記
特開平6−109440号公報や特開平6−13784
2号公報のように切刃が立体的に複雑な形状をなすボー
ルエンドミルやエンドミル、ツイストドリル等の回転工
具である場合でも、本発明では、この回転工具の切刃部
に隣接して上記基準プレートを設けて上記スリットを該
回転工具の回転軸線方向に向けて延びるように形成し、
このスリット上の複数の上記被測定部位において、上記
回転工具を上記回転軸線回りに回転しつつ該被測定部位
に向けて上記レーザ光を照射して、上記回転工具の回転
位置に応じた上記回折パターンを計測することにより、
かかる複雑な立体形状をなす測定対象物に対しても精密
な形状測定を図ることが可能となる。すなわち、このよ
うに回転工具を回転しつつスリット上の複数の被測定部
位においてその回転位置における回折パターンを計測す
ることにより、各被測定部位ごとに上記回転軸線に直交
する測定対象物の断面形状を把握することができるの
で、これらの測定結果を回転軸線方向に連続させること
によって測定対象物たる回転工具の切刃部全体の形状を
正確に測定することができるのである。
Further, the object to be measured is disclosed in Japanese Patent Laid-Open No. 5-2.
It is not a simple shape in which the cutting edge to be measured is located on a plane like the bite of Japanese Patent No. 72925, but the above-mentioned Japanese Patent Laid-Open Nos. 6-109440 and 6-13784.
Even when the cutting edge is a rotary tool such as a ball end mill, an end mill, or a twist drill having a three-dimensionally complicated shape as in Japanese Patent Publication No. 2), in the present invention, the above-mentioned reference is provided adjacent to the cutting edge portion of this rotary tool. A plate is provided to form the slit so as to extend in the direction of the rotation axis of the rotary tool,
At the plurality of measurement sites on the slit, the laser beam is irradiated toward the measurement site while rotating the rotary tool around the rotation axis, and the diffraction according to the rotational position of the rotary tool is performed. By measuring the pattern,
It is possible to perform precise shape measurement even on a measurement object having such a complicated three-dimensional shape. That is, by measuring the diffraction pattern at the rotational position at the plurality of measurement sites on the slit while rotating the rotary tool in this way, the cross-sectional shape of the measurement object orthogonal to the rotation axis for each measurement site. Since it is possible to grasp the above, it is possible to accurately measure the overall shape of the cutting edge portion of the rotary tool, which is the measurement object, by making these measurement results continuous in the rotation axis direction.

【0008】ここで、上記回折パターンを計測するに
は、このシート状のレーザ光の幅方向に延びるラインセ
ンサを用いるのが望ましい。すなわち、例えば上記特開
平5−272925号公報では、この回折パターンを計
測する光センサとして平面状のCCDエリアセンサを用
いているが、かかるエリアセンサは高価な割にはその計
測可能な範囲が小さく、例えばレンズを介してこの小さ
な計測範囲内に回折パターンを納めようとしても、レン
ズとセンサとを高精度に配置しなければ計測範囲からず
れて測定が不可能となってしまうのに対し、CCD等の
ラインセンサは計測範囲の大きなものが比較的安価に入
手することができ、これによってより高精度の測定を簡
便かつ低廉に可能とすることができるのである。また、
上記基準プレートの上記被測定部位側を向いて上記スリ
ットを形成する端縁は、この被測定部位側に向けて断面
先細りとなるナイフエッジ状に形成するのが望ましく、
これによって一層明瞭な回折パターンを得ることが可能
となる。
Here, in order to measure the diffraction pattern, it is desirable to use a line sensor extending in the width direction of the sheet-shaped laser light. That is, for example, in JP-A-5-272925, a planar CCD area sensor is used as an optical sensor for measuring the diffraction pattern, but such an area sensor is expensive but its measurable range is small. For example, even if an attempt is made to fit a diffraction pattern into this small measurement range via a lens, measurement cannot be performed because the lens and the sensor are not accurately arranged, but the CCD cannot be measured. A line sensor having a large measuring range can be obtained at a relatively low cost, and thus a highly accurate measurement can be easily and inexpensively performed. Also,
The edge forming the slit facing the measured portion side of the reference plate is preferably formed in the shape of a knife edge having a tapered cross section toward the measured portion side,
This makes it possible to obtain a clearer diffraction pattern.

【0009】さらに、上記スリットの幅bxは、これが
大きすぎると明瞭な回折パターンが得られなくなるの
で、小さ目に設定するのが望ましいが、小さくしすぎる
とS/N比が悪くなり、また基準プレートと測定対象物
とが接触しないように間隙調整をするのが難しくなる。
このため、上記スリットの幅bxは0.01〜0.1mm
の範囲に設定されるのが望ましい。すると図6の説明で
後述するが、スリット幅bxの変化に対する回折パター
ンの1次明輪までの距離R1の変化率が大きく、すなわ
ち測定分解能が高く、かつスリット幅の間隙調整も容易
である。また、上記シート状のレーザ光の幅Wは、上記
スリット幅bxを上回ってその幅方向両端部が基準プレ
ートと測定対象物とに遮られる状態となっていれば良
く、すなわちこのレーザ光の幅が小さすぎると、その幅
方向の一端が基準プレートや測定対象物に当たらずに回
折パターンが不明瞭となるおそれが生じるが、その一方
でこのレーザ光の幅が大きすぎても、測定には不要なレ
ーザ光を照射しなければならなくなるため、好ましくな
い。このため、レーザ光幅Wは上記スリット幅bxの2
倍以上で測定対象物の被測定部位の幅寸法以下の範囲内
に設定されるのが望ましい。これによりレーザ光の照射
位置を決める作業が容易となる。更に、上記シート状の
レーザ光の厚みbyは、小さい程測定対象物の形状を正
確に測定でき、実用上は0.005〜0.1mmの範囲内
に設定されるのが望ましい。
Further, if the width bx of the slit is too large, a clear diffraction pattern cannot be obtained, so it is desirable to set it to a small value, but if it is too small, the S / N ratio deteriorates, and the reference plate It becomes difficult to adjust the gap so as not to contact the measurement object.
Therefore, the width bx of the slit is 0.01 to 0.1 mm.
It is desirable to set to the range of. Then, as will be described later with reference to FIG. 6, the change rate of the distance R1 to the first bright ring of the diffraction pattern with respect to the change of the slit width bx is large, that is, the measurement resolution is high, and the gap adjustment of the slit width is easy. The width W of the sheet-shaped laser light may be larger than the slit width bx so that both ends in the width direction are shielded by the reference plate and the measurement object, that is, the width of the laser light. If is too small, one end in the width direction may not hit the reference plate or the object to be measured, and the diffraction pattern may become unclear, but on the other hand, if the width of this laser beam is too large, it is not suitable for measurement. It is not preferable because unnecessary laser light has to be emitted. Therefore, the laser beam width W is 2 times the slit width bx.
It is desirable to set the width within a range equal to or more than the width and less than or equal to the width dimension of the measured portion of the measurement object. This facilitates the work of determining the irradiation position of the laser light. Further, the smaller the thickness by of the sheet-shaped laser beam is, the more accurately the shape of the object to be measured can be measured, and in practice it is desirable to be set within the range of 0.005 to 0.1 mm.

