JP2010135819A - Organic electroluminescent device - Google Patents

Organic electroluminescent device Download PDF

Info

Publication number
JP2010135819A
JP2010135819A JP2010007525A JP2010007525A JP2010135819A JP 2010135819 A JP2010135819 A JP 2010135819A JP 2010007525 A JP2010007525 A JP 2010007525A JP 2010007525 A JP2010007525 A JP 2010007525A JP 2010135819 A JP2010135819 A JP 2010135819A
Authority
JP
Japan
Prior art keywords
group
atom
general formula
bond
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010007525A
Other languages
Japanese (ja)
Other versions
JP4562805B2 (en
JP2010135819A5 (en
Inventor
Ikuo Kinoshita
郁雄 木下
Eiji Fukuzaki
英治 福▲崎▼
Takeshi Murakami
健 邑上
Kazunari Yagi
一成 八木
Rei Takeda
玲 武田
Toshihiro Ise
俊大 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010007525A priority Critical patent/JP4562805B2/en
Publication of JP2010135819A publication Critical patent/JP2010135819A/en
Publication of JP2010135819A5 publication Critical patent/JP2010135819A5/en
Application granted granted Critical
Publication of JP4562805B2 publication Critical patent/JP4562805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic electroluminescent device excellent in luminescence characteristics (luminescence quantum efficiency, drive voltage, durability). <P>SOLUTION: The organic electroluminescent device has at least one organic layer containing a light emitting layer between a pair of electrodes, and the organic electroluminescent device contains at least one kind of compound represented by a formula (I) in at least one organic layer. In the formula (I), X<SP>1</SP>-X<SP>15</SP>represent atoms each of which is selected from carbon or nitrogen, and any one of X<SP>1</SP>-X<SP>8</SP>represents a nitrogen atom. M represents a bivalent metal ion. L<SP>1</SP>represents a bivalent bonding group. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は有機電界発光素子(以下、「有機EL素子」ともいう)に関するものであり、特に発光特性に優れる有機電界発光素子に関する。   The present invention relates to an organic electroluminescent element (hereinafter also referred to as “organic EL element”), and particularly relates to an organic electroluminescent element having excellent light emission characteristics.

有機電界発光素子は、低電圧駆動で高輝度の発光が得られることから、近年活発な研究開発が行われている。一般に有機EL素子は、発光層を含む有機層及び該層を挟んだ一対の電極から構成されており、陰極から注入された電子と陽極から注入された正孔が発光層において再結合し、生成した励起子のエネルギーを発光に利用するものである。   In recent years, organic electroluminescence devices have been actively researched and developed because they can emit light with high luminance when driven at a low voltage. In general, an organic EL element is composed of an organic layer including a light emitting layer and a pair of electrodes sandwiching the layer. Electrons injected from the cathode and holes injected from the anode are recombined in the light emitting layer and generated. The energy of the excitons is used for light emission.

近年、燐光発光材料を用いることにより、素子の高効率化が進んでいる。燐光発光材料としてはイリジウム錯体や白金錯体などが知られているが(例えば特許文献1及び特許文献2参照)、高効率と高耐久性を両立する素子の開発には至っておらず、両者を両立しうる燐光材料の開発が切望されているのが現状である。   In recent years, the use of phosphorescent light emitting materials has led to higher efficiency of devices. As phosphorescent materials, iridium complexes and platinum complexes are known (see, for example, Patent Document 1 and Patent Document 2), but no device has been developed that achieves both high efficiency and high durability. At present, the development of phosphorescent materials that can be used is eagerly desired.

一つのアジン環と一つのアゾール環と二つの芳香族炭化水素環を有する4座配位子からなり、アジン環の窒素原子及びアゾール環の窒素原子とが白金原子と配位結合を成す4座配位白金錯体(例えば特許文献3、4)の材料を発光層に含有する有機電界発光素子が開示されている。発光量子効率、駆動電圧、耐久性の点で十分とは言えず、さらなる改良が求められていた。
米国特許第6303238号明細書 国際公開第00/57676号 特開2006−261623号公報 特開2008−37848号公報
A tetradentate ligand consisting of a tetradentate ligand having one azine ring, one azole ring and two aromatic hydrocarbon rings, and the nitrogen atom of the azine ring and the nitrogen atom of the azole ring form a coordinate bond with the platinum atom. An organic electroluminescent element containing a coordination platinum complex (for example, Patent Documents 3 and 4) in a light emitting layer is disclosed. It was not sufficient in terms of light emission quantum efficiency, driving voltage, and durability, and further improvements were demanded.
US Pat. No. 6,303,238 International Publication No. 00/57676 JP 2006-261623 A JP 2008-37848 A

本発明の目的は、発光特性(発光量子効率、駆動電圧、耐久性)に優れる有機電界発光素子の提供にある。   An object of the present invention is to provide an organic electroluminescence device having excellent light emission characteristics (light emission quantum efficiency, drive voltage, durability).

本発明者らは、上記課題を解決すべく検討した結果、一般式(I)で表される化合物を有機層に添加することにより、有機EL素子の発光量子効率が向上し、駆動電圧が低下し、耐久性の点で優れることを見出し、本発明に至った。すなわち、上記課題は下記の手段により解決することができた。   As a result of studying the above problems, the present inventors have added the compound represented by the general formula (I) to the organic layer, thereby improving the light emission quantum efficiency of the organic EL device and reducing the driving voltage. And it discovered that it was excellent in the point of durability, and came to this invention. In other words, the above-described problem could be solved by the following means.

〔1〕
一対の電極間に発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって下記一般式(I)で表される化合物の少なくとも一種を少なくとも一層の有機層に含有する有機電界発光素子。
[1]
An organic electroluminescent device having at least one organic layer including a light emitting layer between a pair of electrodes, wherein the organic electroluminescent device contains at least one compound represented by the following general formula (I) in at least one organic layer .

Figure 2010135819
Figure 2010135819

一般式(I)中、X1、X2、X3、X4、X5、X6、X7、X8、X11、X12、X13、X14、及びX15は、各々独立に炭素又は窒素から選択される原子を表し、X1、X2、X3、X4、X5、X6、X7、及びX8のいずれか1つは窒素原子を表す。X1、X2、X3、X4、X5、X6、X7、X8、X11、X12、X13、X14、及びX15が更に置換可能な場合は各々独立に置換基を有していてもよい。Mは2価の金属イオンを表す。L1は二価の連結基を表す。金属と窒素原子の結合を表す破線は配位結合を表し、金属と炭素原子の結合を表す実線は共有結合を表す。 In the general formula (I), X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 11 , X 12 , X 13 , X 14 , and X 15 are each independently Represents an atom selected from carbon or nitrogen, and any one of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , and X 8 represents a nitrogen atom. X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 11 , X 12 , X 13 , X 14 , and X 15 are each independently substituted if further replaceable It may have a group. M represents a divalent metal ion. L 1 represents a divalent linking group. A broken line representing a bond between a metal and a nitrogen atom represents a coordination bond, and a solid line representing a bond between the metal and a carbon atom represents a covalent bond.

〔2〕
前記一般式(I)が下記一般式(II)で表されることを特徴とする〔1〕に記載の有機電界発光素子。
[2]
The organic electroluminescent element as described in [1], wherein the general formula (I) is represented by the following general formula (II).

Figure 2010135819
Figure 2010135819

一般式(II)中、X21、X22、X23、X24、X25、X26、X27、X28、X31、X32、X33、X34、及びX35は、各々独立に炭素又は窒素から選択される原子を表し、X21、X22、X23、X24、X25、X26、X27、及びX28のいずれか1つは窒素原子を表す。X21、X22、X23、X24、X25、X26、X27、X28、X31、X32、X33、X34、及びX35が更に置換可能な場合は各々独立に置換基を有していてもよい。L2は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。 In the general formula (II), X 21 , X 22 , X 23 , X 24 , X 25 , X 26 , X 27 , X 28 , X 31 , X 32 , X 33 , X 34 , and X 35 are each independently Represents an atom selected from carbon or nitrogen, and any one of X 21 , X 22 , X 23 , X 24 , X 25 , X 26 , X 27 , and X 28 represents a nitrogen atom. X 21 , X 22 , X 23 , X 24 , X 25 , X 26 , X 27 , X 28 , X 31 , X 32 , X 33 , X 34 , and X 35 are each independently substituted if further replaceable It may have a group. L 2 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.

〔3〕
前記一般式(II)が下記一般式(III)で表されることを特徴とする〔2〕に記載の有機電界発光素子。
[3]
The organic electroluminescent element according to [2], wherein the general formula (II) is represented by the following general formula (III).

Figure 2010135819
一般式(III)中、X41、X42、X43、X44、X45、X46、X47、X48、X51、X52、X53、X54、及びX55は、各々独立に炭素又は窒素から選択される原子を表し、X41、X42、X43、及びX44のいずれか1つは窒素原子を表す。X41、X42、X43、X44、X45、X46、X47、X48、X51、X52、X53、X54、及びX55が更に置換可能な場合は各々独立に置換基を有していてもよい。L3は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。
Figure 2010135819
In the general formula (III), X 41 , X 42 , X 43 , X 44 , X 45 , X 46 , X 47 , X 48 , X 51 , X 52 , X 53 , X 54 , and X 55 are each independently Represents an atom selected from carbon or nitrogen, and any one of X 41 , X 42 , X 43 , and X 44 represents a nitrogen atom. X 41 , X 42 , X 43 , X 44 , X 45 , X 46 , X 47 , X 48 , X 51 , X 52 , X 53 , X 54 , and X 55 are each independently substituted if further replaceable It may have a group. L 3 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.

〔4〕
前記一般式(III)が下記一般式(IV)で表されることを特徴とする〔3〕に記載の有機電界発光素子。
[4]
The organic electroluminescent device as described in [3], wherein the general formula (III) is represented by the following general formula (IV).

Figure 2010135819
Figure 2010135819

一般式(IV)中、X61、X62、X63、X64、X65、X66、X67、及びX68は、各々独立に炭素又は窒素から選択される原子を表し、X61、X62、X63、及びX64のいずれか1つは窒素原子を表す。X61、X62、X63、X64、X65、X66、X67、及びX68が更に置換可能な場合は各々独立に置換基を有していてもよい。R61、R62、R63、R64、及びR65は各々独立に水素原子又は置換基を表す。L4は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。 In the general formula (IV), X 61, X 62, X 63, X 64, X 65, X 66, X 67, and X 68 represents an atom selected from carbon or nitrogen independently, X 61, Any one of X 62 , X 63 and X 64 represents a nitrogen atom. When X 61 , X 62 , X 63 , X 64 , X 65 , X 66 , X 67 , and X 68 can be further substituted, each may independently have a substituent. R 61 , R 62 , R 63 , R 64 , and R 65 each independently represent a hydrogen atom or a substituent. L 4 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.

〔5〕
前記一般式(IV)が下記一般式(V)で表されることを特徴とする〔4〕に記載の有機電界発光素子。
[5]
The organic electroluminescent element as described in [4], wherein the general formula (IV) is represented by the following general formula (V).

Figure 2010135819
Figure 2010135819

一般式(V)中、X71、X73、X74、X75、X76、X77、及びX78は、各々独立に炭素又は窒素から選択される原子を表す。X71、X73、X74、X75、X76、X77、及びX78が更に置換可能な場合は各々独立に置換基を有していてもよい。R71、R72、R73、R74、及びR75は各々独立に水素原子又は置換基を表す。L5は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。 In the general formula (V), X 71 , X 73 , X 74 , X 75 , X 76 , X 77 , and X 78 each independently represent an atom selected from carbon or nitrogen. When X 71 , X 73 , X 74 , X 75 , X 76 , X 77 , and X 78 can be further substituted, each may independently have a substituent. R 71 , R 72 , R 73 , R 74 , and R 75 each independently represent a hydrogen atom or a substituent. L 5 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.

〔6〕
更に、重水素原子を少なくとも1つ有する材料を有機層のいずれかに含有することを特徴とする〔1〕〜〔5〕のいずれかに記載の有機電界発光素子。
〔7〕
更に、重水素原子を少なくとも1つ有する材料を発光層に含有することを特徴とする〔1〕〜〔5〕のいずれかに記載の有機電界発光素子。
〔8〕
重水素原子を少なくとも1つ有する材料が、重水素原子を少なくとも1つ有するカルバゾール骨格又はインドール骨格を含む材料であることを特徴とする〔6〕又は〔7〕のいずれかに記載の有機電界発光素子。
〔9〕
更に、下記一般式(a)で表される化合物を発光層に含むことを特徴とする〔1〕〜〔8〕のいずれかに記載の有機電界発光素子。
[6]
Furthermore, the organic electroluminescent element according to any one of [1] to [5], wherein a material having at least one deuterium atom is contained in any one of the organic layers.
[7]
Furthermore, the light emitting layer contains the material which has at least 1 deuterium atom, The organic electroluminescent element in any one of [1]-[5] characterized by the above-mentioned.
[8]
The organic electroluminescence according to any one of [6] and [7], wherein the material having at least one deuterium atom is a material having a carbazole skeleton or an indole skeleton having at least one deuterium atom element.
[9]
Furthermore, the organic electroluminescent element in any one of [1]-[8] characterized by including the compound represented by the following general formula (a) in a light emitting layer.

Figure 2010135819
Figure 2010135819

一般式(a)において、R1〜R4は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アシル基、アシロキシ基、アミノ基、ニトロ基、シアノ基、エステル基、アミド基、ハロゲン基、パーフルオロアルキル基、シリル基を表し、該R1〜R4の少なくとも1つは、二重結合、あるいは三重結合を有する基である。X1〜X12は、それぞれ独立に、水素原子、アルキル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アシル基、アシロキシ基、アミノ基、ニトロ基、シアノ基、エステル基、アミド基、ハロゲン基、パーフルオロアルキル基、シリル基を表す。 In the general formula (a), R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, an acyl group, an acyloxy group, an amino group, a nitro group, Represents a group, a cyano group, an ester group, an amide group, a halogen group, a perfluoroalkyl group, or a silyl group, and at least one of R 1 to R 4 is a group having a double bond or a triple bond. X 1 to X 12 are each independently a hydrogen atom, alkyl group, alkynyl group, aryl group, heteroaryl group, alkoxy group, acyl group, acyloxy group, amino group, nitro group, cyano group, ester group, amide group Represents a halogen group, a perfluoroalkyl group, or a silyl group.

