JP2010138456A - Ni-PLATED STEEL WIRE FOR SPRING, AND METHOD FOR PRODUCING THE SAME - Google Patents

Ni-PLATED STEEL WIRE FOR SPRING, AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2010138456A
JP2010138456A JP2008316327A JP2008316327A JP2010138456A JP 2010138456 A JP2010138456 A JP 2010138456A JP 2008316327 A JP2008316327 A JP 2008316327A JP 2008316327 A JP2008316327 A JP 2008316327A JP 2010138456 A JP2010138456 A JP 2010138456A
Authority
JP
Japan
Prior art keywords
wire
steel wire
plating
spring
springs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008316327A
Other languages
Japanese (ja)
Inventor
Tetsuo Jinbo
鉄男 神保
Toshio Maehata
俊男 前畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP2008316327A priority Critical patent/JP2010138456A/en
Publication of JP2010138456A publication Critical patent/JP2010138456A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Springs (AREA)
  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel wire, particularly a steel wire for a spring, whose heat resistance is improved, and to which corrosion resistance is imparted as well, and to provide a method for producing the same. <P>SOLUTION: The Ni-plated steel wire for a spring comprises, by weight, 0.5 to 0.8% C, 1.2 to 2.5% Si, 0.5 to 1.5% Mn, and 0.05 to 1.5% Cr, and the balance Fe with inevitable impurities, and in which an Ni plating layer with a thickness of ≥2 μm is formed on the surface. The Ni plating steel wire for a spring may comprise either or both of V and Ni as well, and, in this case, regarding their contents, 0.05 to 0.25% V, and 0.05 to 1.5% Ni are satisfied. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ばね用Niめっき鋼線およびその製造方法に関する。   The present invention relates to a Ni-plated steel wire for a spring and a method for producing the same.

JIS G 3521に記載される硬鋼線およびJIS G 3522に記載されるピアノ線は、ばね用の鋼線として用いられており、冷間で引き抜き加工を行うことにより、優れた引張強さを示す。しかしながら、硬鋼線およびピアノ線は、高温環境では経時的に機械的強度を失う場合があり、そのため、耐熱性の面で信頼性が低い。また、腐食環境下では錆びが発生するため、耐食性の面で信頼性が低い。   The hard steel wire described in JIS G 3521 and the piano wire described in JIS G 3522 are used as steel wires for springs, and exhibit excellent tensile strength by performing cold drawing. . However, hard steel wires and piano wires may lose mechanical strength over time in a high-temperature environment, and are therefore unreliable in terms of heat resistance. Moreover, since rust is generated in a corrosive environment, the reliability is low in terms of corrosion resistance.

硬鋼線およびピアノ線よりも耐熱性を高めたばね用鋼線として、例えば特許文献1のものが知られている。特許文献1の鋼線は、Siの含有量を0.5〜1.5重量%の範囲で増加させることで耐熱性を高めている。これにより、200℃前後の高温環境では強度を維持できる。
特許第3539875号公報
As a spring steel wire having higher heat resistance than hard steel wire and piano wire, for example, one disclosed in Patent Document 1 is known. The steel wire of Patent Document 1 has improved heat resistance by increasing the Si content in the range of 0.5 to 1.5% by weight. Thereby, strength can be maintained in a high temperature environment of around 200 ° C.
Japanese Patent No. 3539875

しかしながら、特許文献1の鋼線は、例えば300℃を超える高温環境では強度が低下するため、十分な耐熱性を有しているとはいえない。また、耐食性に関しては従来品と変わらない。   However, the steel wire of Patent Document 1 cannot be said to have sufficient heat resistance because the strength decreases in a high temperature environment exceeding 300 ° C., for example. In addition, the corrosion resistance is the same as the conventional product.

そこで、本発明は、上記事情に鑑み、耐熱性を向上させ、かつ、耐食性を付与した鋼線、特にばね用鋼線、およびその製造方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a steel wire, particularly a spring steel wire, which has improved heat resistance and corrosion resistance, and a manufacturing method thereof.

上記目的を達成するために、本発明に係るばね用Niめっき鋼線は、重量%で、C:0.5〜0.8%、Si:1.2〜2.5%、Mn:0.5〜1.5%、Cr:0.05〜1.5%を含み、残部がFeおよび不可避的不純物からなり、表面に、厚さが2μm以上であるNiめっき層が形成されている。   In order to achieve the above object, the Ni-plated steel wire for springs according to the present invention is, by weight, C: 0.5 to 0.8%, Si: 1.2 to 2.5%, Mn: 0.00. A Ni plating layer containing 5 to 1.5%, Cr: 0.05 to 1.5%, the balance being Fe and inevitable impurities, and having a thickness of 2 μm or more is formed on the surface.

本発明に係るばね用Niめっき鋼線は、上記含有量のC、SiおよびMnに加え、Crを含み、その含有量が0.05〜1.5重量%に設定されているので、Crを含有しないばね用鋼線と比較して耐熱性を向上させることが可能である。また、本発明に係るばね用Niめっき鋼線は、表面に厚さ2μm以上のNiめっき層が形成されているので、裸のばね用鋼線と比較して耐食性を向上させることが可能である。このように、本発明に係るばね用Niめっき鋼線は、耐熱性および耐食性を備えたものである。   The Ni-plated steel wire for springs according to the present invention contains Cr in addition to the above contents C, Si and Mn, and the content is set to 0.05 to 1.5% by weight. It is possible to improve heat resistance as compared with a steel wire for springs that does not contain. In addition, since the Ni plated steel wire for springs according to the present invention has a Ni plated layer with a thickness of 2 μm or more formed on the surface, it is possible to improve the corrosion resistance as compared with a bare spring steel wire. . Thus, the Ni-plated steel wire for springs according to the present invention has heat resistance and corrosion resistance.