【0010】[0010]

【発明の実施の形態】図1ないし図7は、本発明の一実
施形態に係わるレーザ光を用いた精密形状測定装置の概
略を示すものであり、以下、これらの図を用いて本発明
の実施の形態について説明する。本実施形態では、測定
対象物として、ボールエンドミルやエンドミル、あるい
はツイストドリルなど、その切刃部の外周に切屑排出用
の螺旋溝が形成された回転工具Tを用いて、この切刃部
の形状を測定している。すなわち、図1ないし図3に示
すように、この回転工具Tは、その回転軸線Oを固定し
た状態で該回転軸線O回りに回転可能に支持され、か
つ、その回転位置がロータリエンコーダ等の回転位置検
出手段によって検出可能とされる一方、この回転工具T
の外周に隣接して薄肉の長方形平板状の基準プレート1
が、上記回転軸線Oを含む平面P上に位置するように、
かつその回転工具T側を向く端縁1aが回転軸線Oと平
行になるようにして固定されて設けられていて、この端
縁1aと回転工具Tの外周面との間に、上記回転軸線O
に平行に延びるスリットSが形成されている。ただし、
図2および図3において上記回転工具Tは円柱状に簡略
化されて示されている。また、基準プレート1の上記端
縁1aは、その先端、すなわち回転工具T側に向かうに
従い、図4に示すようにその一方の側面1bが他方の側
面1cに向けて傾斜して漸次薄肉となるように形成さ
れ、回転軸線Oに直交する断面が先細りとなるナイフエ
ッジ状とされている。
1 to 7 show an outline of a precision shape measuring apparatus using a laser beam according to an embodiment of the present invention. Hereinafter, the present invention will be described with reference to these drawings. An embodiment will be described. In the present embodiment, as the measuring object, a rotary tool T having a spiral groove for discharging chips formed on the outer periphery of the cutting edge portion such as a ball end mill, an end mill, or a twist drill is used, and the shape of this cutting edge portion is used. Is being measured. That is, as shown in FIGS. 1 to 3, the rotary tool T is rotatably supported around the rotation axis O while the rotation axis O is fixed, and the rotation position of the rotary tool T is the rotation of a rotary encoder or the like. The rotary tool T can be detected by the position detecting means.
Adjacent to the outer circumference of the reference plate 1 which is a thin rectangular flat plate
Is located on a plane P including the rotation axis O,
Further, the end edge 1a facing the rotary tool T side is fixedly provided so as to be parallel to the rotation axis O, and the rotation axis O is provided between the end edge 1a and the outer peripheral surface of the rotary tool T.
A slit S extending parallel to is formed. However,
2 and 3, the rotary tool T is shown in a simplified columnar shape. Further, the edge 1a of the reference plate 1 is gradually thinned as it goes toward the tip, that is, the rotary tool T side, and one side surface 1b thereof is inclined toward the other side surface 1c as shown in FIG. The cross section perpendicular to the rotation axis O is formed into a knife edge shape.

【0011】さらに、この回転工具Tおよび基準プレー
ト1を間にしてその両側には、基準プレート1の上記一
方の側面1b側にフーリエ変換レンズ2を介してCCD
ラインセンサ3が、また基準プレート1の他方の側面1
c側には測定領域限定用の結像レンズ4を介して測定領
域限定用の遮蔽板5が、それぞれ上記平面Pに平行とな
るように配設されており、この遮蔽板5のさらに外側に
は該平面Pに垂直にレーザ光Lを発する図示されないレ
ーザ光源が設けられている。そして、上記遮蔽板5に
は、上記スリットSが延びる方向に潰れるようにして薄
く偏平した極細長い方形あるいは略直線状の開口部5a
が、上記回転軸線Oに直交する平面に沿って延びるよう
に形成されており、この開口部5aを通過することによ
り、上記レーザ光Lもまた、スリットSが延びる方向に
偏平した極薄い平坦なシート状となって、図3に示すよ
うにスリットS上の回転工具Tの被測定部位Qに、該ス
リットSに直交するように、かつこのスリットSをまた
いでその両端部が上記基準プレート1と回転工具Tとに
遮られるように、上記結像レンズ4を介して幅Wで照射
される。
Further, the rotary tool T and the reference plate 1 are interposed between the CCD and the Fourier transform lens 2 on both sides of the reference plate 1 on the side surface 1b side.
The line sensor 3 also includes the other side surface 1 of the reference plate 1.
A shield plate 5 for limiting the measurement area is arranged on the c side through an imaging lens 4 for limiting the measurement area so as to be parallel to the plane P, and further outside the shield plate 5. Is provided with a laser light source (not shown) that emits laser light L perpendicular to the plane P. Then, in the shielding plate 5, an extremely elongated rectangular or substantially linear opening 5a which is thinly flattened so as to be collapsed in the direction in which the slit S extends.
Are formed so as to extend along a plane orthogonal to the rotation axis O, and by passing through the opening 5a, the laser light L is also flat and extremely flat in the direction in which the slit S extends. In the form of a sheet, as shown in FIG. 3, the measured position Q of the rotary tool T on the slit S is orthogonal to the slit S, and the both ends of the slit S are crossed over the reference plate 1. And a width W is irradiated through the imaging lens 4 so as to be blocked by the rotary tool T.

