JP5664186B2 - Method and apparatus for analyzing contact area between solids - Google Patents

Method and apparatus for analyzing contact area between solids Download PDF

Info

Publication number
JP5664186B2
JP5664186B2 JP2010269896A JP2010269896A JP5664186B2 JP 5664186 B2 JP5664186 B2 JP 5664186B2 JP 2010269896 A JP2010269896 A JP 2010269896A JP 2010269896 A JP2010269896 A JP 2010269896A JP 5664186 B2 JP5664186 B2 JP 5664186B2
Authority
JP
Japan
Prior art keywords
ray
contact
rays
objects
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010269896A
Other languages
Japanese (ja)
Other versions
JP2012117988A5 (en
JP2012117988A (en
Inventor
啓義 副島
啓義 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2010269896A priority Critical patent/JP5664186B2/en
Publication of JP2012117988A publication Critical patent/JP2012117988A/en
Publication of JP2012117988A5 publication Critical patent/JP2012117988A5/ja
Application granted granted Critical
Publication of JP5664186B2 publication Critical patent/JP5664186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

本発明は、固体である2つの物体が直接的に接触する接触部位、或いは、それら固体に比べてX線透過率が高い液体若しくは固体を介して間接的に接触する接触部位を、X線を利用して解析する方法及び装置に関し、さらに詳しくは、点、線、又は面である接触部位に存在するごく微小な間隙のサイズ計測や接触部位を挟んだ両物体の微視的な形状観察などが可能な解析方法及び解析装置に関する。   In the present invention, an X-ray can be detected by contacting a contact area where two solid objects are in direct contact with each other or a contact area where the X-ray transmittance is higher than that of a solid or indirectly through a liquid or solid. Regarding the analysis method and apparatus using the method, more specifically, the measurement of the size of a very small gap existing at the contact site that is a point, line, or surface, and the microscopic shape observation of both objects sandwiching the contact site, etc. The present invention relates to an analysis method and an analysis apparatus capable of performing the above.

一般的に、固体である2つの物体が点、線、又は面で直接的に接している場合であっても、物体の表面はごく微細な凹凸の集合であるので、微視的に見ればその接触部位にはごく微細な間隙が存在する。2つの物体が互いに近づく方向にそれら物体に圧力を加えれば接触部位の微細な間隙は縮小するし、さらに圧力を大きくすれば、例えば一方の物体の一部が他方の物体の表面に間隙なく密着し、その密着箇所の周囲で一方又は両方の物体に微視的な変形が生じる。   In general, even when two solid objects are in direct contact with each other at a point, line, or surface, the surface of the object is a collection of very fine irregularities. There is a very fine gap at the contact site. If pressure is applied to two objects in the direction in which the two objects approach each other, the fine gap at the contact area will be reduced, and if the pressure is increased further, for example, a part of one object will adhere to the surface of the other object without a gap. However, microscopic deformation occurs in one or both of the objects around the contact point.

様々な分野における近年の精密加工技術、高密度実装技術等の進展に伴い、上記のような2つの物体間の接触部位における微小間隙のサイズ計測や接触部位を挟んだ両物体の微細形状観察、或いは接触部位付近の物体の組成解析などの要求は高くなっている。また、2つの物体が直接的に接触している場合だけでなく、例えば油等の薄い液体層や固体薄膜層を介して2つの物体が間接的に接触している場合のその接触部位における微小間隙のサイズ計測や接触部位を挟んだ両物体の微細形状観察などの要求も非常に大きい。   With recent advances in precision processing technology and high-density mounting technology in various fields, the measurement of the size of the micro gap at the contact part between the two objects as described above and the observation of the fine shape of both objects sandwiching the contact part, Or the request | requirement, such as a composition analysis of the object of a contact site vicinity, is high. Further, not only when two objects are in direct contact, but also when the two objects are in indirect contact with each other through a thin liquid layer such as oil or a solid thin film layer, a minute at the contact portion There are also great demands for measuring the size of the gap and observing the fine shapes of both objects across the contact area.

従来一般的に、ミクロン単位の間隙計測や形状観察には工業用X線透視装置やX線CT装置などが用いられている。しかしながら、こうした装置をもってしても、さらに微細なサブミクロンレベル、ナノレベルの間隙計測や形状観察は困難である。また、上記のような従来の装置では装置自体がかなり大掛かりになり、測定に比較的長い時間を要するため測定のスループットを上げるのは困難である。   Conventionally, an industrial X-ray fluoroscopy device, an X-ray CT device, or the like is generally used for gap measurement in micron units or shape observation. However, even with such an apparatus, it is difficult to measure and observe the gaps at finer submicron level and nano level. Further, in the conventional apparatus as described above, the apparatus itself is considerably large, and it takes a relatively long time for the measurement, so it is difficult to increase the measurement throughput.

特許文献1、2には、回転する磁気ディスク上で浮上するヘッドと該ディスク面との間隙といった比較的狭い間隙の計測をX線を用いて行う方法が開示されている。しかしながら、磁気ディスクやヘッドの対向平面は非常に高い平坦性をもつように加工されているから、磁気ディスクの回転によってヘッドが浮上した状態では、両者の間にはほぼ一様なサイズの間隙が形成される。上記特許文献に記載の測定方法は、このようにX線が直接的に且つ十分な強度で通過し得る大きさの間隙が計測対象として想定されており、直接的に通り抜けて来るX線がきわめて少ない状況下でのごく微細な間隙計測や形状観察は実質的には困難である。   Patent Documents 1 and 2 disclose a method of measuring a relatively narrow gap, such as a gap between a head flying on a rotating magnetic disk and the disk surface, using X-rays. However, since the opposing flat surfaces of the magnetic disk and the head are processed to have very high flatness, when the head is lifted by the rotation of the magnetic disk, there is a substantially uniform gap between them. It is formed. In the measurement method described in the above-mentioned patent document, a gap having such a size that X-rays can pass directly and with sufficient intensity is assumed as a measurement target, and X-rays that directly pass through are extremely difficult. It is practically difficult to measure very small gaps and observe shapes under few circumstances.

特開平9−189541号公報JP-A-9-189541 特開平11−132754号公報Japanese Patent Laid-Open No. 11-132754

本発明は上記課題を解決するために成されたものであり、その目的とするところは、巨視的には接触しているとみなせる2つの物体(固体)の接触部位に存在する微小な間隙や、X線透過率が高い液体や固体の層を挟んで間接的に接触している2つの物体間の微小な間隙の計測やその接触部位を挟んで対向する両物体の形状の観察などの接触部位構造解析を、X線を用い非接触で非破壊的に実施することができる固体間接触部位解析方法及び解析装置を提供することである。   The present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is to provide a minute gap or the like present at the contact portion of two objects (solid) that can be regarded as being in macroscopic contact. Contact such as measurement of a minute gap between two objects that are indirectly in contact with each other with a liquid or solid layer having a high X-ray transmittance and observation of the shapes of both objects facing each other with the contact part in between It is an object to provide a solid-to-solid contact site analysis method and an analysis apparatus that can perform site structure analysis non-destructively using X-rays.