本発明の好ましい実施形態では、ばね用Niめっき鋼線は、VおよびNiの一方もしくは両方を含み、これらの含有量がそれぞれ、V:0.05〜0.25%およびNi:0.05〜1.5%である。   In a preferred embodiment of the present invention, the Ni-plated steel wire for spring includes one or both of V and Ni, and the contents thereof are V: 0.05 to 0.25% and Ni: 0.05 to, respectively. 1.5%.

この構成によれば、ばね用Niめっき鋼線は、上記含有量のVおよびNiのうちの一方または両方を含んでいるので、耐熱性をさらに向上させることが可能である。   According to this configuration, since the Ni-plated steel wire for spring contains one or both of V and Ni having the above contents, it is possible to further improve the heat resistance.

また、本発明に係るばね用Niめっき鋼線を製造する方法は、重量%で、C:0.5〜0.8%、Si:1.2〜2.5%、Mn:0.5〜1.5%、Cr:0.05〜1.5%を含み、残部がFeおよび不可避的不純物からなる鋼を熱間圧延して製造された線材にパテンティング処理を施すステップと、前記パテンティング処理された前記線材に対して必要に応じて予備伸線加工を行った後、その表面にNiめっき処理を施すステップと、前記Niめっき処理された前記線材に仕上げ伸線加工を施して鋼線を製造するステップとを含み、前記伸線加工では、前記線材のNiめっき処理後における減面率が10%以上に設定され、前記Niめっきの層厚は、前記伸線加工後に2μm以上となるように設定されている。   In addition, the method for producing the Ni-plated steel wire for springs according to the present invention is in wt%, C: 0.5 to 0.8%, Si: 1.2 to 2.5%, Mn: 0.5 to Applying a patenting treatment to a wire produced by hot rolling steel containing 1.5%, Cr: 0.05 to 1.5%, the balance being Fe and inevitable impurities, and the patenting After pre-drawing the treated wire as necessary, a step of performing Ni plating treatment on the surface thereof, and finishing wire drawing of the Ni-plated wire to give a steel wire In the wire drawing process, the area reduction rate after the Ni plating treatment of the wire is set to 10% or more, and the layer thickness of the Ni plating is 2 μm or more after the wire drawing process. Is set to

本発明に係るばね用Niめっき鋼線の製造方法によれば、線材のNiめっき処理後における減面率を10%以上に設定し、また、Niめっき層の伸線加工後の層厚を2μm以上となるように設定することで、ばね用鋼線に、耐食性および光沢性を付与することが可能である。また、上記のように、上記含有率の組成成分により鋼線に耐熱性を付与することが可能である。さらに、含有量が0.05〜0.25%のVおよび0.05〜1.5%のNiの一方もしくは両方が必要に応じて用いられる。   According to the method for manufacturing a Ni-plated steel wire for springs according to the present invention, the area reduction rate after the Ni plating treatment of the wire is set to 10% or more, and the layer thickness of the Ni plating layer after the wire drawing is 2 μm. By setting as described above, it is possible to impart corrosion resistance and gloss to the spring steel wire. Further, as described above, it is possible to impart heat resistance to the steel wire by the composition component having the above content rate. Furthermore, one or both of V having a content of 0.05 to 0.25% and Ni having a content of 0.05 to 1.5% are used as necessary.

本発明に係るばね用Niめっき鋼線およびその製造方法によれば、耐熱性、耐食性および光沢性を備えたばね用鋼線を提供することが可能である。   According to the Ni-plated steel wire for springs and the method for producing the same according to the present invention, it is possible to provide a steel wire for springs having heat resistance, corrosion resistance and gloss.

以下、本発明の実施形態に係る鋼線について詳細に説明する。   Hereinafter, the steel wire which concerns on embodiment of this invention is demonstrated in detail.

本実施形態の鋼線は、ばね用鋼線であり、主要な組成成分として、C、Si、MnおよびCrを含み、残部がFeおよび不可避的不純物からなる。また、ばね用鋼線は、表面に電気Niめっき層を有する。以下に、C、Si、MnおよびCrの各含有率を重量%で示す。
C :0.5〜0.8%
Si:1.2〜2.5%
Mn:0.5〜1.5%
Cr:0.05〜1.5%
The steel wire of this embodiment is a steel wire for springs, and contains C, Si, Mn, and Cr as main composition components, and the balance consists of Fe and inevitable impurities. The steel wire for spring has an electric Ni plating layer on the surface. Below, each content rate of C, Si, Mn, and Cr is shown by weight%.
C: 0.5 to 0.8%
Si: 1.2-2.5%
Mn: 0.5 to 1.5%
Cr: 0.05 to 1.5%

ばね用鋼線は、上記の組成成分に加え、必要に応じて、VおよびNiのうちの一方または両方を含む。以下に、VおよびNiの各含有率を重量%で示す。
V :0.05〜0.25%
Ni:0.05〜1.5%
The steel wire for spring includes one or both of V and Ni as necessary in addition to the above-described composition components. Below, each content rate of V and Ni is shown by weight%.
V: 0.05-0.25%
Ni: 0.05 to 1.5%

次に、各組成成分の含有率(重量%)を上記の範囲に規定した理由を示す。   Next, the reason why the content (% by weight) of each composition component is defined in the above range will be described.

C:0.5〜0.8%
Cは、ばね用鋼線として求められる強度を確保するために必須の元素であり、その強度確保のために、少なくとも0.5%以上必要である。一方、0.8%を超えると、パテンティング時に初析セメンタイトが生成しやすくなり、靭性、延性を低下させる。
C: 0.5 to 0.8%
C is an essential element for securing the strength required for the steel wire for springs, and at least 0.5% or more is necessary for securing the strength. On the other hand, if it exceeds 0.8%, pro-eutectoid cementite is likely to be generated during patenting, and the toughness and ductility are reduced.