【0012】一方、この遮蔽板5とは反対側に設けられ
る上記ラインセンサ3は、上記レーザ光Lの光軸C上に
あって、シート状とされた該レーザ光Lの幅方向(図1
および図4にあっては上下方向、図2にあっては図面に
直交する方向、図3にあっては左右方向)に延びるよう
に配設され、また上記フーリエ変換レンズ2は光軸C方
向にあってこのラインセンサ3と基準プレート1との中
央に配設されており、上記スリットSを通過して回折し
たレーザ光Lの回折パターンは、図1および図4に示す
ようにこのフーリエ変換レンズ2を介して上記ラインセ
ンサ3上に沿って延びるように形成されることとなる。
なお、これらラインセンサ3およびフーリエ変換レンズ
2と上記レーザ光源、遮蔽板5、および結像レンズ4と
は、光軸Cに沿って直線状とされた上述の位置関係を維
持したまま、スリットSが延びる方向に沿って一体に移
動可能とされており、その移動位置もまたリニアエンコ
ーダ等の検出手段によって検出可能とされている。
On the other hand, the line sensor 3 provided on the opposite side of the shielding plate 5 is on the optical axis C of the laser light L and is in the sheet width direction of the laser light L (see FIG. 1).
4 is arranged so as to extend in the vertical direction, in FIG. 2, the direction orthogonal to the drawing, and in FIG. 3, the horizontal direction), and the Fourier transform lens 2 is arranged in the optical axis C direction. The diffraction pattern of the laser beam L, which is arranged in the center between the line sensor 3 and the reference plate 1 and is diffracted after passing through the slit S, is obtained by the Fourier transform as shown in FIGS. It is formed so as to extend along the line sensor 3 via the lens 2.
The line sensor 3 and the Fourier transform lens 2, the laser light source, the shield plate 5, and the imaging lens 4 maintain the above-described positional relationship linear along the optical axis C and the slit S. Can be integrally moved along the extending direction, and the moving position can also be detected by a detecting means such as a linear encoder.

【0013】しかして、図4に示すようにこのラインセ
ンサ3が延びる方向をx方向としたときの該x方向にお
ける上記回折パターンの強度分布I(x)は、上記被測定
部位QにおけるスリットSの幅(基準プレート1の端縁
1aの先端と平面P上における回転工具Tとの間隔)を
bxとし、また被測定部位Qにおけるシート状のレーザ
光Lの厚さ(レーザ光Lの回転軸線O方向の厚さ)をb
yとし、フーリエ変換レンズ2とラインセンサ3および
基準プレート1との間隔をfとし、レーザ光Lの波長を
λとすると、次式数1によって与えられる。また、例え
ば被測定部位Qにおけるレーザ光Lの厚さbyが80μ
m、レーザ光Lの波長λが0.6328μm、フーリエ
変換レンズ2とラインセンサ3および基準プレート1と
の間隔fが100.0mmのとき、上記光軸C、すなわち
回折パターンの0次明輪のピークから、該回折パターン
の1次明輪のピークまでの距離R1と上記スリットSの
幅bxとの関係は図5に示すとおりとなり、この距離R1
の幅bxに対する変化率と幅bxとの関係は図6に示すと
おりとなる。
As shown in FIG. 4, the intensity distribution I (x) of the diffraction pattern in the x direction when the direction in which the line sensor 3 extends is defined as the x direction is determined by the slit S in the measured portion Q. Is defined as bx (the distance between the tip of the edge 1a of the reference plate 1 and the rotary tool T on the plane P), and the thickness of the sheet-shaped laser light L at the measured portion Q (the rotation axis of the laser light L). Thickness in O direction)
Let y be the distance between the Fourier transform lens 2 and the line sensor 3 and the reference plate 1, and let the wavelength of the laser light L be λ. Further, for example, the thickness by of the laser beam L at the measurement site Q is 80 μm.
m, the wavelength λ of the laser light L is 0.6328 μm, and the distance f between the Fourier transform lens 2 and the line sensor 3 and the reference plate 1 is 100.0 mm, the optical axis C, that is, the 0th order bright ring of the diffraction pattern. The relationship between the distance R1 from the peak to the peak of the first-order bright ring of the diffraction pattern and the width bx of the slit S is as shown in FIG.
The relationship between the change rate and the width bx with respect to the width bx is as shown in FIG.

【0014】[0014]

【数1】 [Equation 1]

【0015】従って、このようにレーザ光Lの回折パタ
ーンを用いた本実施形態の測定方法においては、これら
図5および図6に示されるように上記スリット幅bxが
小さくなるほど、このスリット幅bxの変化に対する上
記1次明輪までの距離R1の変化および変化率がともに
大きくなり、例えばスリット幅bxが30μmのとき、
該スリット幅bxの変化に対して距離R1は約100倍の
変化率となる。このため、CCDラインセンサとしては
一般的な7μm画素のものを上記ラインセンサ3として
用いたとしても、この1次明輪のピーク位置を正確に検
出できれば、サブミクロン(0.07μm)オーダーの
測定分解能を得ることができ、より高精度の測定を図る
ことが可能となる。スリット幅bxが更に小さくなると
レーザ光量が小さくなり、好ましくない。スリット幅b
xが0.1mmのときR1は約10倍の変化率となり、これ
より大きいスリット幅では測定分解能が悪くなり、スリ
ット幅は実用上0.01〜0.1mmが望ましい。
Therefore, in the measuring method of the present embodiment using the diffraction pattern of the laser beam L as described above, as the slit width bx becomes smaller as shown in FIGS. 5 and 6, the slit width bx becomes smaller. Both the change and the change rate of the distance R1 to the first bright ring with respect to the change become large. For example, when the slit width bx is 30 μm,
The change rate of the distance R1 is about 100 times the change of the slit width bx. Therefore, even if a CCD line sensor having a general 7 μm pixel is used as the line sensor 3, if the peak position of the primary bright ring can be accurately detected, measurement on the order of submicron (0.07 μm) is possible. It is possible to obtain the resolution, and it is possible to measure with higher accuracy. If the slit width bx becomes smaller, the amount of laser light becomes smaller, which is not preferable. Slit width b
When x is 0.1 mm, R1 has a rate of change of about 10 times, and with a slit width larger than this, the measurement resolution deteriorates, and a slit width of 0.01 to 0.1 mm is practically desirable.

