JP2012117988A5 - - Google Patents

Download PDF

Info

Publication number
JP2012117988A5
JP2012117988A5 JP2010269896A JP2010269896A JP2012117988A5 JP 2012117988 A5 JP2012117988 A5 JP 2012117988A5 JP 2010269896 A JP2010269896 A JP 2010269896A JP 2010269896 A JP2010269896 A JP 2010269896A JP 2012117988 A5 JP2012117988 A5 JP 2012117988A5
Authority
JP
Japan
Prior art keywords
rays
ray
dimensional
gap
objects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010269896A
Other languages
Japanese (ja)
Other versions
JP2012117988A (en
JP5664186B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010269896A priority Critical patent/JP5664186B2/en
Priority claimed from JP2010269896A external-priority patent/JP5664186B2/en
Publication of JP2012117988A publication Critical patent/JP2012117988A/en
Publication of JP2012117988A5 publication Critical patent/JP2012117988A5/ja
Application granted granted Critical
Publication of JP5664186B2 publication Critical patent/JP5664186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明の一実施例である接触部位計測装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the contact site | part measuring apparatus which is one Example of this invention. 本実施例の接触部位計測装置において計測対象となる2物体間の接触部位の形状の一例を示す図。The figure which shows an example of the shape of the contact site | part between two objects used as a measuring object in the contact site | part measuring apparatus of a present Example. 一方の物体を他方に押し付けた状態における2次元強度分布画像の一例を示す図。The figure which shows an example of the two-dimensional intensity distribution image in the state which pressed one object on the other. 本実施例の接触部位計測装置を用いた計測方法の手順を示す図。The figure which shows the procedure of the measuring method using the contact site | part measuring apparatus of a present Example. 実測による2次元強度分布画像の一例を示す図。 The figure which shows an example of the two-dimensional intensity distribution image by measurement . 測による2次元強度分布画像の一例を示す図。It shows an example of a two-dimensional intensity distribution image according to the actual measurement. 間隙dを変えたときの実測による間隙dと出射X線強度との関係を示す図。The figure which shows the relationship between the gap | interval d by measurement, and the emitted X-ray intensity when changing the gap | interval d. 計測対象の接触部位形状が図2(a)であって間隙サイズが1μmである場合における検出面上での回折パターンの理論的シミュレーション計算結果を示す図。The figure which shows the theoretical simulation calculation result of the diffraction pattern on a detection surface when the contact site | part shape of a measuring object is Fig.2 (a), and gap | interval size is 1 micrometer. 計測対象の接触部位形状が図2(a)であって間隙サイズが30nmである場合における検出面上での回折パターンの理論的シミュレーション計算結果を示す図。The figure which shows the theoretical simulation calculation result of the diffraction pattern on a detection surface in case the contact site | part shape of a measuring object is Fig.2 (a), and gap | interval size is 30 nm. 計測対象の接触部位形状が図2(b)であって間隙サイズが1μmである場合における検出面上での回折パターンの理論的シミュレーション計算結果を示す図。The figure which shows the theoretical simulation calculation result of the diffraction pattern on a detection surface in case the contact part shape of a measuring object is FIG.2 (b), and gap | interval size is 1 micrometer. 計測対象の接触部位形状が図2(b)であって間隙サイズが30nmである場合における検出面上での回折パターンの理論的シミュレーション計算結果を示す図。The figure which shows the theoretical simulation calculation result of the diffraction pattern on a detection surface in case the contact part shape of a measuring object is FIG.2 (b), and gap | interval size is 30 nm.

図2(a)は、断面三角形状で図中のY方向に延伸する2つの物体が、その頂部同士が巨視的に見たときに接触状態となるように配置されたものである。図8及び図9は図2(a)に示した形状の接触部位を想定したものであり、図8は両物体の間隙が1μmの場合の、図9は両物体の間隙が30nmの場合の回折強度パターンある。 FIG. 2A shows a configuration in which two objects having a triangular cross section and extending in the Y direction in the drawing are in contact with each other when their tops are viewed macroscopically. 8 and 9 is obtained by assuming a contact portion having a shape shown in FIG. 2 (a), FIG. 8 is the case the gap of both objects of 1 [mu] m, 9 when the gap between both objects of 30n m it is a diffraction intensity pattern.

