JP2010138876A - Pump facility and method for operating the same - Google Patents

Pump facility and method for operating the same Download PDF

Info

Publication number
JP2010138876A
JP2010138876A JP2008318332A JP2008318332A JP2010138876A JP 2010138876 A JP2010138876 A JP 2010138876A JP 2008318332 A JP2008318332 A JP 2008318332A JP 2008318332 A JP2008318332 A JP 2008318332A JP 2010138876 A JP2010138876 A JP 2010138876A
Authority
JP
Japan
Prior art keywords
pump
water level
air
pumps
vertical shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008318332A
Other languages
Japanese (ja)
Other versions
JP5028398B2 (en
Inventor
Yuji Kanemori
祐治 兼森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torishima Pump Manufacturing Co Ltd
Original Assignee
Torishima Pump Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torishima Pump Manufacturing Co Ltd filed Critical Torishima Pump Manufacturing Co Ltd
Priority to JP2008318332A priority Critical patent/JP5028398B2/en
Publication of JP2010138876A publication Critical patent/JP2010138876A/en
Application granted granted Critical
Publication of JP5028398B2 publication Critical patent/JP5028398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To attain a stepwise start of draining of a plurality of vertical shaft pumps even when water flows rapidly into a water absorption tank, to make draining operation time for each vertical shaft pump uniform, and to unify the specification of each vertical shaft pump in a pump facility provided with a plurality of the vertical shaft pumps provided in the water absorption tank. <P>SOLUTION: In each vertical shaft pump 11, switching can be performed between: forcible operation in air in which a discharge valve 37 is closed, communication between a discharge port and a discharge pipe 23 is cutoff, a control valve 37 is opened, and a main shaft 25 is rotated by a driving mechanism 28 in a state of compressed air from a compressed air supply source filled in a casing 22; and normal operation in which the discharge valve 37 is opened, the discharge port is communicated with the discharge pipe 23, the control valve 37 is closed, and the main shaft 25 is rotated by the driving mechanism 28 in a state of the compressed air not being supplied from the compressed air supply source. In the vertical shaft pumps 11, operation is switched from the forcible operation in air to the normal operation sequentially according to a rise of the water level in the water absorption tank 20 detected by a water level detection means 46. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ポンプ設備とその運転方法に関するものである。   The present invention relates to a pump facility and an operation method thereof.

従来のポンプ設備としては、吸水槽内の水位に応じて複数の先行待機型の立軸ポンプに段階的に(順に)排水を開始させるために、複数の立軸ポンプをそれぞれ異なる高さに配置し、ポンプの羽根車位置を互いに上下方向にずらしたものが知られている(特許文献1参照)。   As conventional pump equipment, in order to start draining step by step (in order) to a plurality of preceding standby type vertical pumps according to the water level in the water absorption tank, a plurality of vertical pumps are arranged at different heights, A pump in which the impeller positions of the pump are shifted in the vertical direction is known (see Patent Document 1).

このポンプ設備では、複数の立軸ポンプ内の水位を個別に調整することはできない。そのため、雨水が吸水槽に急激に流入した場合、それぞれ異なる高さに配置された全ての羽根車が実質的に同時に水没し、全ての立軸ポンプが同時に排水を開始する。全ての立軸ポンプが同時に排水を開始すると、モータを含む各立軸ポンプの駆動機構へ給電する電源設備に急激な負荷変動による悪影響を及ぼす。   In this pump facility, the water levels in a plurality of vertical pumps cannot be individually adjusted. Therefore, when rainwater suddenly flows into the water absorption tank, all the impellers arranged at different heights are submerged substantially simultaneously, and all the vertical shaft pumps start draining simultaneously. If all the vertical pumps start draining at the same time, the power supply equipment that supplies power to the drive mechanism of each vertical pump including the motor is adversely affected by sudden load fluctuations.

また、このポンプ設備では、相対的に低い位置にある立軸ポンプの排水運転時間が、相対的に高い位置にあるポンプと比較して長くなる。その結果、相対的に低い位置にあるポンプの軸受および羽根車などは、摩耗の進行が相対的に高い位置にあるポンプと比較して著しい(片減り)。片減りしたポンプの交換が必要となるので、ポンプ設備全体として、運転ができない期間が増加し、また、ポンプ交換などの手間とコストがより多くかかる。   Further, in this pump facility, the drainage operation time of the vertical shaft pump at a relatively low position is longer than that of a pump at a relatively high position. As a result, pump bearings, impellers, and the like that are relatively low in position are significant (decrease) compared to pumps that are relatively high in wear. Since it is necessary to replace the pump that has been reduced, the entire pump facility increases the period during which it cannot be operated, and more labor and cost such as pump replacement are required.

さらに、このポンプ設備では、羽根車の設置高さを異ならせなければならないため、設備(機場)に要求される高さ方向のスペースの制約を満たすには仕様の異なる立軸ポンプを使用する必要がある。仕様の異なる立軸ポンプを複数設計するには、1種類のポンプのみを設計する場合と比較してコストが余分にかかる。
特許2136740号公報
Furthermore, since the installation height of the impeller must be different in this pump equipment, it is necessary to use vertical pumps with different specifications in order to satisfy the space constraints in the height direction required for the equipment (machine). is there. Designing a plurality of vertical shaft pumps having different specifications is more costly than designing only one type of pump.
Japanese Patent No. 2136740

本発明は、吸水槽に複数の立軸ポンプを設けたポンプ設備において、吸水槽に急激に水が流入した場合にも複数の立軸ポンプの段階的な排水開始を実現すること、各立軸ポンプの排水運転時間を均一化すること、並びに立軸ポンプの仕様を統一することを課題とする。   The present invention provides a pump facility in which a plurality of vertical pumps are provided in a water absorption tank, so that even when water suddenly flows into the water absorption tank, a plurality of vertical pumps start draining step by step, and each vertical pump drains. The tasks are to make the operating time uniform and to unify the specifications of the vertical shaft pump.

本発明の第1の態様は、上流側から水が流入する吸水槽と、前記吸水槽に開口する吸込口を有する吸込ベルを下端側に備える一方、吐出管に接続された吐出口を上端側に備えるケーシングと、前記ケーシング内の前記吸込口より上方に位置する羽根車と、前記羽根車が固定された主軸と、前記主軸を回転駆動する駆動機構とをそれぞれ有する複数の立軸ポンプと、個々の前記立軸ポンプの前記吐出口と前記吐出管との間にそれぞれ配設された複数の吐出弁と、個々の前記立軸ポンプの前記吸込ベルに制御弁が配設された空気流路を介してそれぞれ接続された複数の圧縮空気供給源と、前記吸水槽内の水位を検出する水位検出手段とを備え、個々の前記立軸ポンプは、前記吐出弁を閉弁状態として前記吐出口と前記吐出管との連通を遮断し、かつ前記制御弁を開弁状態とし、前記ケーシング内に前記圧縮空気供給源からの圧縮空気を充填した状態で前記駆動機構により前記主軸を回転させる強制気中運転と、前記吐出弁を開弁状態として前記吐出口と前記吐出管を連通させ、かつ前記制御弁を閉弁状態とし、前記圧縮空気供給源からの前記圧縮空気の供給を止めた状態で前記駆動機構により前記主軸を回転させる通常運転とを切換可能であり、前記水位検出手段の検出する前記吸水槽内の水位の上昇に応じて、前記複数の立軸ポンプが前記強制気中運転から前記通常運転に順次切り替わることを特徴とするポンプ設備を提供する。   The first aspect of the present invention includes a water absorption tank into which water flows from the upstream side and a suction bell having a suction port that opens in the water absorption tank on the lower end side, while the discharge port connected to the discharge pipe is located on the upper end side. A plurality of vertical shaft pumps each having a casing provided in the casing, an impeller positioned above the suction port in the casing, a main shaft to which the impeller is fixed, and a drive mechanism that rotationally drives the main shaft, Via a plurality of discharge valves respectively disposed between the discharge port of the vertical shaft pump and the discharge pipe, and an air flow path in which a control valve is disposed on the suction bell of each vertical shaft pump. A plurality of compressed air supply sources connected to each other, and a water level detecting means for detecting the water level in the water absorption tank. Each of the vertical pumps closes the discharge valve and closes the discharge port and the discharge pipe. Block communication with The control valve is opened, the casing is filled with compressed air from the compressed air supply source, and the driving mechanism rotates the main shaft by the driving mechanism, and the discharge valve is opened. A normal operation in which the discharge port and the discharge pipe are communicated, the control valve is closed, and the main shaft is rotated by the drive mechanism in a state where the supply of the compressed air from the compressed air supply source is stopped; The plurality of vertical shaft pumps are sequentially switched from the forced air operation to the normal operation in response to a rise in the water level in the water absorption tank detected by the water level detection means. I will provide a.

この構成よれば、複数の立軸ポンプを備えるポンプ設備の各立軸ポンプが、圧縮空気供給源からの圧縮空気をケーシング内部へ充填した状態での強制気中運転と、圧縮空気供給源からの圧縮空気をケーシング内部へ供給停止した状態での通常運転とを切替可能である。また、水位検出手段の検出する吸水槽内の水位の上昇に応じて、複数の立軸ポンプを所望の順番で強制気中運転から通常運転に切り替わる。各立軸ポンプ内の水位は強制気中運転から通常運転への切り替えで調整できるので、吸水槽に水が急激に流入した場合でも、複数の立軸ポンプ(例えば、全ての立軸ポンプ)の羽根車が同時に水没して運転排水を開始することがなく、複数の立軸ポンプは1台ずつ段階的に(順に)排水を開始する。吸水槽に水が急激に流入した場合でも、複数の立軸ポンプの段階的な排水開始を実現できるので、駆動機構へ給電する電源設備に対して急激な負荷変動に起因する悪影響がない。   According to this configuration, each vertical pump of a pump facility including a plurality of vertical pumps is operated in forced air in a state in which the casing is filled with compressed air from the compressed air supply source, and compressed air from the compressed air supply source. Can be switched to the normal operation in a state where the supply to the inside of the casing is stopped. Moreover, according to the rise in the water level in the water absorption tank detected by the water level detection means, the plurality of vertical shaft pumps are switched from the forced air operation to the normal operation in a desired order. Since the water level in each vertical pump can be adjusted by switching from forced air operation to normal operation, impellers of multiple vertical pumps (for example, all vertical pumps) can be operated even when water suddenly flows into the water absorption tank. The plurality of vertical shaft pumps start draining step by step (in order) without being submerged at the same time and starting operation draining. Even when water suddenly flows into the water absorption tank, since a plurality of vertical pumps can start draining stepwise, there is no adverse effect on power supply equipment that supplies power to the drive mechanism due to sudden load fluctuations.

前記立軸ポンプを前記強制気中運転から前記通常運転に順次切り替える順序を予め定められた期間毎に並べ替えることが好ましい。   It is preferable to rearrange the order in which the vertical shaft pump is sequentially switched from the forced air operation to the normal operation for each predetermined period.

仮に複数の立軸ポンプが吸水槽内の水位の上昇に応じて強制気中運転から通常運転に切り替わる順序が一定ないし不変であると、例えば最初に強制気中運転から通常運転に切り替わる立軸ポンプ(吸水槽内が低水位のときに強制気中運転から通常運転に切り替わる立軸ポンプ)は頻繁に排水を行うのに対し、最後に強制気中運転から通常排水運転に切り替わる立軸ポンプ(吸水槽内が高水位のときに強制気中運転から通常運転に切り替わる立軸ポンプ)は排水を実行する頻度が低くなる。その結果、最初に強制気中運転から通常運転に切り替わる立軸ポンプ部品の摩耗の進行は、他の立軸ポンプと比較して著しくなる。つまり、片減りが起こる。しかし、強制気中運転から通常運転に切り替える順序を予め定められた期間ごとに並べ替えることで、ある一定期間での各立軸ポンプの排水運転時間を均一化でき、片減りを解消できる。その結果、立軸ポンプの交換の間隔を長くすることができ、手間とコストを抑えることができる。   If the order in which a plurality of vertical pumps switch from forced air operation to normal operation according to the rise in the water level in the water absorption tank is constant or unchanged, for example, the vertical pump (water absorption pump that first switches from forced air operation to normal operation) The vertical pump that switches from forced air operation to normal operation when the tank is at a low water level drains frequently, whereas the vertical pump that finally switches from forced air operation to normal drain operation (high in the water absorption tank) The vertical pump that switches from forced air operation to normal operation when the water level is low, the frequency of draining is low. As a result, the progress of the wear of the vertical shaft pump component that is first switched from the forced air operation to the normal operation becomes significant as compared with other vertical shaft pumps. That is, a reduction occurs. However, by rearranging the order of switching from the forced air operation to the normal operation for each predetermined period, the drainage operation time of each vertical shaft pump in a certain period can be made uniform, and the reduction can be eliminated. As a result, the interval between the vertical shaft pumps can be increased, and labor and cost can be reduced.