上記課題を解決するためになされた第1発明は、固体である第1物体と同じく固体である第2物体とが点、線若しくは面で直接的に接触する接触部位、又は、第1物体と第2物体とがそれら物体よりも高いX線透過率を有する液体若しくは固体を介して点、線若しくは面で間接的に接触している接触部位の微視的な構造をX線を用いて解析するための固体間接触部位解析方法であって、
a)前記接触部位を挟んで対向する両物体の平面又は両物体の最近接部位の接平面に対し全反射臨界角以下の入射角度をもって該接触部位にX線を入射するX線照射ステップと、
b)その入射X線に対して前記接触部位の反対側から出射してきた、接触部位を挟む物体表面で反射及び散乱されたX線、並びに、回折で生じたX線を含むX線を、複数の微小X線検出素子が2次元的に配列されてなる位置敏感型の2次元X線検出器により検出するX線検出ステップと、
c)前記2次元X線検出器からの検出信号により得られる2次元X線強度分布に基づいて前記接触部位の構造についての情報を取得する解析ステップと、
を有することを特徴としている。
The first invention made in order to solve the above-mentioned problem is that the first object that is a solid and the second object that is the same as the solid are in direct contact with each other by a point, a line, or a surface, or the first object Analyzing the microscopic structure of a contact area where a second object is in direct contact with a point, line, or surface via a liquid or solid having a higher X-ray transmittance than those objects using X-rays It is a method for analyzing the contact area between solids,
a) an X-ray irradiation step in which X-rays are incident on the contact portion with an incident angle equal to or less than a critical angle for total reflection with respect to the planes of both objects facing each other across the contact portion or the tangential plane of the closest portion of both objects;
b) A plurality of X-rays that are emitted from the opposite side of the contact site with respect to the incident X-rays and reflected and scattered on the object surface sandwiching the contact site, and X-rays including X-rays generated by diffraction An X-ray detection step of detecting by a position sensitive type two-dimensional X-ray detector in which the minute X-ray detection elements are two-dimensionally arranged;
c) an analysis step of acquiring information about the structure of the contact portion based on a two-dimensional X-ray intensity distribution obtained from a detection signal from the two-dimensional X-ray detector;
It is characterized by having.

また上記課題を解決するためになされた第2発明は上記第1発明に係る解析方法を実施するための装置であり、固体である第1物体と同じく固体である第2物体とが点、線若しくは面で接触する接触部位、又は、第1物体と第2物体とがそれら物体よりも高いX線透過率を有する液体若しくは固体を介して点、線若しくは面で間接的に接触している接触部位の微視的な構造をX線を用いて解析するための固体間接触部位解析装置であって、
a)前記接触部位を挟んで対向する両物体の平面又は両物体の最近接部位の接平面に対し全反射臨界角以下の入射角度をもって該接触部位にX線を入射させるX線照射手段と、
b)前記X線照射手段による入射X線に対して前記接触部位の反対側から出射してきた、接触部位を挟む物体表面で反射及び散乱されたX線、並びに、回折で生じたX線を含むX線を検出する、複数の微小X線検出素子が2次元的に配列されてなる位置敏感型のX線検出手段と、
c)前記X線検出手段からの検出信号により得られる2次元X線強度分布に基づいて前記接触部位の構造についての情報を取得するデータ処理手段と、
を備えることを特徴としている。
A second invention made to solve the above problems is an apparatus for carrying out the analysis method according to the first invention, wherein the first object that is a solid and the second object that is the same as the solid are dots, lines. Or the contact part which touches by a surface, or the contact which the 1st object and the 2nd object contact indirectly with a point, a line, or a surface through the liquid or solid which has X-ray transmittance higher than those objects An inter-solid contact site analysis apparatus for analyzing a microscopic structure of a site using X-rays,
a) X-ray irradiating means for causing X-rays to enter the contact part with an incident angle equal to or less than the total reflection critical angle with respect to the planes of both objects facing each other across the contact part or the tangential plane of the closest part of both objects;
b) Includes X-rays that are emitted from the opposite side of the contact site with respect to incident X-rays by the X-ray irradiation means and reflected and scattered by the object surface sandwiching the contact site, and X-rays generated by diffraction A position sensitive X-ray detection means for detecting X-rays, in which a plurality of micro X-ray detection elements are two-dimensionally arranged;
c) data processing means for obtaining information about the structure of the contact portion based on a two-dimensional X-ray intensity distribution obtained from a detection signal from the X-ray detection means;
It is characterized by having.

ここで、「接触部位を挟んで対向する両物体の平面又は両物体の最近接部位の接平面」とは、その両物体が巨視的に略平行な平面で接している場合にはその平面自体である。また、両物体の一方が平面である場合にはその平面自体である。さらにまた、両物体の対向面の両方が凸形状曲面又は尖塔形状面であって両物体が点又は線で接している場合には、両物体が最も近接した箇所において両物体の表面に存在する微小凹凸の近似平面高さにより形成される仮想的な近似平面である。   Here, “the planes of both objects facing each other across the contact part or the tangent plane of the closest part of both objects” refers to the plane itself when both the objects touch each other in a macroscopically parallel plane It is. Further, when one of the two objects is a plane, it is the plane itself. Furthermore, when both of the opposing surfaces of both objects are convex curved surfaces or spire-shaped surfaces and both objects are in contact with a point or a line, both objects are present on the surfaces of both objects at the closest point. It is a virtual approximate plane formed by the approximate plane height of minute irregularities.

本発明に係る固体間接触部位解析方法及び解析装置における計測対象は、点、線又は面である2物体の接触部位であるが、その接触部位には例えば潤滑油などの液体がごく薄い被膜を形成して存在していてもよい。また、接触部位を形成する2物体は静止状態でなくてもよく、計測位置さえ変化しなければ一方又は両方の物体が運動していてもよい。つまり、接触部位は摺動面であってもよい。   The object to be measured in the method and apparatus for analyzing a contact part between solids according to the present invention is a contact part of two objects that are points, lines, or surfaces, and a thin film such as a lubricating oil is applied to the contact part. It may be formed and present. Further, the two objects forming the contact portion may not be stationary, and one or both of the objects may be in motion as long as the measurement position does not change. That is, the contact part may be a sliding surface.

2物体の接触部位に対し、該接触部位を挟んで対向する両物体の平面又は両物体の最近接部位の接平面に対し全反射臨界角以下の入射角度をもってX線が照射されると、それら物体を挟んでその反対側には、接触部位に存在する微小間隙を通り抜けてくるX線(このX線には、物体に一度も当たることなく通過してくるX線と、少なくとも1回は物体の表面で反射・散乱されたX線とを含む)、接触部位付近の物体表面に当たって回折を生じたX線、或いは、入射X線により励起されて物体自体から発生する特性X線、さらには物体の厚さや材質によっては物体内部に入り込んで透過して出てくるX線、などが混在したX線が出射する。これらX線は全体として入射X線の拡がり角よりもかなり広い拡がり角をもって出射する。   When X-rays are irradiated to the contact area of two objects with an incident angle that is less than the critical angle of total reflection with respect to the planes of both objects facing each other across the contact area or the tangential plane of the closest area of both objects, On the opposite side of the object, there is an X-ray that passes through a minute gap existing at the contact site (this X-ray passes through the object without hitting the object at least once, and at least once the object X-rays reflected and scattered on the surface of the object), X-rays that are diffracted by hitting the object surface near the contact site, or characteristic X-rays that are generated by the object itself when excited by incident X-rays, and further Depending on the thickness and material of the X-rays, X-rays mixed with X-rays entering the inside of the object and transmitted through the object are emitted. These X-rays as a whole are emitted with a divergence angle that is considerably wider than the divergence angle of incident X-rays.