本発明の有機電界発光素子は高い外部量子効率を有し、駆動電圧、耐久性に優れる。   The organic electroluminescent device of the present invention has a high external quantum efficiency and is excellent in driving voltage and durability.

本明細書において、一般式(I)、(II)、(III)、(IV)、及び(V)(一般式(I)〜(V)と同義である。)で表される化合物は「本発明の化合物」、「本発明の錯体」と同義で用いる。また本発明の化合物を含有する有機層を有する有機電界発光素子は本発明の素子と同義で用いる。本明細書において置換基群Aとは以下のように定義される。   In the present specification, the compounds represented by the general formulas (I), (II), (III), (IV), and (V) (synonymous with the general formulas (I) to (V)) are “ It is used synonymously with “the compound of the present invention” and “the complex of the present invention”. Moreover, the organic electroluminescent element which has an organic layer containing the compound of this invention is used synonymously with the element of this invention. In this specification, the substituent group A is defined as follows.

(置換基群A)
アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、トリフルオロメチル、ペンタフルオロエチルなどが挙げられる。)、シクロアルキル基(好ましくは炭素数3〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数3〜10であり、例えばシクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)
(Substituent group A)
An alkyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl, n- Decyl, n-hexadecyl, trifluoromethyl, pentafluoroethyl, etc.), a cycloalkyl group (preferably having 3 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 3 to 10 carbon atoms). For example, cyclopropyl, cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms such as vinyl, And allyl, 2-butenyl, 3-pentenyl, etc.), alkynyl groups (preferably having 2 to 3 carbon atoms) , More preferably from 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl and 3-pentynyl.)

アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。) An aryl group (preferably having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyl, p-methylphenyl, naphthyl, anthranyl and the like), amino. Group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzylamino, diphenylamino, ditolylamino, etc. An alkoxy group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy, etc. An aryloxy group (preferably having 6 to 30 carbon atoms, more preferably carbon 6 to 20, particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 1-naphthyloxy, 2-naphthyloxy, and the like, and heterocyclic oxy groups (preferably having 1 to 30 carbon atoms, more preferably Is a C1-C20, particularly preferably C1-C12, for example, pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy and the like.

アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。) An acyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), an alkoxycarbonyl group ( Preferably it has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonyl, ethoxycarbonyl and the like, and an aryloxycarbonyl group (preferably having a carbon number). 7 to 30, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl, and acyloxy groups (preferably 2 to 30 carbon atoms, more preferably carbon atoms). 2 to 20, particularly preferably 2 to 10 carbon atoms, for example, acetoxy, benzoyloxy And the like.), An acylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as acetylamino or benzoylamino.)

アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。) An alkoxycarbonylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryloxycarbonylamino group ( Preferably it has 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino, etc., and a sulfonylamino group (preferably 1 to 1 carbon atoms). 30, More preferably, it is C1-C20, Most preferably, it is C1-C12, for example, methanesulfonylamino, benzenesulfonylamino, etc.), a sulfamoyl group (preferably C0-30, more preferably) Has 0 to 20 carbon atoms, particularly preferably 0 to 12 carbon atoms. Amoiru, methylsulfamoyl, dimethylsulfamoyl, and the like phenylsulfamoyl.)

カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。) A carbamoyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like), alkylthio. A group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio), an arylthio group (preferably having 6 to 6 carbon atoms). 30, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, and the like, and a heterocyclic thio group (preferably 1 to 30 carbon atoms, more preferably 1 carbon atom). -20, particularly preferably 1 to 12 carbon atoms, such as pyridylthio, 2-benzimidazolyl Oh, 2-benzoxazolyl thio, and 2-benzthiazolylthio and the like.)

スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、より好ましくはフッ素原子が挙げられる) A sulfonyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl and tosyl), a sulfinyl group (preferably having 1 carbon atom). To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido groups (preferably 1 to 30 carbon atoms, more preferably C1-C20, Most preferably, it is C1-C12, for example, a ureido, methylureido, phenylureido etc. are mentioned), phosphoric acid amide groups (preferably C1-C30, more preferably carbon number) 1 to 20, particularly preferably 1 to 12 carbon atoms, such as diethyl phosphoric acid amide and phenyl phosphoric acid amide That.), Hydroxy group, a mercapto group, a halogen atom (e.g. fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or more preferably fluorine atom)

シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、アゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は更に置換されてもよい。 Cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, As, for example, nitrogen atom, oxygen atom, sulfur atom, specifically imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl group, azepinyl group, etc. ), A silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, and examples thereof include trimethylsilyl and triphenylsilyl), silyloxy group (Preferably 3 to 40 carbon atoms, more preferably 3 to 3 carbon atoms. , Particularly preferably 3 to 24 carbon atoms, for example trimethylsilyloxy, etc. triphenylsilyl oxy and the like.) And the like. These substituents may be further substituted.

一般式(I)〜(V)の説明における水素原子は同位体(重水素原子等)も含み、また更に置換基を構成する原子は、その同位体も含んでいることを表す。   The hydrogen atoms in the explanation of the general formulas (I) to (V) include isotopes (deuterium atoms and the like), and further, the atoms constituting the substituents also include the isotopes.

一般式(I)〜(V)の説明における配位結合とは中性の配位子と金属の間で形成される結合を表し、共有結合とはアニオン性の配位子と金属カチオンの間で形成される結合を意味する。   In the description of the general formulas (I) to (V), the coordination bond represents a bond formed between a neutral ligand and a metal, and the covalent bond is between an anionic ligand and a metal cation. Means a bond formed by

〔有機電界発光素子〕
本発明の有機電界発光素子は、一対の電極間に発光層を含む、少なくとも一層の有機層を有する有機電界発光素子であって下記一般式(I)で表される化合物の少なくとも一種を少なくとも一層の有機層に含有する。
[Organic electroluminescence device]
The organic electroluminescent element of the present invention is an organic electroluminescent element having at least one organic layer including a light emitting layer between a pair of electrodes, and at least one compound represented by the following general formula (I): Contained in the organic layer.

一般式(I)について説明する。   The general formula (I) will be described.

Figure 2010135819
Figure 2010135819

一般式(I)において、X1、X2、X3、X4、X5、X6、X7、X8、X11、X12、X13、X14、及びX15は、各々独立に炭素又は窒素から選択される原子を表し、X1、X2、X3、X4、X5、X6、X7、及びX8のいずれか1つは窒素原子を表す。X1、X2、X3、X4、X5、X6、X7、X8、X11、X12、X13、X14、及びX15が更に置換可能な場合は各々独立に置換基を有していてもよい。Mは2価の金属イオンを表す。L1は二価の連結基を表す。金属と窒素原子の結合を表す破線は配位結合を表し、金属と炭素原子の結合を表す実線は共有結合を表す。 In the general formula (I), X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 11 , X 12 , X 13 , X 14 , and X 15 are each independently Represents an atom selected from carbon or nitrogen, and any one of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , and X 8 represents a nitrogen atom. X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 11 , X 12 , X 13 , X 14 , and X 15 are each independently substituted if further replaceable It may have a group. M represents a divalent metal ion. L 1 represents a divalent linking group. A broken line representing a bond between a metal and a nitrogen atom represents a coordination bond, and a solid line representing a bond between the metal and a carbon atom represents a covalent bond.

1、X2、X3、X4、X5、X6、X7、X8、X11、X12、X13、X14、及びX15が更に置換可能な場合、下記置換基群Aを含む置換基から選択される置換基を各々独立に有していてもよい。その好ましい置換基としては、アルキル基、シクロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、スルホ基、カルボキシル基、ニトロ基、スルフィノ基、ヘテロ環基、シリル基であり、より好ましくは置換又は無置換のアルキル基、シクロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、シアノ基、フッ素原子、ヘテロ環であり、更に好ましくは、メチル基、トリフルオロメチル基、フッ素原子、メトキシ基、アリール基、シアノ基である。 When X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 11 , X 12 , X 13 , X 14 , and X 15 can be further substituted, the following substituent group You may have each independently the substituent selected from the substituent containing A. Preferred substituents include alkyl groups, cycloalkyl groups, aryl groups, amino groups, alkoxy groups, aryloxy groups, acyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, acyloxy groups, sulfonylamino groups, sulfamoyl groups, carbamoyl groups. Group, alkylthio group, arylthio group, heterocyclic thio group, sulfonyl group, sulfinyl group, ureido group, phosphoramido group, hydroxy group, mercapto group, halogen atom, sulfo group, carboxyl group, nitro group, sulfino group, heterocyclic ring Group, silyl group, more preferably a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, amino group, alkoxy group, aryloxy group, cyano group, fluorine atom, heterocyclic ring, and more preferably, Methyl group, trifluoromethyl , A fluorine atom, a methoxy group, an aryl group, a cyano group.

Mは2価の金属イオンを表す。その好ましい金属種は白金原子、パラジウム、ニッケル、亜鉛、銅であり、より好ましくは白金、パラジウム、ニッケルであり、最も好ましくは白金である。   M represents a divalent metal ion. The preferred metal species are platinum atom, palladium, nickel, zinc and copper, more preferably platinum, palladium and nickel, and most preferably platinum.

一般式(I)において、L1は二価の連結基を表す。連結基としては特に限定されないが、単結合、炭素原子、窒素原子、酸素原子、硫黄原子、ケイ素原子、ゲルマニウム原子からなる二価の連結基が特に好ましく、下記の連結基群Aより選択される基が特に好ましい。 In the general formula (I), L 1 represents a divalent linking group. The linking group is not particularly limited, but a divalent linking group consisting of a single bond, a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, or a germanium atom is particularly preferable, and is selected from the following linking group group A. The group is particularly preferred.

連結基群A Linking group A

Figure 2010135819
Figure 2010135819

連結基群Aにおいて、R81、R82、R83、R84、R85、R86、R87、R88、R89、R90、R91、及びR92(R81〜R92)はそれぞれ独立に水素原子又は置換基群Aを含む置換基から選択される置換基を表す。R81〜R92が置換基を表す場合、該置換基は好ましくは置換基群Aから選ばれる置換基である。R81〜R92が置換可能な場合、更に置換基を有していてもよく、R81とR82、R83とR84、R85とR86、R83とR85、R83とR86、R84とR86、あるいはR90とR91がそれぞれ互いに結合し環を形成してもよい。 In the connecting group A, R 81 , R 82 , R 83 , R 84 , R 85 , R 86 , R 87 , R 88 , R 89 , R 90 , R 91 , and R 92 (R 81 to R 92 ) are Each independently represents a hydrogen atom or a substituent selected from substituents including substituent group A. When R 81 to R 92 represent a substituent, the substituent is preferably a substituent selected from the substituent group A. When R 81 to R 92 can be substituted, they may further have a substituent, and R 81 and R 82 , R 83 and R 84 , R 85 and R 86 , R 83 and R 85 , R 83 and R 86 , R 84 and R 86 , or R 90 and R 91 may be bonded to each other to form a ring.

1は好ましくは連結基群Aより選択される置換基であり、このうち−C(R81)(R82)−、−C(R83)(R84)C(R85)(R86)−、−Si(R87)(R88)−、−N(R89)−、−O−、−S−、−SO−、−SO2−、又は−CO−が好ましく、−C(R81)(R82)−、−C(R83)(R84)C(R85)(R86)−、−Si(R87)(R88)−、−O−、又は−S−がより好ましく、−C(R81)(R82)−、−C(R83)(R84)C(R85)(R86)-が更に好ましい。 L 1 is preferably a substituent selected from the linking group A, and of these, —C (R 81 ) (R 82 ) —, —C (R 83) (R 84 ) C (R 85 ) (R 86 )-, -Si (R 87 ) (R 88 )-, -N (R 89 )-, -O-, -S-, -SO-, -SO 2- , or -CO- are preferred, and -C ( R81 ) ( R82 )-, -C ( R83 ) ( R84 ) C ( R85 ) ( R86 )-, -Si ( R87 ) ( R88 )-, -O-, or -S- Are more preferable, and —C (R 81 ) (R 82 ) —, —C (R 83 ) (R 84 ) C (R 85 ) (R 86 ) — are more preferable.

前記−C(R81)(R82)−において、R81及びR82は、好ましくは水素原子又は下記置換基群Bから選ばれる置換基である。 In the —C (R 81 ) (R 82 ) —, R 81 and R 82 are preferably a hydrogen atom or a substituent selected from the following substituent group B.

(置換基群B)
置換基は、アルキル基、シクロアルキル基、アリール基、ハロゲン原子、アミノ基、アルキルチオ基、アリールチオ基、アルキルオキシ基、アリールオキシ基、ヒドロキシ基、メルカプト基、ハロゲン原子であり、より好ましくはアルキル基、シクロアルキル基、アリール基、ハロゲン原子、アルキルチオ基、アリールチオ基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくはアルキル基、アリール基である。
(Substituent group B)
Substituents are alkyl groups, cycloalkyl groups, aryl groups, halogen atoms, amino groups, alkylthio groups, arylthio groups, alkyloxy groups, aryloxy groups, hydroxy groups, mercapto groups, and halogen atoms, more preferably alkyl groups. , A cycloalkyl group, an aryl group, a halogen atom, an alkylthio group, an arylthio group, an alkyloxy group, an aryloxy group and a halogen atom, more preferably an alkyl group and an aryl group.

前記−C(R83)(R84)C(R85)(R86)−において、R83、R84、R85及びR86は好ましくは水素原子又は置換基群Bから選ばれる置換基である。 In the —C (R 83 ) (R 84 ) C (R 85 ) (R 86 ) —, R 83 , R 84 , R 85 and R 86 are preferably a hydrogen atom or a substituent selected from the substituent group B. is there.

前記−Si(R87)(R88)−において、R87及びR88は好ましくは水素原子又は置換基群Bから選ばれる置換基である。 In the —Si (R 87 ) (R 88 ) —, R 87 and R 88 are preferably a hydrogen atom or a substituent selected from the substituent group B.