具体的には、前記複数の立軸ポンプは、前記吸込ベルの吸込口が同一水平面上に設けられ、かつ、前記羽根車が前記吸込口から同じ高さに設けられ、前記水位検出手段が、前記吸水槽の水位が前記吸込口よりも低い予め設定された待機水位にあることを検出すると、全ての前記複数の立軸ポンプが運転を開始するとともに、全ての前記複数の立軸ポンプの前記吐出弁が閉弁し、前記水位検出手段が、前記吸水槽の水位が前記吸込口と同じ高さに到達したことを検出すると、全ての前記立軸ポンプが前記強制気中運転を開始し、前記水位検出手段が、前記吸水槽の水位が前記複数の立軸ポンプのそれぞれに対応して予め設定された複数の異なる到達水位のうちの1つに到達したことを検出すると、前記到達水位に対応する前記立軸ポンプが前記強制気中運転から前記通常運転へ切り替わることが好ましい。   Specifically, in the plurality of vertical shaft pumps, the suction port of the suction bell is provided on the same horizontal plane, the impeller is provided at the same height from the suction port, and the water level detecting means is When it is detected that the water level of the water tank is at a preset standby water level lower than the suction port, all the plurality of vertical pumps start operation, and the discharge valves of all the plurality of vertical pumps When the water level detection means detects that the water level of the water tank has reached the same height as the suction port, all the vertical pumps start the forced air operation, and the water level detection means However, when it is detected that the water level of the water absorption tank has reached one of a plurality of different reached water levels set in advance corresponding to each of the plurality of vertical pumps, the vertical pump corresponding to the reached water level Said It is preferable that during the operation Seiki switched to the normal operation.

この構成によれば、複数の立軸ポンプの吸込口及び羽根車の位置が同一であり、複数の立軸ポンプとして同一の仕様のものを使用できる。つまり、複数の立軸ポンプの仕様を統一できる。従って、立軸ポンプを個別に設計する必要がなくなり、ポンプ設備全体としてのコストを抑えることができる。   According to this configuration, the positions of the suction ports and the impellers of the plurality of vertical pumps are the same, and the same specifications can be used as the plurality of vertical pumps. That is, the specifications of a plurality of vertical shaft pumps can be unified. Therefore, it is not necessary to individually design the vertical shaft pump, and the cost of the entire pump equipment can be suppressed.

具体的には、前記圧縮空気供給源は前記吸込ベルに設けられた外側と内側を貫通する貫通孔と前記空気流路により接続された前記圧縮空気を貯留する空気タンクと、前記空気タンクに前記圧縮空気を供給するコンプレッサとを備えることが好ましい。   Specifically, the compressed air supply source includes an air tank that stores the compressed air connected by an air passage and a through-hole penetrating the outside and the inside of the suction bell, and the air tank includes the air tank. It is preferable to provide a compressor that supplies compressed air.

前記立軸ポンプの吸込ベルが、前記貫通孔が設けられた下向きに開口した上部吸込ベルと、前記上部吸込ベルの内側に間隔をあけて配設され、その下端側先端部が前記上部吸込ベルの下端側先端部より下方側に位置している、下向きに開口した下部吸込ベルとからなり、かつ、前記上部吸込ベルと前記下部吸込ベルとの間に、前記羽根車より下方の前記立軸ポンプのケーシングの内部と前記ケーシングの外部とを連通させる流路が形成されたものであってもよい。   The suction pump of the vertical shaft pump is provided with a downwardly opened upper suction bell provided with the through-hole and an inner side of the upper suction bell, with a lower end on the lower end side of the upper suction bell. The lower suction bell is located below the lower end side tip and is opened downward, and between the upper suction bell and the lower suction bell, the vertical pump below the impeller A flow path may be formed to communicate the inside of the casing and the outside of the casing.

この構成により、各立軸ポンプの排水時の運転状態は、通常排水運転とエアロック運転の2種類となり、ハンチング運転も気水混合運転もない先行待機運転を実現できる。これにより、立軸ポンプに悪影響を及ぼす振動を減少させることができ、立軸ポンプひいてはポンプ設備の寿命を延ばすことができる。   With this configuration, there are two types of operation states during drainage of each vertical shaft pump, a normal drainage operation and an airlock operation, and it is possible to realize a preliminary standby operation without a hunting operation or an air-water mixing operation. Thereby, the vibration which has a bad influence on a vertical shaft pump can be reduced, and the lifetime of a vertical shaft pump and pump equipment can be extended.

前記立軸ポンプが、前記空気タンクから分岐し、前記ケーシング内部の立軸ポンプの主軸の軸受手段と連通する送風用管路と、前記送風用管路に設けられた流量計と、前記流量計よりも前記空気タンク側で前記送風用管路の途中から分岐し、前記ポンプの吐出エルボ内と接続している検出用管路と、前記検出用管路に設けられた差圧計とを備え、前記流量計により検出された空気流量と、前記差圧計により検出された差圧とに基づいて前記軸受手段の異常発生の有無を診断する軸受診断装置をさらに備えてもよい。軸受診断装置を設けた場合、空気タンク内の圧縮空気を一部利用し、軸受とポンプの主軸との間の隙間に供給される空気流量と、空気供給圧とポンプの吐出圧との差圧に基づいて軸受の異常発生を判定するので、簡易な構成で正確で信頼性の高い異常の判定が可能である。   The vertical shaft pump branches from the air tank and communicates with the bearing means of the main shaft of the vertical pump inside the casing, a flow meter provided in the air flow conduit, and more than the flow meter Branching from the middle of the air duct on the air tank side and connected to the inside of the discharge elbow of the pump, and a differential pressure gauge provided in the pipe for detection, the flow rate A bearing diagnosis device for diagnosing whether or not an abnormality has occurred in the bearing means based on an air flow rate detected by a meter and a differential pressure detected by the differential pressure gauge may be further provided. When a bearing diagnostic device is installed, the air pressure supplied to the gap between the bearing and the main shaft of the pump using a part of the compressed air in the air tank, and the differential pressure between the air supply pressure and the pump discharge pressure Therefore, it is possible to determine an abnormality with accuracy and reliability with a simple configuration.

本発明の第2の態様は、上流側から水が流入する吸水槽と、前記吸水槽に開口する吸込口を有する吸込ベルを下端側に備える一方、吐出管に接続された吐出口を上端側に備えるケーシングと、前記ケーシング内の前記吸込口より上方に位置する羽根車と、前記羽根車が固定された主軸と、前記主軸を回転駆動する駆動機構とをそれぞれ有する複数の立軸ポンプと、個々の前記立軸ポンプの前記吐出口と前記吐出管との間にそれぞれ配設された複数の吐出弁と、個々の前記立軸ポンプの前記吸込ベルに制御弁が配設された空気流路を介してそれぞれ接続された複数の圧縮空気供給源と、前記吸水槽内の水位を検出する水位検出手段とを設け、個々の前記立軸ポンプは、前記吐出弁を閉弁状態として前記吐出口と前記吐出管との連通を遮断し、かつ前記制御弁を開弁状態とし、前記ケーシング内に前記圧縮空気供給源からの圧縮空気を充填した状態で前記駆動機構により前記主軸を回転させる強制気中運転と、前記吐出弁を開弁状態として前記吐出口と前記吐出管を連通させ、かつ前記制御弁を閉弁状態とし、前記圧縮空気供給源からの前記圧縮空気の供給を止めた状態で前記駆動機構により前記主軸を回転させる通常運転とを切換可能であり、前記水位検出手段の検出する前記吸水槽内の水位の上昇に応じて、前記複数の立軸ポンプを前記強制気中運転から前記通常運転に順次切り替えることを特徴とするポンプ設備の運転方法である。   The second aspect of the present invention comprises a water absorption tank into which water flows from the upstream side and a suction bell having a suction opening that opens to the water absorption tank on the lower end side, while the discharge port connected to the discharge pipe is located on the upper end side. A plurality of vertical shaft pumps each having a casing provided in the casing, an impeller positioned above the suction port in the casing, a main shaft to which the impeller is fixed, and a drive mechanism that rotationally drives the main shaft, Via a plurality of discharge valves respectively disposed between the discharge port of the vertical shaft pump and the discharge pipe, and an air flow path in which a control valve is disposed on the suction bell of each vertical shaft pump. A plurality of compressed air supply sources connected to each other and a water level detecting means for detecting the water level in the water absorption tank are provided, and each of the vertical shaft pumps closes the discharge valve and closes the discharge port and the discharge pipe. Block communication with The control valve is opened, the casing is filled with compressed air from the compressed air supply source, and the driving mechanism rotates the main shaft by the driving mechanism, and the discharge valve is opened. A normal operation in which the discharge port and the discharge pipe are communicated, the control valve is closed, and the main shaft is rotated by the drive mechanism in a state where the supply of the compressed air from the compressed air supply source is stopped; The pump equipment is characterized in that the plurality of vertical shaft pumps are sequentially switched from the forced air operation to the normal operation in response to a rise in the water level in the water absorption tank detected by the water level detection means. This is the driving method.

本発明のポンプ設備によれば、吸水槽に急激な水が流入した場合にも複数の立軸ポンプの段階的な排水開始の実現により、個々の立軸ポンプの駆動機構に給電する電源設備に対して急激な負荷変動に起因する悪影響が及ぶのを防止できる。また、各立軸ポンプの排水運転時間を均一化できるので、立軸ポンプの交換の間隔が長くなり、手間とコストを抑えることができる。さらに、複数の立軸ポンプの仕様を統一することができるため、立軸ポンプを個別に設計する必要がなくなり、ポンプ設備全体としてのコストを抑えることができる。   According to the pump equipment of the present invention, even when abrupt water flows into the water absorption tank, by realizing the stepwise drainage start of the plurality of vertical pumps, the power supply equipment that supplies power to the drive mechanism of each vertical pump It is possible to prevent adverse effects caused by sudden load fluctuations. Further, since the drainage operation time of each vertical pump can be made uniform, the interval between the vertical pumps can be increased, and labor and cost can be reduced. Furthermore, since the specifications of a plurality of vertical pumps can be unified, it is not necessary to individually design the vertical pumps, and the cost of the pump equipment as a whole can be reduced.

以下、本発明の実施の形態を図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本発明にかかるポンプ設備10を示す。ポンプ設備10は、仕様が同一の複数(本実施形態では3台)の先行待機型立軸ポンプ(以下、単にポンプという)11A〜11Cを備えている。各ポンプ11A〜11Cは、空気タンク12、コンプレッサ13、軸受診断装置14、圧縮空気供給管路15、圧縮空気充填管路16、送風用管路17、検出用管路18、制御装置19及び吸水槽20を備えている。コンプレッサ13及び空気タンク12は圧縮空気供給源を、圧縮空気供給管路15及び圧縮空気充填管路16は空気流路を構成している。ポンプ11A〜11Cを特に区別する必要のない場合、単に、ポンプ11と表記する。   FIG. 1 shows a pump facility 10 according to the present invention. The pump facility 10 includes a plurality of (three in this embodiment) preceding standby vertical pumps (hereinafter simply referred to as pumps) 11A to 11C having the same specifications. Each of the pumps 11A to 11C includes an air tank 12, a compressor 13, a bearing diagnostic device 14, a compressed air supply line 15, a compressed air filling line 16, a blower line 17, a detection line 18, a control unit 19, and a suction unit. A water tank 20 is provided. The compressor 13 and the air tank 12 constitute a compressed air supply source, and the compressed air supply line 15 and the compressed air filling line 16 constitute an air flow path. When it is not necessary to distinguish the pumps 11 </ b> A to 11 </ b> C in particular, they are simply expressed as the pump 11.