図2(b)は、断面半円状の頂部を有し図中のY方向に延伸する2つの物体が、その頂部同士が巨視的に見たときに接触状態となるように配置されたものである。図10及び図11は図2(b)に示した形状の接触部位を想定したものであり、図10は両物体の間隙が1μmの場合の、図11は両物体の間隙が30nmの場合の回折強度パターンある。上記の図2(a)に示した形状に対する計算と最も異なる点は、全反射を考慮する必要があることである。 FIG. 2 (b) shows a configuration in which two objects having a semicircular top and extending in the Y direction in the drawing are in contact with each other when the tops are viewed macroscopically. It is. 10 and 11 is obtained by assuming a contact portion having a shape shown in FIG. 2 (b), FIG. 10 when the gap between both objects of 1 [mu] m, 11 when the gap between both objects of 30n m it is a diffraction intensity pattern. The most different point from the calculation for the shape shown in FIG. 2A is that total reflection needs to be considered.

上記計算結果から明らかなことは、接触部位を挟む両物体の形状によってその程度は異なるものの、30nm程度のサイズの間隙であっても、検出するに十分な強度のX線がその間隙幅と同方向に適度な拡がり幅をもって現れることである。そのため、このように拡がりつつ進むX線を的確に抽出すれば、それから求まるX線強度積算値に基づいて間隙サイズを推定することが可能である。また、回折強度パターンの形状は、接触部位を挟んだ両物体の形状によってかなり特異的である。そのため、例えばX線の到達範囲に2次元X線検出器を配置しX線強度の空間分布を測定すれば、その強度分布から物体の表面形状の推定が可能である。 It is clear from the above calculation results, although the degree varies depending on the shape of both objects sandwiching the contact site, even gap size of about 30n m, X-ray of a sufficient intensity to detect its gap width Appearing with a moderate spread width in the same direction. Therefore, if the X-rays that progress while spreading are accurately extracted, it is possible to estimate the gap size based on the X-ray intensity integrated value obtained therefrom. The shape of the diffraction intensity pattern is quite specific depending on the shapes of both objects sandwiching the contact site. Therefore, for example, if a two-dimensional X-ray detector is arranged in the X-ray reachable range and the spatial distribution of X-ray intensity is measured, the surface shape of the object can be estimated from the intensity distribution.

図1に示すように、本実施例の接触部位計測装置では、X線遮蔽室1内に、X線源2、X線源2から出射されたX線を効率良く収集して略平行光にするマルチキャピラリX線レンズ3、第1物体4Aと第2物体4Bとからなる測定対象物4、及び、X線照射を受けて測定対象物4の接触部位付近から出射したX線を2次元的に検出する2次元X線検出器5、が配設されている。一方、X線遮蔽室1の外側には、2次元X線検出器5で得られる検出データを処理するために、パーソナルコンピュータ等により具現化されるデータ処理部6が設けられている。2次元X線検出器5は所定の2次元範囲において入射してきたX線の位置の判別が可能な位置敏感型の検出器である。したがって、2次元X線検出器5からデータ処理部6へは、該検出器5の2次元的な検出面に入射したX線の位置情報データ(例えば検出面上の位置アドレスを示すデータ)と検出面上の各位置のX線強度データとが出力される。 As shown in FIG. 1, in the contact part measuring apparatus of the present embodiment, X-rays 2 and X-rays emitted from the X-ray source 2 are efficiently collected in the X-ray shielding chamber 1 to be substantially parallel light. Multi-capillary X-ray lens 3 to be measured, measurement object 4 including first object 4A and second object 4B, and X-rays emitted from the vicinity of the contact portion of measurement object 4 upon receiving X-ray irradiation are two-dimensionally displayed. A two-dimensional X-ray detector 5 is provided for detection. On the other hand, a data processing unit 6 embodied by a personal computer or the like is provided outside the X-ray shielding chamber 1 in order to process detection data obtained by the two-dimensional X-ray detector 5. The two-dimensional X-ray detector 5 is a position-sensitive detector that can determine the position of X-rays incident in a predetermined two-dimensional range. Therefore, from the two-dimensional X-ray detector 5 to the data processing unit 6, position information data of X-rays incident on the two-dimensional detection surface of the detector 5 (for example, data indicating a position address on the detection surface) and X-ray intensity data at each position on the detection surface is output.