前記−Ge(R90)(R91)−において、R90及びR91は好ましくは水素原子又は置換基群Bから選ばれる置換基である。 In the —Ge (R 90 ) (R 91 ) —, R 90 and R 91 are preferably a hydrogen atom or a substituent selected from the substituent group B.

前記−N(R89)−において、R89は好ましくは水素原子又はアルキル基、シクロアルキル基、アリール基であり、より好ましくは、アルキル基、アリール基であり、更に好ましくはアリール基である In the —N (R 89 ) —, R 89 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, more preferably an alkyl group or an aryl group, and still more preferably an aryl group.

前記−P(R92)−において、R92はR89の好ましい範囲と同義である。 In the above -P (R 92 ) —, R 92 has the same meaning as the preferred range of R 89 .

本発明において、一般式(I)で表される化合物は、一般式(II)で表される化合物であることが好ましい。   In the present invention, the compound represented by the general formula (I) is preferably a compound represented by the general formula (II).

一般式(II)について説明する。   The general formula (II) will be described.

Figure 2010135819
Figure 2010135819

一般式(II)中、X21、X22、X23、X24、X25、X26、X27、X28、X31、X32、X33、X34、及びX35は、各々独立に炭素又は窒素から選択される原子を表し、X21、X22、X23、X24、X25、X26、X27、及びX28のいずれか1つは窒素原子を表す。X21、X22、X23、X24、X25、X26、X27、X28、X31、X32、X33、X34、及びX35が更に置換可能な場合は各々独立に置換基を有していてもよい。L2は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。 In the general formula (II), X 21 , X 22 , X 23 , X 24 , X 25 , X 26 , X 27 , X 28 , X 31 , X 32 , X 33 , X 34 , and X 35 are each independently Represents an atom selected from carbon or nitrogen, and any one of X 21 , X 22 , X 23 , X 24 , X 25 , X 26 , X 27 , and X 28 represents a nitrogen atom. X 21 , X 22 , X 23 , X 24 , X 25 , X 26 , X 27 , X 28 , X 31 , X 32 , X 33 , X 34 , and X 35 are each independently substituted if further replaceable It may have a group. L 2 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.

一般式(II)において、X21、X22、X23、X24、X25、X26、X27、X28、X31、X32、X33、X34、X35、及びL2は、一般式(I)のX1、X2、X3、X4、X5、X6、X7、X8、X11、X12、X13、X14、X15、及びL1と同義であり、また好ましい範囲も同義である。 In the general formula (II), X 21 , X 22 , X 23 , X 24 , X 25 , X 26 , X 27 , X 28 , X 31 , X 32 , X 33 , X 34 , X 35 , and L 2 are X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 11 , X 12 , X 13 , X 14 , X 15 , and L 1 in general formula (I) It is synonymous and the preferred range is also synonymous.

本発明において、一般式(II)で表される化合物は、一般式(III)で表される化合物であることが好ましい。
一般式(III)について説明する。
In the present invention, the compound represented by the general formula (II) is preferably a compound represented by the general formula (III).
The general formula (III) will be described.

Figure 2010135819
Figure 2010135819

一般式(III)中、X41、X42、X43、X44、X45、X46、X47、X48、X51、X52、X53、X54、及びX55は、各々独立に炭素又は窒素から選択される原子を表し、X41、X42、X43、及びX44のいずれか1つは窒素原子を表す。X41、X42、X43、X44、X45、X46、X47、X48、X51、X52、X53、X54、及びX55が更に置換可能な場合は各々独立に置換基を有していてもよい。L3は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。 In the general formula (III), X 41 , X 42 , X 43 , X 44 , X 45 , X 46 , X 47 , X 48 , X 51 , X 52 , X 53 , X 54 , and X 55 are each independently Represents an atom selected from carbon or nitrogen, and any one of X 41 , X 42 , X 43 , and X 44 represents a nitrogen atom. X 41 , X 42 , X 43 , X 44 , X 45 , X 46 , X 47 , X 48 , X 51 , X 52 , X 53 , X 54 , and X 55 are each independently substituted if further replaceable It may have a group. L 3 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.

一般式(III)において、X51、X52、X53、X54、X55、及びL3は一般式(II)のX31、X32、X33、X34、X35、及びL2と同義であり、また好ましい範囲も同義である。X41、X42、X43、X44、X45、X46、X47、及びX48は、各々独立に炭素又は窒素から選択される原子を表し、X41、X42、X43、及びX44のいずれか1つは窒素原子を表す。 In the general formula (III), X 51 , X 52 , X 53 , X 54 , X 55 , and L 3 are X 31 , X 32 , X 33 , X 34 , X 35 , and L 2 in the general formula (II). The preferred range is also synonymous. X 41 , X 42 , X 43 , X 44 , X 45 , X 46 , X 47 , and X 48 each independently represent an atom selected from carbon or nitrogen, and X 41 , X 42 , X 43 , and Any one of X 44 represents a nitrogen atom.

41、X42、X43、X44、X45、X46、X47、及びX48が更に置換可能な場合、置換基群Aを含む置換基から選択される置換基を各々独立に有していてもよい。その好ましい置換基としては、アルキル基、シクロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、スルホ基、カルボキシル基、ニトロ基、スルフィノ基、ヘテロ環基、シリル基であり、より好ましくは置換又は無置換のアルキル基、シクロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、シアノ基、フッ素原子、ヘテロ環であり、更に好ましくは、メチル基、トリフルオロメチル基、フッ素原子、メトキシ基、アリール基、シアノ基である。 When X 41 , X 42 , X 43 , X 44 , X 45 , X 46 , X 47 , and X 48 can be further substituted, each independently has a substituent selected from the substituents including substituent group A. You may do it. Preferred substituents include alkyl groups, cycloalkyl groups, aryl groups, amino groups, alkoxy groups, aryloxy groups, acyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, acyloxy groups, sulfonylamino groups, sulfamoyl groups, carbamoyl groups. Group, alkylthio group, arylthio group, heterocyclic thio group, sulfonyl group, sulfinyl group, ureido group, phosphoramido group, hydroxy group, mercapto group, halogen atom, sulfo group, carboxyl group, nitro group, sulfino group, heterocyclic ring Group, silyl group, more preferably a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, amino group, alkoxy group, aryloxy group, cyano group, fluorine atom, heterocyclic ring, and more preferably, Methyl group, trifluoromethyl , A fluorine atom, a methoxy group, an aryl group, a cyano group.

本発明において、一般式(III)で表される化合物は、一般式(IV)で表される化合物であることが好ましい。
一般式(IV)について説明する。
In the present invention, the compound represented by the general formula (III) is preferably a compound represented by the general formula (IV).
The general formula (IV) will be described.

Figure 2010135819
Figure 2010135819

一般式(IV)中、X61、X62、X63、X64、X65、X66、X67、及びX68は、各々独立に炭素又は窒素から選択される原子を表し、X61、X62、X63、及びX64のいずれか1つは窒素原子を表す。X61、X62、X63、X64、X65、X66、X67、及びX68が更に置換可能な場合は各々独立に置換基を有していてもよい。R61、R62、R63、R64、及びR65は各々独立に水素原子又は置換基を表す。L4は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。 In the general formula (IV), X 61, X 62, X 63, X 64, X 65, X 66, X 67, and X 68 represents an atom selected from carbon or nitrogen independently, X 61, Any one of X 62 , X 63 and X 64 represents a nitrogen atom. When X 61 , X 62 , X 63 , X 64 , X 65 , X 66 , X 67 , and X 68 can be further substituted, each may independently have a substituent. R 61 , R 62 , R 63 , R 64 , and R 65 each independently represent a hydrogen atom or a substituent. L 4 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.

一般式(IV)において、X61、X62、X63、X64、X65、X66、X67、X68、及びL4は、一般式(III)のX41、X42、X43、X44、X45、X46、X47、X48、及びL3と同義であり、また好ましい範囲も同義である。R61、R62、R63、R64、及びR65は水素原子、又は置換基群Aを含む置換基から選択される置換基を各々独立に有していてもよい。その好ましい置換基としては、アルキル基、シクロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、スルホ基、カルボキシル基、ニトロ基、スルフィノ基、ヘテロ環基、シリル基であり、より好ましくは置換又は無置換のアルキル基、シクロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、シアノ基、フッ素原子、ヘテロ環であり、更に好ましくは、メチル基、トリフルオロメチル基、フッ素原子、メトキシ基、アリール基、シアノ基である。 In the general formula (IV), X 61 , X 62 , X 63 , X 64 , X 65 , X 66 , X 67 , X 68 , and L 4 are X 41 , X 42 , X 43 in the general formula (III). , X 44 , X 45 , X 46 , X 47 , X 48 , and L 3 , and the preferred range is also the same. R 61 , R 62 , R 63 , R 64 , and R 65 may each independently have a hydrogen atom or a substituent selected from substituents including substituent group A. Preferred substituents include alkyl groups, cycloalkyl groups, aryl groups, amino groups, alkoxy groups, aryloxy groups, acyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, acyloxy groups, sulfonylamino groups, sulfamoyl groups, carbamoyl groups. Group, alkylthio group, arylthio group, heterocyclic thio group, sulfonyl group, sulfinyl group, ureido group, phosphoramido group, hydroxy group, mercapto group, halogen atom, sulfo group, carboxyl group, nitro group, sulfino group, heterocyclic ring Group, silyl group, more preferably a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, amino group, alkoxy group, aryloxy group, cyano group, fluorine atom, heterocyclic ring, and more preferably, Methyl group, trifluoromethyl , A fluorine atom, a methoxy group, an aryl group, a cyano group.

本発明において、一般式(IV)で表される化合物は、一般式(V)で表される化合物であることが好ましい。
一般式(V)について説明する。
In the present invention, the compound represented by the general formula (IV) is preferably a compound represented by the general formula (V).
The general formula (V) will be described.

Figure 2010135819
Figure 2010135819

一般式(V)中、X71、X73、X74、X75、X76、X77、及びX78は、各々独立に炭素又は窒素から選択される原子を表す。X71、X73、X74、X75、X76、X77、及びX78が更に置換可能な場合は各々独立に置換基を有していてもよい。R71、R72、R73、R74、及びR75は各々独立に水素原子又は置換基を表す。L5は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。 In the general formula (V), X 71 , X 73 , X 74 , X 75 , X 76 , X 77 , and X 78 each independently represent an atom selected from carbon or nitrogen. When X 71 , X 73 , X 74 , X 75 , X 76 , X 77 , and X 78 can be further substituted, each may independently have a substituent. R 71 , R 72 , R 73 , R 74 , and R 75 each independently represent a hydrogen atom or a substituent. L 5 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.

一般式(V)において、R71、R72、R73、R74、R75、及びL5は、一般式(IV)のR61、R62、R63、R64、R65、及びL4と同義であり、また好ましい範囲も同義である。X71、X73、X74、X75、X76、X77、及びX78は、各々独立に炭素又は窒素から選択される原子を表し、X71、X73、及びX74は好ましくは炭素原子である。X71、X73、X74、X75、X76、X77、及びX78が更に置換可能な場合は水素原子、又は置換基群Aを含む置換基から選択される置換基を各々独立に有していてもよい。その好ましい置換基としては、アルキル基、シクロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、スルホ基、カルボキシル基、ニトロ基、スルフィノ基、ヘテロ環基、シリル基であり、より好ましくは置換又は無置換のアルキル基、シクロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、シアノ基、フッ素原子、ヘテロ環であり、更に好ましくは、メチル基、トリフルオロメチル基、フッ素原子、メトキシ基、アリール基、シアノ基である。 In the general formula (V), R 71 , R 72 , R 73 , R 74 , R 75 , and L 5 represent R 61 , R 62 , R 63 , R 64 , R 65 , and L in the general formula (IV). It is synonymous with 4 , and a preferable range is also synonymous. X 71 , X 73 , X 74 , X 75 , X 76 , X 77 , and X 78 each independently represent an atom selected from carbon or nitrogen, and X 71 , X 73 , and X 74 are preferably carbon Is an atom. When X 71 , X 73 , X 74 , X 75 , X 76 , X 77 , and X 78 are further substitutable, each independently selected from a hydrogen atom or a substituent selected from substituents including substituent group A You may have. Preferred substituents include alkyl groups, cycloalkyl groups, aryl groups, amino groups, alkoxy groups, aryloxy groups, acyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, acyloxy groups, sulfonylamino groups, sulfamoyl groups, carbamoyl groups. Group, alkylthio group, arylthio group, heterocyclic thio group, sulfonyl group, sulfinyl group, ureido group, phosphoramido group, hydroxy group, mercapto group, halogen atom, sulfo group, carboxyl group, nitro group, sulfino group, heterocyclic ring Group, silyl group, more preferably a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, amino group, alkoxy group, aryloxy group, cyano group, fluorine atom, heterocyclic ring, and more preferably, Methyl group, trifluoromethyl , A fluorine atom, a methoxy group, an aryl group, a cyano group.

一般式(V)で表される化合物として、好ましい形態の一つは、下記一般式(VI)で表される化合物である。一般式(VI)について説明する。   As a compound represented by general formula (V), one of the preferable forms is a compound represented by the following general formula (VI). General formula (VI) is demonstrated.

Figure 2010135819
Figure 2010135819

一般式(VI)中、X81、X83、X84、X85、X86、X87、及びX88は、各々独立に炭素又は窒素から選択される原子を表す。X81、X83、X84、X85、X86、X87、及びX88が更に置換可能な場合は各々独立に置換基を有していてもよく。R81、R82、R83、R84、及びR85は各々独立に水素原子又は置換基を表す。nは1〜4の整数を表す。シアノ基は、X85〜X88中のC原子と連結する。L6は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。 In the general formula (VI), X 81 , X 83 , X 84 , X 85 , X 86 , X 87 , and X 88 each independently represent an atom selected from carbon or nitrogen. When X 81 , X 83 , X 84 , X 85 , X 86 , X 87 , and X 88 can be further substituted, they may each independently have a substituent. R 81 , R 82 , R 83 , R 84 , and R 85 each independently represent a hydrogen atom or a substituent. n represents an integer of 1 to 4. A cyano group is linked to a C atom in X 85 to X 88. L 6 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.