ポンプ11Aは、図示しない流入側(上流側)管路から排水ポンプ場の吸水槽20内に流入する雨水等の水を下流側に排水するためのものであり、鉛直方向に延びるケーシング22を備えている。ケーシング22は、直管状の揚水管22a、揚水管22aの下端に連結されたポンプケーシング22b、及び揚水管22aの上端に連結されて鉛直方向から水平方向に湾曲した吐出エルボ22cを備えている。吐出エルボ22cには吐出弁29を介して吐出管23が連結されている。ポンプケーシング22内に羽根車24が配設されている。この羽根車24が下端に固定されている主軸25は鉛直方向に延びてケーシング22の外部に突出している。主軸25は、ラジアル軸受として機能する無注水軸受(軸受手段)26,27(以下、単に軸受という)に支持されている。軸受26はポンプケーシング22bの内面から突出するリブ26aに取り付けられ、軸受27は揚水管22aの内面から突出するリブ27aに取り付けられている。主軸25の上端側は概略的に示すモータ、減速機構等からなる駆動機構28に連結されている。   The pump 11A is for draining water such as rainwater flowing into the water absorption tank 20 of the drainage pump station from an inflow side (upstream side) pipeline (not shown) to the downstream side, and includes a casing 22 extending in the vertical direction. ing. The casing 22 includes a straight tubular pumping pipe 22a, a pump casing 22b connected to the lower end of the pumping pipe 22a, and a discharge elbow 22c connected to the upper end of the pumping pipe 22a and curved in the horizontal direction from the vertical direction. A discharge pipe 23 is connected to the discharge elbow 22 c through a discharge valve 29. An impeller 24 is disposed in the pump casing 22. A main shaft 25 to which the impeller 24 is fixed at the lower end extends in the vertical direction and protrudes outside the casing 22. The main shaft 25 is supported by non-water-filled bearings (bearing means) 26 and 27 (hereinafter simply referred to as bearings) that function as radial bearings. The bearing 26 is attached to a rib 26a protruding from the inner surface of the pump casing 22b, and the bearing 27 is attached to a rib 27a protruding from the inner surface of the pumped pipe 22a. The upper end side of the main shaft 25 is connected to a drive mechanism 28 including a motor, a speed reduction mechanism and the like which are schematically shown.

ポンプケーシング22bの下端側、すなわちケーシング22の最下部には、上部吸込ベル31と下部吸込ベル32が設けられている。まず、上部吸込ベル31は、下向きに開口しており、その上端側がポンプケーシング22bの下端側に連結されている。また、上部吸込ベル31は上端から下端に向けて拡径しており、下端側先端部31aが水平方向に延びている。   An upper suction bell 31 and a lower suction bell 32 are provided on the lower end side of the pump casing 22 b, that is, the lowermost portion of the casing 22. First, the upper suction bell 31 is opened downward, and its upper end side is connected to the lower end side of the pump casing 22b. The upper suction bell 31 has a diameter that increases from the upper end to the lower end, and the lower end tip 31a extends in the horizontal direction.

上部吸込ベル31の内側に、上下両端が開口した下部吸込ベル32が配設されている。下部吸込ベル32は、その外周面が上部吸込ベル31の内周面に対して間隔をあけて配置されており、両者はいわば二重構造の吸込ベルを構成している。上部吸込ベル31と同様に、下部吸込ベル32は上端から下端に向けて拡径しており、下端側先端部32aが水平方向に延びている。この吸込ベル32の下端側先端部32aは、上部吸込ベル31の下端側先端部31aよりも下方側に位置している。従って、上部吸込ベル31の下端側先端部31aの下面31bと、下部吸込ベル32の下端側先端部32aの下面32bとの間には、高低差αがある(図9から図11参照)。   Inside the upper suction bell 31, a lower suction bell 32 having upper and lower ends opened is disposed. The outer periphery of the lower suction bell 32 is disposed with a space from the inner peripheral surface of the upper suction bell 31, and both constitute a so-called dual structure suction bell. Similar to the upper suction bell 31, the lower suction bell 32 has a diameter increasing from the upper end toward the lower end, and the lower end side tip portion 32 a extends in the horizontal direction. The lower end side tip portion 32 a of the suction bell 32 is located below the lower end side tip portion 31 a of the upper suction bell 31. Therefore, there is a height difference α between the lower surface 31b of the lower end tip 31a of the upper suction bell 31 and the lower surface 32b of the lower end tip 32a of the lower suction bell 32 (see FIGS. 9 to 11).

前記のように上部吸込ベル31に対して下部吸込ベル32が間隔をあけて配置されているので、上部吸込ベル31の内周面と下部吸込ベル32の外周面との間に、断面が円環状の流路33が形成されている。この流路33は、上端側開口33aが上部吸込ベル31内に位置し、下端側開口33bが上部吸込ベル31及び下部吸込ベル32の下端側先端部31a,32aにより形成されている。従って、流路33によって、羽根車24より下方のケーシング22の内部と、ケーシング22の外部とが互いに連通している。図2に示すように、上部吸込ベル31と下部吸込ベル32とを連結するリブ35を設けることにより、上部吸込ベル31に対して下部吸込ベル32を固定している。上部吸込ベル31の側面には、連結されたリブ35の鉛直方向の幅の範囲内にケーシング22の内側と外側を水平方向に貫通する貫通孔36が設けられている。下部吸込ベル32の上端付近には、貫通孔36より供給される圧縮空気をケーシング22内部へより素早く充填できるようにする複数の貫通孔38が設けられている。また、貫通孔36、リブ35の内部及び貫通孔38を貫通させた流路を設けて圧縮空気充填管路16と接続してもよい。   As described above, the lower suction bell 32 is spaced from the upper suction bell 31, so that the cross section is circular between the inner peripheral surface of the upper suction bell 31 and the outer peripheral surface of the lower suction bell 32. An annular flow path 33 is formed. In the flow path 33, the upper end side opening 33 a is located in the upper suction bell 31, and the lower end side opening 33 b is formed by the lower end side tip portions 31 a and 32 a of the upper suction bell 31 and the lower suction bell 32. Therefore, the inside of the casing 22 below the impeller 24 and the outside of the casing 22 communicate with each other by the flow path 33. As shown in FIG. 2, the lower suction bell 32 is fixed to the upper suction bell 31 by providing a rib 35 that connects the upper suction bell 31 and the lower suction bell 32. On the side surface of the upper suction bell 31, a through-hole 36 that penetrates the inner side and the outer side of the casing 22 in the horizontal direction is provided within the range of the width of the connected rib 35 in the vertical direction. Near the upper end of the lower suction bell 32, there are provided a plurality of through holes 38 that allow the compressed air supplied from the through holes 36 to be quickly filled into the casing 22. Further, a flow path penetrating the through hole 36, the rib 35, and the through hole 38 may be provided and connected to the compressed air filling conduit 16.

ポンプ11A〜11Cは、吸込ベル31の吸込口が同一水平面上に設けられ、かつ、羽根車24が吸込口から同じ高さに設けられている。   In the pumps 11A to 11C, the suction port of the suction bell 31 is provided on the same horizontal plane, and the impeller 24 is provided at the same height from the suction port.

空気タンク12は、コンプレッサ13から供給される圧縮空気を貯留している。空気タンク12は、ポンプ11の上部吸込ベル31の貫通孔36と圧縮空気充填管路16により制御弁37を介して接続されている。   The air tank 12 stores compressed air supplied from the compressor 13. The air tank 12 is connected to the through-hole 36 of the upper suction bell 31 of the pump 11 and the compressed air filling pipe line 16 via a control valve 37.

コンプレッサ13は、空気タンク12と圧縮空気供給管路15により逆止弁39を介して接続されている。   The compressor 13 is connected to the air tank 12 and the compressed air supply line 15 via a check valve 39.

制御装置19は、複数のポンプ11の圧縮空気充填管路16の制御弁37、ポンプ11の吐出弁29及び吸水槽20に設けられた水位計(水位検出手段)46と接続されている。この制御装置19により、制御弁37及びポンプ11の吐出弁29の開閉が吸水槽20の水位計46の検出値に応じて制御される。   The control device 19 is connected to a control valve 37 of the compressed air filling pipeline 16 of the plurality of pumps 11, a discharge valve 29 of the pump 11, and a water level meter (water level detection means) 46 provided in the water absorption tank 20. The control device 19 controls the opening and closing of the control valve 37 and the discharge valve 29 of the pump 11 according to the detected value of the water level gauge 46 of the water absorption tank 20.

図3は、ポンプ11の流量−揚程曲線(H−Q曲線)の一例を効率η及び動力Lと共に示している。図3において、横軸は最適流量Qoptに対する流量Qの割合(Q/Qopt)であり、縦軸は最適揚程Hoptに対する揚程Hの割合(H/Hopt)である。Q/Qoptが約0.6〜1.2の範囲は定格運転域、Q/Qoptが約1.2以上は過大流領域、Q/Qoptが約0.6以下は部分流領域である。   FIG. 3 shows an example of the flow rate-head curve (HQ curve) of the pump 11 together with the efficiency η and the power L. In FIG. 3, the horizontal axis represents the ratio of the flow rate Q to the optimum flow rate Qopt (Q / Qopt), and the vertical axis represents the ratio of the lift head H to the optimum lift Hopt (H / Hopt). The range where Q / Qopt is about 0.6 to 1.2 is the rated operation region, the Q / Qopt is about 1.2 or more is the excessive flow region, and the Q / Qopt is about 0.6 or less is the partial flow region.

次に、本発明にかかるポンプ設備10の運転方法について、例えば、図1に示すように、複数のポンプ11がA,B,Cの3台で、ABCの順に運転させる場合を説明する。他には、ACB、BAC、BCA、CAB、CBAの順に運転することも考えられるが、ポンプの運転開始の順番が異なる点を除いて動作は同様であるので一例のみを示す。   Next, as for the operation method of the pump facility 10 according to the present invention, for example, as shown in FIG. 1, a case where a plurality of pumps 11 are operated in the order of ABC with three units A, B, and C will be described. In addition, it is possible to operate in the order of ACB, BAC, BCA, CAB, and CBA. However, the operation is the same except that the operation start order of the pumps is different, so only an example is shown.

吸水槽20の水位計46が、吸水槽20の水位がWL1(上部吸込ベル31の下端開口(吸込口)と同じ高さ(WL3)よりも低い予め設定された待機水位であり、吸水槽20内に水がない状態でもよい。)にあることを検出すると、その検出値を制御装置19に送信する。制御装置19は、複数のポンプ11A〜11Cに作動信号を送信し、運転を開始する。ポンプ11A〜11Cのポンプケーシング22b内には水が存在しないので羽根車24A〜24Cは空気中で回転する(空転運転)。制御装置19は、複数のポンプ11A〜11Cの吐出弁29A〜29Cにも作動信号を送信し、吐出弁29A〜29Cを閉弁する。   The water level meter 46 of the water absorption tank 20 is a preset standby water level in which the water level of the water absorption tank 20 is lower than WL1 (the same height (WL3) as the lower end opening (suction port) of the upper suction bell 31). When it is detected that there is no water in the inside), the detected value is transmitted to the control device 19. The control device 19 transmits an operation signal to the plurality of pumps 11A to 11C and starts operation. Since there is no water in the pump casings 22b of the pumps 11A to 11C, the impellers 24A to 24C rotate in the air (idling operation). The control device 19 also transmits an operation signal to the discharge valves 29A to 29C of the plurality of pumps 11A to 11C, and closes the discharge valves 29A to 29C.