特許文献1、2に記載のような従来の間隙の測定手法は、入射X線に対して間隙をそのまま通過してくるX線のみを検出しているが、間隙がごく狭い場合やその間隙に空気に比べてX線透過率の低い液体や固体が存在している場合には、そのまま通過してくるX線の強度は非常に弱い。そのため、十分な強度でX線を検出することができないか、或いは、検出できてもその強度情報と間隙サイズとの相関性が悪く、強度情報を間隙サイズに精度良く換算するのが困難である。これに対し、本発明に係る固体間接触部位解析方法及び解析装置では、上述のように拡がりつつ出射するX線を複数の微小X線検出素子が2次元的に配列されてなる位置敏感型のX線検出手段でできるだけ漏れなく検出する。このときにX線検出手段の検出面上に到達するX線の種類は判別できないものの、例えば接触部位が直線又は平面であれば、検出面上にはその接触部位の微小間隙に対応した略帯状の像が得られる。   Conventional gap measurement methods such as those described in Patent Documents 1 and 2 detect only X-rays that pass through the gap as it is with respect to incident X-rays. When a liquid or solid having a lower X-ray transmittance than air is present, the intensity of the X-ray passing through as it is is very weak. Therefore, X-rays cannot be detected with sufficient intensity, or even if detected, the correlation between the intensity information and the gap size is poor, and it is difficult to accurately convert the intensity information into the gap size. . On the other hand, in the inter-solid contact site analysis method and analysis apparatus according to the present invention, a position sensitive type in which a plurality of micro X-ray detection elements are two-dimensionally arranged for X-rays that are emitted while spreading as described above. X-ray detection means detects as little as possible. Although the type of X-rays that reach the detection surface of the X-ray detection means at this time cannot be determined, for example, if the contact part is a straight line or a plane, a substantially strip-like shape corresponding to the minute gap of the contact part on the detection surface Is obtained.

そこで、データ処理手段により実施される解析ステップでは、X線検出手段の検出信号に基づいて得られる2次元X線強度分布に基づいて、例えばX線検出手段における全微小X線検出素子のうちの特定範囲に含まれる複数の微小X線検出素子(画素)により得られるX線強度を積算し、その積算した強度情報に基づいて前記接触部位に存在する微小間隙の大きさを求める。上述したように接触部位の種類、つまり点接触、線接触、面接触のいずれであるのかによって、さらには、物体の形状等によって、検出面上で相対的に強いX線強度が得られる画素の位置は或る程度決まっているから、予め測定者が上記特定範囲を設定しておくこともできる。また、例えば2次元X線強度分布において得られているX線強度が所定以上である範囲を特定範囲として抽出してもよい。   Therefore, in the analysis step performed by the data processing means, based on the two-dimensional X-ray intensity distribution obtained based on the detection signal of the X-ray detection means, for example, out of all the minute X-ray detection elements in the X-ray detection means The X-ray intensities obtained by a plurality of minute X-ray detection elements (pixels) included in the specific range are integrated, and the size of the minute gap existing at the contact site is obtained based on the integrated intensity information. As described above, depending on the type of contact part, that is, whether it is point contact, line contact, or surface contact, and further, depending on the shape of the object, the pixel having a relatively strong X-ray intensity on the detection surface can be obtained. Since the position is determined to some extent, the measurer can set the specific range in advance. In addition, for example, a range in which the X-ray intensity obtained in the two-dimensional X-ray intensity distribution is greater than or equal to a predetermined value may be extracted as the specific range.

また、2物体の接触部位から出てくる散乱X線や回折X線の拡がり具合は接触部位付近の両物体の表面形状に依存する。そのため、例えば一方又は両方の物体に圧力が加えられて物体に変形が生じると、その変形に伴って2次元X線強度分布における像の形状、つまりX線が到達する画素の位置やX線強度が変化する。そこで、データ処理手段により実施される解析ステップでは、2次元X線強度分布から求まる強度パターンを解析することにより、接触部位を挟んで対向する両物体の表面形状を推定することができる。   In addition, the extent of the scattered X-rays and diffraction X-rays coming out from the contact parts of the two objects depends on the surface shapes of both objects near the contact parts. Therefore, for example, when pressure is applied to one or both objects and the object is deformed, the shape of the image in the two-dimensional X-ray intensity distribution accompanying the deformation, that is, the position of the pixel where the X-ray reaches and the X-ray intensity Changes. Therefore, in the analysis step performed by the data processing means, it is possible to estimate the surface shapes of both objects facing each other across the contact site by analyzing the intensity pattern obtained from the two-dimensional X-ray intensity distribution.

なお、前述のように2物体の接触部位からはそれら物体を構成する元素に特有の特性X線も出射してくるため、位置敏感型のX線検出手段のほかに例えば該検出手段と切り換え可能にエネルギー分散型X線分析手段を設け、或いは、位置敏感型X線検出手段とエネルギー分散型X線分析手段とを併設し、そのエネルギー分散型X線分析手段により定性分析を実行して物体の組成を併せて求めるようにしてもよい。   As described above, since characteristic X-rays peculiar to the elements constituting the objects are also emitted from the contact part of the two objects, for example, the position-sensitive X-ray detection means can be switched to the detection means. Energy dispersive X-ray analysis means, or position sensitive X-ray detection means and energy dispersive X-ray analysis means, and qualitative analysis is performed by the energy dispersive X-ray analysis means. The composition may be determined together.

本発明に係る固体間接触部位解析方法及び解析装置によれば、2物体の間の間隙を直接的に通過してきたX線の強度ではなく、物体表面で反射・散乱された又は回折で生じたX線、物体を透過してきたX線、物体自体から2次的に発生する特性X線など、様々なX線を網羅的に且つ2次元的な微小位置毎に検出し、その検出結果により得られる2次元X線強度分布を利用して接触部位の微小間隙のサイズや微小表面形状等の構造情報を得るようにしたので、巨視的にみれば接触状態にあるようなごく微細な間隙についての構造解析を行うことができる。   According to the method and apparatus for analyzing a contact area between solids according to the present invention, the intensity is not reflected by the X-ray intensity directly passing through the gap between two objects, but is reflected / scattered on the object surface or generated by diffraction. Various X-rays, such as X-rays, X-rays that have passed through the object, and characteristic X-rays that are secondarily generated from the object itself, are detected comprehensively at every two-dimensional minute position, and obtained from the detection results. Since the structure information such as the size of the micro gap and the micro surface shape of the contact area is obtained by using the two-dimensional X-ray intensity distribution obtained, it is possible to obtain a very small gap that is in a contact state when viewed macroscopically. Structural analysis can be performed.

また、本発明に係る固体間接触部位解析方法及び解析装置によれば、装置自体がそれほど大掛かりとならずに済み、また短時間での計測が可能であるので、例えば微小間隙のサイズや表面形状が時間に伴って変化するような接触部位の構造解析にも好適である。   Further, according to the method and apparatus for analyzing a contact part between solids according to the present invention, the apparatus itself does not need to be so large, and measurement in a short time is possible. It is also suitable for structural analysis of a contact site such that changes with time.