Si:1.2〜2.5%
Siは、製鋼時の脱酸剤として用いられる元素であり、また、パーライト中のフェライトに固溶して耐熱性を上げる効果を有するため、本実施形態のばね用鋼線では必須の元素である。耐熱性を上げるためには少なくとも1.2%以上添加することが必要である。一方、2.5%を超えると、靭性、延性が低下する。また、Siの過剰な添加は、パテンティング時に鋼線表層の脱炭を促進するため、ばねの疲労強度を低下させる。
Si: 1.2-2.5%
Si is an element used as a deoxidizer during steel making, and has an effect of increasing the heat resistance by dissolving in ferrite in pearlite, and thus is an essential element in the spring steel wire of this embodiment. . In order to increase the heat resistance, it is necessary to add at least 1.2%. On the other hand, when it exceeds 2.5%, toughness and ductility are lowered. Moreover, excessive addition of Si promotes decarburization of the steel wire surface layer during patenting, and thus reduces the fatigue strength of the spring.

Mn:0.5〜1.5%
Mnは、製鋼時の脱酸剤として用いられる元素であり、また、焼入れ性と強度を向上させる効果を有するため、本実施形態のばね用鋼線では必須の元素である。前記効果を得るためには少なくとも0.5%以上添加することが必要である。一方、1.5%を超えると、焼入れ性を必要以上に上げてしまうため、長時間のパテンティングが必要となり、また、ベイナイト等の過冷組織が生成され易くなるため、伸線加工性が低下する。
Mn: 0.5 to 1.5%
Mn is an element used as a deoxidizer at the time of steel making, and since it has the effect of improving hardenability and strength, it is an essential element in the spring steel wire of this embodiment. In order to obtain the effect, it is necessary to add at least 0.5% or more. On the other hand, if it exceeds 1.5%, the hardenability is unnecessarily increased, so that patenting for a long time is required, and a supercooled structure such as bainite is easily generated. descend.

Cr:0.05〜1.5%
Crは、パーライト中のフェライトに炭化物や炭窒化物として析出することで耐熱性を上げ、また、パーライトのラメラ間隔を小さくすることで強度を上げる効果を有するため、本実施形態のばね用鋼線では必須の元素である。前記効果を得るためには少なくとも0.05%以上添加することが必要である。一方、1.5%を超えると、焼入れ性を必要以上に上げてしまうため、長時間のパテンティングが必要となり、また、ベイナイト等の過冷組織が生成され易くなるため、伸線加工性が低下する。
Cr: 0.05 to 1.5%
Cr has the effect of increasing heat resistance by precipitating as carbide or carbonitride on ferrite in pearlite, and increasing the strength by reducing the lamella spacing of pearlite, so the spring steel wire of this embodiment Then it is an essential element. In order to obtain the effect, it is necessary to add at least 0.05% or more. On the other hand, if it exceeds 1.5%, the hardenability is unnecessarily increased, so that patenting for a long time is required, and a supercooled structure such as bainite is easily generated. descend.

V:0.05〜0.25%
Vは、パーライト中のフェライトに炭化物や炭窒化物として析出することで耐熱性を上げる効果を有する元素である。前記効果を得るためには少なくとも0.05%以上添加することが必要である。一方、0.25%を超えると、パテンティング時に過冷組織が生成され易くなるため、伸線加工性が低下する。
V: 0.05-0.25%
V is an element having an effect of increasing heat resistance by precipitating as a carbide or carbonitride on ferrite in pearlite. In order to obtain the effect, it is necessary to add at least 0.05% or more. On the other hand, if it exceeds 0.25%, a supercooled structure is likely to be generated at the time of patenting, so that the wire drawing workability is lowered.

Ni:0.05〜1.5%
Niは、焼入れ性を向上させる効果を有する元素である。前記効果を得るためには少なくとも0.05%以上添加することが必要である。一方、1.5%を超えると、パテンティング時に過冷組織が生成され易くなるため、伸線加工性が低下する。
Ni: 0.05 to 1.5%
Ni is an element having an effect of improving hardenability. In order to obtain the effect, it is necessary to add at least 0.05% or more. On the other hand, if it exceeds 1.5%, a supercooled structure is likely to be generated during patenting, so that the wire drawing workability is lowered.

本実施形態では、ばね用鋼線は、主に上記含有率のSiおよびCrの添加によって耐熱性が付与されると共に、電気Niめっき層によって耐食性および外観の光沢性が付与されている。   In this embodiment, the spring steel wire is given heat resistance mainly by the addition of Si and Cr having the above-mentioned contents, and is given corrosion resistance and appearance gloss by the electric Ni plating layer.

次に、ばね用Niめっき鋼線の製造工程について説明する。ばね用Niめっき鋼線は、以下の製造工程(A)または(B)によって製造される。
・製造工程(A)
鋼の溶製→熱間圧延→パテンティング処理→電気Niめっき処理→伸線加工
→ばね用鋼線の製造
・製造工程(B)
鋼の溶製→熱間圧延→パテンティング処理→予備伸線加工→電気Niめっき処理
→仕上げ伸線加工→ばね用鋼線の製造
Next, the manufacturing process of the Ni plating steel wire for springs is demonstrated. The Ni-plated steel wire for spring is manufactured by the following manufacturing process (A) or (B).
・ Manufacturing process (A)
Steel melting → Hot rolling → Patenting treatment → Electric Ni plating treatment → Wire drawing → Spring steel wire manufacturing and manufacturing process (B)
Steel melting → Hot rolling → Patenting → Pre-drawing → Electrical Ni plating → Finish drawing → Manufacturing of spring steel wire

製造工程(A)では、まず、上記含有率のC、Si、MnおよびCrを含む鋼を溶製し、その鋼を熱間圧延して所定の直径を有する線材を製造する。次に、線材に対してパテンティング処理を施し、その後、電気Niめっき処理を施す。この電気Niめっき処理により、線材の表面にNiめっき層が形成される。そして、Niめっき層を有する線材に対して伸線処理を施して所定の直径を有するばね用鋼線を製造する。伸線処理は、ばね用鋼線として求められる強度に応じた適切な伸線加工度で行われる。   In the manufacturing step (A), first, a steel containing C, Si, Mn and Cr having the above contents is melted, and the steel is hot-rolled to manufacture a wire having a predetermined diameter. Next, a patenting process is performed on the wire, and then an electric Ni plating process is performed. By this electric Ni plating treatment, a Ni plating layer is formed on the surface of the wire. Then, the wire rod having the Ni plating layer is subjected to wire drawing to produce a spring steel wire having a predetermined diameter. The wire drawing process is performed at an appropriate wire drawing degree corresponding to the strength required for the spring steel wire.