吸水槽20の水位が、WL1以上WL3未満にある場合には、全てのポンプ11A〜11Cの圧縮空気充填管路16A〜16Cの制御弁37A〜37Cは閉弁した状態を維持し、ポンプ11A〜11Cの全てに空気が送り込まれないようにする。(前回のポンプ11A〜11Cの運転終了時、全てのポンプ11A〜11Cの圧縮空気充填管路16A〜16Cの制御弁37A〜37Cは閉弁した状態であるため、ここでは特に何も行われない。)全てのポンプ11A〜11Cの吐出弁29A〜29Cは閉弁した状態を維持している。   When the water level of the water absorption tank 20 is not less than WL1 and less than WL3, the control valves 37A to 37C of the compressed air filling lines 16A to 16C of all the pumps 11A to 11C are kept closed, and the pumps 11A to 11A are closed. Air is not sent to all of 11C. (At the end of the previous operation of the pumps 11A to 11C, the control valves 37A to 37C of the compressed air filling pipes 16A to 16C of all the pumps 11A to 11C are closed, so nothing is performed here. .) The discharge valves 29A to 29C of all the pumps 11A to 11C are kept closed.

図4に示すように、吸水槽20の水位計46が、吸水槽20の水位がWL3に到達したことを検出すると、その検出値を制御装置19に送信する。制御装置19は、複数のポンプ11A〜11C全てに作動信号を送信し、圧縮空気充填管路16A〜16Cの制御弁37A〜37Cを全て開弁する。これにより、ポンプ11A〜11Cの上部吸込ベル31A〜31Cの貫通孔36A〜36Cを通じて、空気タンク12A〜12Cの圧縮空気をケーシング22A〜22Cの内部へ送り込まれる。全てのポンプ11A〜11Cの吐出弁29A〜29Cは閉弁した状態を維持している。ここでは、この状態での運転、すなわち吐出弁29を閉弁状態として吐出口と吐出管23との連通を遮断し、かつ制御弁37を開弁状態とし、ケーシング22内に圧縮空気供給源からの圧縮空気を充填した状態で駆動機構28により主軸25を回転させる運転を強制気中運転とよぶ。   As shown in FIG. 4, when the water level meter 46 of the water absorption tank 20 detects that the water level of the water absorption tank 20 has reached WL <b> 3, the detected value is transmitted to the control device 19. The control device 19 transmits an operation signal to all of the plurality of pumps 11A to 11C, and opens all the control valves 37A to 37C of the compressed air filling lines 16A to 16C. Thereby, compressed air of air tanks 12A-12C is sent into the inside of casings 22A-22C through penetration holes 36A-36C of upper suction bells 31A-31C of pumps 11A-11C. The discharge valves 29A to 29C of all the pumps 11A to 11C are kept closed. Here, the operation in this state, that is, the discharge valve 29 is closed, the communication between the discharge port and the discharge pipe 23 is blocked, the control valve 37 is opened, and the casing 22 is supplied with a compressed air supply source. The operation in which the main shaft 25 is rotated by the drive mechanism 28 in a state where the compressed air is filled is referred to as forced air operation.

吸水槽20の水位が、WL3以上WL4(1台目のポンプ(この例では11A)が排水を開始する、ケーシング22内の羽根車24より上方の排水開始水位)未満にある場合には、ポンプ11A〜11Cのケーシング22A〜22C内の上部吸込ベル31A〜31Cの下端開口から吐出エルボ22c先端の吐出弁29A〜29Cまで、圧縮空気が満たされている。   When the water level in the water absorption tank 20 is lower than WL3 or higher and WL4 (the drainage start water level above the impeller 24 in the casing 22 where the first pump (in this example, 11A) starts draining), the pump Compressed air is filled from the lower end opening of the upper suction bells 31A to 31C in the casings 22A to 22C of 11A to 11C to the discharge valves 29A to 29C at the tip of the discharge elbow 22c.

図5に示すように、吸水槽20の水位計46が、吸水槽20の水位がWL4に到達したことを検出すると、その検出値を制御装置19に送信する。制御装置19は、ポンプ11Aに作動信号を送信し、圧縮空気充填管路16Aの制御弁37Aを閉弁するとともに、ポンプ11Aの吐出弁29Aを開弁する。これらにより、ポンプ11Aに圧縮空気を送り込むことを停止すると、水が羽根車24より上に到達するのでポンプ11Aの揚水及び排水が開始される(通常運転)。   As shown in FIG. 5, when the water level meter 46 of the water absorption tank 20 detects that the water level of the water absorption tank 20 has reached WL4, the detected value is transmitted to the control device 19. The control device 19 transmits an operation signal to the pump 11A, closes the control valve 37A of the compressed air filling line 16A, and opens the discharge valve 29A of the pump 11A. Accordingly, when the supply of compressed air to the pump 11A is stopped, the water reaches above the impeller 24, so that pumping and draining of the pump 11A is started (normal operation).

吸水槽20の水位がWL4以上WL5(2台目のポンプ(この例では11B)が排水を開始するWL4より上方で隣接した排水開始水位)未満にある場合には、ポンプ11Aのみが通常運転を行い、ポンプ11B,11Cは強制気中運転を継続している。   When the water level of the water absorption tank 20 is lower than WL4 and lower than WL5 (the drainage start water level adjacent to the second pump (in this example, 11B) above WL4 where drainage starts), only the pump 11A performs normal operation. The pumps 11B and 11C continue the forced air operation.

図6に示すように、吸水槽20の水位計46が、吸水槽20の水位がWL5に到達したことを検出すると、その検出値を制御装置19に送信する。制御装置19は、ポンプ11Bに作動信号を送信し、圧縮空気充填管路16Bの制御弁37Bを閉弁するとともに、ポンプ11Bの吐出弁29Bを開弁する。これらにより、ポンプ11Bに圧縮空気を送り込むことを停止するので、ポンプ11Bの揚水及び排水が開始される。   As shown in FIG. 6, when the water level meter 46 of the water absorption tank 20 detects that the water level of the water absorption tank 20 has reached WL5, the detected value is transmitted to the control device 19. The control device 19 transmits an operation signal to the pump 11B, closes the control valve 37B of the compressed air filling line 16B, and opens the discharge valve 29B of the pump 11B. As a result, the supply of compressed air to the pump 11B is stopped, so that pumping and draining of the pump 11B are started.

吸水槽20の水位がWL5以上WL6(3台目のポンプ(この例では11C)が排水を開始するWL5より上方で隣接した排水開始水位)未満にある場合には、ポンプ11A,11Bが通常運転を行い、ポンプ11Cは強制気中運転を継続している。   When the water level in the water absorption tank 20 is lower than WL5 and lower than WL6 (the drainage start water level adjacent to the third pump (in this example, 11C) above WL5 where drainage starts), the pumps 11A and 11B are operated normally. The pump 11C continues the forced air operation.

図7に示すように、吸水槽20の水位計46が、吸水槽20の水位がWL6に到達したことを検出すると、その検出値を制御装置19に送信する。制御装置19は、ポンプ11Cに作動信号を送信し、圧縮空気充填管路16Cの制御弁37Cを閉弁するとともに、ポンプ11Cの吐出弁29Cを開弁する。これらにより、ポンプ11Cに圧縮空気を送り込むことを停止するので、ポンプ11Cの揚水及び排水が開始される。   As shown in FIG. 7, when the water level meter 46 of the water absorption tank 20 detects that the water level of the water absorption tank 20 has reached WL 6, the detected value is transmitted to the control device 19. The control device 19 transmits an operation signal to the pump 11C, closes the control valve 37C of the compressed air filling line 16C, and opens the discharge valve 29C of the pump 11C. As a result, the supply of compressed air to the pump 11C is stopped, so that pumping and draining of the pump 11C are started.

吸水槽20の水位がWL6以上である場合には、全てのポンプ11A〜11Cが通常運転を行っている。   When the water level of the water absorption tank 20 is WL6 or more, all the pumps 11A to 11C are performing normal operation.

図8から図12を参照して、1台のポンプ11の状態について吸水槽20の水位との関係で説明する。図8の状態8−1に示すように吸水槽20内の水位がケーシング22内の羽根車24より上方の排水水位WL4以上の高さにあるときには、羽根車24の回転によりケーシング22内に吸い上げられた水は吐出管23内に吐出される(通常運転)。この排水水位WL4以上の高さでの通常運転におけるポンプ11の運転状態は、定格運転域A又は過大流領域C(図3参照)である。定格運転域Aであれば、図9に示すように、下部吸込ベル32の下端開口から水が吸い上げられるが、上部吸込ベル31と下部吸込ベル32の間の流路33からの水の流入はない。一方、過大流領域Cであれば、図10に示すように、下部吸込ベル32の下端開口と流路33の下端開口33bの両方からケーシング22内に水が吸い上げられる。いずれにしても排水水位WL4以上の高さでの通常運転時には流路33の下端開口33bは水没しているので、流路33からケーシング22内への空気の流入はない。排水水位WL4以上の高さから水位が低下しても、上部吸込ベル31の下端側先端部31aの下面31bと対応する高さの水位WL3(後述するように、この水位はエアロック運転後の再排水開始水位である。)に達するまでは、定格運転域A又は過大流量域Cでの通常運転が維持される。   With reference to FIGS. 8 to 12, the state of one pump 11 will be described in relation to the water level of the water absorption tank 20. When the water level in the water absorption tank 20 is higher than the drainage water level WL4 above the impeller 24 in the casing 22 as shown in the state 8-1 in FIG. The discharged water is discharged into the discharge pipe 23 (normal operation). The operation state of the pump 11 in the normal operation at the height of the drainage water level WL4 or higher is the rated operation area A or the excessive flow area C (see FIG. 3). In the rated operation area A, as shown in FIG. 9, water is sucked up from the lower end opening of the lower suction bell 32, but the inflow of water from the flow path 33 between the upper suction bell 31 and the lower suction bell 32 is Absent. On the other hand, in the excessive flow region C, water is sucked into the casing 22 from both the lower end opening of the lower suction bell 32 and the lower end opening 33b of the flow path 33 as shown in FIG. In any case, the air flow from the flow path 33 into the casing 22 does not flow because the lower end opening 33b of the flow path 33 is submerged during normal operation at a height equal to or higher than the drainage water level WL4. Even if the water level drops from the height of the drainage water level WL4 or higher, the water level WL3 of a height corresponding to the lower surface 31b of the lower end side tip portion 31a of the upper suction bell 31 (as will be described later, this water level is The normal operation in the rated operation area A or the excessive flow area C is maintained until the re-drainage start water level is reached.

状態8−2に示すように、水位WL3まで水位が低下すると、ポンプ11の運転状態は部分流領域B(図3参照)となる。そのため、図11に示すように羽根車24からの逆流水が流路33の上端開口33aから下端開口33bを経てケーシング22の外部に流出する。この流路33を通る逆流水があるために、流路33からケーシング22内へ空気が流入せず、通常運転が維持される。   As shown in state 8-2, when the water level drops to the water level WL3, the operation state of the pump 11 becomes the partial flow region B (see FIG. 3). Therefore, as shown in FIG. 11, the backflow water from the impeller 24 flows out of the casing 22 from the upper end opening 33 a of the flow path 33 through the lower end opening 33 b. Since there is backflow water passing through the flow path 33, air does not flow from the flow path 33 into the casing 22, and normal operation is maintained.

さらに、通常排水運転から後述するエアロック運転に移行するまでの水位域では、羽根車24から逆流して流路33を介してケーシング22の外部に流れる水により、流路33内に蓄積されたごみ等はケーシング外が流し出される。すなわち、逆流水によって流路33が自動的に洗浄される。   Further, in the water level region from the normal drain operation to the air lock operation described later, the water accumulated in the flow path 33 by the water flowing backward from the impeller 24 and flowing outside the casing 22 through the flow path 33. Garbage etc. is washed out of the casing. That is, the flow path 33 is automatically washed by the backflow water.