本発明の一実施例である接触部位計測装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the contact site | part measuring apparatus which is one Example of this invention. 本実施例の接触部位計測装置において計測対象となる2物体間の接触部位の形状の一例を示す図。The figure which shows an example of the shape of the contact site | part between two objects used as a measuring object in the contact site | part measuring apparatus of a present Example. 一方の物体を他方に押し付けた状態における2次元強度分布画像の一例を示す図。The figure which shows an example of the two-dimensional intensity distribution image in the state which pressed one object on the other. 本実施例の接触部位計測装置を用いた計測方法の手順を示す図。The figure which shows the procedure of the measuring method using the contact site | part measuring apparatus of a present Example. 実測による2次元強度分布画像の一例を示す図。 The figure which shows an example of the two-dimensional intensity distribution image by measurement . 測による2次元強度分布画像の一例を示す図。It shows an example of a two-dimensional intensity distribution image according to the actual measurement. 間隙dを変えたときの実測による間隙dと出射X線強度との関係を示す図。The figure which shows the relationship between the gap | interval d by measurement, and the emitted X-ray intensity when changing the gap | interval d. 計測対象の接触部位形状が図2(a)であって間隙サイズが1μmである場合における検出面上での回折パターンの理論的シミュレーション計算結果を示す図。The figure which shows the theoretical simulation calculation result of the diffraction pattern on a detection surface when the contact site | part shape of a measuring object is Fig.2 (a), and gap | interval size is 1 micrometer. 計測対象の接触部位形状が図2(a)であって間隙サイズが30nmである場合における検出面上での回折パターンの理論的シミュレーション計算結果を示す図。The figure which shows the theoretical simulation calculation result of the diffraction pattern on a detection surface in case the contact site | part shape of a measuring object is Fig.2 (a), and gap | interval size is 30 nm. 計測対象の接触部位形状が図2(b)であって間隙サイズが1μmである場合における検出面上での回折パターンの理論的シミュレーション計算結果を示す図。The figure which shows the theoretical simulation calculation result of the diffraction pattern on a detection surface in case the contact part shape of a measuring object is FIG.2 (b), and gap | interval size is 1 micrometer. 計測対象の接触部位形状が図2(b)であって間隙サイズが30nmである場合における検出面上での回折パターンの理論的シミュレーション計算結果を示す図。The figure which shows the theoretical simulation calculation result of the diffraction pattern on a detection surface in case the contact part shape of a measuring object is FIG.2 (b), and gap | interval size is 30 nm.

まず、本発明に係る固体間接触部位解析方法におけるX線を用いた測定原理を説明する。   First, the measurement principle using X-rays in the method for analyzing a contact part between solids according to the present invention will be described.

本願発明者は、2つの物体の間に形成されるサブミクロン〜ナノレベルのごく狭い間隙(スリット開口幅)にX線を照射したときに透過するX線や散乱・回折するX線を数量的に把握するために、理論的計算を行った。この際に想定した2つの物体の接触部位の形状例を図2に、理論的計算結果を図8〜図11に示す。一般的に、こうしたスリット開口のX線透過・散乱の数量的把握には電磁波方程式に基づく計算が必要になるが、ここではスリット開口幅がナノレベルであっても或いはスリット開口形状が複雑であっても実用的な計算量に収まるように、X線の入射平面波を数ミクロン程度の有限な幅の振幅をもつ平行ビーム束に分割し、それぞれについて求めた解の重ね合わせにより最終的な解を求めるという計算手法を採用した。   The present inventor quantitatively transmits X-rays scattered or diffracted when X-rays are irradiated to a very small gap (slit aperture width) of submicron to nano level formed between two objects. In order to figure out, theoretical calculations were performed. FIG. 2 shows an example of the shape of the contact part of two objects assumed at this time, and FIGS. 8 to 11 show the theoretical calculation results. In general, a quantitative understanding of the X-ray transmission / scattering of the slit aperture requires a calculation based on the electromagnetic wave equation, but here the slit aperture width is complex or the slit aperture shape is complicated. However, the X-ray incident plane wave is divided into parallel beam bundles with a finite amplitude of several microns, and the final solution is obtained by superimposing the solutions obtained for each so that the amount of calculation is practical. The calculation method of obtaining was adopted.

図2(a)は、断面三角形状で図中のY方向に延伸する2つの物体が、その頂部同士が巨視的に見たときに接触状態となるように配置されたものである。図8及び図9は図2(a)に示した形状の接触部位を想定したものであり、図8は両物体の間隙が1μmの場合の、図9は両物体の間隙が30nmの場合の回折強度パターンある。 FIG. 2A shows a configuration in which two objects having a triangular cross section and extending in the Y direction in the drawing are in contact with each other when their tops are viewed macroscopically. 8 and 9 is obtained by assuming a contact portion having a shape shown in FIG. 2 (a), FIG. 8 is the case the gap of both objects of 1 [mu] m, 9 when the gap between both objects of 30n m it is a diffraction intensity pattern.

各図の(a)は単純に(つまりは後述する物体自体を透過するX線を考慮せず)物体の間隙のみを通過してきたX線の回折強度パターンであり、入射X線の強度を1として規格化している。一方、各図の(b)は物体自体を透過するX線も考慮した間隙付近全体を通過してきたX線の回折強度パターンである。各図(b)において矢印で示す3本のカーブは両物体それぞれ及び両物体間の間隙の3箇所を通り抜けてくる各X線の回折パターンであり、他の1本のカーブはそれらの合計によるX線の回折パターンである。なお、ここでは、両物体の材料はステンレス鋼、各物体の頂部の角度は30°、X線の波長はCuKα(0.154nm)を想定している。   (A) of each figure is a diffraction intensity pattern of X-rays that have passed only through the gap between objects simply (that is, X-rays that pass through the object itself described later) are not considered. As standardized. On the other hand, (b) in each figure is a diffraction intensity pattern of X-rays that have passed through the entire vicinity of the gap in consideration of X-rays transmitted through the object itself. The three curves indicated by arrows in each figure (b) are the diffraction patterns of the X-rays passing through each of the two objects and the three gaps between the two objects, and the other one curve is the sum of them. It is an X-ray diffraction pattern. Here, it is assumed that the material of both objects is stainless steel, the angle of the top of each object is 30 °, and the wavelength of X-rays is CuKα (0.154 nm).

図8(a)及び図9(a)を見れば分かるように、カーブの半値幅は回折の効果により実際の間隙サイズよりもかなり広がっており、その広がりは間隙が狭いほど大きくなる。図2(a)の形状に特徴的であるのは、物体自体を透過してくるX線の強度が相対的にかなり大きいことである。   As can be seen from FIGS. 8A and 9A, the half width of the curve is considerably wider than the actual gap size due to the effect of diffraction, and the spread becomes larger as the gap is narrower. What is characteristic of the shape of FIG. 2A is that the intensity of X-rays transmitted through the object itself is relatively large.

図2(b)は、断面半円状の頂部を有し図中のY方向に延伸する2つの物体が、その頂部同士が巨視的に見たときに接触状態となるように配置されたものである。図10及び図11は図2(b)に示した形状の接触部位を想定したものであり、図10は両物体の間隙が1μmの場合の、図11は両物体の間隙が30nmの場合の回折強度パターンある。上記の図2(a)に示した形状に対する計算と最も異なる点は、全反射を考慮する必要があることである。 FIG. 2 (b) shows a configuration in which two objects having a semicircular top and extending in the Y direction in the drawing are in contact with each other when the tops are viewed macroscopically. It is. 10 and 11 is obtained by assuming a contact portion having a shape shown in FIG. 2 (b), FIG. 10 when the gap between both objects of 1 [mu] m, 11 when the gap between both objects of 30n m it is a diffraction intensity pattern. The most different point from the calculation for the shape shown in FIG. 2A is that total reflection needs to be considered.

各図の(a)は物体表面で反射することなく直接的に通過してきたX線の回折強度パターンであり、入射X線の強度を1として規格化している。ただし、ここでは縦軸(強度軸)は対数で示している。一方、各図の(b)は物体表面での全反射成分のX線の回折強度パターンである。なお、ここでは、両物体の材料はステンレス鋼、各物体の頂部は径2mmの半円形状、X線の波長はCuKα(0.154nm)を想定している。   (A) of each figure is the diffraction intensity pattern of the X-ray which has passed directly without reflecting on the surface of the object, and the intensity of the incident X-ray is normalized as 1. Here, the vertical axis (intensity axis) is shown in logarithm. On the other hand, (b) in each figure is an X-ray diffraction intensity pattern of the total reflection component on the object surface. Here, it is assumed that the material of both objects is stainless steel, the top of each object is a semicircular shape with a diameter of 2 mm, and the wavelength of X-ray is CuKα (0.154 nm).