図1に示したように第1物体4Aと第2物体4Bとが接触した状態であっても、その接触部位には物体4A、4B表面の微細な凹凸、その表面に付着した異物の影響などにより、ごく微小の間隙が存在する。そのため、この接触部位に上述したようなX線が照射されると、上記間隙で主として反射しながら通過して来るX線(以下「通過X線」という)が反対側から出射する。また、物体4A、4Bの表面の微細凹凸のエッジや結晶等により回折を生じたX線(以下「回折X線」という)も反対側から出射するし、物体4A、4Bの表面で散乱したX線(以下「散乱X線」という)も出射する。さらには、接触部位においてX線の入射角が全反射臨界角以下であっても接触部位から少し外れた位置ではX線の入射角は全反射臨界角を超えるし、接触部位においても微視的に見れば一部のX線の入射角は全反射臨界角を超えることがある。そのため、物体4A、4B中に入り込んだX線の励起作用により、それら物体から物質特有の特性X線も出射してくる。そうした様々な種類のX線は接触部位から拡がりながら進み、2次元X線検出器の検出面に到達する。 As shown in FIG. 1, even when the first object 4A and the second object 4B are in contact with each other, there are fine irregularities on the surfaces of the objects 4A and 4B, the influence of foreign matter attached to the surface, etc. Due to this, there is a very small gap. For this reason, when the X-rays as described above are irradiated to this contact site, X-rays that pass through while being mainly reflected by the gap (hereinafter referred to as “passing X-rays”) are emitted from the opposite side. In addition, X-rays diffracted by fine uneven edges and crystals on the surfaces of the objects 4A and 4B (hereinafter referred to as “diffracted X-rays”) are also emitted from the opposite side and scattered by the surfaces of the objects 4A and 4B. A ray (hereinafter referred to as “scattered X-ray”) is also emitted. Furthermore, even if the X-ray incident angle is less than or equal to the total reflection critical angle at the contact site, the X-ray incident angle exceeds the total reflection critical angle at a position slightly away from the contact site, and the contact site is also microscopic. In some cases, the incident angle of some X-rays may exceed the total reflection critical angle. Therefore, the characteristic X-rays peculiar to the substance are also emitted from the objects by the excitation action of the X-rays entering the objects 4A and 4B. Such various types of X-rays travel while spreading from the contact area and reach the detection surface of the two-dimensional X-ray detector 5 .

一般に、通過X線の強度は最も大きいが、回折X線や散乱X線もその強度はかなり大きい。ただし、2次元X線検出器の検出面位置において、通過X線は接触部位の微小間隙のサイズを反映した比較的狭い範囲に収まるのに対し、回折X線や散乱X線の拡がりは接触部位付近の物体4A、4Bの表面形状の影響を大きく受ける。本実施例の装置では、回折X線や散乱X線が大きく拡がりながら出射する場合でも、それらX線の殆どを2次元X線検出器で受けて位置情報データとX線強度データとを得ることができる。 In general, the intensity of transmitted X-rays is the highest, but the intensity of diffracted X-rays and scattered X-rays is considerably high. However, at the detection surface position of the two-dimensional X-ray detector 5 , the passing X-rays are within a relatively narrow range reflecting the size of the minute gap at the contact site, whereas the spread of diffracted X-rays and scattered X-rays is in contact. It is greatly influenced by the surface shapes of the objects 4A and 4B near the part. In the apparatus of the present embodiment, even when diffracted X-rays and scattered X-rays are emitted while greatly spreading, most of the X-rays are received by the two-dimensional X-ray detector 5 to obtain position information data and X-ray intensity data. be able to.

スリット開口幅dが6μm及び1μmであるスリットを上記接触部位計測装置により測定して得られる2次元X線強度分布画像実測例を図5、図6に示す。スリット開口幅1μmでも、スリット開口に対応した水平な帯状(線状)の像が明瞭に得られていることが分かる。上述したように、このような場合には水平方向に延びる帯状の検出窓を設定すればよい。さらにスリット開口幅が狭くなる場合でも、積算時間を増加させて適当な検出窓を設定すれば、開口幅を算出するのに十分な強度の信号を取り出すことができる。 The actual example of a two-dimensional X-ray intensity distribution image slit opening width d is obtained a slit is 6μm and 1μm as measured by the contact portion measuring device 5, shown in FIG. It can be seen that even with a slit opening width of 1 μm, a horizontal strip (line) image corresponding to the slit opening is clearly obtained. As described above, in such a case, a band-shaped detection window extending in the horizontal direction may be set. Further, even when the slit opening width becomes narrower, a signal having a sufficient strength for calculating the opening width can be extracted by setting an appropriate detection window by increasing the integration time.