水位WL3から上部吸込ベル31と下部吸込ベル32の高低差αに相当する分の水位低下があり、下部吸込ベル32の下端側先端部32aの下面32bに対応する水位(排水停止水位WL2)に達すると、状態8−3に示すように、水面付近から下部吸込ベル32の下端開口を介してケーシング22内の羽根車24よりも下方の領域に空気が多量かつ瞬間的に吸い込まれる。その結果、状態8−4に示すように、ケーシング22内の羽根車24よりも下方の領域に空気だまり64が形成され、羽根車24の上方には水柱65が形成される(エアロック運転)。エアロック運転時には、図12に示すように、流路33の下端開口33bから吸い込まれた少量の空気が上端開口33aより空気だまり64に流入する。この空気だまり64への空気供給により、エアロック運転が維持される。   There is a drop in water level corresponding to the height difference α between the upper suction bell 31 and the lower suction bell 32 from the water level WL3, and the water level (drainage stop water level WL2) corresponding to the lower surface 32b of the lower end tip portion 32a of the lower suction bell 32 is reached. When it reaches, a large amount of air is instantaneously sucked into the region below the impeller 24 in the casing 22 from near the water surface through the lower end opening of the lower suction bell 32 as shown in the state 8-3. As a result, as shown in state 8-4, an air pool 64 is formed in a region below the impeller 24 in the casing 22, and a water column 65 is formed above the impeller 24 (air lock operation). . At the time of the air lock operation, as shown in FIG. 12, a small amount of air sucked from the lower end opening 33b of the flow path 33 flows into the air reservoir 64 from the upper end opening 33a. The air lock operation is maintained by supplying air to the air reservoir 64.

吸水槽20内の水位が排水停止水位WL2から上昇し、状態8−5に示すように上部吸込ベル31の下端側先端部31aの下面31bと対応する位置(再排水開始水位WL3)まで上昇すると、流路33の下端開口33bが水で閉じられるので流路33を介した空気の流入が停止し、かつ羽根車24による揚水が再開して通常排水運転となる。   When the water level in the water absorption tank 20 rises from the drainage stop water level WL2 and rises to a position (redrainage start water level WL3) corresponding to the lower surface 31b of the lower end tip 31a of the upper suction bell 31 as shown in state 8-5. Since the lower end opening 33b of the flow path 33 is closed with water, the inflow of air through the flow path 33 is stopped, and the pumping by the impeller 24 is resumed so that the normal drainage operation is performed.

以上のように説明したポンプ11では、上部吸込ベル31の下端側先端部31aの下面31bと対応する水位WL3まで水位が低下すると、羽根車24からの逆流水が流路33を通ってケーシング22の内部から外部へ流れる。従って、この水位域では流路33を介したケーシング22内への空気の流入は生じない。また、下部吸込ベル32の下端側先端部32aの下面32bと対応する排水停止水位WL2まで水位が低下すると、下部吸込ベル32から水面付近の空気が多量かつ瞬間的にケーシング22内に吸い込まれて空気だまり64が形成され、この空気だまり64には、流路33を介して空気が流入するのでエアロック運転が維持される。さらに、水位が上部吸込ベル31の下端側先端部31aの下面31bと対応する再排水開始水位WL3まで上昇すると、流路33が水によって閉鎖されるのでケーシング22内への空気の流入が停止し、排水が再開される。換言すれば、エアロック運転時には流路33を介してケーシング22内に空気が流入するが、エアロック運転への移行前後の水位域では流路33は水で閉鎖されるので、ケーシング22内への空気の流入はない。従って、ポンプ11の運転状態は、通常排水運転とエアロック運転の2種類であり、エアロック運転と、通常排水運転が極めて短時間に繰り返されるハンチング運転も気水混合排水運転もない先行待機運転を実現することができる。   In the pump 11 described above, when the water level drops to the water level WL3 corresponding to the lower surface 31b of the lower end 31a of the upper suction bell 31, the backflow water from the impeller 24 passes through the flow path 33 and the casing 22. Flows from inside to outside. Therefore, inflow of air into the casing 22 via the flow path 33 does not occur in this water level region. Further, when the water level drops to the drainage stop water level WL2 corresponding to the lower surface 32b of the lower end tip 32a of the lower suction bell 32, a large amount of air near the water surface is sucked into the casing 22 from the lower suction bell 32 instantaneously. An air pool 64 is formed, and air flows into the air pool 64 through the flow path 33, so that the air lock operation is maintained. Furthermore, when the water level rises to the re-drainage start water level WL3 corresponding to the lower surface 31b of the lower end tip 31a of the upper suction bell 31, the flow path 33 is closed by water, so that the inflow of air into the casing 22 is stopped. The drainage is resumed. In other words, air flows into the casing 22 through the flow path 33 during the air lock operation, but the flow path 33 is closed with water in the water level region before and after the transition to the air lock operation. There is no inflow of air. Accordingly, there are two types of operation states of the pump 11: normal drain operation and air lock operation. The air standby operation and the preceding standby operation without the hunting operation and the air / water mixed drain operation in which the normal drain operation is repeated in a very short time. Can be realized.

次に、上述したポンプ11を複数使用した本発明にかかるポンプ設備10において、揚水開始後に吸水槽20の水位が低下する場合には、全てのポンプ11A〜11Cについて、直前の最高水位での全てのポンプ11A〜11Cの状態をそれぞれそのまま維持させる。   Next, in the pump facility 10 according to the present invention using a plurality of the pumps 11 described above, when the water level of the water absorption tank 20 is lowered after the start of pumping, all of the pumps 11A to 11C at the immediately preceding highest water level. The states of the pumps 11A to 11C are maintained as they are.

揚水開始後に吸水槽20の水位がWL2の高さより低くならない位置まで低下し、再度水位が上昇する場合には、吸水槽20の水位が任意のポンプ11Xに対して予め設定された排水開始水位より下方にあっても、直前の最高水位でのそのポンプ11Xの状態を維持させている点を除いては、ポンプ設備10の動作は前記説明と同様である。   When the water level in the water absorption tank 20 drops to a position not lower than the height of WL2 after the start of pumping and the water level rises again, the water level in the water absorption tank 20 is higher than the drainage start water level set in advance for any pump 11X. Even if it exists below, the operation | movement of the pump installation 10 is the same as that of the said description except the point which is maintaining the state of the pump 11X in the last highest water level.

揚水開始後に吸水槽20の水位がWL2の高さより低くなる位置まで低下し、再度水位が上昇する場合には、WL2の高さより低くならない吸水槽20の水位までの低下及びWL2の水位からの上昇は上述した通りである。また、吸水槽20の水位がWL2の高さより低くなり再度水位が上昇しても前記ポンプ11の使用により、全てのポンプ11A〜11Cが、同様に、上述したような通常排水運転又はエアロック運転のいずれかの運転を行うのみである。その結果、ポンプ11にハンチング運転及び気水混合排水運転させることを回避できる。   When the water level of the water absorption tank 20 drops to a position lower than the height of WL2 after the start of pumping and the water level rises again, the water level of the water absorption tank 20 does not become lower than the height of WL2 and rises from the water level of WL2. Is as described above. Moreover, even if the water level of the water absorption tank 20 becomes lower than the height of WL2 and the water level rises again, the use of the pump 11 causes all the pumps 11A to 11C to similarly perform the normal drain operation or the air lock operation as described above. Only one of the operations is performed. As a result, it is possible to avoid causing the pump 11 to perform the hunting operation and the air / water mixed drainage operation.

また、本発明にかかるポンプ設備10において、揚水開始後に吸水槽20の水位が低下する場合、予め設定された水位に対応させてポンプ11A〜11Cを順番に停止させてもよい。   Moreover, in the pump installation 10 concerning this invention, when the water level of the water absorption tank 20 falls after a pumping start, you may stop the pumps 11A-11C in order according to the preset water level.

本実施形態の立軸ポンプ設備10には、以下の効果がある。   The vertical shaft pump facility 10 of the present embodiment has the following effects.

この構成よれば、複数の立軸ポンプ11を備えるポンプ設備10の各立軸ポンプ11が、圧縮空気供給源からの圧縮空気をケーシング22内部へ充填した状態での強制気中運転と、圧縮空気供給源からの圧縮空気をケーシング22内部へ供給停止した状態での通常運転とを切替可能である。また、水位検出手段46の検出する吸水槽20内の水位の上昇に応じて、複数の立軸ポンプ11を所望の順番で強制気中運転から通常運転に切り替わる。各立軸ポンプ11内の水位は強制気中運転から通常運転への切り替えで調整できるので、吸水槽20に水が急激に流入した場合でも、複数の立軸ポンプ11(例えば、全ての立軸ポンプ11)の羽根車24が同時に水没して運転排水を開始することがなく、複数の立軸ポンプ11は1台ずつ段階的に(順に)排水を開始する。吸水槽20に水が急激に流入した場合でも、複数の立軸ポンプ11の段階的な排水開始を実現できるので、駆動機構28へ給電する電源設備に対して急激な負荷変動に起因する悪影響がない。   According to this configuration, the vertical pump 11 of the pump facility 10 including the plurality of vertical pumps 11 is operated in the forced air in a state where the casing 22 is filled with the compressed air from the compressed air supply source, and the compressed air supply source. It is possible to switch between normal operation in a state where supply of compressed air from the inside to the casing 22 is stopped. Moreover, according to the raise of the water level in the water absorption tank 20 which the water level detection means 46 detects, the several vertical shaft pump 11 switches from forced air operation to normal operation in a desired order. Since the water level in each vertical pump 11 can be adjusted by switching from forced air operation to normal operation, even when water suddenly flows into the water absorption tank 20, a plurality of vertical pumps 11 (for example, all the vertical pumps 11). The impellers 24 are not submerged at the same time, and the operation drainage is not started. The plurality of vertical shaft pumps 11 start draining step by step (in order). Even when water suddenly flows into the water absorption tank 20, since a plurality of vertical pumps 11 can start gradual drainage, there is no adverse effect on power supply equipment that supplies power to the drive mechanism 28 due to sudden load fluctuations. .

つまり、吸水槽20に急激な水が流入した場合にも複数の立軸ポンプ11の段階的な排水開始の実現により、個々の立軸ポンプ11の駆動機構28に給電する電源設備に対して急激な負荷変動に起因する悪影響が及ぶのを防止できる。   That is, even when abrupt water flows into the water absorption tank 20, a sudden load is applied to the power supply equipment that supplies power to the drive mechanism 28 of each vertical pump 11 by realizing the stepwise drainage of the vertical pumps 11. It is possible to prevent adverse effects caused by fluctuations.

仮に複数の立軸ポンプ11が吸水槽20内の水位の上昇に応じて強制気中運転から通常運転に切り替わる順序が一定ないし不変であると、例えば最初に強制気中運転から通常運転に切り替わる立軸ポンプ(吸水槽20内が低水位のときに強制気中運転から通常運転に切り替わる立軸ポンプ11)は頻繁に排水を行うのに対し、最後に強制気中運転から通常排水運転に切り替わる立軸ポンプ11(吸水槽20内が高水位のときに強制気中運転から通常運転に切り替わる立軸ポンプ11)は排水を実行する頻度が低くなる。その結果、最初に強制気中運転から通常運転に切り替わる立軸ポンプ11の軸受26,27および羽根車24などの部品の摩耗の進行は、他の立軸ポンプ11と比較して著しくなる。つまり、片減りが起こる。しかし、強制気中運転から通常運転に切り替える順序を予め定められた期間ごとに並べ替えることで、ある一定期間での各立軸ポンプ11の排水運転時間を均一化でき、片減りを解消できる。その結果、立軸ポンプ11の交換の間隔を長くすることができ、手間とコストを抑えることができる。   If the order in which the plurality of vertical pumps 11 are switched from the forced air operation to the normal operation according to the rise in the water level in the water absorption tank 20 is constant or unchanged, for example, the vertical pump that first switches from the forced air operation to the normal operation. (Vertical pump 11 that switches from forced air operation to normal operation when water tank 20 is at a low water level) drains frequently, whereas vertical pump 11 that finally switches from forced air operation to normal drain operation ( The vertical shaft 11) that switches from the forced air operation to the normal operation when the inside of the water absorption tank 20 is at a high water level is less frequently discharged. As a result, the progress of wear of components such as the bearings 26 and 27 and the impeller 24 of the vertical shaft 11 that first switches from the forced air operation to the normal operation becomes significant as compared with the other vertical pumps 11. That is, a reduction occurs. However, by rearranging the order of switching from the forced air operation to the normal operation every predetermined period, the drainage operation time of each vertical shaft pump 11 in a certain period can be made uniform, and the reduction in the amount can be eliminated. As a result, the interval between the vertical shaft pumps 11 can be increased, and labor and cost can be reduced.