伸線加工度の大きさによっては、伸線加工後の鋼線のNiめっき層が薄くなり、耐食性を確保することが困難となる場合がある。このような場合に製造工程(B)が適用される。製造工程(B)は、電気Niめっき処理の前に予備伸線加工を行う点で製造工程(A)と異なる。予備伸線加工は、電気Niめっき処理前に所定の加工度で伸線処理を予め行う加工であり、予備伸線加工を行った分、電気Niめっき処理後の仕上げ伸線加工の加工度を小さくできるので、Niめっき層の層厚が薄くなりすぎることを防止できる。   Depending on the degree of wire drawing, the Ni plating layer of the steel wire after wire drawing may become thin, and it may be difficult to ensure corrosion resistance. In such a case, the manufacturing process (B) is applied. The manufacturing process (B) differs from the manufacturing process (A) in that a preliminary wire drawing process is performed before the electric Ni plating treatment. The preliminary wire drawing process is a process in which a wire drawing process is performed in advance at a predetermined degree of processing before the electric Ni plating process, and the degree of finishing wire drawing after the electric Ni plating process is increased by the amount of the preliminary wire drawing process. Since it can make small, it can prevent that the layer thickness of Ni plating layer becomes thin too much.

このように、ばね用Niめっき鋼線は、製造工程(A)または(B)によって製造されるが、製造工程(A)および(B)は、例えばNiめっき層の層厚、ばね用鋼線として求められる強度に応じて選択される。   Thus, the Ni-plated steel wire for springs is manufactured by the manufacturing process (A) or (B), but the manufacturing processes (A) and (B) include, for example, the thickness of the Ni-plated layer, and the steel wire for springs. Is selected according to the strength required.

また、伸線加工(仕上げ伸線加工)は、製造工程(A)および(B)のどちらの場合であっても、電気Niめっき処理後に少なくとも1パス以上行うことが必要である。電気Niめっき処理を行っただけでは、Niめっき層の表面は粗いため、Niめっき層の層厚の精度は低く、耐食性を低下させる要因となる。また、Niめっき層に光沢性をもたせることは難しい。そこで、本実施形態では、Niめっき層の表面を平滑化することにより、耐食性および光沢性を確保している。Niめっき層の平滑化は、具体的には、伸線加工を、10%以上の減面率で行うことにより行われる。つまり、伸線加工を、伸線処理前の線材の断面積が伸線処理後の線材の断面積と比較して10%以上小さくなる断面減少率で行う。このように伸線加工された後のNiめっき層は、平滑化されて耐食性および光沢性を備えたものとなる。Niめっき層の層厚は、本実施形態では2μm以上となるように設定されている。   Further, the wire drawing process (finish wire drawing process) needs to be performed at least one pass after the electric Ni plating process in any of the manufacturing steps (A) and (B). If only the electric Ni plating process is performed, the surface of the Ni plating layer is rough. Therefore, the accuracy of the thickness of the Ni plating layer is low, which causes a decrease in corrosion resistance. Moreover, it is difficult to give the Ni plating layer gloss. Therefore, in this embodiment, the surface of the Ni plating layer is smoothed to ensure corrosion resistance and gloss. Specifically, the Ni plating layer is smoothed by performing a wire drawing process with a reduction in area of 10% or more. That is, the wire drawing is performed at a cross-section reduction rate in which the cross-sectional area of the wire before the wire drawing process is 10% or more smaller than the cross-sectional area of the wire after the wire drawing process. The Ni plating layer after the wire drawing is smoothed to have corrosion resistance and gloss. In this embodiment, the thickness of the Ni plating layer is set to be 2 μm or more.

次に、本実施形態に係るばね用Niめっき鋼線の耐熱性を評価するために行った実験およびその結果について、表1および図1を参照しながら説明する。   Next, an experiment conducted for evaluating the heat resistance of the Ni-plated steel wire for spring according to the present embodiment and the result thereof will be described with reference to Table 1 and FIG.

(耐熱性評価実験1)
この実験で用いた実施例1〜4および比較例1〜3の各組成成分を表1に示す。実施例1〜4および比較例1〜3のそれぞれは、製造工程(A)によって製造した。具体的には、表1に示す組成成分の鋼を溶製し、直径5.5mmの線材を熱間圧延により製造した。次に、各線材にパテンティング処理を施した。パテンティング処理では、オーステナイト化加熱温度を930℃とし、パーライト変態浴温度は、ベイナイトが生成されないように組成成分に応じて530〜650℃の範囲から選択した。パテンティング処理の後、各線材に電気Niめっき処理を施して、各線材の表面に厚さ約15μmのNiめっき層を形成した。この後、各線材に伸線加工を施して、直径1.8mmのばね用鋼線(実施例1〜4および比較例1〜3)を製造した。伸線加工では、通常の連続伸線機と超硬合金製のダイスを使用した。また、伸線加工は、伸線加工後のNiめっき層の層厚が3μmとなるように施された。
(Heat resistance evaluation experiment 1)
Table 1 shows the composition components of Examples 1 to 4 and Comparative Examples 1 to 3 used in this experiment. Each of Examples 1-4 and Comparative Examples 1-3 was manufactured by the manufacturing process (A). Specifically, steel having the composition components shown in Table 1 was melted, and a wire having a diameter of 5.5 mm was manufactured by hot rolling. Next, a patenting process was performed on each wire. In the patenting treatment, the austenitizing heating temperature was set to 930 ° C., and the pearlite transformation bath temperature was selected from the range of 530 to 650 ° C. according to the composition components so that bainite was not generated. After the patenting treatment, each wire was subjected to an electric Ni plating treatment to form a Ni plating layer having a thickness of about 15 μm on the surface of each wire. Thereafter, each wire was drawn to produce a steel wire for a spring having a diameter of 1.8 mm (Examples 1 to 4 and Comparative Examples 1 to 3). In the wire drawing, a normal continuous wire drawing machine and a die made of cemented carbide were used. Further, the wire drawing was performed so that the thickness of the Ni plating layer after the wire drawing was 3 μm.