一般式(VI)において、R81、R82、R83、R84、R85、及びL6は、一般式(V)のR71、R72、R73、R74、R75、及びL5と同義であり、また好ましい範囲も同義である。X81、X83、X84、X85、X86、X87、及びX88は、各々独立に炭素又は窒素から選択される原子を表す。X81、X83、及びX84は好ましくは炭素原子である。X81、X83、X84、X85、X86、X87、及びX88が更に置換可能な場合は水素原子、又は置換基群Aを含む置換基から選択される置換基を各々独立に有していてもよい。その好ましい置換基としては、アルキル基、シクロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、スルホ基、カルボキシル基、ニトロ基、スルフィノ基、ヘテロ環基、シリル基であり、より好ましくは置換又は無置換のアルキル基、シクロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、シアノ基、フッ素原子、ヘテロ環であり、更に好ましくは、メチル基、トリフルオロメチル基、フッ素原子、メトキシ基、アリール基、シアノ基である。 In the general formula (VI), R 81 , R 82 , R 83 , R 84 , R 85 , and L 6 are R 71 , R 72 , R 73 , R 74 , R 75 , and L in the general formula (V). It is synonymous with 5 , and a preferable range is also synonymous. X 81 , X 83 , X 84 , X 85 , X 86 , X 87 , and X 88 each independently represent an atom selected from carbon or nitrogen. X 81 , X 83 and X 84 are preferably carbon atoms. When X 81 , X 83 , X 84 , X 85 , X 86 , X 87 , and X 88 are further substitutable, each independently selected from a hydrogen atom or a substituent selected from substituents including substituent group A You may have. Preferred substituents include alkyl groups, cycloalkyl groups, aryl groups, amino groups, alkoxy groups, aryloxy groups, acyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, acyloxy groups, sulfonylamino groups, sulfamoyl groups, carbamoyl groups. Group, alkylthio group, arylthio group, heterocyclic thio group, sulfonyl group, sulfinyl group, ureido group, phosphoramido group, hydroxy group, mercapto group, halogen atom, sulfo group, carboxyl group, nitro group, sulfino group, heterocyclic ring Group, silyl group, more preferably a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, amino group, alkoxy group, aryloxy group, cyano group, fluorine atom, heterocyclic ring, and more preferably, Methyl group, trifluoromethyl , A fluorine atom, a methoxy group, an aryl group, a cyano group.

nは1〜4の整数を表し、好ましくは1〜2である。   n represents an integer of 1 to 4, preferably 1 or 2.

一般式(VI)において、X85〜X88中のいずれか少なくとも一つの炭素原子をシアノ基で置換することで、一般式(VI)を含有する有機層への電子注入が容易になり、外部量子効率が優れた有機電界発光素子とすることができる。また、有機電界発光素子を長寿命化させることができる。 In general formula (VI), by substituting at least one carbon atom in X 85 to X 88 with a cyano group, electron injection into the organic layer containing general formula (VI) is facilitated, and external An organic electroluminescence device having excellent quantum efficiency can be obtained. In addition, the lifetime of the organic electroluminescent element can be extended.

一般式(V)で表される化合物として、好ましい形態の一つは、下記一般式(VII)で表される化合物である。一般式(VII)について説明する。   As a compound represented by general formula (V), one of the preferable forms is a compound represented by the following general formula (VII). General formula (VII) is demonstrated.

Figure 2010135819
Figure 2010135819

一般式(VII)中、X91、X93、X94、X95、X96、X97、及びX98は、各々独立に炭素又は窒素から選択される原子を表す。X91、X93、X94、X95、X96、X97、及びX98が更に置換可能な場合は各々独立に置換基を有していてもよく。R91、R93、R94、及びR95は各々独立に水素原子又は置換基を表す。Bはアルキル基、シクロアルキル基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子より選択される置換基を表す。L7は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。 In the general formula (VII), X 91 , X 93 , X 94 , X 95 , X 96 , X 97 , and X 98 each independently represent an atom selected from carbon or nitrogen. When X 91 , X 93 , X 94 , X 95 , X 96 , X 97 , and X 98 can be further substituted, they may each independently have a substituent. R 91 , R 93 , R 94 , and R 95 each independently represent a hydrogen atom or a substituent. B represents a substituent selected from an alkyl group, a cycloalkyl group, an amino group, an alkoxy group, an aryloxy group, and a fluorine atom. L 7 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.

一般式(VII)において、R91、R93、R94、R95、及びL7は、一般式(V)のR71、R73、R74、R75、及びL5と同義であり、また好ましい範囲も同義である。X91、X93、X94、X95、X96、X97、及びX98は、各々独立に炭素又は窒素から選択される原子を表す。X91、X93、及びX94は好ましくは炭素原子である。X91、X93、X94、X95、X96、X97、及びX98が更に置換可能な場合は水素原子、又は置換基群Aを含む置換基から選択される置換基を各々独立に有していてもよい。その好ましい置換基としては、アルキル基、シクロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、スルホ基、カルボキシル基、ニトロ基、スルフィノ基、ヘテロ環基、シリル基であり、より好ましくは置換又は無置換のアルキル基、シクロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、シアノ基、フッ素原子、ヘテロ環であり、更に好ましくは、メチル基、トリフルオロメチル基、フッ素原子、メトキシ基、アリール基、シアノ基である。 In the general formula (VII), R 91 , R 93 , R 94 , R 95 , and L 7 are synonymous with R 71 , R 73 , R 74 , R 75 , and L 5 in the general formula (V), The preferred range is also synonymous. X 91 , X 93 , X 94 , X 95 , X 96 , X 97 , and X 98 each independently represent an atom selected from carbon or nitrogen. X 91 , X 93 and X 94 are preferably carbon atoms. When X 91 , X 93 , X 94 , X 95 , X 96 , X 97 , and X 98 are further substitutable, each independently selected from a hydrogen atom or a substituent selected from substituents including substituent group A You may have. Preferred substituents include alkyl groups, cycloalkyl groups, aryl groups, amino groups, alkoxy groups, aryloxy groups, acyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, acyloxy groups, sulfonylamino groups, sulfamoyl groups, carbamoyl groups. Group, alkylthio group, arylthio group, heterocyclic thio group, sulfonyl group, sulfinyl group, ureido group, phosphoramido group, hydroxy group, mercapto group, halogen atom, sulfo group, carboxyl group, nitro group, sulfino group, heterocyclic ring Group, silyl group, more preferably a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, amino group, alkoxy group, aryloxy group, cyano group, fluorine atom, heterocyclic ring, and more preferably, Methyl group, trifluoromethyl , A fluorine atom, a methoxy group, an aryl group, a cyano group.

Bはアルキル基、シクロアルキル基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子より選択される置換基を表す。その好ましい置換基としては、アルキル基、シクロアルキル基、アミノ基、フッ素原子であり、より好ましくはアルキル基、シクロアルキル基、フッ素原子であり更に好ましくは、アルキル基である。   B represents a substituent selected from an alkyl group, a cycloalkyl group, an amino group, an alkoxy group, an aryloxy group, and a fluorine atom. Preferred substituents are an alkyl group, a cycloalkyl group, an amino group, and a fluorine atom, more preferably an alkyl group, a cycloalkyl group, and a fluorine atom, and still more preferably an alkyl group.

一般式(VII)において、Bの置換基を上記の置換基とすると、一般式(VII)の最低励起三重項エネルギー準位が上昇し、発光波長を短波長化することが出来る。   In the general formula (VII), when the substituent of B is the above substituent, the lowest excited triplet energy level of the general formula (VII) is increased, and the emission wavelength can be shortened.

一般式(I)〜一般式(VII)で表される化合物は、これらの化合物を主鎖又は側鎖に有する高分子化合物であってもよい。
高分子化合物の場合、ホモポリマー化合物であっても良く、共重合体であっても良く、共重合体はランダム共重合体、交互共重合体、ブロック共重合体のいずれでもよい。共重合体の場合、他のモノマーとしては、電荷輸送機能部分を有するモノマーが好ましい。電荷輸送機能を有するモノマーとしては、後述のホスト材料、正孔輸送層に含有する材料、電子輸送層に含有する材料として挙げた化合物を部分構造に有するモノマーなどが挙げられ、好ましくはホスト材料として挙げた化合物を部分構造に有するモノマーである。
高分子化合物の場合、好ましい分子量は2,000以上1,000,000未満であり、より好ましくは10,000以上500,000未満であり、更に好ましくは10,000以上100,000未満である。
The compounds represented by general formula (I) to general formula (VII) may be polymer compounds having these compounds in the main chain or side chain.
In the case of a high molecular compound, it may be a homopolymer compound or a copolymer, and the copolymer may be a random copolymer, an alternating copolymer, or a block copolymer. In the case of a copolymer, the other monomer is preferably a monomer having a charge transport function portion. Examples of the monomer having a charge transport function include a host material described later, a material contained in a hole transport layer, and a monomer having a partial structure of the compound mentioned as a material contained in an electron transport layer, preferably as a host material. A monomer having the above-mentioned compound in a partial structure.
In the case of a polymer compound, the preferred molecular weight is 2,000 or more and less than 1,000,000, more preferably 10,000 or more and less than 500,000, and still more preferably 10,000 or more and less than 100,000.

以下に、本発明における一般式(I)で表される化合物の具体例を例示するが、本発明はこれらに限定されるものではない。   Specific examples of the compound represented by formula (I) in the present invention are illustrated below, but the present invention is not limited thereto.

本発明の化合物を一般式(VIII)で表したときに、QA、QB、QC、QD、及びLに用いることのできる部分構造を以下に示す。部分構造QA、QB、QC、及びQD中のM、Lはそれぞれ一般式(VIII)のM、Lに対応し、Qは、それぞれの部分構造がQAの場合はQB、QBの場合はQA、QCの場合はQD、QDの場合はQCを表す。 When the compound of the present invention is represented by the general formula (VIII), partial structures that can be used for Q A , Q B , Q C , Q D , and L are shown below. M and L in the partial structures Q A , Q B , Q C , and Q D correspond to M and L in the general formula (VIII), respectively, and Q is Q B when each partial structure is Q A , Q B represents Q A , Q C represents Q D , and Q D represents Q C.

Figure 2010135819
Figure 2010135819

Aに用いることのできる部分構造は〔QB61CC〕で表される部分構造群である。
Bに用いることのできる部分構造は〔QT60CN〕で表される部分構造群である。
Cに用いることのできる部分構造は〔QT50NN〕で表される部分構造群である。
Dに用いることのできる部分構造は〔QB61CC〕で表される部分構造群である。
Lに用いることのできる部分構造は〔L〕で表される部分構造群である。
〔L〕の部分構造中の2個のQは左側のQがQBを、右側のQがQCを表す。
A partial structure which can be used to Q A is a partial structure group represented by [QB61CC].
A partial structure which can be used in Q B is a partial structure group represented by [QT60CN].
A partial structure which can be used to Q C is a partial structure group represented by [QT50NN].
A partial structure which can be used to Q D is a partial structure group represented by [QB61CC].
The partial structure that can be used for L is a partial structure group represented by [L].
Two Q partial structure of the [L] is the left side of Q is Q B, right Q represents Q C.

例えば、一般式(I)で表される化合物として下記に示される化合物は上記一般式(VI)におけるQAがQB61CC-151を表し、QBがQT60CN-1を表し、QCがQT50NN-4を表し、QDがQB61CC-1を表し、LがL-1を表し、Mが白金原子を表すことを意味する。 For example, compounds of general formula shown below as a compound represented by formula (I) is Q A in the general formula (VI) represents a QB61CC-151, Q B represents QT60CN-1, Q C is QT50NN-4 the stands, Q D represents QB61CC-1, L represents L-1, M is meant to represent the platinum atom.

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

部分構造の群〔QT60CN〕を以下に示す。   A group of partial structures [QT60CN] is shown below.

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

部分構造の群〔QT50NN〕を以下に示す。   A group of partial structures [QT50NN] is shown below.

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

部分構造の群〔L〕を以下に示す。   The group [L] of partial structures is shown below.

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

下記により具体的な化合物例を例示するが、本発明はこれらに限定されるものではない
Specific examples of the compound are illustrated below, but the present invention is not limited to these.

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

本発明の一般式(1)又は(2)で表される化合物は、種々の公知の合成法にて合成することが可能である。例えば特願2007-96255及び特願2007-19462に記載の方法を用いることにより、合成することができる。   The compound represented by the general formula (1) or (2) of the present invention can be synthesized by various known synthesis methods. For example, it can be synthesized by using the methods described in Japanese Patent Application No. 2007-96255 and Japanese Patent Application No. 2007-19462.

合成した化合物の精製は公知の手法(例えば「分離精製技術ハンドブック(1993年、日本化学会編)、「化学変換法による微量成分及び難精製物質の高度分離」(1988年、アイピーシー)、「実験化学講座(第四版)1」(1990年、日本化学会編)に記載の方法」を利用できる。具体的には抽出、吸着、吸蔵、再結晶、再沈殿、蒸留、昇華、イオン交換、濾過、ゾーンメルト法、電気泳動、遠心分離、沈降、洗浄、各種クロマトグラフィーなどが挙げられる。   Purification of the synthesized compounds can be performed by known methods (for example, “Separation and Purification Technology Handbook (1993, edited by the Chemical Society of Japan),“ High-level separation of trace components and difficult-to-purify substances by chemical conversion methods ”(1988, IPC),“ Experimental chemistry course (4th edition) 1 "(1990, edited by the Chemical Society of Japan)" can be used. Specifically, extraction, adsorption, occlusion, recrystallization, reprecipitation, distillation, sublimation, ion exchange , Filtration, zone melt method, electrophoresis, centrifugation, sedimentation, washing, various chromatography and the like.

本発明の素子について更に詳細に説明する。   The device of the present invention will be described in more detail.