特に、図10及び図11の(b)から分かることは、全反射X線の角度の拡がりは2〜3°程度あり、ピーク値は直接透過成分に比べて4〜5桁も小さいということである。   In particular, what is understood from FIGS. 10 and 11B is that the angle spread of the total reflection X-ray is about 2 to 3 °, and the peak value is 4 to 5 orders of magnitude smaller than the direct transmission component. is there.

上記計算結果から明らかなことは、接触部位を挟む両物体の形状によってその程度は異なるものの、30nm程度のサイズの間隙であっても、検出するに十分な強度のX線がその間隙幅と同方向に適度な拡がり幅をもって現れることである。そのため、このように拡がりつつ進むX線を的確に抽出すれば、それから求まるX線強度積算値に基づいて間隙サイズを推定することが可能である。また、回折強度パターンの形状は、接触部位を挟んだ両物体の形状によってかなり特異的である。そのため、例えばX線の到達範囲に2次元X線検出器を配置しX線強度の空間分布を測定すれば、その強度分布から物体の表面形状の推定が可能である。 It is clear from the above calculation results, although the degree varies depending on the shape of both objects sandwiching the contact site, even gap size of about 30n m, X-ray of a sufficient intensity to detect its gap width Appearing with a moderate spread width in the same direction. Therefore, if the X-rays that progress while spreading are accurately extracted, it is possible to estimate the gap size based on the X-ray intensity integrated value obtained therefrom. The shape of the diffraction intensity pattern is quite specific depending on the shapes of both objects sandwiching the contact site. Therefore, for example, if a two-dimensional X-ray detector is arranged in the X-ray reachable range and the spatial distribution of X-ray intensity is measured, the surface shape of the object can be estimated from the intensity distribution.

本発明に係る固体間接触部位解析方法及びこれを実施する解析装置は、上記測定原理を利用したものであり、上述したような、間隙を直接的に通り抜けてくるX線のみを1個の検出器で検出し、そのX線強度に基づいて間隙サイズを算出するという従来の測定方法とは全く原理を異にするものである。   The method for analyzing the contact area between solids and the analysis apparatus for performing the same according to the present invention utilize the above measurement principle, and detect only one X-ray passing directly through the gap as described above. The principle is completely different from the conventional measurement method in which the gap size is calculated based on the X-ray intensity detected by the detector.

以下、本発明に係る固体間接触部位解析方法を実施する解析装置の一実施例について、添付図面を参照して説明する。図1は、本実施例である接触部位計測装置の概略構成図である。該装置による計測対象は、図2(a)、(b)に示したような、鋭角状断面又は湾曲状断面を有する2つの物体の直接的な接触部位のほか、例えば図2(c)に示すような、2つの物体の略平行な平面が直接的に接触した部位など様々である。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of an analysis apparatus that performs a method for analyzing a contact part between solids according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of a contact site measuring apparatus according to the present embodiment. The measurement object by the apparatus is not only a direct contact portion of two objects having an acute cross section or a curved cross section as shown in FIGS. 2 (a) and 2 (b), for example, as shown in FIG. 2 (c). As shown, there are various parts such as a part where two substantially parallel planes of two objects are in direct contact.

図2(a)、(b)では2つの物体の接触部位はY方向に延伸する直線状であるが、図2(c)では、2つの物体の接触部位はY方向、Z方向を含む平面状である。いずれの場合においても、巨視的には両物体が接触している状態であっても、それら物体の表面にはごく微細な凹凸が存在するため、微視的に見れば両物体の間にはごく微小の間隙が存在する(但し、Y方向に沿った間隙のサイズは一定ではない)。本実施例の接触部位計測装置は、こうした微視レベルで存在する間隙のサイズやその付近の両物体の形状などの計測を可能としたものである。   2 (a) and 2 (b), the contact part of the two objects is a straight line extending in the Y direction, but in FIG. 2 (c), the contact part of the two objects is a plane including the Y direction and the Z direction. Is. In either case, even if both objects are in contact with each other macroscopically, there are very fine irregularities on the surfaces of these objects. There is a very small gap (however, the size of the gap along the Y direction is not constant). The contact site measurement apparatus of the present embodiment enables measurement of the size of the gap existing at such a microscopic level and the shapes of both objects in the vicinity thereof.

もちろん、本実施例の接触部位計測装置による計測対象の間隙は、2つの物体が直接的に接触している場合のみならず、空気に比べて遙かにX線透過率が低く且つ両物体よりはX線透過率が高い液体や固体の薄膜層を挟んで両物体が間接的に接触した状態の接触部位の間隙であってもよい。   Of course, the gap to be measured by the contact site measurement apparatus of the present embodiment is not only in the case where two objects are in direct contact with each other, but also has a much lower X-ray transmittance than air and more than both objects. May be a gap between contact portions in a state where both objects are in indirect contact with each other with a liquid or solid thin film layer having a high X-ray transmittance interposed therebetween.

図1に示すように、本実施例の接触部位計測装置では、X線遮蔽室1内に、X線源2、X線源2から出射されたX線を効率良く収集して略平行光にするマルチキャピラリX線レンズ3、第1物体4Aと第2物体4Bとからなる測定対象物4、及び、X線照射を受けて測定対象物4の接触部位付近から出射したX線を2次元的に検出する2次元X線検出器5、が配設されている。一方、X線遮蔽室1の外側には、2次元X線検出器5で得られる検出データを処理するために、パーソナルコンピュータ等により具現化されるデータ処理部6が設けられている。2次元X線検出器5は所定の2次元範囲において入射してきたX線の位置の判別が可能な位置敏感型の検出器である。したがって、2次元X線検出器5からデータ処理部6へは、該検出器5の2次元的な検出面に入射したX線の位置情報データ(例えば検出面上の位置アドレスを示すデータ)と検出面上の各位置のX線強度データとが出力される。 As shown in FIG. 1, in the contact part measuring apparatus of the present embodiment, X-rays 2 and X-rays emitted from the X-ray source 2 are efficiently collected in the X-ray shielding chamber 1 to be substantially parallel light. Multi-capillary X-ray lens 3 to be measured, measurement object 4 including first object 4A and second object 4B, and X-rays emitted from the vicinity of the contact portion of measurement object 4 upon receiving X-ray irradiation are two-dimensionally displayed. A two-dimensional X-ray detector 5 is provided for detection. On the other hand, a data processing unit 6 embodied by a personal computer or the like is provided outside the X-ray shielding chamber 1 in order to process detection data obtained by the two-dimensional X-ray detector 5. The two-dimensional X-ray detector 5 is a position-sensitive detector that can determine the position of X-rays incident in a predetermined two-dimensional range. Therefore, from the two-dimensional X-ray detector 5 to the data processing unit 6, position information data of X-rays incident on the two-dimensional detection surface of the detector 5 (for example, data indicating a position address on the detection surface) and X-ray intensity data at each position on the detection surface is output.

データ処理部6は、上記のような検出データに基づいて2次元X線強度分布を作成する2次元X線強度分布作成部61と、該分布データを所定アルゴリズムに従って解析処理して例えば接触部位の微小間隙のサイズを算出する解析処理部62と、を機能ブロックとして含み、その処理結果等は出力部7により出力される。   The data processing unit 6 includes a two-dimensional X-ray intensity distribution creating unit 61 that creates a two-dimensional X-ray intensity distribution based on the detection data as described above, and analyzes the distribution data according to a predetermined algorithm, for example, for a contact site. An analysis processing unit 62 that calculates the size of the minute gap is included as a functional block, and the processing result and the like are output by the output unit 7.