Figure 2010138456
Figure 2010138456

伸線加工後の実施例1〜4および比較例1〜3に対して引張試験を実施した。線材をパテンティングした後の強度が実施例によって異なるため、伸線加工後の引張強さにも表1に示すような違いがみられた。   Tensile tests were performed on Examples 1 to 4 and Comparative Examples 1 to 3 after wire drawing. Since the strength after patenting the wire varies depending on the examples, the tensile strength after wire drawing was also different as shown in Table 1.

この耐熱性評価実験では、耐熱性を評価するために、実施例1〜4および比較例1〜3に対して、250〜500℃の範囲内で20分間のテンパー処理を行った後に引張試験を実施し、引張強さを比較した。その結果を図1に示す。   In this heat resistance evaluation experiment, in order to evaluate heat resistance, a tensile test was performed on Examples 1 to 4 and Comparative Examples 1 to 3 after performing a temper treatment for 20 minutes within a range of 250 to 500 ° C. Carried out and compared the tensile strength. The result is shown in FIG.

図1は、横軸がテンパー温度を示し、縦軸が引張強さを示すものである。図1から明らかなように、実施例1〜4は、350℃でテンパー処理されても処理前の引張強さと略同等またはそれ以上の引張強さを維持した。これにより、実施例1〜4は、ばね用鋼線として求められる耐熱性が期待できる。したがって、ばね用鋼線を二次加工して製造されるばねの耐へたり性の向上が期待できる。   In FIG. 1, the horizontal axis indicates the temper temperature, and the vertical axis indicates the tensile strength. As is clear from FIG. 1, Examples 1 to 4 maintained a tensile strength substantially equal to or higher than the tensile strength before treatment even when tempered at 350 ° C. Thereby, Examples 1-4 can expect the heat resistance calculated | required as a steel wire for springs. Therefore, improvement in the sag resistance of a spring manufactured by secondary processing of the spring steel wire can be expected.

また、実施例1〜4は、350℃を超える温度でテンパー処理されても、引張強さの低下は緩やかであった。テンパー処理後の引張強さは、実施例4、実施例3、実施例2、実施例1の順に低かった。実施例2および3は、実施例1の組成成分から見てVを添加した分、実施例4は、実施例1の組成成分から見てVおよびNiを添加した分、実施例1よりも引張強さが高く、耐熱性が向上していることが確認された。   Moreover, even if Examples 1-4 were tempered at the temperature exceeding 350 degreeC, the fall of tensile strength was moderate. The tensile strength after the temper treatment was lower in the order of Example 4, Example 3, Example 2, and Example 1. Examples 2 and 3 are more tensile than Example 1 because V is added in view of the composition component of Example 1, and Example 4 is more than V 1 and Ni is added in view of the composition component of Example 1. It was confirmed that the strength was high and the heat resistance was improved.

これに対し、比較例1〜3のテンパー処理後の引張強さの低下は著しい。比較例1は、Siの含有率が本実施形態で規定される含有率よりも低く、Crを含んでいないため、テンパー処理後の引張強さの低下が最も著しい。比較例2は、比較例1よりもSiの含有率が高いが、Crを含んでいないため、テンパー処理後の引張強さの低下が著しい。比較例3は、Crの含有率が本実施形態で規定される範囲(0.05〜1.5%)内にあるが、Siの含有率が小さいため、テンパー処理後の引張強さの低下が著しい。このような結果から明らかなように、比較例1〜3は実施例1〜5と比較して耐熱性が低い。この実験結果に基づき、本実施形態に係るばね用鋼線は、耐熱性の向上を図るために、Crを含有し、SiおよびCrの各含有率が上記範囲に設定されている。   On the other hand, the fall of the tensile strength after the temper process of Comparative Examples 1-3 is remarkable. Since the content rate of Si is lower than the content rate prescribed | regulated by this embodiment and the comparative example 1 does not contain Cr, the fall of the tensile strength after a temper process is the most remarkable. Comparative Example 2 has a higher Si content than Comparative Example 1, but does not contain Cr, so the tensile strength after tempering is significantly reduced. In Comparative Example 3, the Cr content is in the range (0.05 to 1.5%) defined in the present embodiment, but since the Si content is small, the tensile strength decreases after tempering. Is remarkable. As is clear from these results, Comparative Examples 1 to 3 have lower heat resistance than Examples 1 to 5. Based on this experimental result, the spring steel wire according to the present embodiment contains Cr, and each content rate of Si and Cr is set in the above range in order to improve heat resistance.

次に、本実施形態に係るばね用Niめっき鋼線の耐熱性を評価するために行った他の実験およびその結果について、図2を参照しながら説明する。   Next, another experiment conducted for evaluating the heat resistance of the Ni-plated steel wire for spring according to the present embodiment and the result thereof will be described with reference to FIG.