本発明の素子は、一対の電極間に発光層を含む少なくとも一層の有機層を有する。有機層が一層である場合には、有機層として発光層を有する。素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明若しくは半透明であることが好ましい。   The element of the present invention has at least one organic layer including a light emitting layer between a pair of electrodes. When the organic layer is a single layer, the organic layer has a light emitting layer. In view of the properties of the element, at least one of the anode and the cathode is preferably transparent or translucent.

本発明の素子は、有機層に特定の構造を有する4座配位子を有する錯体を含有することを特徴とする。有機層としては特に限定されないが、発光層の他に、正孔注入層、正孔輸送層、電子注入層、電子輸送層、正孔ブロック層、電子ブロック層、励起子ブロック層、保護層などを有していてもよい。またこれらの各層は、それぞれ他の機能を兼備していてもよい。   The element of the present invention is characterized in that the organic layer contains a complex having a tetradentate ligand having a specific structure. Although it does not specifically limit as an organic layer, In addition to a light emitting layer, a positive hole injection layer, a positive hole transport layer, an electron injection layer, an electron transport layer, a positive hole block layer, an electron block layer, an exciton block layer, a protective layer, etc. You may have. Each of these layers may have other functions.

本発明における有機層の積層の態様としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と発光層との間、又は、発光層と電子輸送層との間には、電荷ブロック層等を有していてもよい。陽極と正孔輸送層との間に、正孔注入層を有してもよく、陰極と電子輸送層との間には、電子注入層を有してもよい。なお、各層は複数の二次層に分かれていてもよい。   As an aspect of lamination of the organic layer in the present invention, an aspect in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated in this order from the anode side is preferable. Further, a charge blocking layer or the like may be provided between the hole transport layer and the light-emitting layer, or between the light-emitting layer and the electron transport layer. A hole injection layer may be provided between the anode and the hole transport layer, and an electron injection layer may be provided between the cathode and the electron transport layer. Each layer may be divided into a plurality of secondary layers.

本発明の素子を構成する各要素について詳細に説明する。   Each element constituting the element of the present invention will be described in detail.

<有機層>
本発明における有機層について説明する。本発明の素子は、発光層を含む少なくとも一層の有機層を有しており、有機発光層以外の他の有機層としては、前述したごとく、正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層等の各層が挙げられる。
<Organic layer>
The organic layer in the present invention will be described. The element of the present invention has at least one organic layer including a light emitting layer, and the organic layer other than the organic light emitting layer includes a hole transport layer, an electron transport layer, and a hole block layer as described above. , Electron blocking layer, hole injection layer, electron injection layer and the like.

−有機層の形成−
本発明の有機電界発光素子において、有機層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法等いずれによっても好適に形成することができる。
-Formation of organic layer-
In the organic electroluminescent element of the present invention, each layer constituting the organic layer can be suitably formed by any of a dry film forming method such as a vapor deposition method and a sputtering method, a transfer method, and a printing method.

−発光層−
発光層は、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
-Light emitting layer-
The light-emitting layer receives holes from the anode, the hole injection layer, or the hole transport layer when an electric field is applied, receives electrons from the cathode, the electron injection layer, or the electron transport layer, and recombines holes and electrons. It is a layer which has the function to provide and to emit light.

本発明における発光層は、発光材料のみで構成されていても良く、ホスト材料と発光材料の混合層とした構成でもよい。発光材料は蛍光発光材料でも燐光発光材料であっても良く、発光材料は一種であっても二種以上であってもよい。ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は一種であっても二種以上であっても良く、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。更に、発光層中に電荷輸送性を有さず、発光しない材料を含んでいてもよい。発光層としては、発光材料とホスト材料として本発明の錯体を用いたものが好ましい。   The light emitting layer in the present invention may be composed only of a light emitting material, or may be a mixed layer of a host material and a light emitting material. The light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, and the light emitting material may be one kind or two or more kinds. The host material is preferably a charge transport material. The host material may be one kind or two or more kinds, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed. Furthermore, the light emitting layer may contain a material that does not have charge transporting properties and does not emit light. The light emitting layer is preferably a light emitting material and a host material using the complex of the present invention.

また、発光層は一層であっても二層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。   In addition, the light emitting layer may be a single layer or two or more layers, and each layer may emit light in different emission colors.

本発明に使用できる蛍光発光材料の例としては、例えば、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、シクロペンタジエン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリディン化合物、8−キノリノール誘導体の錯体やピロメテン誘導体の錯体に代表される各種錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体などの化合物等が挙げられる。   Examples of fluorescent materials that can be used in the present invention include, for example, benzoxazole derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives. , Condensed aromatic compounds, perinone derivatives, oxadiazole derivatives, oxazine derivatives, aldazine derivatives, pyralidine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, cyclopentadiene derivatives, styryl Complexes of amine derivatives, diketopyrrolopyrrole derivatives, aromatic dimethylidin compounds, 8-quinolinol derivatives and pyromethene derivatives Various complexes represented, polythiophene, polyphenylene, polyphenylene vinylene polymer compounds include compounds such as organic silane derivatives.

本発明に使用できる燐光材料としては、本発明の化合物の他、例えば、米国特許第6303238号明細書、米国特許第6097147号明細書、国際公開第00/57676号パンフレット、国際公開第00/70655号パンフレット、国際公開第01/08230号パンフレット、国際公開第01/39234号パンフレット、国際公開第01/41512号パンフレット、国際公開第02/02714号パンフレット、国際公開第02/15645号パンフレット、国際公開第02/44189号パンフレット、国際公開第05/19373号パンフレット、特開2001−247859号公報、特開2002−302671号公報、特開2002−117978号公報、特開2003−133074号公報、特開2002−235076号公報、特開2003−123982号公報、特開2002−170684号公報、欧州特許出願公開第1211257号明細書、特開2002−226495号公報、特開2002−234894号公報、特開2001−247859号公報、特開2001−298470号公報、特開2002−173674号公報、特開2002−203678号公報、特開2002−203679号公報、特開2004−357791号公報、特開2006−256999号公報、特開2007−19462号公報、特開2007−84635号公報、特開2007−96259号公報等の特許文献に記載の燐光発光化合物などが挙げられ、中でも、更に好ましい発光材料としては、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、及びCe錯体が挙げられる。特に好ましくは、Ir錯体、Pt錯体、又はRe錯体であり、中でも金属−炭素結合、金属−窒素結合、金属−酸素結合、金属−硫黄結合の少なくとも一つの配位様式を含むIr錯体、Pt錯体、又はRe錯体が好ましい。更に、発光効率、駆動耐久性、色度等の観点で、3座以上の多座配位子を含むIr錯体、Pt錯体、又はRe錯体が特に好ましい。   Examples of phosphorescent materials that can be used in the present invention include, in addition to the compounds of the present invention, for example, US Pat. No. 6,303,238, US Pat. No. 6,097,147, WO 00/57676, WO 00/70655. Pamphlet, WO 01/08230 pamphlet, WO 01/39234 pamphlet, WO 01/41512 pamphlet, WO 02/02714 pamphlet, WO 02/15645 pamphlet, international publication No. 02/44189 pamphlet, International Publication No. 05/19373 pamphlet, JP-A No. 2001-247859, JP-A No. 2002-302671, JP-A No. 2002-117978, JP-A No. 2003-133074, JP 2002-235 No. 76, JP-A No. 2003-123982, JP-A No. 2002-170684, European Patent Application No. 12111257, JP-A No. 2002-226495, JP-A No. 2002-234894, JP-A No. 2001-2001 No. 247859, JP-A No. 2001-298470, JP-A No. 2002-173684, JP-A No. 2002-203678, JP-A No. 2002-203679, JP-A No. 2004-357799, JP-A No. 2006-256999 And phosphorescent compounds described in patent documents such as JP-A No. 2007-19462, JP-A No. 2007-84635, and JP-A No. 2007-96259. Among them, more preferable examples of the light-emitting material include Ir. Complex, Pt complex, Cu complex, Re complex, W complex, Rh complex , Ru complexes, Pd complexes, Os complexes, Eu complexes, Tb complexes, Gd complexes, Dy complexes, and Ce complexes. Particularly preferred is an Ir complex, a Pt complex, or a Re complex, among which an Ir complex or a Pt complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond. Or Re complexes are preferred. Furthermore, from the viewpoints of luminous efficiency, driving durability, chromaticity, etc., an Ir complex, a Pt complex, or a Re complex containing a tridentate or higher polydentate ligand is particularly preferable.

本発明の一般式(I)で表される化合物は、有機層が複数の場合、いずれの層にも含有することができる。本発明の錯体は、発光層に含有されることが好ましく、発光材料又はホスト材料として発光層に含有されることがより好ましく、発光材料として発光層に含有されることが更に好ましく、少なくとも一種のホスト材料と共に発光層に含有されることが特に好ましい。   The compound represented by the general formula (I) of the present invention can be contained in any layer when there are a plurality of organic layers. The complex of the present invention is preferably contained in the light emitting layer, more preferably contained in the light emitting layer as the light emitting material or host material, further preferably contained in the light emitting layer as the light emitting material, and at least one kind It is particularly preferable that it is contained in the light emitting layer together with the host material.

本発明に用いることのできる燐光発光材料(本発明の錯体及び/又は併用する燐光発光材料)の含有量は、発光層の総質量に対して、0.1質量%以上60質量%以下の範囲が好ましく、0.2質量%以上50質量%以下の範囲がより好ましく、0.3質量%以上40質量%以下の範囲が更に好ましく、0.5質量%以上30質量%以下の範囲が最も好ましい。
本発明の一般式(I)で表される化合物に他の燐光発光材料を併用する場合には、本発明の一般式(I)で表される化合物の含有量は、燐光発光材料全体の質量に対して、0.1質量%以上60質量%以下の範囲が好ましく、0.2質量%以上50質量%以下の範囲がより好ましく、0.3質量%以上40質量%以下の範囲が更に好ましく、0.5質量%以上35質量%以下の範囲が最も好ましい。
The content of the phosphorescent material (the complex of the present invention and / or the phosphorescent material used together) that can be used in the present invention is in the range of 0.1% by mass to 60% by mass with respect to the total mass of the light emitting layer. The range of 0.2% by mass to 50% by mass is more preferable, the range of 0.3% by mass to 40% by mass is more preferable, and the range of 0.5% by mass to 30% by mass is the most preferable. .
When another phosphorescent material is used in combination with the compound represented by the general formula (I) of the present invention, the content of the compound represented by the general formula (I) of the present invention is the mass of the entire phosphorescent light emitting material. The range of 0.1% by mass to 60% by mass is preferable, the range of 0.2% by mass to 50% by mass is more preferable, and the range of 0.3% by mass to 40% by mass is more preferable. The range of 0.5 mass% or more and 35 mass% or less is most preferable.

本発明の一般式(I)で表される化合物を発光層以外の層(例えば電荷輸送層等)に導入する場合には、該層中において10質量%〜100質量%含まれることが好ましく、より好ましくは30質量%〜100質量%含まれることが好ましい。   When the compound represented by the general formula (I) of the present invention is introduced into a layer other than the light emitting layer (for example, a charge transport layer), the layer preferably contains 10% by mass to 100% by mass, More preferably, it is contained in 30% by mass to 100% by mass.

本発明の有機電界発光素子は、更に、重水素原子を少なくとも1つ有する材料を有機層のいずれかに含有することが好ましい。本発明の一般式(I)〜(V)で表される化合物は、重水素原子を少なくとも1つ有する材料と共に用いることより、より耐久性が向上する。   The organic electroluminescent element of the present invention preferably further contains a material having at least one deuterium atom in any of the organic layers. The durability of the compounds represented by the general formulas (I) to (V) of the present invention is further improved by using them together with a material having at least one deuterium atom.

重水素原子を少なくとも1つ有する材料とは、有機材料であっても、無機材料であっても、その両方であってもよいが、有機材料であることが好ましい。   The material having at least one deuterium atom may be an organic material, an inorganic material, or both, but is preferably an organic material.

重水素原子を少なくとも1つ有する有機材料とは、水素原子又は重水素原子が結合し得る位置において、重水素原子と水素原子の比率(重水素原子の原子数:水素原子の原子数)が、100:0から1:99の範囲に含まれていることを意味する。ここで、水素原子又は重水素原子が結合し得る位置は、1分子中、少なくとも特定の1箇所から全部の範囲の何れでもよい。言い換えれば、上記比率は水素原子又は重水素原子が結合し得る位置の総和において、重水素原子が占める割合(重水素化率)が1〜100%であることと同義である。
従って、上記比率の状態は、当該位置に重水素を含む化合物と重水素を含まない化合物を、適当な比率で同時に使用することによって実現できる。
The organic material having at least one deuterium atom has a ratio of deuterium atoms to hydrogen atoms (the number of deuterium atoms: the number of hydrogen atoms) at a position where hydrogen atoms or deuterium atoms can be bonded. It means that it is included in the range of 100: 0 to 1:99. Here, the position at which a hydrogen atom or deuterium atom can be bonded may be in any range from at least one specific position to the whole in one molecule. In other words, the said ratio is synonymous with the ratio (deuteration rate) which a deuterium atom occupies in the sum total of the position where a hydrogen atom or a deuterium atom can couple | bond together.
Therefore, the state of the above ratio can be realized by simultaneously using a compound containing deuterium at the position and a compound not containing deuterium at an appropriate ratio.

重水素原子と水素原子の組成の範囲として、好ましくは100:0から5:95であり、より好ましくは100:0から50:50であり、特に好ましくは100:0から80:20である。   The composition range of deuterium atoms and hydrogen atoms is preferably 100: 0 to 5:95, more preferably 100: 0 to 50:50, and particularly preferably 100: 0 to 80:20.

重水素原子を少なくとも1つ有する材料は、有機電界発光素子のいずれの層に含まれていてもよいが、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層、励起子ブロック層、電荷ブロック層のいずれか、若しくは複数に含有されるのが好ましく、発光層、励起子ブロック層、電荷ブロック層のいずれか、若しくは複数に含有されるのがより好ましく、発光層に含有されるのが更に好ましく、特に発光層中のホスト材料として含有されるのが好ましい。   The material having at least one deuterium atom may be contained in any layer of the organic electroluminescent device, but the hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer, exciton block It is preferably contained in one or more of the charge blocking layer and the charge blocking layer, more preferably contained in one or more of the light emitting layer, exciton blocking layer and charge blocking layer, and contained in the light emitting layer. More preferably, it is preferably contained as a host material in the light emitting layer.