【0016】そして、本発明の測定方法では、この回折
パターンを得るために上記スリットSの被測定部位Qに
照射されるレーザ光Lが、該スリットSが延びる方向に
偏平したシート状のレーザ光Lであるので、被測定部位
Qの周辺でスリットSが延びる方向に幅広くレーザ光L
が照射されたりすることはなく、このスリットSが延び
る方向に関しては、当該シート状のレーザ光Lの上記厚
さbyに基づく極微少な範囲内にのみ該レーザ光Lを照
射することができる。その一方で、このスリットSが延
びる方向に直交する方向、すなわち上記シート状のレー
ザ光Lの幅方向に関しては、このレーザ光Lの両端部が
上述のように基準プレート1と測定対象物である回転工
具Tとに当たって遮られてさえいれば、該レーザ光Lが
この幅方向に多少ずれて照射されていても明瞭な回折パ
ターンを得ることができるので、本発明によれば、所定
の被測定部位Qにおける上記スリットSの幅bxを極め
て正確に計測して、より高精度の測定を確実に可能とし
ながらも、測定に際しての微調整等に要する熟練度や時
間、労力は大幅に軽減することができ、効率的な測定を
容易に行うことが可能となる。
In the measuring method of the present invention, the laser light L radiated to the measurement site Q of the slit S to obtain this diffraction pattern is a sheet-like laser light flat in the direction in which the slit S extends. L, the laser light L is wide in the direction in which the slit S extends in the vicinity of the measurement site Q.
With respect to the direction in which the slit S extends, the laser light L can be irradiated only within a very small range based on the thickness by of the sheet-shaped laser light L. On the other hand, in the direction orthogonal to the direction in which the slit S extends, that is, in the width direction of the sheet-shaped laser light L, both ends of the laser light L are the reference plate 1 and the measurement object as described above. A clear diffraction pattern can be obtained even if the laser beam L is radiated with a slight shift in the width direction as long as it is blocked by the rotary tool T. Therefore, according to the present invention, a predetermined measured object can be measured. The width bx of the slit S at the portion Q is measured extremely accurately to ensure more accurate measurement, but the skill, time, and labor required for fine adjustment during measurement are greatly reduced. Therefore, efficient measurement can be easily performed.

【0017】また、本実施形態では、測定対象物である
回転工具Tがその回転軸線O回りに回転可能、かつその
回転位置が検出可能とされていて、この回転位置に応じ
て形成されるスリットSを通過したレーザ光Lの回折パ
ターンが計測可能とされるとともに、レーザ光源やレン
ズ2,4、および遮蔽板5やラインセンサ3がスリット
Sの延びる方向に移動可能とされ、かつその移動位置も
検出可能とされていて、このスリットSが延びる方向に
おいて複数の被測定部位Q…で回折パターンの計測が可
能とされている。従って、測定対象物が上述のように複
雑な立体形状を有する回転工具Tである場合でも、まず
回転位置を検出しながら回転工具Tを回転させて、スリ
ットS上の所定の被測定部位Qにおける該スリットSの
幅bxを全周に亙って測定することにより、基準プレー
ト1の端縁1aからこの被測定部位Qを通って回転軸線
Oに直交する当該回転工具Tの断面の形状を測定するこ
とができ、このような断面を、その移動位置を検出しな
がら上記レーザ光源、レンズ2,4、遮蔽板5、および
ラインセンサ3を移動させて、スリットSが延びる方向
に沿って複数の被測定部位Q…において測定することに
より、例えばコンピュータ等の演算装置を用いて、かか
る回転工具Tの形状、寸法を三次元的に、しかも上述の
ように高精度で容易に測定することが可能となる。
Further, in this embodiment, the rotary tool T, which is an object to be measured, is rotatable about its rotation axis O, and its rotational position can be detected, and the slit formed according to this rotational position. The diffraction pattern of the laser light L that has passed through S can be measured, and the laser light source, the lenses 2 and 4, the shield plate 5 and the line sensor 3 can be moved in the direction in which the slit S extends, and their moving positions can be measured. Can also be detected, and the diffraction pattern can be measured at a plurality of measurement sites Q ... In the direction in which the slit S extends. Therefore, even when the measuring object is the rotary tool T having a complicated three-dimensional shape as described above, first, the rotary tool T is rotated while detecting the rotational position, and the predetermined measured portion Q on the slit S is measured. By measuring the width bx of the slit S over the entire circumference, the cross-sectional shape of the rotary tool T orthogonal to the rotation axis O from the end edge 1a of the reference plate 1 through the measured portion Q is measured. The laser light source, the lenses 2, 4, the shielding plate 5, and the line sensor 3 are moved while detecting the movement position of such a cross section, and a plurality of sections are formed along the direction in which the slit S extends. By measuring at the measured portion Q, the shape and dimensions of the rotary tool T can be easily measured three-dimensionally and highly accurately as described above by using an arithmetic device such as a computer. It will be possible.

【0018】なお、図1ないし図3では、このようなボ
ールエンドミルやエンドミル、あるいはドリル等の回転
工具Tの切刃部の外周側部分の形状を測定するに際し
て、長方形平板状の基準プレート1を、その直線状の端
縁1aが回転工具Tの回転軸線Oに平行となるように該
切刃部外周に隣接させて配設した場合を示しているが、
これらの回転工具Tの切刃部の先端側部分の形状を測定
する際には、例えば図7に示すように、この先端側部分
に応じた形状の基準プレート11を用いて、この基準プ
レート11と測定対象物としての回転工具Tの切刃部先
端側部分との間に延びるスリットSを形成し、このスリ
ットS上の被測定部位Qに向けて、スリットSが延びる
方向に偏平したシート状のレーザ光Lを照射することに
より、その回折パターンを計測すればよい。
In FIG. 1 to FIG. 3, when measuring the shape of the outer peripheral side of the cutting edge of the rotary tool T such as a ball end mill or end mill, or a drill, the rectangular flat plate-shaped reference plate 1 is used. , The case where the straight edge 1a is arranged adjacent to the outer circumference of the cutting edge portion so that it is parallel to the rotation axis O of the rotary tool T,
When measuring the shape of the tip side portion of the cutting edge portion of these rotary tools T, for example, as shown in FIG. 7, a reference plate 11 having a shape corresponding to the tip side portion is used, and the reference plate 11 is used. And a cutting edge portion of the rotary tool T as a measurement object, a slit S extending from the tip side is formed, and a flat sheet shape is formed in a direction in which the slit S extends toward a measurement site Q on the slit S. The diffraction pattern may be measured by irradiating the laser light L.

【0019】ここで、この図7では、測定対象物として
のボールエンドミルの略半球状をなす切刃部先端側部分
の形状を測定する場合を示しており、平板状をなす基準
プレート11の端縁11aは、このボールエンドミルの
先端側部分がなす半球よりも上記スリット幅bx分だけ
半径の大きい凹半円弧状に形成されていて、これにより
スリットSも上記半球の中心と同心な半円弧状に形成さ
れることとなる。また、上記シート状のレーザ光Lは、
このように形成されたスリットS上の複数の被測定部位
Qにおいて、それぞれ該スリットSが延びる方向に直交
するように、すなわち上記半球の中心から放射状に延び
るように照射される。従って、このように複数の被測定
部位Q…において、回転工具Tをその回転軸線O回りに
回転させつつ上記レーザ光Lの回折パターンを計測する
ことにより、上述の切刃部外周側部分の測定結果と合わ
せて回転工具Tの切刃部全体の形状を精密に測定するこ
とが可能となる。
Here, FIG. 7 shows a case of measuring the shape of the tip end side portion of the ball-end mill as a measurement object, which has a substantially hemispherical shape, and the end of the reference plate 11 having a flat plate shape. The edge 11a is formed in a concave semi-circular shape having a radius larger by the slit width bx than the hemisphere formed by the tip end side portion of the ball end mill, whereby the slit S also has a semi-circular shape concentric with the center of the hemisphere. Will be formed. Further, the sheet-shaped laser light L is
Irradiation is applied to the plurality of measurement sites Q on the slit S formed in this manner so as to be orthogonal to the direction in which the slit S extends, that is, to extend radially from the center of the hemisphere. Therefore, at the plurality of measurement sites Q ... Thus, by measuring the diffraction pattern of the laser light L while rotating the rotary tool T about the rotation axis O thereof, the measurement of the outer peripheral side portion of the cutting edge portion is performed. Together with the result, the shape of the entire cutting edge of the rotary tool T can be accurately measured.