(耐熱性評価試験2)
耐熱性評価試験2で用いた実施例5〜7は、表1に示す実施例2と同一の組成成分を有し、直径5.5mmの線材を伸線加工して製造した鋼線であり、実施例5は伸線加工度が52%に設定され、実施例6は伸線加工度が81%に設定され、実施例7は伸線加工度が90%に設定された。実施例5〜7に対し、250〜500℃の範囲内で20分間のテンパー処理を行った後に引張試験を実施し、引張強さを比較した。その結果を図2に示す。
(Heat resistance evaluation test 2)
Examples 5 to 7 used in the heat resistance evaluation test 2 are steel wires having the same composition components as those of Example 2 shown in Table 1 and manufactured by drawing a wire having a diameter of 5.5 mm. In Example 5, the wire drawing degree was set to 52%, in Example 6, the wire drawing degree was set to 81%, and in Example 7, the wire drawing degree was set to 90%. For Examples 5 to 7, a temper treatment was performed for 20 minutes in the range of 250 to 500 ° C., and then a tensile test was performed to compare the tensile strength. The result is shown in FIG.

図2に示すように、250℃のテンパー処理によってもたらされるひずみ時効による強度増加は、伸線加工度の大きい実施例7が最も大きく、伸線加工度の小さい実施例5が最も小さくなった。また、300℃以上のテンパーによる強度減少は、伸線加工度の大きい実施例7が最も大きく、伸線加工度の小さい実施例5が最も小さくなった。結果的に、実施例5〜7は、いずれも350℃でテンパー処理された後も、処理前の引張強さと略同等またはそれ以上の引張強さを維持した。これにより、実施例5〜7は、製造工程における伸線加工度の大小によらず、ばね用鋼線として求められる耐熱性が期待できる。したがって、ばね用鋼線を二次加工して製造されるばねの耐へたり性の向上が期待できる。   As shown in FIG. 2, the increase in strength due to strain aging caused by the temper treatment at 250 ° C. was the largest in Example 7 with a large degree of wire drawing, and the smallest in Example 5 with a low degree of wire drawing. Further, the decrease in strength due to the temper at 300 ° C. or higher was greatest in Example 7 having a large degree of wire drawing, and was smallest in Example 5 having a small degree of wire drawing. As a result, Examples 5-7 all maintained a tensile strength substantially equal to or higher than the tensile strength before treatment even after tempering at 350 ° C. Thereby, Examples 5-7 can expect the heat resistance calculated | required as a steel wire for springs irrespective of the magnitude of the wire drawing work degree in a manufacturing process. Therefore, improvement in the sag resistance of a spring manufactured by secondary processing of the spring steel wire can be expected.

次に、本実施形態に係るばね用Niめっき鋼線の耐食性を評価するために行った実験I,IIおよびその結果について、表2,3および図3,4を参照しながら説明する。   Next, Experiments I and II conducted for evaluating the corrosion resistance of the Ni-plated steel wire for spring according to the present embodiment and the results thereof will be described with reference to Tables 2 and 3 and FIGS.

(耐食性評価実験I)
この実験Iでは、表2に示すように、電気Niめっき層の層厚を互いに異ならせた実施例8〜11を用い、それらの実施例8〜11に対して塩水噴霧試験を行って耐食性を比較した。実施例8〜11は、表1に示す実施例1と同一の組成成分を有し、直径5.5mmの線材を伸線加工して製造した直径1.8mmの鋼線である。実施例8は、製造工程(A)により製造され、Niめっき層の層厚が2μmに設定され、実施例9は、製造工程(B)により製造され、Niめっき層の層厚が5μmに設定され、実施例10は、Niめっき層を有しておらず、実施例11は、製造工程(A)により製造され、Niめっき層の層厚が1μmに設定された。
(Corrosion resistance evaluation experiment I)
In this experiment I, as shown in Table 2, using Examples 8 to 11 in which the thicknesses of the electric Ni plating layers were different from each other, a salt spray test was performed on those Examples 8 to 11 to obtain corrosion resistance. Compared. Examples 8 to 11 are steel wires having a diameter of 1.8 mm manufactured by drawing a wire having a diameter of 5.5 mm and having the same composition components as those of Example 1 shown in Table 1. Example 8 is manufactured by the manufacturing process (A), and the layer thickness of the Ni plating layer is set to 2 μm. Example 9 is manufactured by the manufacturing process (B), and the layer thickness of the Ni plating layer is set to 5 μm. And Example 10 did not have a Ni plating layer, Example 11 was manufactured by the manufacturing process (A), and the layer thickness of the Ni plating layer was set to 1 μm.

Figure 2010138456
Figure 2010138456

図3は、塩水噴霧試験の結果を示すものであり、横軸が試験時間を表し、縦軸が赤錆発生面積率を表す。図3から明らかなように、本実施形態において規定される2μm以上のNiめっき層厚を有する実施例8および9は、優れた防錆効果を発揮した。特に、5μmのNiめっき層厚を有する実施例9は、防錆効果が高い。これに対し、本実施形態において規定される層厚に満たない1μmのNiめっき層厚を有する実施例11は、2μmのNiめっき層厚を有する実施例8よりも著しく防錆効果が低く、また、Niめっき層を有していない実施例10と同程度に防錆効果が低いことが確認された。   FIG. 3 shows the results of the salt spray test, where the horizontal axis represents the test time and the vertical axis represents the red rust occurrence area ratio. As is clear from FIG. 3, Examples 8 and 9 having a Ni plating layer thickness of 2 μm or more as defined in this embodiment exhibited an excellent rust prevention effect. In particular, Example 9 having a Ni plating layer thickness of 5 μm has a high antirust effect. In contrast, Example 11 having a Ni plating layer thickness of less than 1 μm, which is less than the layer thickness defined in the present embodiment, has a significantly lower rust prevention effect than Example 8 having a Ni plating layer thickness of 2 μm. It was confirmed that the antirust effect was as low as in Example 10 that did not have a Ni plating layer.