重水素原子を少なくとも1つ有する材料としては、例えば、国際公開第02/47440号パンフレットに記載の化合物が挙げられるが、これに限定されるものではない。   Examples of the material having at least one deuterium atom include, but are not limited to, compounds described in International Publication No. 02/47440 pamphlet.

重水素原子を少なくとも1つ有する材料として、特に好ましいものの例としては、窒素原子を含む材料が好ましく、なかでも、三級アミン骨格、カルバゾール骨格、若しくは、インドール骨格を含む材料が好ましく、カルバゾール骨格、若しくは、インドール骨格を含む材料がより好ましく、カルバゾール骨格を含む材料が特に好ましい。   As a material having at least one deuterium atom, an example of a particularly preferable material is preferably a material containing a nitrogen atom, more preferably a material containing a tertiary amine skeleton, a carbazole skeleton, or an indole skeleton, Alternatively, a material including an indole skeleton is more preferable, and a material including a carbazole skeleton is particularly preferable.

重水素原子を少なくとも1つ有するカルバゾール骨格、若しくは、インドール骨格を含む材料としては、例えば、以下に示すものが挙げられる。   Examples of the material containing a carbazole skeleton having at least one deuterium atom or an indole skeleton include the following.

Figure 2010135819
Figure 2010135819

また、本発明における発光層に含有されるホスト材料としては、上記以外にも、重水素原子を有していないものも用いることができる。例えば、カルバゾール骨格を有するもの、ジアリールアミン骨格を有するもの、ピリジン骨格を有するもの、ピラジン骨格を有するもの、トリアジン骨格を有するもの及びアリールシラン骨格を有するものや、後述の正孔注入層、正孔輸送層、電子注入層、電子輸送層の項で例示されている材料が挙げられる。   Moreover, as a host material contained in the light emitting layer in this invention, the thing which does not have a deuterium atom besides the above can also be used. For example, those having a carbazole skeleton, those having a diarylamine skeleton, those having a pyridine skeleton, those having a pyrazine skeleton, those having a triazine skeleton, those having an arylsilane skeleton, Examples thereof include materials exemplified in the sections of the transport layer, the electron injection layer, and the electron transport layer.

ホスト材料とは、発光層において主に電荷の注入、輸送を担う化合物であり、また、それ自体は実質的に発光しない化合物のことである。本明細書において「実質的に発光しない」とは、該実質的に発光しない化合物からの発光量が好ましくは素子全体での全発光量の5%以下であり、より好ましくは3%以下であり、更に好ましくは1%以下であることをいう。   The host material is a compound mainly responsible for charge injection and transport in the light emitting layer, and itself is a compound that does not substantially emit light. In this specification, “substantially no light emission” means that the light emission amount from the substantially non-light emitting compound is preferably 5% or less, more preferably 3% or less of the total light emission amount of the entire device. More preferably, it means 1% or less.

発光層中のホスト材料の濃度は、特に限定されないが、発光層中において主成分(含有量が一番多い成分)であることが好ましく、50質量%以上99.9質量%以下がより好ましく、70質量%以上99.8質量%以下が更に好ましく、80質量%以上99.7質量%以下が特に好ましく、90質量%以上99.5質量%以下が最も好ましい。   The concentration of the host material in the light emitting layer is not particularly limited, but is preferably the main component (the component having the largest content) in the light emitting layer, more preferably 50% by mass or more and 99.9% by mass or less, 70 mass% or more and 99.8 mass% or less are still more preferable, 80 mass% or more and 99.7 mass% or less are especially preferable, and 90 mass% or more and 99.5 mass% or less are the most preferable.

前記ホスト材料のガラス転移点は、100℃以上500℃以下であることが好ましく、110℃以上300℃以であることがより好ましく、120℃以上250℃以下であることが更に好ましい。   The glass transition point of the host material is preferably 100 ° C. or higher and 500 ° C. or lower, more preferably 110 ° C. or higher and 300 ° C. or lower, and still more preferably 120 ° C. or higher and 250 ° C. or lower.

本発明の発光層に含まれるホスト材料の膜状態での蛍光波長は、400nm以上650nm以下の範囲であることが好ましく、420nm以上600nm以下の範囲であることがより好ましく、440nm以上550nm以下の範囲であることが更に好ましい。   The fluorescence wavelength in the film state of the host material contained in the light emitting layer of the present invention is preferably in the range of 400 nm to 650 nm, more preferably in the range of 420 nm to 600 nm, and in the range of 440 nm to 550 nm. More preferably.

本発明に用いるホスト材料としては、特開2002−100476号公報の段落0113〜0161に記載の化合物及び特開2004−214179号公報の段落0087〜0098に記載の化合物を好適に用いることができるが、これらに限定されることはない。   As the host material used in the present invention, the compounds described in paragraphs 0113 to 0161 of JP-A No. 2002-1000047 and the compounds described in paragraphs 0087 to 0098 of JP-A No. 2004-214179 can be suitably used. However, it is not limited to these.

発光層の厚さは、特に限定されるものではないが、通常、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。   Although the thickness of a light emitting layer is not specifically limited, Usually, it is preferable that they are 1 nm-500 nm, it is more preferable that they are 5 nm-200 nm, and it is still more preferable that they are 10 nm-100 nm.

有機電界発光素子は、更に、下記一般式(a)で表される化合物を発光層に含むことが好ましい。
一般的に、積層型有機電子デバイスの有機薄膜界面での電荷(電子/正孔)注入においては、隣接しているふたつの材料のイオン化ポテンシャル(Ip)同士や電子親和力(Ea)同士の差が小さい方が、電荷の注入障壁が小さくなり、有機電界発光素子の駆動電圧を低減できることが知られているが、材料のIpやEa以外にも、材料の分子間の相互作用等に由来するエネルギー準位が重要な役割を果たす。また、有機層内の電荷の移動に関しても、材料分子間の相互作用を適切に制御することにより、電荷移動度を大きくし、素子の駆動電圧を下げることができる。一般式(a)で表される化合物を発光材料とともに適切に用いることにより、材料分子間の相互作用を制御できる可能性があり、結果的に、駆動電圧を低下させることが可能となる。
また、素子駆動時における材料分子間の相互作用状態(例えば、会合状態)の変化は、素子特性の変化を引き起こし、結果的に素子の輝度(すなわち、素子寿命)の低下の一因となりうるが、一般式(a)で表される化合物を用いることにより、予め、安定な相互作用状態を形成し、この問題を回避できる。本発明の有機電界発光素子において用いられる、一般式(a)で表される化合物は、化学的な安定性に優れ、素子駆動中における材料の分解等の変質が少なく、当該材料の分解物による、有機電界発光素子の効率低下や素子寿命の低下を防ぐことが出来る。
次に本発明の有機電界発光素子に用いる一般式(a)で表される化合物について、詳細に説明する。
The organic electroluminescent element preferably further contains a compound represented by the following general formula (a) in the light emitting layer.
Generally, in charge (electron / hole) injection at the organic thin film interface of stacked organic electronic devices, the difference between the ionization potentials (Ip) and electron affinities (Ea) of two adjacent materials It is known that the smaller the value, the smaller the electric charge injection barrier and the lower the driving voltage of the organic electroluminescent device. In addition to the material Ip and Ea, energy derived from the interaction between the molecules of the material, etc. Levels play an important role. In addition, regarding the movement of charges in the organic layer, by appropriately controlling the interaction between the material molecules, the charge mobility can be increased and the driving voltage of the element can be lowered. By appropriately using the compound represented by the general formula (a) together with the light emitting material, the interaction between the material molecules may be controlled, and as a result, the driving voltage can be reduced.
In addition, a change in an interaction state (for example, an association state) between material molecules when the element is driven may cause a change in element characteristics, resulting in a decrease in element luminance (ie, element lifetime). By using the compound represented by the general formula (a), a stable interaction state is formed in advance, and this problem can be avoided. The compound represented by the general formula (a) used in the organic electroluminescence device of the present invention is excellent in chemical stability, has little alteration such as decomposition of the material during driving of the device, and depends on a decomposition product of the material. In addition, it is possible to prevent a decrease in the efficiency of the organic electroluminescent element and a decrease in the element life.
Next, the compound represented by the general formula (a) used in the organic electroluminescence device of the present invention will be described in detail.

Figure 2010135819
Figure 2010135819

一般式(a)において、R1〜R4は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アシル基、アシロキシ基、アミノ基、ニトロ基、シアノ基、エステル基、アミド基、ハロゲン基、パーフルオロアルキル基、シリル基を表し、該R1〜R4の少なくとも1つは、二重結合、あるいは三重結合を有する基である。X1〜X12は、それぞれ独立に、水素原子、アルキル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アシル基、アシロキシ基、アミノ基、ニトロ基、シアノ基、エステル基、アミド基、ハロゲン基、パーフルオロアルキル基、シリル基を表す。 In the general formula (a), R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, an acyl group, an acyloxy group, an amino group, a nitro group, Represents a group, a cyano group, an ester group, an amide group, a halogen group, a perfluoroalkyl group, or a silyl group, and at least one of R 1 to R 4 is a group having a double bond or a triple bond. X 1 to X 12 are each independently a hydrogen atom, alkyl group, alkynyl group, aryl group, heteroaryl group, alkoxy group, acyl group, acyloxy group, amino group, nitro group, cyano group, ester group, amide group Represents a halogen group, a perfluoroalkyl group, or a silyl group.

1〜R4、及び、X1〜X12で表されるアルキル基としては、例えばメチル、エチル、n−プロピル、イソプロピル、n−ブチル、sec−ブチル(すなわち、2−ブチル)、イソブチル、tert−ブチル、n−ペンチル、イソペンチル、n−ヘキシル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどが挙げられる。 Examples of the alkyl group represented by R 1 to R 4 and X 1 to X 12 include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl (ie, 2-butyl), isobutyl, Examples include tert-butyl, n-pentyl, isopentyl, n-hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.

1〜R4、及び、X1〜X12で表されるアルケニル基としては、例えば、ビニル、アリル(すなわち、1−(2−プロペニル))、1−(1−プロペニル)、2−プロペニル、1−(1−ブテニル)、1−(2−ブテニル)、1−(3−ブテニル)、1−(1,3−ブタジエニル)、2−(2−ブテニル)、1−(1−ペンテニル)、5−(シクロペンタジエニル)、1−(1−シクロヘキセニル)などが挙げられる。 Examples of the alkenyl group represented by R 1 to R 4 and X 1 to X 12 include vinyl, allyl (ie, 1- (2-propenyl)), 1- (1-propenyl), and 2-propenyl. 1- (1-butenyl), 1- (2-butenyl), 1- (3-butenyl), 1- (1,3-butadienyl), 2- (2-butenyl), 1- (1-pentenyl) , 5- (cyclopentadienyl), 1- (1-cyclohexenyl) and the like.

1〜R4、及び、X1〜X12で表されるアルキニル基としては、例えば、エチニル、プロパルギル(すなわち、1−(2−プロピニル))、1−(1−プロピニル)、1−ブタジイニル、1−(1,3−ペンタジイニル)などが挙げられる。 Examples of the alkynyl group represented by R 1 to R 4 and X 1 to X 12 include ethynyl, propargyl (that is, 1- (2-propynyl)), 1- (1-propynyl), 1-butadiynyl. , 1- (1,3-pentadiynyl) and the like.

1〜R4、及び、X1〜X12で表されるアリール基としては、例えば、フェニル、o−トリル(すなわち、1−(2−メチルフェニル))、m−トリル、p−トリル、1−(2,3−ジメチルフェニル)、1−(3,4−ジメチルフェニル)、2−(1,3−ジメチルフェニル)、1−(3,5−ジメチルフェニル)、1−(2,5−ジメチルフェニル)、p−クメニル、メシチル、1−ナフチル、2−ナフチル、1−アントラニル、2−アントラニル、9−アントラニル、及び、4−ビフェニリル(すなわち、1−(4−フェニル)フェニル)、3−ビフェニリル、2−ビフェニリルなどのビフェニリル類、4−p−テルフェニリル(すなわち、1−4−(4−ビフェニリル)フェニル)、4−m−テルフェニリル(すなわち、1−4−(3−ビフェニリル)フェニル)などのテルフェニリル類などが挙げられる。 Examples of the aryl group represented by R 1 to R 4 and X 1 to X 12 include phenyl, o-tolyl (that is, 1- (2-methylphenyl)), m-tolyl, p-tolyl, 1- (2,3-dimethylphenyl), 1- (3,4-dimethylphenyl), 2- (1,3-dimethylphenyl), 1- (3,5-dimethylphenyl), 1- (2,5 -Dimethylphenyl), p-cumenyl, mesityl, 1-naphthyl, 2-naphthyl, 1-anthranyl, 2-anthranyl, 9-anthranyl, and 4-biphenylyl (ie, 1- (4-phenyl) phenyl), 3 -Biphenylyls such as biphenylyl, 2-biphenylyl, 4-p-terphenylyl (i.e. 1-4- (4-biphenylyl) phenyl), 4-m-terphenylyl (i.e. 1-4-4- , 3-biphenylyl) phenyl) terphenylyl such as and the like.

1〜R4、及び、X1〜X12で表されるヘテロアリール基としては、含まれるヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子などが挙げられ、具体的には、例えば、イミダゾリル、ピラゾリル、ピリジル、ピラジル、ピリミジル、トリアジニル、キノリル、イソキノリニル、ピロリル、インドリル、フリル、チエニル、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル、アゼピニルなどが挙げられる。 Examples of the heteroaryl group represented by R 1 to R 4 and X 1 to X 12 include a nitrogen atom, an oxygen atom, a sulfur atom, and the like as the hetero atom contained therein. Examples include imidazolyl, pyrazolyl, pyridyl, pyrazyl, pyrimidyl, triazinyl, quinolyl, isoquinolinyl, pyrrolyl, indolyl, furyl, thienyl, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl and the like.