1…X線遮蔽
…X線源
3…マルチキャピラリX線レンズ
4…測定対象物
4A…第1物体
4B…第2物体
5…2次元X線検出器
6…データ処理部
61…2次元X線強度分布作成部
62…解析処理部
1 ... X-ray shielding room
2 ... X-ray source 3 ... Multicapillary X-ray lens 4 ... Measurement object 4A ... First object 4B ... Second object 5 ... Two-dimensional X-ray detector 6 ... Data processing unit 61 ... Two-dimensional X-ray intensity distribution creation unit 62 ... Analysis processing section

JP2010269896A 2010-12-03 2010-12-03 Method and apparatus for analyzing contact area between solids Active JP5664186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010269896A JP5664186B2 (en) 2010-12-03 2010-12-03 Method and apparatus for analyzing contact area between solids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269896A JP5664186B2 (en) 2010-12-03 2010-12-03 Method and apparatus for analyzing contact area between solids

Publications (3)

Publication Number Publication Date
JP2012117988A JP2012117988A (en) 2012-06-21
JP2012117988A5 true JP2012117988A5 (en) 2013-08-29
JP5664186B2 JP5664186B2 (en) 2015-02-04

Family

ID=46500976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269896A Active JP5664186B2 (en) 2010-12-03 2010-12-03 Method and apparatus for analyzing contact area between solids

Country Status (1)

Country Link
JP (1) JP5664186B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6177615B2 (en) * 2013-07-31 2017-08-09 トヨタ自動車株式会社 Lubricating oil property analyzing method and analyzing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008165064A (en) * 2006-12-28 2008-07-17 Ricoh Co Ltd Device and method for measuring length of developing gap
US8389892B2 (en) * 2009-05-20 2013-03-05 Ethicon, Inc. X-ray microscopy for characterizing hole shape and dimensions in surgical needles

Similar Documents

Publication Publication Date Title
RU2523092C2 (en) Method and apparatus for measuring profile of spherical incurved, particularly, cylindrical bodies
TWI518315B (en) Method and apparatus for x-ray analysis
JP5390075B2 (en) Overlay measurement using X-rays
JP3412606B2 (en) Laser diffraction / scattering particle size distribution analyzer
TWI652473B (en) Method and apparatus for analyzing samples
JP6230618B2 (en) Apparatus and method for surface mapping using in-plane oblique incidence diffraction
JP2007501395A5 (en)
US11579099B2 (en) X-ray reflectometry apparatus and method thereof for measuring three dimensional nanostructures on flat substrate
US20190025231A1 (en) A method of detection of defects in materials with internal directional structure and a device for performance of the method
JP2017525945A (en) Arrangement for measuring properties and / or parameters of a sample and / or at least one film formed on the sample surface
JP2012117988A5 (en)
US20120057172A1 (en) Optical measuring system with illumination provided through a void in a collecting lens
US20150153290A1 (en) X-ray apparatus and method of measuring x-rays
JP5664186B2 (en) Method and apparatus for analyzing contact area between solids
JP7240829B2 (en) X-ray measurement of patterned structures
JP2011196766A (en) Method for measuring shape of measured object having light transmittance
JP6462389B2 (en) Measuring method of measurement object using X-ray fluorescence
JP2004163129A (en) Defect inspection method
CN103901058A (en) Dual-optical path X-ray nondestructive testing device
CN203025127U (en) Double-light-way X ray nondestructive testing device
JP2018527560A5 (en)
JP2003121123A (en) Precision shape measuring method using laser beam
JP2001074645A (en) Method and device for measuring small amount of fine particle
JP3926362B2 (en) Method for determining the size of defects on a semiconductor wafer surface in a semiconductor wafer inspection system
JP2930866B2 (en) X-ray analysis method and apparatus used therefor