【0020】なお、例えば測定対象物としての回転工具
Tが一般的なツイストドリルである場合には、基準プレ
ート11の端縁11aはその切刃の先端角に応じた狭角
の凹V字状とされ、回転工具Tがスクエアエンドミルな
場合は端縁11aは「コ」字状とされる。また、図7に
おいては半円弧状に形成されたスリットSの全長に亙っ
て複数の被測定部位Q…にレーザ光Lを照射して回折パ
ターンを測定しているが、回転工具Tを回転軸線O回り
に回転させて計測する場合には、この回転軸線Oの片側
の1/4円弧部分のスリットSでのみ測定を行うように
してもよい。
For example, when the rotary tool T as an object to be measured is a general twist drill, the end edge 11a of the reference plate 11 has a concave V-shape with a narrow angle corresponding to the tip angle of the cutting edge. When the rotary tool T is a square end mill, the end edge 11a has a "U" shape. Further, in FIG. 7, the diffraction pattern is measured by irradiating the plurality of measured portions Q with the laser light L over the entire length of the slit S formed in a semi-arc shape, but the rotary tool T is rotated. When the measurement is performed by rotating around the axis O, the measurement may be performed only in the slit S on the one-quarter arc portion on one side of the rotation axis O.

【0021】一方、本実施形態では、この回折パターン
を計測するのに、上記シート状のレーザ光Lの幅方向に
延びるラインセンサ3を用いており、従来の特開平5−
272925号公報記載の測定方法のようにエリアセン
サを用いるのに比べ、安価でありながら回折パターンが
延びる方向には大きな計測範囲を確保することができ
る。このため、本実施形態においては、このラインセン
サ3についても、上記スリットSが延びる方向にさえレ
ーザ光Lの光軸C上に位置して該レーザ光Lの幅方向に
延びるように正確に配置されていれば、このスリットS
が延びる方向に直交する方向、すなわち上記シート状の
レーザ光Lの幅方向に関しては、その位置がこの幅方向
に多少ずれて配置されていても確実に回折パターンを計
測することができ、やはり測定に際しての微調整作業を
軽減しながらも測定精度の確保を図ることが可能とな
る。
On the other hand, in the present embodiment, in order to measure this diffraction pattern, the line sensor 3 extending in the width direction of the sheet-like laser light L is used.
Compared to using an area sensor as in the measuring method described in Japanese Patent No. 272925, it is inexpensive and can secure a large measuring range in the direction in which the diffraction pattern extends. Therefore, in this embodiment, the line sensor 3 is also accurately arranged so as to be located on the optical axis C of the laser light L even in the direction in which the slit S extends and extend in the width direction of the laser light L. If so, this slit S
In the direction orthogonal to the extending direction of the laser beam, that is, in the width direction of the sheet-shaped laser light L, the diffraction pattern can be reliably measured even if the position is slightly deviated in the width direction. It is possible to secure the measurement accuracy while reducing the fine adjustment work.

【0022】なお、本実施形態では、上述のようにスリ
ットS上の複数の被測定部位Q…において回折パターン
を計測するに際し、このラインセンサ3を初め、上記レ
ーザ光源、レンズ2,4、および遮蔽板5をスリットS
に沿うようにして一体に移動可能としているが、これと
は逆にこれらラインセンサ3、レーザ光源、レンズ2,
4、および遮蔽板5は固定したまま、測定対象物として
の回転工具Tと基準プレート1,11を一体に移動させ
るようにしてもよく、すなわち測定対象物である回転工
具Tとこれらラインセンサ3、レーザ光源、レンズ2,
4、遮蔽板5とがスリットSに沿って相対的に移動可能
とされていればよい。ただし、上述のように極狭いスリ
ット幅bxを維持したまま回転工具Tと基準プレート
1,11とを一体に移動させるよりは、本実施形態のよ
うにラインセンサ3、レーザ光源、レンズ2,4、遮蔽
板5を移動させる構成とするのが容易であって望まし
い。特に、本実施形態のように回転工具Tをその回転軸
線O回りに回転しつつ測定を行う場合においては、こう
して回転工具Tを回転可能に支持しながらさらに基準プ
レート1,11とともに上記スリット幅bxを維持しつ
つ該回転工具Tを移動させるのは極めて困難となるた
め、上述のような構成とすることは一層望ましい。
In this embodiment, when measuring the diffraction pattern at the plurality of measured portions Q on the slit S as described above, the line sensor 3 is first used, the laser light source, the lenses 2 and 4, and The shielding plate 5 is slit S
Although it is possible to move integrally along the line, on the contrary, these line sensor 3, laser light source, lens 2,
4 and the shielding plate 5 may be fixed, and the rotary tool T as a measurement object and the reference plates 1 and 11 may be moved integrally, that is, the rotary tool T as a measurement object and these line sensors 3 , Laser light source, lens 2,
4 and the shielding plate 5 may be relatively movable along the slit S. However, rather than moving the rotary tool T and the reference plates 1 and 11 integrally while maintaining the extremely narrow slit width bx as described above, the line sensor 3, the laser light source, the lenses 2 and 4 as in the present embodiment. It is desirable that the shield plate 5 be moved easily. In particular, in the case of performing the measurement while rotating the rotary tool T around the rotation axis O as in the present embodiment, the slit width bx is further supported together with the reference plates 1 and 11 while rotatably supporting the rotary tool T. Since it becomes extremely difficult to move the rotary tool T while maintaining the above, it is more desirable to have the above-mentioned configuration.