つまり、各立軸ポンプ11の排水運転時間を均一化できるので、立軸ポンプ11の交換の間隔が長くなり、手間とコストを抑えることができる。   That is, since the drainage operation time of each vertical shaft pump 11 can be made uniform, the interval between replacements of the vertical shaft pumps 11 becomes long, and labor and cost can be suppressed.

この構成によれば、複数の立軸ポンプ11の吸込口及び羽根車24の位置が同一であり、複数の立軸ポンプ11として同一の仕様のものを使用できる。つまり、複数の立軸ポンプ11の仕様を統一できる。従って、立軸ポンプ11を個別に設計する必要がなくなり、ポンプ設備10全体としてのコストを抑えることができる。   According to this configuration, the suction ports of the plurality of vertical pumps 11 and the positions of the impellers 24 are the same, and the plurality of vertical pumps 11 having the same specifications can be used. That is, the specifications of the plurality of vertical shaft pumps 11 can be unified. Therefore, it is not necessary to design the vertical pump 11 individually, and the cost of the pump equipment 10 as a whole can be suppressed.

次に、ポンプ11の軸受26,27及びその軸受26,27の軸受診断装置14について説明する。   Next, the bearings 26 and 27 of the pump 11 and the bearing diagnostic device 14 for the bearings 26 and 27 will be described.

2つの軸受26,27は同一構造であるので、図13及び図14をさらに参照して軸受27について説明する。軸受27は両端開口の軸受ケーシング51を備え、この軸受ケーシング51がリブ27aに固定されている。軸受ケーシング51内には、主軸25の軸受方向に配列された2個の軸受体52a,52bを備えている。各軸受体52a,52bは軸受ケーシング51の内周壁に固定された両端開口の円筒状のシェル53と、このシェル53の内周面側に取り付けられたセグメント状の複数の摺動体54とを備えている。シェル53は、例えばステンレス、銅合金、合成樹脂等からなる。また、摺動体54は樹脂や金属材料からなる。軸受ケーシング51の両端には軸受体52a,52bを内部に保持するための円環状の端部プレート55a,55bが取り付けられている。   Since the two bearings 26 and 27 have the same structure, the bearing 27 will be described with further reference to FIGS. 13 and 14. The bearing 27 includes a bearing casing 51 having openings at both ends, and the bearing casing 51 is fixed to the rib 27a. In the bearing casing 51, two bearing bodies 52a and 52b arranged in the bearing direction of the main shaft 25 are provided. Each of the bearing bodies 52a and 52b includes a cylindrical shell 53 having openings at both ends fixed to the inner peripheral wall of the bearing casing 51, and a plurality of segment-like sliding bodies 54 attached to the inner peripheral surface side of the shell 53. ing. The shell 53 is made of, for example, stainless steel, copper alloy, synthetic resin, or the like. The sliding body 54 is made of resin or metal material. At both ends of the bearing casing 51, annular end plates 55a, 55b for holding the bearing bodies 52a, 52b are attached.

軸受体52a,52bは主軸25の軸線方向に間隔をあけて配置されているので、軸受ケーシング51内には軸受体52a,52b間に円筒状の空気室56が形成されている。軸受ケーシング51を貫通する空気孔51aが設けられており、この空気孔51aによって空気室56が軸受27の外部と連通している。   Since the bearing bodies 52 a and 52 b are arranged at intervals in the axial direction of the main shaft 25, a cylindrical air chamber 56 is formed in the bearing casing 51 between the bearing bodies 52 a and 52 b. An air hole 51 a penetrating the bearing casing 51 is provided, and the air chamber 56 communicates with the outside of the bearing 27 through the air hole 51 a.

軸受診断装置14は、ポンプ11の軸受27、送風用管路17、検出用管路18、流量計43及び差圧計44からなっている。   The bearing diagnostic device 14 includes a bearing 27 of the pump 11, a blower pipe 17, a detection pipe 18, a flow meter 43 and a differential pressure gauge 44.

送風用管路17は、空気タンク12の出口から軸受27の空気室56に接続されている。送風用管路17には、空気流量を検出するための流量計43が設けられている。また、送風用管路17には、逆止弁58が設けられている。この逆止弁58を開閉することで、送風用管路17を連通又は遮断できる。   The air duct 17 is connected to the air chamber 56 of the bearing 27 from the outlet of the air tank 12. The air duct 17 is provided with a flow meter 43 for detecting the air flow rate. Further, a check valve 58 is provided in the air duct 17. By opening and closing the check valve 58, the air duct 17 can be communicated or blocked.

検出用管路18は、流量計43よりも空気タンク12側で送風用管路17の途中から分岐し、ポンプ11の吐出エルボ22c内と接続している。検出用管路18には、差圧計44が設けられている。差圧計44により空気タンク12の空気供給圧とポンプ11の吐出圧との差圧が検出される。   The detection pipe 18 branches from the middle of the blower pipe 17 on the air tank 12 side of the flow meter 43 and is connected to the inside of the discharge elbow 22 c of the pump 11. A differential pressure gauge 44 is provided in the detection pipeline 18. The differential pressure gauge 44 detects the differential pressure between the air supply pressure of the air tank 12 and the discharge pressure of the pump 11.

図1の制御装置19は、逆止弁58A〜58C等を制御する機能と、流量計43A〜43C及び差圧計44A〜44Cからの信号に基づいて無注水軸受27A〜27Cの摺動体54の異常発生を診断する機能もさらに有している。   The control device 19 in FIG. 1 has an abnormality in the sliding body 54 of the non-water-filled bearings 27A to 27C based on the function of controlling the check valves 58A to 58C and the signals from the flow meters 43A to 43C and the differential pressure gauges 44A to 44C. It also has a function of diagnosing the occurrence.

続いて、本発明にかかるポンプ設備10の軸受27A〜27Cの異常検出の原理を説明する。コンプレッサ13から供給される圧縮空気は送風用管路17A〜17Cを介して軸受27A〜27Cの空気室56A〜56Cに供給される。空気室56A〜56Cに供給された空気は、各摺動体54と主軸25の外周面との間の僅かな隙間及び互いに隣接する摺動体54間の隙間57a(以下、これらを併せて軸受27A〜27Cと主軸25A〜25Cとの間の隙間57という。)を通ってケーシング22内に流出し、吐出エルボ22cへ排出される。この軸受27A〜27Cと主軸25A〜25Cとの間の隙間57A〜57Cを流れる空気の流量は、流量計43A〜43Cにより検出される送風用管路17A〜17Cを流れる空気流量と対応している。一方、圧縮空気供給源13から供給される圧縮空気供給圧とポンプ11の吐出圧との差圧が差圧計44により検出される。   Next, the principle of abnormality detection of the bearings 27A to 27C of the pump facility 10 according to the present invention will be described. The compressed air supplied from the compressor 13 is supplied to the air chambers 56A to 56C of the bearings 27A to 27C via the air ducts 17A to 17C. The air supplied to the air chambers 56 </ b> A to 56 </ b> C is a slight gap between each sliding body 54 and the outer peripheral surface of the main shaft 25 and a gap 57 a between the sliding bodies 54 adjacent to each other (hereinafter, these are collectively referred to as bearings 27 </ b> A to 27 </ b> A ”). 27C and a clearance 57 between the main shafts 25A to 25C), and flows into the casing 22 and is discharged to the discharge elbow 22c. The flow rate of air flowing through the gaps 57A to 57C between the bearings 27A to 27C and the main shafts 25A to 25C corresponds to the flow rate of air flowing through the air ducts 17A to 17C detected by the flow meters 43A to 43C. . On the other hand, a differential pressure between the compressed air supply pressure supplied from the compressed air supply source 13 and the discharge pressure of the pump 11 is detected by a differential pressure gauge 44.

ここで流量計43A〜43Cにより検出される空気流量と差圧計44により検出される差圧との間には、図15に示すような関係がある。図15において、a1は摺動体54と主軸25の隙間57が設計値である場合、a2は摺動体54の磨耗により摺動体54と主軸25の隙間57がある程度拡大している場合、a3は摺動体54の磨耗により摺動体54と主軸25の隙間57が摺動体54の交換を要する程度まで拡大している場合、a4は摺動体54が破損している場合を示している。差圧が増加すると空気流量も増加する点はa1〜a4のいずれの場合も同様であるが、差圧が同一の値である場合を比較するとa4、a3、a2、a1の順で空気流量が大きい。従って、図15のa3に対応する空気流量を第1の閾値として設定しておけば、流量計43A〜43Cによって計測された空気流量をこの第1の閾値と比較することで、交換を有する程度の摺動体54の磨耗を判定することができる。また、図15のa4に対応する空気流量を第2の閾値に設定しておけば、流量計43A〜43Cによって計測された空気流量をこの閾値と比較することで、摺動体54の損傷を判定することができる。   Here, there is a relationship as shown in FIG. 15 between the air flow rate detected by the flow meters 43 </ b> A to 43 </ b> C and the differential pressure detected by the differential pressure meter 44. 15, a1 is a design value when the gap 57 between the sliding body 54 and the main shaft 25 is a design value, a2 is a case where the gap 57 between the sliding body 54 and the main shaft 25 is enlarged to some extent due to wear of the sliding body 54, and a3 is a sliding motion. When the gap 57 between the sliding body 54 and the main shaft 25 is expanded to the extent that the sliding body 54 needs to be replaced due to the wear of the moving body 54, a4 indicates the case where the sliding body 54 is damaged. The point that the air flow rate increases when the differential pressure increases is the same in any of a1 to a4. However, when the differential pressure is the same value, the air flow rate is in the order of a4, a3, a2, a1. large. Therefore, if the air flow rate corresponding to a3 in FIG. 15 is set as the first threshold value, the air flow rate measured by the flow meters 43A to 43C is compared with the first threshold value, so that there is an exchange. The wear of the sliding body 54 can be determined. In addition, if the air flow rate corresponding to a4 in FIG. 15 is set to the second threshold value, the damage of the sliding body 54 is determined by comparing the air flow rate measured by the flow meters 43A to 43C with this threshold value. can do.

例えば、軸受27Aについて磨耗や破損を診断する場合には、逆止弁58Aを開弁し、空気タンク12Aから送風用管路17Aを介して軸受27Aと主軸25Aの隙間57Aに圧縮された空気を導入しておく。そして、制御装置19は、流量計43Aにより検出される送風用管路17Aを流れる空気量と、差圧計44Aにより検出される差圧とを比較する。図15において、差圧計44により検出される差圧がdP1であるとき、制御装置19は流量計43Aにより検出される空気流量が第1の閾値FTH1を上回れば交換が必要な程度まで摺動体54の磨耗が進行していると判定し、第2の閾値FTH2を上回れば摺動体54が破損していると判定する。   For example, when diagnosing wear or breakage of the bearing 27A, the check valve 58A is opened, and the compressed air from the air tank 12A to the gap 57A between the bearing 27A and the main shaft 25A via the air duct 17A. Introduce it. Then, the control device 19 compares the amount of air flowing through the air duct 17A detected by the flow meter 43A with the differential pressure detected by the differential pressure gauge 44A. In FIG. 15, when the differential pressure detected by the differential pressure gauge 44 is dP1, the control device 19 allows the sliding body 54 to a degree that requires replacement if the air flow rate detected by the flow meter 43A exceeds the first threshold value FTH1. It is determined that the wear of the sliding body 54 is progressing, and if the second threshold value FTH2 is exceeded, it is determined that the sliding body 54 is damaged.