1〜R4、及び、X1〜X12で表されるアルコキシ基としては、例えば、メトキシ、エトキシ、イソプロポキシ、シクロプロポキシ、n−ブトキシ、tert−ブトキシ、シクロヘキシロキシ、フェノキシなどが挙げられる。 Examples of the alkoxy group represented by R 1 to R 4 and X 1 to X 12 include methoxy, ethoxy, isopropoxy, cyclopropoxy, n-butoxy, tert-butoxy, cyclohexyloxy and phenoxy. .

1〜R4、及び、X1〜X12で表されるアシル基としては、例えば、アセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。 Examples of the acyl group represented by R 1 to R 4 and X 1 to X 12 include acetyl, benzoyl, formyl, pivaloyl and the like.

1〜R4、及び、X1〜X12で表されるアシロキシ基としては、例えば、アセトキシ、ベンゾイルオキシなどが挙げられる。 Examples of the acyloxy group represented by R 1 to R 4 and X 1 to X 12 include acetoxy, benzoyloxy, and the like.

1〜R4、及び、X1〜X12で表されるアミノ基としては、例えば、アミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノ、ピロリジノ、ピペリジノ、モルフォリノなどが挙げられる。 Examples of the amino group represented by R 1 to R 4 and X 1 to X 12 include amino, methylamino, dimethylamino, diethylamino, dibenzylamino, diphenylamino, ditolylamino, pyrrolidino, piperidino, morpholino and the like. Can be mentioned.

1〜R4、及び、X1〜X12で表されるエステル基としては、例えば、メチルエステル(すなわち、メトキシカルボニル)、エチルエステル、イソプロピルエステル、フェニルエステル、ベンジルエステルなどが挙げられる。 Examples of the ester group represented by R 1 to R 4 and X 1 to X 12 include methyl ester (that is, methoxycarbonyl), ethyl ester, isopropyl ester, phenyl ester, benzyl ester, and the like.

1〜R4、及び、X1〜X12で表されるアミド基としては、例えば、アミドの炭素原子で連結した、N,N−ジメチルアミド(すなわち、ジメチルアミノカルボニル)、N−フェニルアミド、N,N−ジフェニルアミドや、アミドの窒素原子で連結した、N−メチルアセトアミド(すなわち、アセチルメチルアミノ)、N−フェニルアセトアミド、N−フェニルベンズアミドなどが挙げられる。 Examples of the amide group represented by R 1 to R 4 and X 1 to X 12 include N, N-dimethylamide (that is, dimethylaminocarbonyl) and N-phenylamide linked by a carbon atom of the amide. N, N-diphenylamide, N-methylacetamide (that is, acetylmethylamino), N-phenylacetamide, N-phenylbenzamide and the like linked by a nitrogen atom of the amide.

1〜R4、及び、X1〜X12で表されるハロゲンとしては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。 Examples of the halogen represented by R 1 to R 4 and X 1 to X 12 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

1〜R4、及び、X1〜X12で表されるパーフルオロアルキル基としては、例えば、トリフルオロメチル、ペンタフルオロエチル、1−パーフルオロプロピル、2−パーフルオロプロピル、パーフルオロペンチルなどが挙げられる。 Examples of the perfluoroalkyl group represented by R 1 to R 4 and X 1 to X 12 include trifluoromethyl, pentafluoroethyl, 1-perfluoropropyl, 2-perfluoropropyl, perfluoropentyl, and the like. Is mentioned.

1〜R4、及び、X1〜X12で表されるシリル基としては、例えば、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、トリフェニルシリル、メチルジフェニルシリル、ジメチルフェニルシリル、tert−ブチルジメチルシリル、tert−ブチルジフェニルシリルなどが挙げられる。 Examples of the silyl group represented by R 1 to R 4 and X 1 to X 12 include trimethylsilyl, triethylsilyl, triisopropylsilyl, triphenylsilyl, methyldiphenylsilyl, dimethylphenylsilyl, tert-butyldimethylsilyl. , Tert-butyldiphenylsilyl and the like.

上記のR1〜R4、及び、X1〜X12は、更に他の置換基で置換されていてもよい。例えば、アルキル基にアリール基が置換したものとしては、ベンジル、9−フルオレニル、1−(2−フェニルエチル)、1−(4−フェニル)シクロヘキシルなどが挙げられ、アリール基にヘテロアリール基が置換されたものとしては、1−(4−Nーカルバゾリル)フェニル、1−(3,5−ジ(Nーカルバゾリル))フェニル、1−(4−(2−ピリジル)フェニル)などが挙げられる。 Said R < 1 > -R < 4 > and X < 1 > -X < 12 > may be further substituted by another substituent. For example, examples of the alkyl group substituted with an aryl group include benzyl, 9-fluorenyl, 1- (2-phenylethyl), 1- (4-phenyl) cyclohexyl, etc., and the aryl group substituted with a heteroaryl group Examples thereof include 1- (4-N-carbazolyl) phenyl, 1- (3,5-di (N-carbazolyl)) phenyl, 1- (4- (2-pyridyl) phenyl) and the like.

上記のR1〜R4として好ましくは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アミノ基、エステル基、シリル基であり、より好ましくは、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、アミノ基、シリル基であり、特に好ましくは、水素原子、アルキル基、アリール基である。 R 1 to R 4 are preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, an amino group, an ester group, or a silyl group, and more preferably a hydrogen atom. , An alkyl group, an aryl group, a heteroaryl group, an alkoxy group, an amino group, and a silyl group, and particularly preferably a hydrogen atom, an alkyl group, and an aryl group.

上記のX1〜X12として好ましくは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アミノ基、エステル基、シリル基であり、より好ましくは、水素原子、アルキル基、アリール基であり、特に好ましくは、水素原子である。 X 1 to X 12 are preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, an amino group, an ester group, or a silyl group, and more preferably a hydrogen atom. , An alkyl group and an aryl group, particularly preferably a hydrogen atom.

1〜R4、及び、X1〜X12で表されるアルキル基としては好ましくは、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、tert−ブチル、n−ペンチル、n−ヘキシル、シクロペンチル、シクロヘキシルであり、より好ましくは、メチル、エチル、tert−ブチル、n−ヘキシル、シクロヘキシルであり、特に好ましくは、メチル、エチルである。 The alkyl group represented by R 1 to R 4 and X 1 to X 12 is preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n- Hexyl, cyclopentyl and cyclohexyl are more preferable, and methyl, ethyl, tert-butyl, n-hexyl and cyclohexyl are more preferable, and methyl and ethyl are particularly preferable.

1〜R4、及び、X1〜X12で表されるアリール基として好ましくは、フェニル、o−トリル、1−(3,4−ジメチルフェニル)、1−(3,5−ジメチルフェニル)、1−ナフチル、2−ナフチル、9−アントラニル、及び、ビフェニルリル類、テルフェニリル類であり、より好ましくは、フェニル、ビフェニルリル類、テルフェニリル類であり、より好ましくは、フェニルである。 The aryl group represented by R 1 to R 4 and X 1 to X 12 is preferably phenyl, o-tolyl, 1- (3,4-dimethylphenyl), 1- (3,5-dimethylphenyl). , 1-naphthyl, 2-naphthyl, 9-anthranyl, and biphenylyls and terphenylyls, more preferably phenyl, biphenylyls, and terphenylyls, and more preferably phenyl.

1〜R4、及び、X1〜X12で表される水素原子は、重水素原子であってもよく、重水素原子である方が好ましい。 The hydrogen atom represented by R 1 to R 4 and X 1 to X 12 may be a deuterium atom, and is preferably a deuterium atom.

一般式(a)で表される化合物に含まれる水素原子は、その一部、若しくは、すべてが重水素原子で置換されていても良い。   Part or all of the hydrogen atoms contained in the compound represented by the general formula (a) may be substituted with deuterium atoms.

1〜R4の少なくとも1つは、二重結合、あるいは三重結合を有する基であるが、二重結合としては、例えば、C=C、C=O、C=S,C=N、N=N、S=O、P=Oなどが挙げられ、好ましくはC=C、C=O、C=N、S=O、P=Oであり、より好ましくはC=C、C=O、C=Nであり、特に好ましくはC=Cである。三重結合としては、C≡C、C≡Nが挙げられ、好ましくはC≡Cである。 At least one of R 1 to R 4 is a double bond or a group having a triple bond. Examples of the double bond include C═C, C═O, C═S, C═N, N = N, S = O, P = O, etc., preferably C = C, C = O, C = N, S = O, P = O, more preferably C = C, C = O, C = N, particularly preferably C = C. Examples of the triple bond include C≡C and C≡N, and preferably C≡C.

1〜R4の二重結合あるいは三重結合を有する基としては、アリール基が好ましく、なかでも、下記で表されるフェニル基、ビフェニリル基、テルフェニリル基が好ましく、フェニル基が特に好ましい。 As the group having a double bond or triple bond of R 1 to R 4 , an aryl group is preferable, and among them, a phenyl group, a biphenylyl group, and a terphenylyl group represented by the following are preferable, and a phenyl group is particularly preferable.

Figure 2010135819
Figure 2010135819

1〜R4の少なくとも1つは、二重結合、あるいは三重結合を有する基であるが、R1〜R4で二重結合、あるいは三重結合を有するものの数は2〜4が好ましく、3〜4がより好ましく、4が特に好ましい。 At least one of R 1 to R 4 is a group having a double bond or a triple bond, and the number of R 1 to R 4 having a double bond or a triple bond is preferably 2 to 4. -4 is more preferable, and 4 is particularly preferable.

1〜R4で二重結合、あるいは三重結合を有するものの数が1−3の場合、残りの単結合のみからなるR1〜R4は、水素原子、アルキル基、アルコキシ基、シリル基が好ましく、水素原子、アルキル基、シリル基が好ましく、水素原子、アルキル基が特に好ましい。 When the number of R 1 to R 4 having a double bond or a triple bond is 1-3, R 1 to R 4 consisting of only the remaining single bond is a hydrogen atom, an alkyl group, an alkoxy group or a silyl group. Preferably, a hydrogen atom, an alkyl group, and a silyl group are preferable, and a hydrogen atom and an alkyl group are particularly preferable.

1〜R4、及び、X1〜X12は互いに連結して環構造を形成していても良い。たとえば、下記のように、X2、X3、X9が互いに連結して、ジアマンタン構造を形成していてもよく、更に、X4、X5、X12が互いに連結して、トリアマンタン構造を形成していてもよい。これらのジアマンタン構造、トリアマンタン構造は、更に置換基で置換されていてもよい。 R 1 to R 4 and X 1 to X 12 may be linked to each other to form a ring structure. For example, as described below, X 2 , X 3 and X 9 may be linked to each other to form a diamantane structure, and X 4 , X 5 and X 12 may be linked to each other to form a triamantane structure. May be formed. These diamantane structure and triamantane structure may be further substituted with a substituent.

Figure 2010135819
Figure 2010135819

本発明に於いては、一般式(a)で表される化合物は、好ましくは複数混合して含有される。好ましくは、二重結合を有する基が互いに異なる化合物、若しくはその置換数が互いに異なる化合物を混合して用いることができる。例えば、二重結合を有する基として上記のフェニル基、ビフェニリル基、テルフェニリル基が挙げられ、それらの置換数が1〜4の化合物が挙げられる。例えば、これらの二重結合を有する基の置換数が1のモノ置換体と置換数が4のテトラ置換体を混合して用いることができる。   In the present invention, the compound represented by the general formula (a) is preferably mixed and contained. Preferably, compounds having different groups having a double bond or compounds having different numbers of substitutions can be used in combination. Examples of the group having a double bond include the above phenyl group, biphenylyl group, and terphenylyl group, and compounds having 1 to 4 substitutions thereof. For example, a mono-substituted product having a substitution number of 1 and a tetra-substitution product having a substitution number of 4 can be used.

以下に本発明に用いられる一般式(a)で表される化合物の具体例を挙げるが、本発明の化合物がこれらに限定されるものではない。   Specific examples of the compound represented by the general formula (a) used in the present invention are shown below, but the compound of the present invention is not limited thereto.

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

一般式(a)で表される化合物は、アダマンタン、若しくは、ハロゲン化アダマンタンと、ハロゲン化アルキル若しくは、アルキルマグネシウムハライド(グリニヤー試薬)を適当に組み合わせることによって合成できる。例えば、インジウムを用いて、ハロゲン化アダマンタンと、ハロゲン化アルキルをカップリングすることができる(文献1)。また、ハロゲン化アルキルをアルキル銅試薬に変換し、芳香族化合物のグリニヤー試薬とカップリングすることもできる(文献2)。また、ハロゲン化アルキルを、適当なアリールホウ酸とパラジウム触媒を用いてカップリングすることもできる(文献3)。
文献1:Tetrahedron Lett. 39, 1998, 9557-9558.
文献2:Tetrahedron Lett. 39, 1998, 2095-2096.
文献3:J. Am. Chem. Soc. 124, 2002, 13662-13663.
The compound represented by the general formula (a) can be synthesized by appropriately combining adamantane or a halogenated adamantane with an alkyl halide or an alkylmagnesium halide (Grignard reagent). For example, indium can be used to couple a halogenated adamantane and an alkyl halide (Reference 1). Alternatively, an alkyl halide can be converted into an alkyl copper reagent and coupled with an aromatic Grignard reagent (Reference 2). Alkyl halides can also be coupled using an appropriate aryl boric acid and a palladium catalyst (Reference 3).
Reference 1: Tetrahedron Lett. 39, 1998, 9557-9558.
Reference 2: Tetrahedron Lett. 39, 1998, 2095-2096.
Reference 3: J. Am. Chem. Soc. 124, 2002, 13662-13663.

アリール基を有するアダマンタン骨格は、アダマンタン、若しくは、ハロゲン化アダマンタンと、対応するアレーンやアリールハライドを適当に組み合わせることにより合成できる。   The adamantane skeleton having an aryl group can be synthesized by appropriately combining adamantane or a halogenated adamantane with the corresponding arene or aryl halide.