【0023】さらに、本実施形態では、測定対象物であ
る回転工具Tの被測定部位Q側を向いて上記スリットS
を形成する基準プレート1の端縁1aが、この測定部位
Q側に向けて断面先細りとなるナイフエッジ状に形成さ
れているので、この端縁1aにより形成される上記レー
ザ光Lの回折パターンをより明瞭なものとすることがで
き、一層の測定精度の向上を図ることが可能となる。し
かも、本実施形態ではこのように測定対象物が回転工具
Tであって、すなわちその測定すべき切刃部外周に、こ
の回転工具Tがボールエンドミルやエンドミルの場合に
は切刃が、また当該回転工具Tがドリルの場合には切屑
排出溝の外周側稜線部が、いずれも図4に示すように基
準プレート1側に向けてやはり断面先細りとなるナイフ
エッジ状に形成されることとなるので、この測定対象物
の被測定部位Q側でもレーザ光Lの回折パターンをより
明瞭なものとすることができ、さらに一層高精度の測定
を可能とすることができる。
Further, in this embodiment, the slit S faces the measured portion Q side of the rotary tool T which is the object to be measured.
Since the edge 1a of the reference plate 1 forming the edge is formed in the shape of a knife edge having a tapered cross section toward the measurement site Q side, the diffraction pattern of the laser light L formed by the edge 1a is It can be made clearer, and the measurement accuracy can be further improved. Moreover, in the present embodiment, the object to be measured is the rotary tool T, that is, on the outer circumference of the cutting edge portion to be measured, if the rotary tool T is a ball end mill or an end mill, the cutting edge is When the rotary tool T is a drill, the ridges on the outer peripheral side of the chip discharge groove are all formed in a knife edge shape with a tapered cross section toward the reference plate 1 side as shown in FIG. The diffraction pattern of the laser light L can be made clearer even on the measured portion Q side of the measurement object, and the measurement can be performed with higher accuracy.

【0024】ところで、このような基準プレート1,1
1の端縁1a,11aと測定対象物との間に形成される
スリットSの幅bxは、図5および図6に示したように
小さいほど測定分解能が高く、より高精度の測定が可能
となるのであるが、このスリット幅bxがあまりに小さ
すぎると、レーザ光量が小さくなり、基準プレート1,
11の端縁1a,11aが測定対象物に接触しないよう
に調整するのが却って困難となるおそれが生じる。特
に、本実施形態のように測定対象物が回転工具Tであっ
て、その回転軸線O回りに回転可能に支持される場合に
あっては、上記スリット幅bxが小さすぎると、回転時
に回転工具Tに僅かな振れが生じただけでも基準プレー
ト1,11に接触してしまうおそれがある。従って、こ
のような問題が生じるのを避けながらも上述のような高
精度の測定を可能とするには、このスリット幅bxは実
用上0.01〜0.1mmの範囲内に設定されるのが望ま
しい。なお、ちなみに被測定部位Qにおけるシート状の
レーザ光Lの厚さbyは、実用上0.005〜0.1mm
の範囲内とされるのが望ましい。
By the way, such reference plates 1, 1
As the width bx of the slit S formed between the edges 1a and 11a of 1 and the object to be measured is smaller as shown in FIGS. 5 and 6, the measurement resolution is higher and more accurate measurement is possible. However, if the slit width bx is too small, the amount of laser light becomes small and the reference plate 1,
It may be rather difficult to adjust so that the edges 1a and 11a of 11 do not contact the measurement object. In particular, in the case where the measurement target is the rotary tool T and is rotatably supported around the rotation axis O as in the present embodiment, if the slit width bx is too small, the rotary tool during rotation is Even a slight shake of T may cause contact with the reference plates 1 and 11. Therefore, in order to enable the above-mentioned highly accurate measurement while avoiding such a problem, the slit width bx is practically set within the range of 0.01 to 0.1 mm. Is desirable. Incidentally, the thickness by of the sheet-shaped laser light L at the measurement site Q is 0.005 to 0.1 mm in practical use.
It is desirable to be within the range.

【0025】一方、この被測定部位Qに照射されるシー
ト状のレーザ光Lの幅Wは、上記スリット幅bxよりも
大きくされて、上述のように該レーザ光Lの幅方向の両
端部が基準プレート1,11と回転工具Tとに遮られ、
その間のスリットSを通過したレーザ光Lが回折可能と
されていればよいのであるが、このレーザ光Lの幅Wが
小さ過ぎて例えば上記スリット幅bxの大きさと同じ程
度であると、こうして幅方向の両端部が基準プレート
1,11と回転工具Tとに遮られるようにレーザ光Lを
照射するのに微調整が必要となってしまうため、望まし
くはない。また、これとは逆に、このシート状のレーザ
光Lの幅Wがあまり大きすぎても、測定とは関係のない
箇所にまでレーザ光Lを照射しなければならなくなるた
め、非効率的である。このため、このシート状のレーザ
光Lの幅Wは、上記スリット幅bxの2倍以上で測定対
象物の被測定部位の幅寸法以下の範囲内に設定されるの
が望ましい。
On the other hand, the width W of the sheet-like laser light L radiated to the measured portion Q is made larger than the slit width bx, and the widthwise end portions of the laser light L are, as described above. Blocked by the reference plates 1 and 11 and the rotary tool T,
It suffices that the laser light L that has passed through the slit S between them can be diffracted, but if the width W of this laser light L is too small and is, for example, about the same as the slit width bx, the width is This is not desirable because fine adjustment is required to irradiate the laser light L so that both ends in the direction are blocked by the reference plates 1 and 11 and the rotary tool T. On the contrary, even if the width W of the sheet-shaped laser light L is too large, the laser light L has to be applied to a portion unrelated to the measurement, which is inefficient. is there. Therefore, it is desirable that the width W of the sheet-shaped laser light L is set to be twice the slit width bx or more and less than the width dimension of the measured portion of the measurement object.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
測定対象物とこれに隣接して設けた基準プレートとの間
に延びるスリットに対し、このスリットが延びる方向に
薄く偏平したシート状のレーザ光を被測定部位に照射し
て、その回折パターンを計測することにより、該測定対
象物の被測定部位の形状を測定するものであるから、高
度の熟練を要する微調整などを必要とせずとも、確実か
つ容易に所定の被測定部位に上記レーザ光を照射して、
より高精度の精密な測定を可能とすることができる。
As described above, according to the present invention,
For the slit that extends between the object to be measured and the reference plate that is adjacent to it, irradiate the measurement site with a thin flat sheet of laser light in the direction in which this slit extends and measure the diffraction pattern. By doing so, since the shape of the measurement site of the measurement object is measured, the laser beam can be reliably and easily applied to a predetermined measurement site without requiring fine adjustment requiring advanced skill. Irradiate,
It is possible to perform more accurate and precise measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態に係わるレーザ光を用い
た精密形状測定装置の概略を示す平面図である。
FIG. 1 is a plan view showing the outline of a precise shape measuring apparatus using laser light according to an embodiment of the present invention.