この耐食性評価実験Iの結果に基づき、本実施形態のばね用Niめっき鋼線では、Niめっき層の層厚は、上記のように2μm以上に設定され、好ましくは5μm以上に設定されている。   Based on the result of this corrosion resistance evaluation experiment I, in the Ni-plated steel wire for springs of this embodiment, the layer thickness of the Ni plating layer is set to 2 μm or more as described above, preferably 5 μm or more.

(耐食性評価実験II)
この実験IIでは、表3に示すように、製造工程(B)の仕上げ伸線加工度、つまり減面率を互いに異ならせた実施例12〜15を用い、それらの実施例12〜15に対して塩水噴霧試験を行って耐食性を比較した。実施例12〜15は、表1に示す実施例1と同一の組成成分を有し、製造工程(B)に従って直径5.5mmの線材から製造した直径1.8mmの鋼線であり、実施例12は、電気Niめっき処理後の仕上げ伸線加工度が10%に設定され、実施例13は、電気Niめっき処理後の仕上げ伸線加工度が20%に設定され、実施例14は、電気Niめっき処理後の仕上げ伸線加工度が5%に設定された。また、実施例15は、電気Niめっき処理後に仕上げ伸線加工を行ったものではなく、伸線加工後に電気Niめっき処理を行った鋼線である。なお、実施例12〜15のNiめっきの層厚は2μmに設定された。
(Corrosion resistance evaluation experiment II)
In this experiment II, as shown in Table 3, Examples 12 to 15 in which the finishing wire drawing degree of the manufacturing process (B), that is, the surface area reduction rate was made different from each other, were used. A salt spray test was conducted to compare the corrosion resistance. Examples 12 to 15 are steel wires having a diameter of 1.8 mm manufactured from a wire having a diameter of 5.5 mm according to the manufacturing process (B), having the same composition components as those of Example 1 shown in Table 1. No. 12 is the finishing wire drawing degree after electric Ni plating treatment is set to 10%, Example 13 is the finishing wire drawing degree after electric Ni plating treatment is set to 20%, and Example 14 is electric The finish drawing degree after Ni plating was set to 5%. Further, Example 15 is a steel wire that is not subjected to finish wire drawing after the electric Ni plating treatment but is subjected to electric Ni plating treatment after the wire drawing. In addition, the layer thickness of Ni plating of Examples 12-15 was set to 2 micrometers.

Figure 2010138456
Figure 2010138456

図4は、塩水噴霧試験の結果を示すものであり、横軸が試験時間を表し、縦軸が赤錆発生面積率を表す。また、図4は、比較のため、表2の実施例8のデータも示している。図4に示すように、実施例12,13は、製造工程(A)に従って製造された実施例8と同程度の耐食性を有することが確認された。一方、実施例14,15は、実施例12,13よりも著しく耐食性が劣ることが確認された。   FIG. 4 shows the results of the salt spray test, where the horizontal axis represents the test time and the vertical axis represents the red rust occurrence area ratio. FIG. 4 also shows data of Example 8 in Table 2 for comparison. As shown in FIG. 4, Examples 12 and 13 were confirmed to have the same degree of corrosion resistance as Example 8 manufactured according to the manufacturing process (A). On the other hand, Examples 14 and 15 were confirmed to be significantly inferior to Examples 12 and 13 in corrosion resistance.

この耐食性評価試験IIの結果に基づき、本実施形態のばね用Niめっき鋼線では、仕上げ伸線加工度(減面率)は、10%以上に設定される。   Based on the result of this corrosion resistance evaluation test II, the finish wire drawing degree (area reduction rate) is set to 10% or more in the Ni-plated steel wire for springs of this embodiment.

以上の説明から明らかな通り、本実施形態に係るばね用Niめっき鋼線は、Crを含み、Crの含有率を0.05〜1.5%に設定し、Siの含有率を1.2〜2.5%に設定することで、十分な耐熱性を獲得し、また、Niめっき層の層厚を2μm以上に設定することで耐食性および光沢性を獲得した鋼線である。   As is apparent from the above description, the Ni-plated steel wire for springs according to this embodiment includes Cr, the Cr content is set to 0.05 to 1.5%, and the Si content is 1.2. It is a steel wire that has acquired sufficient heat resistance by setting it to ˜2.5%, and has acquired corrosion resistance and glossiness by setting the thickness of the Ni plating layer to 2 μm or more.

本実施形態に係るばね用Niめっき鋼線のテンパー処理後の引張強さを示す図である。It is a figure which shows the tensile strength after the temper process of the Ni plating steel wire for springs which concerns on this embodiment. 伸線加工度を異ならせたばね用Niめっき鋼線のテンパー処理後の引張強さを示す図である。It is a figure which shows the tensile strength after the temper process of the Ni plating steel wire for springs which varied the degree of wire drawing. 電気Niめっき層の層厚を互いに異ならせたばね用鋼線の耐食性を示す図である。It is a figure which shows the corrosion resistance of the steel wire for springs which made the thickness of the electric nickel plating layer differ mutually. 仕上げ伸線加工度を互いに異ならせたばね用鋼線の耐食性を示す図である。It is a figure which shows the corrosion resistance of the steel wire for springs which made the finish wire drawing degree differ mutually.