なお、X線を平行化するマルチキャピラリX線レンズ3は必須な要素ではなく、重要なことは、接触部位を挟んで対峙する両物体の平面又は両物体の最近接部位(接触部位)の接平面に対して全反射臨界角以下の入射角でX線が接触部位に入射するようにすることである。ここでいう接平面とは上述した定義に基づく仮想的な近似平面である。全反射臨界角は物体の材料や物体の周囲の雰囲気(例えば空気、液体等)によって相違するから、そうした条件に応じて実際の照射X線に許容される拡がり角度は相違する。   Note that the multi-capillary X-ray lens 3 that collimates the X-rays is not an essential element. What is important is that the planes of both objects facing each other across the contact part or the contact of the closest part (contact part) of both objects. X-rays are incident on the contact site at an incident angle that is less than the critical angle for total reflection with respect to the plane. The tangent plane here is a virtual approximate plane based on the above-described definition. Since the total reflection critical angle differs depending on the material of the object and the atmosphere (for example, air, liquid, etc.) around the object, the spread angle allowed for actual irradiation X-rays differs depending on such conditions.

図1に示したように第1物体4Aと第2物体4Bとが接触した状態であっても、その接触部位には物体4A、4B表面の微細な凹凸、その表面に付着した異物の影響などにより、ごく微小の間隙が存在する。そのため、この接触部位に上述したようなX線が照射されると、上記間隙で主として反射しながら通過して来るX線(以下「通過X線」という)が反対側から出射する。また、物体4A、4Bの表面の微細凹凸のエッジや結晶等により回折を生じたX線(以下「回折X線」という)も反対側から出射するし、物体4A、4Bの表面で散乱したX線(以下「散乱X線」という)も出射する。さらには、接触部位においてX線の入射角が全反射臨界角以下であっても接触部位から少し外れた位置ではX線の入射角は全反射臨界角を超えるし、接触部位においても微視的に見れば一部のX線の入射角は全反射臨界角を超えることがある。そのため、物体4A、4B中に入り込んだX線の励起作用により、それら物体から物質特有の特性X線も出射してくる。そうした様々な種類のX線は接触部位から拡がりながら進み、2次元X線検出器の検出面に到達する。 As shown in FIG. 1, even when the first object 4A and the second object 4B are in contact with each other, there are fine irregularities on the surfaces of the objects 4A and 4B, the influence of foreign matter attached to the surface, etc. Due to this, there is a very small gap. For this reason, when the X-rays as described above are irradiated to this contact site, X-rays that pass through while being mainly reflected by the gap (hereinafter referred to as “passing X-rays”) are emitted from the opposite side. In addition, X-rays diffracted by fine uneven edges and crystals on the surfaces of the objects 4A and 4B (hereinafter referred to as “diffracted X-rays”) are also emitted from the opposite side and scattered by the surfaces of the objects 4A and 4B. A ray (hereinafter referred to as “scattered X-ray”) is also emitted. Furthermore, even if the X-ray incident angle is less than or equal to the total reflection critical angle at the contact site, the X-ray incident angle exceeds the total reflection critical angle at a position slightly away from the contact site, and the contact site is also microscopic. In some cases, the incident angle of some X-rays may exceed the total reflection critical angle. Therefore, the characteristic X-rays peculiar to the substance are also emitted from the objects by the excitation action of the X-rays entering the objects 4A and 4B. Such various types of X-rays travel while spreading from the contact area and reach the detection surface of the two-dimensional X-ray detector 5 .

一般に、通過X線の強度は最も大きいが、回折X線や散乱X線もその強度はかなり大きい。ただし、2次元X線検出器の検出面位置において、通過X線は接触部位の微小間隙のサイズを反映した比較的狭い範囲に収まるのに対し、回折X線や散乱X線の拡がりは接触部位付近の物体4A、4Bの表面形状の影響を大きく受ける。本実施例の装置では、回折X線や散乱X線が大きく拡がりながら出射する場合でも、それらX線の殆どを2次元X線検出器で受けて位置情報データとX線強度データとを得ることができる。 In general, the intensity of transmitted X-rays is the highest, but the intensity of diffracted X-rays and scattered X-rays is considerably high. However, at the detection surface position of the two-dimensional X-ray detector 5 , the passing X-rays are within a relatively narrow range reflecting the size of the minute gap at the contact site, whereas the spread of diffracted X-rays and scattered X-rays is in contact. It is greatly influenced by the surface shapes of the objects 4A and 4B near the part. In the apparatus of the present embodiment, even when diffracted X-rays and scattered X-rays are emitted while greatly spreading, most of the X-rays are received by the two-dimensional X-ray detector 5 to obtain position information data and X-ray intensity data. be able to.

図3は、図2(b)の形態において両物体を強く押し付けた状態で下方側のX線を遮蔽して、その状態で2次元X検出器5からの検出データに基づいて作成される2次元X線強度分布画像の一例である。この場合、両物体は大きな荷重で互いに押し付けられているため、接触部位の間隙はきわめて狭く(ほぼ零と)なっている。一方、この間隙の上方には物体の表面からの散乱X線や回折X線による像が現れており、それら像の形状は荷重による物体の微小な変形を反映している。このように2次元X線強度分布画像を利用すれば、接触部位付近の物体の表面形状を調べることも可能である。   FIG. 3 is created based on detection data from the two-dimensional X detector 5 in the state shown in FIG. 2B in which X-rays on the lower side are shielded while both objects are strongly pressed. It is an example of a dimensional X-ray intensity distribution image. In this case, since the two objects are pressed against each other with a large load, the gap between the contact portions is extremely narrow (nearly zero). On the other hand, images of scattered X-rays and diffracted X-rays from the surface of the object appear above the gap, and the shape of these images reflects minute deformation of the object due to the load. By using the two-dimensional X-ray intensity distribution image in this way, it is possible to examine the surface shape of the object near the contact site.

図4は本実施例の接触部位計測装置を用いて測定対象物4の接触部位に存在する微小間隙の大きさを求める際の、該装置の動作手順を示すフローチャートである。   FIG. 4 is a flowchart showing an operation procedure of the apparatus when the size of the minute gap existing at the contact site of the measurement object 4 is obtained using the contact site measuring apparatus of the present embodiment.

まず、X線源2を駆動して測定対象物4の接触部位にX線を照射し、上述のように接触部位からの通過X線を含む各種X線を2次元X線検出器5で検出する。そして、2次元X線検出器5から検出データを受領した2次元X線強度分布作成部61は2次元X線強度分布画像を作成する(ステップS1)。次に、解析処理部62は上記画像に対し、X線強度を抽出する画素を選択するための検出窓を設定する(ステップS2)。この検出窓は、X線が殆ど又は全く入射していない画素を後述の積算対象から除去することで実効的にS/Nを改善するため、或いは、接触部位が例えば点状である場合のように求める間隙が2次元画像中の特定の箇所のみに存在する場合に不要な、つまり接触部位でない箇所からの通過X線の影響を除去するためのものである。   First, the X-ray source 2 is driven to irradiate the contact part of the measurement object 4 with X-rays, and various X-rays including the passing X-rays from the contact part are detected by the two-dimensional X-ray detector 5 as described above. To do. The two-dimensional X-ray intensity distribution creating unit 61 that has received the detection data from the two-dimensional X-ray detector 5 creates a two-dimensional X-ray intensity distribution image (step S1). Next, the analysis processing unit 62 sets a detection window for selecting a pixel from which the X-ray intensity is extracted for the image (step S2). This detection window is used to effectively improve the S / N by removing pixels from which X-rays are hardly or not incident from the integration target described later, or when the contact site is, for example, a dot shape. This is for eliminating the influence of passing X-rays from a portion that is not necessary, that is, a portion that is not a contact portion, when the gap to be obtained is present only at a specific portion in the two-dimensional image.