【図2】 図1に示すレーザ光を用いた精密形状測定装
置の側面図である。
FIG. 2 is a side view of a precision shape measuring apparatus using the laser light shown in FIG.

【図3】 図1におけるZZ方向視の図である。3 is a diagram viewed from the ZZ direction in FIG.

【図4】 図1におけるスリット1部分からラインセン
サ3までの部分の拡大平面図である。
FIG. 4 is an enlarged plan view of a portion from a slit 1 portion to a line sensor 3 in FIG.

【図5】 レーザ光Lの光軸Cから回折パターンの1次
明輪のピークまでの距離R1とスリット幅bxとの関係を
示す図である。
5 is a diagram showing the relationship between the slit width bx and the distance R1 from the optical axis C of the laser light L to the peak of the first-order bright ring of the diffraction pattern. FIG.

【図6】 レーザ光Lの光軸Cから回折パターンの1次
明輪のピークまでの距離R1のスリット幅bxに対する変
化率と幅bxとの関係を示す図である。
FIG. 6 is a diagram showing a relationship between a change rate and a width bx with respect to a slit width bx of a distance R1 from an optical axis C of a laser beam L to a peak of a first-order bright ring of a diffraction pattern.

【図7】 回転工具Tがボールエンドミルである場合に
おいて、その切刃部の先端側部分の形状を測定する際
の、図3に相当する図である。
FIG. 7 is a diagram corresponding to FIG. 3 when measuring the shape of the tip side portion of the cutting edge portion when the rotary tool T is a ball end mill.

【符号の説明】[Explanation of symbols]

1,11 基準プレート 1a,11a 基準プレートの端縁 3 ラインセンサ 5 遮蔽板 T 回転工具(測定対象物) O 回転工具Tの回転軸線 L レーザ光 S スリット Q 被測定部位 W 被測定部位Qに照射されるレーザ光Lの幅 bx スリット幅 by レーザ光Lの厚さ 1,11 Reference plate 1a, 11a Edge of reference plate 3 line sensor 5 Shield T rotary tool (measurement object) O Rotary tool T rotation axis L laser light S slit Q Measurement site W Width of the laser beam L irradiated on the measurement site Q bx slit width by Thickness of laser light L

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 哲 大阪府吹田市山田丘2−1 大阪大学大学 院工学研究科内 (72)発明者 砂金 総一郎 神奈川県愛甲郡愛川町三増359番地の3 株式会社牧野フライス製作所内 (72)発明者 原田 孝 兵庫県明石市魚住町金ヶ崎西大池179番地 1 エムエムシーコベルコツール株式会社 内 Fターム(参考) 2F065 AA22 AA51 AA53 BB05 CC10 DD06 FF04 FF48 FF65 FF67 GG04 HH05 HH15 JJ02 JJ25 LL10 LL28 PP12 QQ25 QQ29   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Satoshi Takahashi             2-1 Yamadaoka, Suita City, Osaka Prefecture Osaka University             Graduate School of Engineering (72) Inventor Soichiro Sogane             3 359, Mimasu, Aikawa-cho, Aiko-gun, Kanagawa Prefecture             Makino Milling Co., Ltd. (72) Inventor Takashi Harada             No.179 Kanegasaki Nishioike, Uozumi Town, Akashi City, Hyogo Prefecture             1 MC Kobelco Tool Co., Ltd.             Within F term (reference) 2F065 AA22 AA51 AA53 BB05 CC10                       DD06 FF04 FF48 FF65 FF67                       GG04 HH05 HH15 JJ02 JJ25                       LL10 LL28 PP12 QQ25 QQ29

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 測定対象物に隣接して基準プレートを設
けて、この基準プレートと上記測定対象物との間に延び
るスリットを形成し、このスリット上における上記測定
対象物の被測定部位に向けて、該スリットが延びる方向
に薄く偏平したシート状のレーザ光を照射することによ
り、上記被測定部位においてスリットを通過した上記レ
ーザ光がなす回折パターンを計測することを特徴とする
レーザ光を用いた精密形状測定方法。
1. A reference plate is provided adjacent to an object to be measured, a slit extending between the reference plate and the object to be measured is formed, and the slit is directed toward a measurement site of the object to be measured on the slit. And irradiating a thin flat sheet-shaped laser beam in the direction in which the slit extends, thereby measuring a diffraction pattern formed by the laser beam that has passed through the slit at the measurement site. Precision shape measurement method.
【請求項2】 上記測定対象物が回転工具であって、こ
の回転工具の切刃部に隣接して上記基準プレートを設け
て上記スリットを該回転工具の回転軸線方向に延びるよ
うに形成し、このスリット上の複数の上記被測定部位に
おいて、上記回転工具を上記回転軸線回りに回転しつつ
該被測定部位に向けて上記レーザ光を照射することによ
り、上記回転工具の回転位置に応じた上記回折パターン
を計測する請求項1に記載のレーザ光を用いた精密形状
測定方法。
2. The measuring object is a rotary tool, the reference plate is provided adjacent to a cutting edge portion of the rotary tool, and the slit is formed so as to extend in a rotation axis direction of the rotary tool. By irradiating the laser beam toward the measured portion while rotating the rotary tool around the rotation axis at the plurality of measured portions on the slit, the rotary tool according to the rotational position of the rotary tool. The precise shape measuring method using a laser beam according to claim 1, wherein a diffraction pattern is measured.
【請求項3】 上記回折パターンを、上記シート状のレ
ーザ光の幅方向に延びるラインセンサによって計測する
請求項1または請求項2に記載のレーザ光を用いた精密
形状測定方法。
3. The precision shape measuring method using a laser beam according to claim 1, wherein the diffraction pattern is measured by a line sensor extending in the width direction of the sheet-shaped laser beam.
【請求項4】 上記基準プレートの上記被測定部位側を
向いて上記スリットを形成する端縁を、この被測定部位
側に向けて断面先細りとなるナイフエッジ状に形成する
請求項1ないし請求項3のいずれかに記載のレーザ光を
用いた精密形状測定方法。
4. The edge of the reference plate, which faces the measured portion side and forms the slit, is formed in the shape of a knife edge having a tapered cross section toward the measured portion side. 3. A precise shape measuring method using the laser beam according to any one of 3 above.
【請求項5】 上記スリットの幅bxを0.01〜0.
1mmの範囲内に設定する請求項1ないし請求項4のいず
れかに記載のレーザ光を用いた精密形状測定方法。
5. The width bx of the slit is 0.01 to 0.
The precision shape measuring method using a laser beam according to any one of claims 1 to 4, wherein the precision shape measuring method is set within a range of 1 mm.
【請求項6】 上記シート状のレーザ光の幅Wを上記ス
リットの幅bxの2倍以上で上記測定対象物の被測定部
位の幅寸法以下の範囲内に設定し、上記シート状のレー
ザ光の厚みbyを0.005〜0.1mmの範囲内に設定
する請求項1ないし請求項5のいずれかに記載のレーザ
光を用いた精密形状測定方法。
6. The sheet-shaped laser light is set such that the width W of the sheet-shaped laser light is at least twice the width bx of the slit and is not more than the width dimension of the measurement site of the measurement object. 6. The precision shape measuring method using laser light according to claim 1, wherein the thickness by of the layer is set within a range of 0.005 to 0.1 mm.
JP2001317197A 2001-10-15 2001-10-15 Precise shape measurement method using laser light Expired - Lifetime JP3540301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317197A JP3540301B2 (en) 2001-10-15 2001-10-15 Precise shape measurement method using laser light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317197A JP3540301B2 (en) 2001-10-15 2001-10-15 Precise shape measurement method using laser light