制御装置19は、流量計43A〜43Cにより検出される空気流量と差圧計44A〜44Cにより検出される差圧に基づいて軸受27A〜27Cの異常発生を判定するので、温度センサで検出した軸受温度や、振動センサで検出した振動に基づいて間接的に異常発生を判定する場合と比較して、正確に判定が可能となる。詳細には、温度センサとして熱電対を使用すると断線による異常信号の発生や故障の可能性が高いが、流量計43A〜43Cと差圧計44A〜44Cを使用することで異常信号発生や故障の可能性を低減することができる。   Since the controller 19 determines the occurrence of an abnormality in the bearings 27A to 27C based on the air flow detected by the flow meters 43A to 43C and the differential pressure detected by the differential pressure gauges 44A to 44C, the bearing temperature detected by the temperature sensor. In addition, the determination can be made more accurately than in the case where the occurrence of abnormality is indirectly determined based on the vibration detected by the vibration sensor. Specifically, when a thermocouple is used as a temperature sensor, there is a high possibility of occurrence of an abnormal signal or failure due to disconnection, but abnormal signal generation or failure is possible by using flow meters 43A to 43C and differential pressure gauges 44A to 44C. Can be reduced.

図16はポンプ11の流量と吐出圧(揚程)の関係(H−Q曲線)を示している。F1以上の流量域は、吸水槽20内の水位が羽根車24より上方にある通常排水運転状態である。この通常排水運転状態では、吸水槽20内から吸い上げられた水のみが吐出エルボ22cから吐出される。流量及び吐出圧の両方が零である点b0はいわゆるエアロック運転であり、ケーシング22内の羽根車24より下方の領域に空気だまりが形成され、羽根車24より上方の領域には水柱が形成される。このエアロック運転状態では空気だまりから水柱へ気泡が上昇するので、激しい振動が発生する。F1未満の流量域は吸水槽20内の水位が羽根車24にまで達しない気水混合運転状態であるが、上述したように本発明にかかるポンプ設備10のポンプ11は、気水混合運転状態を回避できる。   FIG. 16 shows the relationship (HQ curve) between the flow rate of the pump 11 and the discharge pressure (lift). The flow rate region of F1 or higher is a normal drainage operation state in which the water level in the water absorption tank 20 is above the impeller 24. In this normal drainage operation state, only water sucked up from the water absorption tank 20 is discharged from the discharge elbow 22c. The point b0 where both the flow rate and the discharge pressure are zero is a so-called air lock operation, where an air pool is formed in a region below the impeller 24 in the casing 22, and a water column is formed in a region above the impeller 24. Is done. In this air lock operation state, the bubbles rise from the air pool to the water column, so that intense vibration occurs. The flow rate region below F1 is the air / water mixing operation state in which the water level in the water absorption tank 20 does not reach the impeller 24. As described above, the pump 11 of the pump facility 10 according to the present invention is in the air / water mixing operation state. Can be avoided.

前記エアロック運転状態では、軸受27A〜27Cに異常が発生しているか否かにかかわらず気体の混入により振動が発生するので、振動センサでは軸受の異常を正確に判定することは困難である。しかし、本実施形態では、差圧計44A〜44Cにより計測された差圧と流量計43A〜43Cにより検出された空気流量とに基づいて異常を判定するので、激しい振動の発生しているエアロック運転状態であっても、軸受27A〜27Cの異常を正確に判定することができる。また、送風用管路17を通じて圧縮空気を送風することにより、軸受27A〜27Cの冷却及び清掃をすることもできる。   In the airlock operation state, vibration occurs due to gas mixing regardless of whether or not an abnormality has occurred in the bearings 27A to 27C. Therefore, it is difficult for the vibration sensor to accurately determine the abnormality of the bearing. However, in this embodiment, since abnormality is determined based on the differential pressure measured by the differential pressure gauges 44A to 44C and the air flow rate detected by the flow meters 43A to 43C, the air lock operation in which severe vibration has occurred. Even in the state, the abnormality of the bearings 27A to 27C can be accurately determined. In addition, the bearings 27 </ b> A to 27 </ b> C can be cooled and cleaned by blowing compressed air through the air duct 17.

図16を参照すると、点b1は通常排水運転状態でありポンプ11の吐出圧はP1である。このときの空気供給圧CP1は、吐出圧P1よりも所望の差圧dPの分だけ大きく設定する必要がある。従って、制御装置19はポンプ11の吐出圧に応じて圧縮空気供給源13からの空気供給圧を調整することが好ましい。例えば、制御装置19は、差圧計44の検出する差圧が常に一定となるように、圧縮空気供給源13からの空気供給圧を調整する。   Referring to FIG. 16, the point b1 is in the normal drainage operation state, and the discharge pressure of the pump 11 is P1. At this time, the air supply pressure CP1 needs to be set larger than the discharge pressure P1 by a desired differential pressure dP. Therefore, the control device 19 preferably adjusts the air supply pressure from the compressed air supply source 13 according to the discharge pressure of the pump 11. For example, the control device 19 adjusts the air supply pressure from the compressed air supply source 13 so that the differential pressure detected by the differential pressure gauge 44 is always constant.

これまで本発明を実施形態にしたがって説明してきたが、本発明は実施形態のものに限定されず、種々の変形が可能である。例えば、吸水槽20の水位がWL6以上になり、ポンプ11A〜11Cに加えてさらに別のポンプが必要となることが想定される場合には、予め所望の台数のポンプを増設しておくことができる。   The present invention has been described according to the embodiment so far, but the present invention is not limited to the embodiment, and various modifications are possible. For example, when it is assumed that the water level of the water absorption tank 20 becomes WL6 or higher and another pump is required in addition to the pumps 11A to 11C, a desired number of pumps may be added in advance. it can.

本発明にかかるポンプ設備を示す図。The figure which shows the pump installation concerning this invention. 図1のII−II線断面図。II-II sectional view taken on the line of FIG. ポンプの流量−揚程曲線を示す図。The figure which shows the flow volume-head curve of a pump. 吸水槽の水位がWL3に到達したときのポンプ設備の状態を示す図。The figure which shows the state of pump equipment when the water level of a water absorption tank reaches WL3. 吸水槽の水位がWL4に到達したときのポンプ設備の状態を示す図。The figure which shows the state of pump equipment when the water level of a water absorption tank reaches WL4. 吸水槽の水位がWL5に到達したときのポンプ設備の状態を示す図。The figure which shows the state of pump equipment when the water level of a water absorption tank reaches WL5. 吸水槽の水位がWL6に到達したときのポンプ設備の状態を示す図。The figure which shows the state of pump equipment when the water level of a water absorption tank reaches WL6. 立軸ポンプの運転状態の推移を示す概略図。Schematic which shows transition of the operating state of a vertical shaft pump. 定格運転域での上部及び下部吸込ベル中の水の流れを示す部分断面図。The fragmentary sectional view which shows the flow of the water in the upper part and the lower suction bell in a rated operation area. 過大流量域での上部及び下部吸込ベル中の水の流れを示す部分断面図。The fragmentary sectional view which shows the flow of the water in the upper part and the lower suction bell in an excessive flow area. 部分流量域での上部及び下部吸込ベル中の水の流れを示す部分断面図。The fragmentary sectional view which shows the flow of the water in the upper part and the lower suction bell in a partial flow area. エアロック運転時の上部及び下部吸込ベルにおける空気の流れを示す部分断面図。The fragmentary sectional view which shows the flow of the air in the upper part and the lower suction bell at the time of an air lock driving | operation. 無注水軸受を示す縦断面図。The longitudinal cross-sectional view which shows a non-water-filled bearing. 図13のXIV−XIV線での断面図。Sectional drawing in the XIV-XIV line | wire of FIG. 差圧と空気流量の関係を概略的に示す線図。The diagram which shows roughly the relationship between a differential pressure | voltage and an air flow rate. 立軸ポンプの流量と吐出圧の関係を概略的に示す線図。The diagram which shows roughly the relationship between the flow volume of a vertical shaft pump, and discharge pressure.

符号の説明Explanation of symbols

10 ポンプ設備
11 立軸ポンプ
12 空気タンク
13 圧縮空気供給源
14 軸受診断装置
15 圧縮空気供給管路
16 圧縮空気充填管路
17 送風用管路
18 検出用管路
19 制御装置
20 吸水槽
22 ケーシング
22a 揚水管
22b ポンプケーシング
22c 吐出エルボ
23 吐出管
24 羽根車
25 主軸
26,27 軸受(軸受手段)
26a,27a リブ
28 駆動機構
29 吐出弁
31 上部吸込ベル
31a,32a 下端側先端部
31b,32b 下面
32 下部吸込ベル
33 流路
33a 上端側開口
33b 下端側開口
35 リブ
36 貫通孔
37 制御弁
38 貫通孔
39 逆止弁
43 流量計
44 差圧計
46 水位計(水位検出手段)
51 軸受ケーシング
51a 空気孔
52a,52b軸受体
53 シェル
54 摺動体
55a,55b 端部プレート
56 空気室
58 逆止弁
64 空気だまり
65 水柱
DESCRIPTION OF SYMBOLS 10 Pumping equipment 11 Vertical shaft pump 12 Air tank 13 Compressed air supply source 14 Bearing diagnostic device 15 Compressed air supply line 16 Compressed air filling line 17 Blowing line 18 Detection line 19 Control unit 20 Water absorption tank 22 Casing 22a Pumping water Pipe 22b Pump casing 22c Discharge elbow 23 Discharge pipe 24 Impeller 25 Main shaft 26, 27 Bearing (bearing means)
26a, 27a Rib 28 Drive mechanism 29 Discharge valve 31 Upper suction bell 31a, 32a Lower end tip 31b, 32b Lower surface 32 Lower suction bell 33 Channel 33a Upper end opening 33b Lower end opening 35 Rib 36 Through hole 37 Control valve 38 Through Hole 39 Check valve 43 Flow meter 44 Differential pressure gauge 46 Water level gauge (water level detection means)
51 Bearing casing 51a Air hole 52a, 52b Bearing body 53 Shell 54 Sliding body 55a, 55b End plate 56 Air chamber 58 Check valve 64 Air pool 65 Water column

Claims (7)