前者の目的に対しては、例えばX線強度が所定閾値以上である画素のみを選択するように自動的に検出窓を設定することができる。一方、後者の目的に対しては又は前者の目的に対しても、測定者が2次元X線強度分布画像をモニタ(図示せず)の画面上で確認しながら、手動で適切な範囲に検出窓を設定するようにするとよい。例えば後で例示するように接触部位が線状(又は平面状)である場合には、2次元X線強度分布画像上に水平方向に帯状に大きなX線強度を示す画素が並ぶから、これを包含するように検出窓を設定すればよい。次いで解析処理部62は検出窓内の画素のX線強度を積算し(ステップS3)、その積算強度から接触部位の微小間隙のサイズを算出する(ステップS4)。そして、算出された微小間隙サイズを2次元X線強度分布画像と併せて出力部7から出力する(ステップS5)。   For the former purpose, for example, the detection window can be automatically set so as to select only pixels whose X-ray intensity is equal to or greater than a predetermined threshold. On the other hand, for the latter purpose or the former purpose, the measurer manually detects the two-dimensional X-ray intensity distribution image on the screen of a monitor (not shown) and manually detects it within an appropriate range. It is recommended to set the window. For example, as illustrated later, when the contact site is linear (or planar), pixels that exhibit high X-ray intensity in a strip shape in the horizontal direction are arranged on the two-dimensional X-ray intensity distribution image. What is necessary is just to set a detection window so that it may include. Next, the analysis processing unit 62 integrates the X-ray intensities of the pixels in the detection window (step S3), and calculates the size of the minute gap at the contact site from the integrated intensity (step S4). Then, the calculated minute gap size is output from the output unit 7 together with the two-dimensional X-ray intensity distribution image (step S5).

スリット開口幅dが6μm及び1μmであるスリットを上記接触部位計測装置により測定して得られる2次元X線強度分布画像実測例を図5、図6に示す。スリット開口幅1μmでも、スリット開口に対応した水平な帯状(線状)の像が明瞭に得られていることが分かる。上述したように、このような場合には水平方向に延びる帯状の検出窓を設定すればよい。さらにスリット開口幅が狭くなる場合でも、積算時間を増加させて適当な検出窓を設定すれば、開口幅を算出するのに十分な強度の信号を取り出すことができる。 The actual example of a two-dimensional X-ray intensity distribution image slit opening width d is obtained a slit is 6μm and 1μm as measured by the contact portion measuring device 5, shown in FIG. It can be seen that even with a slit opening width of 1 μm, a horizontal strip (line) image corresponding to the slit opening is clearly obtained. As described above, in such a case, a band-shaped detection window extending in the horizontal direction may be set. Further, even when the slit opening width becomes narrower, a signal having a sufficient strength for calculating the opening width can be extracted by setting an appropriate detection window by increasing the integration time.

スリット開口幅dを段階的に調整したものを上記実施例の接触部位計測装置により実測して、スリット開口幅dと積算X線強度相対値との関係を算出した結果が図7である。この図から、0.1〜2.5μmの範囲でスリット開口幅dと積算X線強度との間には相関があることが分かる。そこで、例えば上記のような関係を予め求めて参照情報として解析処理部62に記憶しておくことにより、測定対象物4に対して計測を実行して得られたX線強度を上記参照情報に照らして微小間隙サイズを求めることができる。   FIG. 7 shows the result of calculating the relationship between the slit opening width d and the integrated X-ray intensity relative value by actually measuring the slit opening width d in a stepwise manner using the contact part measuring apparatus of the above embodiment. From this figure, it can be seen that there is a correlation between the slit opening width d and the integrated X-ray intensity in the range of 0.1 to 2.5 μm. Therefore, for example, by obtaining the relationship as described above in advance and storing it as reference information in the analysis processing unit 62, the X-ray intensity obtained by executing the measurement on the measurement object 4 is used as the reference information. In light of this, the micro gap size can be obtained.

なお、上述したようにX線の照射を受けた物体からは特性X線も放出されるから、2次元X線検出器に代えてエネルギー分散型X線分光検出器を配置する構成としておく、或いは、2次元X線検出器とエネルギー分散型X線分光検出器とを併設しておき、エネルギー分散型X線分光検出器で得られた信号を同定処理に供することにより、接触部位を形成する物体の組成も把握することが可能となる。   As described above, characteristic X-rays are also emitted from an object that has been irradiated with X-rays. Therefore, an energy dispersive X-ray spectroscopic detector is arranged instead of the two-dimensional X-ray detector, or An object that forms a contact site by providing a two-dimensional X-ray detector and an energy dispersive X-ray spectroscopic detector together with the signal obtained by the energy dispersive X-ray spectroscopic detector for identification processing It is also possible to grasp the composition of.

また、上記実施例はいずれも本発明の一例であるから、本発明の趣旨の範囲で適宜変形、修正又は追加を行っても本願特許請求の範囲に包含されることは当然である。例えば、上記実施例では、静止状態にある2物体が直接的又は間接的に接触している状態を想定していたが、X線を照射する位置さえ移動しなければ、一方の物体が他方に対して相対的に運動している状態や両物体が互いに運動している状態であっても、同様の測定が可能であることは明らかである。   In addition, since each of the above-described embodiments is an example of the present invention, it is a matter of course that modifications, corrections, or additions as appropriate within the scope of the present invention are included in the scope of the claims of the present application. For example, in the above embodiment, it is assumed that two objects in a stationary state are in direct or indirect contact. However, if even an X-ray irradiation position does not move, one object moves to the other. It is clear that the same measurement is possible even when the object is moving relative to each other and when both objects are moving relative to each other.

1…X線遮蔽
…X線源
3…マルチキャピラリX線レンズ
4…測定対象物
4A…第1物体
4B…第2物体
5…2次元X線検出器
6…データ処理部
61…2次元X線強度分布作成部
62…解析処理部
1 ... X-ray shielding room
2 ... X-ray source 3 ... Multicapillary X-ray lens 4 ... Measurement object 4A ... First object 4B ... Second object 5 ... Two-dimensional X-ray detector 6 ... Data processing unit 61 ... Two-dimensional X-ray intensity distribution creation unit 62 ... Analysis processing section

Claims (4)