Publications (2)

Publication Number Publication Date
JP2003121123A true JP2003121123A (en) 2003-04-23
JP3540301B2 JP3540301B2 (en) 2004-07-07

Family

ID=19135106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317197A Expired - Lifetime JP3540301B2 (en) 2001-10-15 2001-10-15 Precise shape measurement method using laser light

Country Status (1)

Country Link
JP (1) JP3540301B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232489A (en) * 2006-02-28 2007-09-13 Kyushu Institute Of Technology Precision tool measuring method and system using laser beam
JP2008304292A (en) * 2007-06-07 2008-12-18 Kyushu Institute Of Technology Rotating body measuring method and system using pulsed laser light
JP2009229312A (en) * 2008-03-24 2009-10-08 Harmonic Drive Syst Ind Co Ltd Contour shape measuring method
JP2010139306A (en) * 2008-12-10 2010-06-24 Shoichi Shimada Measuring device
WO2012014609A1 (en) 2010-07-29 2012-02-02 国立大学法人九州工業大学 System and method for measuring length of gap between rotating tool and workpiece
WO2013085032A1 (en) * 2011-12-09 2013-06-13 住友電工ハードメタル株式会社 Method of measuring diameter and slit width of linear body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723204B2 (en) * 1973-05-15 1982-05-18
JPS6287806A (en) * 1985-10-14 1987-04-22 Mitsutoyo Mfg Corp Method for measuring shape of round-shaft like member
JPH0474913A (en) * 1990-07-16 1992-03-10 Fanuc Ltd Measuring sensor for surface shape
JPH05272925A (en) * 1992-03-25 1993-10-22 Toyoda Mach Works Ltd Apparatus for detecting edge of cutting tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723204B2 (en) * 1973-05-15 1982-05-18
JPS6287806A (en) * 1985-10-14 1987-04-22 Mitsutoyo Mfg Corp Method for measuring shape of round-shaft like member
JPH0474913A (en) * 1990-07-16 1992-03-10 Fanuc Ltd Measuring sensor for surface shape
JPH05272925A (en) * 1992-03-25 1993-10-22 Toyoda Mach Works Ltd Apparatus for detecting edge of cutting tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232489A (en) * 2006-02-28 2007-09-13 Kyushu Institute Of Technology Precision tool measuring method and system using laser beam
JP2008304292A (en) * 2007-06-07 2008-12-18 Kyushu Institute Of Technology Rotating body measuring method and system using pulsed laser light
JP2009229312A (en) * 2008-03-24 2009-10-08 Harmonic Drive Syst Ind Co Ltd Contour shape measuring method
JP2010139306A (en) * 2008-12-10 2010-06-24 Shoichi Shimada Measuring device
WO2012014609A1 (en) 2010-07-29 2012-02-02 国立大学法人九州工業大学 System and method for measuring length of gap between rotating tool and workpiece
US8755055B2 (en) 2010-07-29 2014-06-17 Kyushu Institute Of Technology System and method for measuring length of gap between rotating tool and workpiece
WO2013085032A1 (en) * 2011-12-09 2013-06-13 住友電工ハードメタル株式会社 Method of measuring diameter and slit width of linear body
JP2013120175A (en) * 2011-12-09 2013-06-17 Kyushu Institute Of Technology Method for measuring linear body diameter and slit width dimension

Also Published As

Publication number Publication date
JP3540301B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
TWI803621B (en) X-ray apparatuses and methods for sample alignment
TWI421642B (en) Overlay metrology using x-rays
EP1324023B1 (en) X-ray diffraction apparatus comprising different beam paths for a divergent X-ray beam and a parallel X-ray beam
EP1653226A1 (en) Scanning line detector for two-dimensional x-ray diffractometer
US20070146685A1 (en) Dynamic wafer stress management system
CA2610555C (en) Two-dimensional small angle x-ray scattering camera
JP2008275612A (en) Device equipped with high resolution measurement structure on substrate for manufacturing semiconductor, and use of aperture in measuring device
US20070286344A1 (en) Target alignment for x-ray scattering measurements
CN105829971B (en) For the apparatus and method by the legal position mask of non-contact optical
JP2000097639A (en) Displacement measuring device
JP6230618B2 (en) Apparatus and method for surface mapping using in-plane oblique incidence diffraction
JP2017223539A (en) X-ray diffraction device
TWI627513B (en) Devices and methods for sensing or determining alignment and height of a work piece, alignment sensors and apparatuses for electron-beam lithography
JP2003121123A (en) Precision shape measuring method using laser beam
JP6198406B2 (en) Micro diffraction method and apparatus
JP7113650B2 (en) Method and Apparatus for Extending Angular Coverage of Scanning Two-Dimensional X-Ray Detectors
KR0131526B1 (en) Optical measuring device and its measuring method
JP3048895B2 (en) Position detection method applied to proximity exposure
JP3235782B2 (en) Position detecting method, semiconductor substrate and exposure mask
JP5051813B2 (en) Precision tool measuring method and system using laser light
JP4227706B2 (en) Crystal orientation measuring apparatus and crystal orientation measuring method
JP2005148034A (en) Method and apparatus for measuring crystal orientation of single crystal
JP2952284B2 (en) X-ray optical system evaluation method
JP2012117988A5 (en)
JPH03269351A (en) X-ray measuring method for main strain distribution of thin film

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040324

R150 Certificate of patent or registration of utility model

Ref document number: 3540301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250