上流側から水が流入する吸水槽と、
前記吸水槽に開口する吸込口を有する吸込ベルを下端側に備える一方、吐出管に接続された吐出口を上端側に備えるケーシングと、前記ケーシング内の前記吸込口より上方に位置する羽根車と、前記羽根車が固定された主軸と、前記主軸を回転駆動する駆動機構とをそれぞれ有する複数の立軸ポンプと、
個々の前記立軸ポンプの前記吐出口と前記吐出管との間にそれぞれ配設された複数の吐出弁と、
個々の前記立軸ポンプの前記吸込ベルに制御弁が配設された空気流路を介してそれぞれ接続された複数の圧縮空気供給源と、
前記吸水槽内の水位を検出する水位検出手段と
を備え、
個々の前記立軸ポンプは、
前記吐出弁を閉弁状態として前記吐出口と前記吐出管との連通を遮断し、かつ前記制御弁を開弁状態とし、前記ケーシング内に前記圧縮空気供給源からの圧縮空気を充填した状態で前記駆動機構により前記主軸を回転させる強制気中運転と、
前記吐出弁を開弁状態として前記吐出口と前記吐出管を連通させ、かつ前記制御弁を閉弁状態とし、前記圧縮空気供給源からの前記圧縮空気の供給を止めた状態で前記駆動機構により前記主軸を回転させる通常運転と
を切換可能であり、
前記水位検出手段の検出する前記吸水槽内の水位の上昇に応じて、前記複数の立軸ポンプが前記強制気中運転から前記通常運転に順次切り替わることを特徴とする、ポンプ設備。
A water absorption tank into which water flows from the upstream side;
A casing provided with a suction bell having a suction opening that opens in the water absorption tank on the lower end side, a casing provided with a discharge outlet connected to a discharge pipe on the upper end side, and an impeller positioned above the suction opening in the casing; A plurality of vertical shaft pumps each having a main shaft to which the impeller is fixed and a drive mechanism that rotationally drives the main shaft;
A plurality of discharge valves respectively disposed between the discharge port and the discharge pipe of each vertical shaft pump;
A plurality of compressed air supply sources each connected via an air flow path in which a control valve is disposed on the suction bell of each of the vertical shaft pumps;
Water level detecting means for detecting the water level in the water absorption tank,
Each said vertical shaft pump
With the discharge valve closed, the communication between the discharge port and the discharge pipe is shut off, the control valve is opened, and the casing is filled with compressed air from the compressed air supply source. Forced air operation to rotate the spindle by the drive mechanism;
The discharge valve is opened, the discharge port and the discharge pipe are communicated, the control valve is closed, and the supply of compressed air from the compressed air supply source is stopped by the drive mechanism. The normal operation of rotating the spindle can be switched, and
The pump equipment, wherein the plurality of vertical pumps are sequentially switched from the forced air operation to the normal operation in response to a rise in the water level in the water absorption tank detected by the water level detection means.
前記立軸ポンプを前記強制気中運転から前記通常運転に順次切り替える順序を予め定められた期間毎に並べ替えることを特徴とする、請求項1に記載のポンプ設備。   2. The pump equipment according to claim 1, wherein an order in which the vertical shaft pump is sequentially switched from the forced air operation to the normal operation is rearranged for each predetermined period. 前記複数の立軸ポンプは、前記吸込ベルの吸込口が同一水平面上に設けられ、かつ、前記羽根車が前記吸込口から同じ高さに設けられ、
前記水位検出手段が、前記吸水槽の水位が前記吸込口よりも低い予め設定された待機水位にあることを検出すると、全ての前記複数の立軸ポンプが運転を開始するとともに、全ての前記複数の立軸ポンプの前記吐出弁が閉弁し、
前記水位検出手段が、前記吸水槽の水位が前記吸込口と同じ高さに到達したことを検出すると、全ての前記立軸ポンプが前記強制気中運転を開始し、
前記水位検出手段が、前記吸水槽の水位が前記複数の立軸ポンプのそれぞれに対応して予め設定された複数の異なる到達水位のうちの1つに到達したことを検出すると、前記到達水位に対応する前記立軸ポンプが前記強制気中運転から前記通常運転へ切り替わることを特徴とする請求項1又は請求項2に記載のポンプ設備。
In the plurality of vertical shaft pumps, the suction port of the suction bell is provided on the same horizontal plane, and the impeller is provided at the same height from the suction port,
When the water level detection means detects that the water level of the water absorption tank is at a preset standby water level lower than the suction port, all the plurality of vertical pumps start operation, and all the plurality of the plurality of vertical pumps The discharge valve of the vertical shaft is closed,
When the water level detection means detects that the water level of the water absorption tank has reached the same height as the suction port, all the vertical shaft pumps start the forced air operation,
When the water level detecting means detects that the water level of the water absorption tank has reached one of a plurality of different reaching water levels set in advance corresponding to each of the plurality of vertical pumps, the water level detecting means corresponds to the reaching water level. The pump installation according to claim 1 or 2, wherein the vertical shaft pump is switched from the forced air operation to the normal operation.
前記圧縮空気供給源は前記吸込ベルに設けられた外側と内側を貫通する貫通孔と前記空気流路により接続された前記圧縮空気を貯留する空気タンクと、前記空気タンクに前記圧縮空気を供給するコンプレッサとを備えることを特徴とする請求項1乃至請求項3のいずれか1項に記載のポンプ設備。   The compressed air supply source includes a through-hole penetrating the outside and the inside provided in the suction bell, an air tank storing the compressed air connected by the air flow path, and supplying the compressed air to the air tank. The pump equipment according to any one of claims 1 to 3, further comprising a compressor. 前記立軸ポンプの吸込ベルが、前記貫通孔が設けられた下向きに開口した上部吸込ベルと、前記上部吸込ベルの内側に間隔をあけて配設され、その下端側先端部が前記上部吸込ベルの下端側先端部より下方側に位置している、下向きに開口した下部吸込ベルとからなり、かつ、前記上部吸込ベルと前記下部吸込ベルとの間に、前記羽根車より下方の前記立軸ポンプのケーシングの内部と前記ケーシングの外部とを連通させる流路が形成されたものであることを特徴とする請求項4に記載のポンプ設備。   The suction pump of the vertical shaft pump is provided with a downwardly opened upper suction bell provided with the through-hole and an inner side of the upper suction bell, with a lower end on the lower end side of the upper suction bell. The lower suction bell is located below the lower end side tip and is opened downward, and between the upper suction bell and the lower suction bell, the vertical pump below the impeller The pump equipment according to claim 4, wherein a flow path for communicating the inside of the casing and the outside of the casing is formed. 前記立軸ポンプが、前記空気タンクから分岐し、前記ケーシング内部の立軸ポンプの主軸の軸受手段と連通する送風用管路と、前記送風用管路に設けられた流量計と、前記流量計よりも前記空気タンク側で前記送風用管路の途中から分岐し、前記ポンプの吐出エルボ内と接続している検出用管路と、前記検出用管路に設けられた差圧計とを備え、前記流量計により検出された空気流量と、前記差圧計により検出された差圧とに基づいて前記軸受手段の異常発生の有無を診断する軸受診断装置をさらに備えることを特徴とする請求項4に記載のポンプ設備。   The vertical shaft pump branches from the air tank and communicates with the bearing means of the main shaft of the vertical pump inside the casing, a flow meter provided in the air flow conduit, and more than the flow meter Branching from the middle of the air duct on the air tank side and connected to the inside of the discharge elbow of the pump, and a differential pressure gauge provided in the pipe for detection, the flow rate 5. The bearing diagnosis apparatus according to claim 4, further comprising a bearing diagnosis device that diagnoses whether or not an abnormality has occurred in the bearing means based on an air flow rate detected by a gauge and a differential pressure detected by the differential pressure gauge. Pump equipment. 上流側から水が流入する吸水槽と、
前記吸水槽に開口する吸込口を有する吸込ベルを下端側に備える一方、吐出管に接続された吐出口を上端側に備えるケーシングと、前記ケーシング内の前記吸込口より上方に位置する羽根車と、前記羽根車が固定された主軸と、前記主軸を回転駆動する駆動機構とをそれぞれ有する複数の立軸ポンプと、
個々の前記立軸ポンプの前記吐出口と前記吐出管との間にそれぞれ配設された複数の吐出弁と、
個々の前記立軸ポンプの前記吸込ベルに制御弁が配設された空気流路を介してそれぞれ接続された複数の圧縮空気供給源と、
前記吸水槽内の水位を検出する水位検出手段と
を設け、
個々の前記立軸ポンプは、
前記吐出弁を閉弁状態として前記吐出口と前記吐出管との連通を遮断し、かつ前記制御弁を開弁状態とし、前記ケーシング内に前記圧縮空気供給源からの圧縮空気を充填した状態で前記駆動機構により前記主軸を回転させる強制気中運転と、
前記吐出弁を開弁状態として前記吐出口と前記吐出管を連通させ、かつ前記制御弁を閉弁状態とし、前記圧縮空気供給源からの前記圧縮空気の供給を止めた状態で前記駆動機構により前記主軸を回転させる通常運転と
を切換可能であり、
前記水位検出手段の検出する前記吸水槽内の水位の上昇に応じて、前記複数の立軸ポンプを前記強制気中運転から前記通常運転に順次切り替えることを特徴とする、ポンプ設備の運転方法。
A water absorption tank into which water flows from the upstream side;
A casing provided with a suction bell having a suction opening that opens in the water absorption tank on the lower end side, a casing provided with a discharge outlet connected to a discharge pipe on the upper end side, and an impeller positioned above the suction opening in the casing; A plurality of vertical shaft pumps each having a main shaft to which the impeller is fixed and a drive mechanism that rotationally drives the main shaft;
A plurality of discharge valves respectively disposed between the discharge port and the discharge pipe of each vertical shaft pump;
A plurality of compressed air supply sources each connected via an air flow path in which a control valve is disposed on the suction bell of each of the vertical shaft pumps;
Water level detecting means for detecting the water level in the water absorption tank, and
Each said vertical shaft pump
With the discharge valve closed, the communication between the discharge port and the discharge pipe is shut off, the control valve is opened, and the casing is filled with compressed air from the compressed air supply source. Forced air operation to rotate the spindle by the drive mechanism;
The discharge valve is opened, the discharge port and the discharge pipe are communicated, the control valve is closed, and the supply of compressed air from the compressed air supply source is stopped by the drive mechanism. The normal operation of rotating the spindle can be switched, and
An operation method of pump equipment, wherein the plurality of vertical pumps are sequentially switched from the forced air operation to the normal operation in response to a rise in the water level in the water absorption tank detected by the water level detection means.
JP2008318332A 2008-12-15 2008-12-15 Pump equipment and operation method Active JP5028398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008318332A JP5028398B2 (en) 2008-12-15 2008-12-15 Pump equipment and operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008318332A JP5028398B2 (en) 2008-12-15 2008-12-15 Pump equipment and operation method

Publications (2)

Publication Number Publication Date
JP2010138876A true JP2010138876A (en) 2010-06-24
JP5028398B2 JP5028398B2 (en) 2012-09-19

Family

ID=42349204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318332A Active JP5028398B2 (en) 2008-12-15 2008-12-15 Pump equipment and operation method

Country Status (1)

Country Link
JP (1) JP5028398B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026360A (en) * 2010-07-23 2012-02-09 Ihi Corp Method of controlling vane rotary device system, and vane rotary device system
JP2013040596A (en) * 2011-08-19 2013-02-28 Ishigaki Co Ltd Pump system
JP2013170460A (en) * 2012-02-17 2013-09-02 Hitachi Ltd Preceding-time standby pump and operation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218578A (en) * 2003-01-16 2004-08-05 Torishima Pump Mfg Co Ltd Pump bearing monitoring device and method therefor
JP2006250004A (en) * 2005-03-09 2006-09-21 Ebara Corp Collective pump device
JP2007023938A (en) * 2005-07-19 2007-02-01 Ebara Corp Vertical shaft pump and pump plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218578A (en) * 2003-01-16 2004-08-05 Torishima Pump Mfg Co Ltd Pump bearing monitoring device and method therefor
JP2006250004A (en) * 2005-03-09 2006-09-21 Ebara Corp Collective pump device
JP2007023938A (en) * 2005-07-19 2007-02-01 Ebara Corp Vertical shaft pump and pump plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026360A (en) * 2010-07-23 2012-02-09 Ihi Corp Method of controlling vane rotary device system, and vane rotary device system
JP2013040596A (en) * 2011-08-19 2013-02-28 Ishigaki Co Ltd Pump system
JP2013170460A (en) * 2012-02-17 2013-09-02 Hitachi Ltd Preceding-time standby pump and operation method thereof

Also Published As

Publication number Publication date
JP5028398B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5028398B2 (en) Pump equipment and operation method
JP2007023938A (en) Vertical shaft pump and pump plant
JP2010069455A (en) Mixing system for foam fire extinguishing agent
JP2017166423A (en) pump
JP5274524B2 (en) Pump station
JP5404859B2 (en) Pump bearing cleaning device and method thereof
JP3933586B2 (en) Pump bearing monitoring apparatus and method
JP6966388B2 (en) pump
JP5222203B2 (en) Pump device
JP5004905B2 (en) Pump operating device, air conditioner and water heater
JP2016217267A (en) Pump unit and method for controlling pump unit
JP6469384B2 (en) Advance standby pump
JP4824335B2 (en) Advance standby type vertical shaft pump
JP2008075724A (en) Spindle device
JP4709878B2 (en) Vertical shaft pump
JP2002332983A (en) Pull-out type vertical shaft double-suction volute pump
JP4468009B2 (en) Vertical shaft pump system and pump station
JP2016173085A (en) Compressor system
JP7450374B2 (en) Pump device, inverter and control method
JP5411889B2 (en) Pump bearing diagnosis apparatus and method
JP6805299B1 (en) Water supply device and control method of water supply device
JP4719027B2 (en) Casing drainage mechanism of hydraulic machine and operation method of hydraulic machine
JP7148429B2 (en) waterproof motor
JP2023016186A (en) Pump monitoring method and monitoring device
KR100569001B1 (en) Automatic pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5028398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250