固体である第1物体と同じく固体である第2物体とが点、線若しくは面で直接的に接触する接触部位、又は、第1物体と第2物体とがそれら物体よりも高いX線透過率を有する液体若しくは固体を介して点、線若しくは面で間接的に接触している接触部位の微視的な構造をX線を用いて解析するための固体間接触部位解析方法であって、
a)前記接触部位を挟んで対向する両物体の平面又は両物体の最近接部位の接平面に対し全反射臨界角以下の入射角度をもって該接触部位にX線を入射するX線照射ステップと、
b)その入射X線に対して前記接触部位の反対側から出射してきた、接触部位を挟む物体表面で反射及び散乱されたX線、並びに、回折で生じたX線を含むX線を複数の微小X線検出素子が2次元的に配列されてなる位置敏感型の2次元X線検出器により検出するX線検出ステップと、
c)前記2次元X線検出器からの検出信号により得られる2次元X線強度分布に基づいて前記接触部位の構造についての情報を取得する解析ステップと、
を有することを特徴とする固体間接触部位解析方法。
The contact portion where the first object that is solid and the second object that is solid as well are in direct contact with each other by a point, line, or surface, or the X-ray transmittance that is higher than the first object and the second object. A method for analyzing the contact area between solids for analyzing the microscopic structure of a contact part that is indirectly in contact with a point, line, or surface via a liquid or solid having X-rays,
a) an X-ray irradiation step in which X-rays are incident on the contact portion with an incident angle equal to or less than a critical angle for total reflection with respect to the planes of both objects facing each other across the contact portion or the tangential plane of the closest portion of both objects;
b) has been emitted from the opposite side of the contact portion with respect to the incident X-rays, reflected and scattered X-rays in the object surface to sandwich the contact portions, as well as X-rays including X-rays generated by the diffraction, several An X-ray detection step of detecting by a position sensitive type two-dimensional X-ray detector in which the minute X-ray detection elements are two-dimensionally arranged;
c) an analysis step of acquiring information about the structure of the contact portion based on a two-dimensional X-ray intensity distribution obtained from a detection signal from the two-dimensional X-ray detector;
A method for analyzing a contact area between solids, comprising:
固体である第1物体と同じく固体である第2物体とが点、線若しくは面で接触する接触部位、又は、第1物体と第2物体とがそれら物体よりも高いX線透過率を有する液体若しくは固体を介して点、線若しくは面で間接的に接触している接触部位の微視的な構造をX線を用いて解析するための固体間接触部位解析装置であって、
a)前記接触部位を挟んで対向する両物体の平面又は両物体の最近接部位の接平面に対し全反射臨界角以下の入射角度をもって該接触部位にX線を入射させるX線照射手段と、
b)前記X線照射手段による入射X線に対して前記接触部位の反対側から出射してきた、接触部位を挟む物体表面で反射及び散乱されたX線、並びに、回折で生じたX線を含むX線を検出する、複数の微小X線検出素子が2次元的に配列されてなる位置敏感型のX線検出手段と、
c)前記X線検出手段からの検出信号により得られる2次元X線強度分布に基づいて前記接触部位の構造についての情報を取得するデータ処理手段と、
を備えることを特徴とする固体間接触部位解析装置。
A contact portion where a first object that is solid and a second object that is solid as well as a point, a line, or a surface contact each other, or a liquid that has a higher X-ray transmittance than the first object and the second object. Or an inter-solid contact site analysis device for analyzing the microscopic structure of a contact site that is in direct contact with a point, line, or surface via a solid using X-rays,
a) X-ray irradiating means for causing X-rays to enter the contact part with an incident angle equal to or less than the total reflection critical angle with respect to the planes of both objects facing each other across the contact part or the tangential plane of the closest part of both objects;
b) Includes X-rays that are emitted from the opposite side of the contact site with respect to incident X-rays by the X-ray irradiation means and reflected and scattered by the object surface sandwiching the contact site, and X-rays generated by diffraction A position sensitive X-ray detection means for detecting X-rays, in which a plurality of micro X-ray detection elements are two-dimensionally arranged;
c) data processing means for obtaining information about the structure of the contact portion based on a two-dimensional X-ray intensity distribution obtained from a detection signal from the X-ray detection means;
An apparatus for analyzing a contact area between solids, comprising:
請求項2に記載の固体間接触部位解析装置であって、
前記データ処理手段は、前記X線検出手段における全微小X線検出素子のうちの特定範囲に含まれる複数の微小X線検出素子により得られるX線強度を積算し、その積算した強度情報に基づいて前記接触部位に存在する微小間隙の大きさを求めることを特徴とする固体間接触部位解析装置。
The inter-solid contact site analyzing apparatus according to claim 2,
The data processing means accumulates X-ray intensities obtained by a plurality of minute X-ray detection elements included in a specific range among all the minute X-ray detection elements in the X-ray detection means, and based on the accumulated intensity information. And determining the size of a minute gap present in the contact portion.
請求項2に記載の固体間接触部位解析装置であって、
前記データ処理手段は、前記2次元X線強度分布から求まる強度パターンを解析することにより前記接触部位を挟んで対向する両物体の表面形状を推定することを特徴とする固体間接触部位解析装置。
The inter-solid contact site analyzing apparatus according to claim 2,
The inter-solid contact site analysis apparatus characterized in that the data processing means estimates a surface shape of both objects facing each other across the contact site by analyzing an intensity pattern obtained from the two-dimensional X-ray intensity distribution.
JP2010269896A 2010-12-03 2010-12-03 Method and apparatus for analyzing contact area between solids Active JP5664186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010269896A JP5664186B2 (en) 2010-12-03 2010-12-03 Method and apparatus for analyzing contact area between solids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269896A JP5664186B2 (en) 2010-12-03 2010-12-03 Method and apparatus for analyzing contact area between solids

Publications (3)

Publication Number Publication Date
JP2012117988A JP2012117988A (en) 2012-06-21
JP2012117988A5 JP2012117988A5 (en) 2013-08-29
JP5664186B2 true JP5664186B2 (en) 2015-02-04

Family

ID=46500976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269896A Active JP5664186B2 (en) 2010-12-03 2010-12-03 Method and apparatus for analyzing contact area between solids

Country Status (1)

Country Link
JP (1) JP5664186B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6177615B2 (en) * 2013-07-31 2017-08-09 トヨタ自動車株式会社 Lubricating oil property analyzing method and analyzing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008165064A (en) * 2006-12-28 2008-07-17 Ricoh Co Ltd Device and method for measuring length of developing gap
US8389892B2 (en) * 2009-05-20 2013-03-05 Ethicon, Inc. X-ray microscopy for characterizing hole shape and dimensions in surgical needles

Also Published As

Publication number Publication date
JP2012117988A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
Villarraga-Gómez et al. X-ray computed tomography: from medical imaging to dimensional metrology
Juarez et al. Multi-frequency local wavenumber analysis and ply correlation of delamination damage
Senck et al. Microcrack characterization in loaded CFRP laminates using quantitative two-and three-dimensional X-ray dark-field imaging
CN102077052A (en) Vision system for scan planning of ultrasonic inspection
TW201809646A (en) Composite inspection system
US20140192959A1 (en) Method and apparatus for surface mapping using in-plane grazing incidence diffraction
JP5664186B2 (en) Method and apparatus for analyzing contact area between solids
Parikh et al. Volumetric defect analysis in friction stir welding based on three dimensional reconstructed images
JP5483840B2 (en) X-ray imaging apparatus and X-ray imaging method
JP6177615B2 (en) Lubricating oil property analyzing method and analyzing apparatus
US20190025231A1 (en) A method of detection of defects in materials with internal directional structure and a device for performance of the method
US20240044819A1 (en) X-ray based measurements in patterned structure
Streza et al. Depth estimation of surface cracks on metallic components by means of lock-in thermography
Farahani et al. Advancement on optical methods in stress dead-zone characterisation and SIF evaluation
JP6435106B2 (en) Paint film analysis method
EP3828534B1 (en) X-ray fluorescence imaging for determining layer thicknesses
CN103901058A (en) Dual-optical path X-ray nondestructive testing device
JP2012117988A5 (en)
CN203025127U (en) Double-light-way X ray nondestructive testing device
Mahmoud et al. Enhancing automatic inspection and characterization of carbon fiber composites through hyperspectral diffuse reflection analysis and k-means clustering
JP4561312B2 (en) X-ray image reconstruction device
DE102012003813A1 (en) Non-destructive and non-contact testing method for testing e.g. cracks in e.g. fiber material, involves producing heat wave with adjustable phase angle of inclination to interact wave with vertical or horizontal structures and defects
JP2001074645A (en) Method and device for measuring small amount of fine particle
JP3267245B2 (en) Particle size distribution / turbidity simultaneous measurement method and device
JP2010169469A (en) Method and device for detecting crystal strain

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R151 Written notification of patent or utility model registration

Ref document number: 5664186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250