Claims (4)

重量%で、C:0.5〜0.8%、Si:1.2〜2.5%、Mn:0.5〜1.5%、Cr:0.05〜1.5%を含み、残部がFeおよび不可避的不純物からなり、表面に、厚さが2μm以上であるNiめっき層が形成されたことを特徴とするばね用Niめっき鋼線。   In weight percent, C: 0.5-0.8%, Si: 1.2-2.5%, Mn: 0.5-1.5%, Cr: 0.05-1.5%, A Ni-plated steel wire for a spring, wherein the balance is made of Fe and inevitable impurities, and a Ni plating layer having a thickness of 2 μm or more is formed on the surface. 請求項1に記載のばね用Niめっき鋼線において、VおよびNiの一方もしくは両方を含み、これらの含有量がそれぞれ、V:0.05〜0.25%およびNi:0.05〜1.5%であることを特徴とするばね用Niめっき鋼線。   2. The Ni-plated steel wire for spring according to claim 1, wherein one or both of V and Ni are contained, and the contents thereof are V: 0.05 to 0.25% and Ni: 0.05 to 1 respectively. Ni-plated steel wire for springs, characterized in that it is 5%. ばね用Niめっき鋼線を製造する方法であって、
重量%で、C:0.5〜0.8%、Si:1.2〜2.5%、Mn:0.5〜1.5%、Cr:0.05〜1.5%を含み、残部がFeおよび不可避的不純物からなる鋼を熱間圧延して製造された線材にパテンティング処理を施すステップと、
前記パテンティング処理された前記線材に対して必要に応じて予備伸線加工を行った後、その表面にNiめっき処理を施すステップと、
前記Niめっき処理された前記線材に仕上げ伸線加工を施して鋼線を製造するステップと、
を含み、
前記伸線加工では、前記線材のNiめっき処理後における減面率が10%以上に設定され、
前記Niめっきの層厚は、前記伸線加工後に2μm以上となるように設定されていることを特徴とするばね用Niめっき鋼線の製造方法。
A method of manufacturing a Ni-plated steel wire for a spring,
In weight percent, C: 0.5-0.8%, Si: 1.2-2.5%, Mn: 0.5-1.5%, Cr: 0.05-1.5%, Applying a patenting treatment to a wire produced by hot rolling steel comprising the balance Fe and inevitable impurities;
Performing a preliminary wire drawing process on the patented wire rod as necessary, and then performing a Ni plating process on the surface;
Producing a steel wire by subjecting the Ni-plated wire to a finish drawing;
Including
In the wire drawing process, the area reduction rate after the Ni plating treatment of the wire is set to 10% or more,
The method for producing a Ni-plated steel wire for a spring, wherein the layer thickness of the Ni plating is set to be 2 μm or more after the wire drawing.
請求項3に記載のばね用Niめっき鋼線の製造方法において、前記鋼は、VおよびNiの一方もしくは両方を含み、これらの含有量がそれぞれ、V:0.05〜0.25%およびNi:0.05〜1.5%であることを特徴とするばね用Niめっき鋼線の製造方法。   In the manufacturing method of the Ni plating steel wire for springs of Claim 3, the said steel contains one or both of V and Ni, and these content is respectively V: 0.05-0.25% and Ni : 0.05-1.5% of the manufacturing method of the Ni plating steel wire for springs characterized by the above-mentioned.
JP2008316327A 2008-12-12 2008-12-12 Ni-PLATED STEEL WIRE FOR SPRING, AND METHOD FOR PRODUCING THE SAME Pending JP2010138456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008316327A JP2010138456A (en) 2008-12-12 2008-12-12 Ni-PLATED STEEL WIRE FOR SPRING, AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008316327A JP2010138456A (en) 2008-12-12 2008-12-12 Ni-PLATED STEEL WIRE FOR SPRING, AND METHOD FOR PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
JP2010138456A true JP2010138456A (en) 2010-06-24

Family

ID=42348829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008316327A Pending JP2010138456A (en) 2008-12-12 2008-12-12 Ni-PLATED STEEL WIRE FOR SPRING, AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP2010138456A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193896A (en) * 2014-03-31 2015-11-05 新日鐵住金株式会社 Method for manufacturing extra fine brass plating steel wire
CN115943225A (en) * 2021-06-08 2023-04-07 住友电气工业株式会社 Steel wire and spring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193896A (en) * 2014-03-31 2015-11-05 新日鐵住金株式会社 Method for manufacturing extra fine brass plating steel wire
CN115943225A (en) * 2021-06-08 2023-04-07 住友电气工业株式会社 Steel wire and spring

Similar Documents

Publication Publication Date Title
US11261505B2 (en) High strength steel sheet
JP5624503B2 (en) Spring and manufacturing method thereof
US11408046B2 (en) High strength steel sheet
JP4310359B2 (en) Steel wire for hard springs with excellent fatigue characteristics and wire drawability
JP5812048B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP2007224366A (en) High strength stainless steel spring and its manufacturing method
KR102507715B1 (en) High-strength steel sheet and manufacturing method thereof
JP6485612B1 (en) High strength steel wire
JP2017043835A (en) Steel for machine structural use for cold-working, and production method therefor
WO2016002413A1 (en) Wire material for steel wire, and steel wire
WO2012132821A1 (en) Spring steel wire rod having excellent wire drawability and excellent fatigue characteristics after wire drawing, and spring steel wire having excellent fatigue characteristics and excellent spring formability
JP5824443B2 (en) Method of manufacturing steel wire for spring
WO2018012625A1 (en) Steel wire
JP5184935B2 (en) Oil tempered wire manufacturing method and spring
JP2016160499A (en) METHOD OF MANUFACTURING HOT-DIP Zn-Al-Mg-BASED PLATED STEEL SHEET HAVING EXCELLENT PLATED SURFACE APPEARANCE AND BURRING PROPERTY
JP2017082251A (en) Method for producing heat-treated steel wire
JP2012144752A (en) Spring having excellent corrosion fatigue strength
WO2017191792A1 (en) Steel wire for spring having exceptional spring coiling properties, and method for producing same
JPH0853737A (en) High strength and high toughness hot-dip plated steel wire and its production
JPH06240408A (en) Steel wire for spring and its production
JP5679455B2 (en) Spring steel, spring steel wire and spring
JP2016191098A (en) Method for producing heat-treated steel wire excellent in workability
JP2010138456A (en) Ni-PLATED STEEL WIRE FOR SPRING, AND METHOD FOR PRODUCING THE SAME
JP2020153016A (en) Post annealed high tensile strength coated steel sheet having improved yield strength and hole expansion
JP2015509142A (en) Spring wire and steel wire excellent in corrosion resistance, method for producing spring steel wire, and method for producing spring