なお、上記に示した製造方法において、定義された置換基が、ある合成方法の条件下で変化するか、又は該方法を実施するのに不適切な場合、官能基の保護、脱保護(例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス(Protective Groups in Organic Synthesis)、グリーン(T. W. Greene)著、ジョン・ワイリー・アンド・サンズ・インコーポレイテッド(John Wiley & Sons Inc.)(1981年)等)等の手段により容易に製造が可能である。また、必要に応じて適宜置換基導入等の反応工程の順序を変化させることも可能である。   In the production method shown above, when the defined substituent changes under the conditions of a certain synthesis method or is inappropriate for carrying out the method, the functional group is protected or deprotected (for example, Protective Groups in Organic Synthesis, by TW Greene, John Wiley & Sons Inc. (198) ) Etc.) and the like can be easily manufactured. Moreover, it is also possible to change the order of reaction steps such as introduction of substituents as necessary.

一般式(a)で表される化合物の分子量は、有機電界発光素子を真空蒸着プロセスや溶液塗布プロセスを用いて作成するので、蒸着適性や溶解性の観点から、2000以下であることが好ましく、1200以下であることがより好ましく、1000以下であることが特に好ましい。また、蒸着適性の観点では、分子量が小さすぎると蒸気圧が小さくなり、気相から固相への変化がおきず、有機層を形成することが困難となるので、250以上が好ましく、350以上がより好ましく、400以上が特に好ましい。   The molecular weight of the compound represented by the general formula (a) is preferably 2000 or less from the viewpoint of vapor deposition suitability and solubility, since the organic electroluminescent device is prepared using a vacuum vapor deposition process or a solution coating process. It is more preferably 1200 or less, and particularly preferably 1000 or less. Further, from the viewpoint of vapor deposition suitability, if the molecular weight is too small, the vapor pressure becomes small, the change from the gas phase to the solid phase does not occur, and it is difficult to form an organic layer. Is more preferable, and 400 or more is particularly preferable.

一般式(a)で表される化合物は、一般式(I)で表される化合物と組み合わせて用いることが好ましく、一般式(I)で表される化合物及び4座配位子を有する白金錯体と組み合わせて用いることがより好ましい。   The compound represented by the general formula (a) is preferably used in combination with the compound represented by the general formula (I), and a platinum complex having a compound represented by the general formula (I) and a tetradentate ligand It is more preferable to use in combination.

本発明において一般式(a)で表される化合物は、その用途が限定されることはなく、有機層内のいずれの層に含有されてもよい。一般式(a)で表される化合物の導入層としては、後述の発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、励起子ブロック層、電荷ブロック層のいずれか、若しくは複数に含有されるのが好ましく、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層のいずれか、若しくは複数に含有されるのがより好ましく、発光層、正孔注入層、正孔輸送層のいずれか、若しくは複数に含有されるのが特に好ましく、発光層に用いることが最も好ましい。   In the present invention, the compound represented by the general formula (a) is not limited in its use, and may be contained in any layer in the organic layer. As the introduction layer of the compound represented by the general formula (a), any one of a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an exciton block layer, and a charge block layer described later is used. It is preferable that the light-emitting layer, the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer, or the plurality of the light-emitting layer, It is particularly preferable to be contained in one or more of the hole injection layer and the hole transport layer, and most preferably used for the light emitting layer.

一般式(a)で表される化合物の発光層における含量は、電荷輸送性材料の電荷輸送性を抑制しない程度の量に制限して用いる必要があり、一般式(a)で表される化合物は0.1〜70質量%含まれることが好ましく、0.1〜30質量%含まれることがより好ましく、0.1〜25質量%含まれることが特に好ましい。
また、一般式(a)で表される化合物を、複数の有機層に用いる場合はそれぞれの層において、上記の範囲で含有することが好ましい。
The content of the compound represented by the general formula (a) in the light emitting layer should be limited to an amount that does not suppress the charge transporting property of the charge transporting material, and the compound represented by the general formula (a) Is preferably contained in an amount of 0.1 to 70% by mass, more preferably 0.1 to 30% by mass, and particularly preferably 0.1 to 25% by mass.
Moreover, when using the compound represented by general formula (a) for a several organic layer, it is preferable to contain in said layer in each layer.

−正孔注入層、正孔輸送層−
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。正孔注入層、正孔輸送層は、具体的には、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、ポルフィリン系化合物、有機シラン誘導体、カーボン等を含有する層であることが好ましい。
-Hole injection layer, hole transport layer-
The hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side. Specifically, the hole injection layer and the hole transport layer are carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamines. Derivatives, amino-substituted chalcone derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, porphyrin compounds, organosilane derivatives, carbon, etc. Preferably there is.

正孔注入層、正孔輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。   The thicknesses of the hole injection layer and the hole transport layer are each preferably 500 nm or less from the viewpoint of lowering the driving voltage.

正孔輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、正孔注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.5nm〜100nmであるのがより好ましく、1nm〜100nmであるのが更に好ましい。   The thickness of the hole transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm. In addition, the thickness of the hole injection layer is preferably 0.1 nm to 200 nm, more preferably 0.5 nm to 100 nm, and still more preferably 1 nm to 100 nm.

正孔注入層、正孔輸送層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。   The hole injection layer and the hole transport layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.

−電子注入層、電子輸送層−
電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。電子注入層、電子輸送層は、具体的には、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする錯体に代表される各種錯体、有機シラン誘導体、等を含有する層であることが好ましい。
-Electron injection layer, electron transport layer-
The electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side. Specifically, the electron injection layer and the electron transport layer are triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, Carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, aromatic tetracarboxylic anhydrides such as naphthalene and perylene, phthalocyanine derivatives, 8-quinolinol derivative complexes, metal phthalocyanines, benzoxazoles and benzothiazoles as ligands It is preferably a layer containing various complexes typified by the complex to be prepared, an organosilane derivative, and the like.

電子注入層、電子輸送層の厚さは、駆動電圧を下げるという観点から、各々50nm以下であることが好ましい。
電子輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、電子注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.2nm〜100nmであるのがより好ましく、0.5nm〜50nmであるのが更に好ましい。
電子注入層、電子輸送層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
The thicknesses of the electron injection layer and the electron transport layer are each preferably 50 nm or less from the viewpoint of lowering the driving voltage.
The thickness of the electron transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm. In addition, the thickness of the electron injection layer is preferably 0.1 nm to 200 nm, more preferably 0.2 nm to 100 nm, and still more preferably 0.5 nm to 50 nm.
The electron injection layer and the electron transport layer may have a single-layer structure made of one or more of the materials described above, or may have a multilayer structure made up of a plurality of layers having the same composition or different compositions.

−正孔ブロック層−
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機層として、正孔ブロック層を設けることができる。
正孔ブロック層を構成する有機化合物の例としては、アルミニウム(III)ビス(2−メチル−8−キノリナト)4−フェニルフェノレート(Aluminum (III)bis(2−methyl−8−quinolinato)4−phenylphenolate(BAlqと略記する))等のアルミニウム錯体、トリアゾール誘導体、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(2,9−Dimethyl−4,7−diphenyl−1,10−phenanthroline(BCPと略記する))等のフェナントロリン誘導体、等が挙げられる。
正孔ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
正孔ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
-Hole blocking layer-
The hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side. In the present invention, a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
As an example of the organic compound constituting the hole blocking layer, aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (Aluminum (III) bis (2-methyl-8-quinolinato) 4- aluminum complexes such as phenylphenolate (abbreviated as BAlq), triazole derivatives, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (2,9-Dimethyl-4,7-diphenyl-1,10-) phenanthroline derivatives such as phenanthroline (abbreviated as BCP)) and the like.
The thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm.
The hole blocking layer may have a single layer structure made of one or more of the materials described above, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.

<保護層>
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、Ni等の金属、MgO、SiO、SiO2、Al23、GeO、NiO、CaO、BaO、Fe23、Y23、TiO2等の金属酸化物、SiNx、SiNxy等の金属窒化物、MgF2、LiF、AlF3、CaF2等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
<Protective layer>
In the present invention, the entire organic EL element may be protected by a protective layer.
As a material contained in the protective layer, any material may be used as long as it has a function of preventing materials that promote device deterioration such as moisture and oxygen from entering the device.
Specific examples thereof include metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, and Ni, MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, and Fe 2 O. 3 , metal oxides such as Y 2 O 3 and TiO 2 , metal nitrides such as SiN x and SiN x O y , metal fluorides such as MgF 2 , LiF, AlF 3 and CaF 2 , polyethylene, polypropylene, polymethyl Monomer mixture containing methacrylate, polyimide, polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, copolymer of chlorotrifluoroethylene and dichlorodifluoroethylene, tetrafluoroethylene and at least one comonomer A copolymer obtained by copolymerization of a copolymer having a cyclic structure in the copolymer main chain. Copolymer, 1% by weight of the water absorbing water absorption material, water absorption of 0.1% or less of moisture-proof material, and the like.

保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、転写法を適用できる。   The method for forming the protective layer is not particularly limited, and for example, vacuum deposition, sputtering, reactive sputtering, MBE (molecular beam epitaxy), cluster ion beam, ion plating, plasma polymerization (high frequency) Excited ion plating method), plasma CVD method, laser CVD method, thermal CVD method, gas source CVD method, coating method, printing method, transfer method can be applied.

<基板>
本発明で使用する基板としては、有機層から発せられる光を散乱又は減衰させない基板であることが好ましい。その具体例としては、イットリア安定化ジルコニア(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
<Board>
The substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic layer. Specific examples include yttria-stabilized zirconia (YSZ), inorganic materials such as glass, polyesters such as polyethylene terephthalate, polybutylene phthalate, and polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, and polycycloolefin. , Organic materials such as norbornene resin and poly (chlorotrifluoroethylene).

例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。   For example, when glass is used as the substrate, alkali-free glass is preferably used as the material in order to reduce ions eluted from the glass. Moreover, when using soda-lime glass, it is preferable to use what gave barrier coatings, such as a silica. In the case of an organic material, it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.

基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。   There is no restriction | limiting in particular about the shape of a board | substrate, a structure, a magnitude | size, It can select suitably according to the use, purpose, etc. of a light emitting element. In general, the shape of the substrate is preferably a plate shape. The structure of the substrate may be a single layer structure, a laminated structure, may be formed of a single member, or may be formed of two or more members.

基板は、無色透明であっても、有色透明であってもよいが、有機発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。   The substrate may be colorless and transparent or colored and transparent, but is preferably colorless and transparent in that it does not scatter or attenuate light emitted from the organic light emitting layer.

基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。   The substrate can be provided with a moisture permeation preventing layer (gas barrier layer) on the front surface or the back surface.

透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。   As a material for the moisture permeation preventive layer (gas barrier layer), inorganic materials such as silicon nitride and silicon oxide are preferably used. The moisture permeation preventing layer (gas barrier layer) can be formed by, for example, a high frequency sputtering method. When a thermoplastic substrate is used, a hard coat layer, an undercoat layer, or the like may be further provided as necessary.

<陽極>
陽極は、通常、有機層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
<Anode>
The anode usually only needs to have a function as an electrode for supplying holes to the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials. As described above, the anode is usually provided as a transparent anode.

陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられる。陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、更にこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。   Suitable examples of the material for the anode include metals, alloys, metal oxides, conductive compounds, and mixtures thereof. Specific examples of the anode material include conductive metals such as tin oxide doped with antimony and fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Metals such as oxides, gold, silver, chromium, nickel, and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, polyaniline, polythiophene, polypyrrole, etc. Organic conductive materials, and a laminate of these and ITO. Among these, conductive metal oxides are preferable, and ITO is particularly preferable from the viewpoints of productivity, high conductivity, transparency, and the like.

陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。   The anode is composed of, for example, a wet method such as a printing method and a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, and a chemical method such as a CVD and a plasma CVD method. It can be formed on the substrate according to a method appropriately selected in consideration of suitability with the material to be processed. For example, when ITO is selected as the anode material, the anode can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like.

本発明の有機電界発光素子において、陽極の形成位置としては特に制限はなく、発光素子の用途、目的に応じて適宜選択することができる。が、前記基板上に形成されるのが好ましい。この場合、陽極は、基板における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。   In the organic electroluminescent element of the present invention, the formation position of the anode is not particularly limited and can be appropriately selected according to the use and purpose of the light emitting element. Is preferably formed on the substrate. In this case, the anode may be formed on the entire one surface of the substrate, or may be formed on a part thereof.

なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。   The patterning for forming the anode may be performed by chemical etching such as photolithography, or may be performed by physical etching such as laser, or vacuum deposition or sputtering with a mask overlapped. It may be performed by a lift-off method or a printing method.

陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。   The thickness of the anode can be appropriately selected depending on the material constituting the anode and cannot be generally defined, but is usually about 10 nm to 50 μm, and preferably 50 nm to 20 μm.

陽極の抵抗値としては、103Ω/□以下が好ましく、102Ω/□以下がより好ましい。陽極が透明である場合は、無色透明であっても、有色透明であってもよい。透明陽極側から発光を取り出すためには、その透過率としては、60%以上が好ましく、70%以上がより好ましい。 The resistance value of the anode is preferably 10 3 Ω / □ or less, and more preferably 10 2 Ω / □ or less. When the anode is transparent, it may be colorless and transparent or colored and transparent. In order to take out light emission from the transparent anode side, the transmittance is preferably 60% or more, and more preferably 70% or more.

なお、透明陽極については、沢田豊監修「透明導電膜の新展開」シーエムシー刊(1999)に詳述があり、ここに記載される事項を本発明に適用することができる。耐熱性の低いプラスティック基材を用いる場合は、ITO又はIZOを使用し、150℃以下の低温で成膜した透明陽極が好ましい。   The transparent anode is detailed in Yutaka Sawada's “New Development of Transparent Conductive Film” published by CMC (1999), and the matters described here can be applied to the present invention. In the case of using a plastic substrate having low heat resistance, a transparent anode formed using ITO or IZO at a low temperature of 150 ° C. or lower is preferable.

<陰極>
陰極は、通常、有機層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
<Cathode>
The cathode usually has a function as an electrode for injecting electrons into the organic layer, and there is no particular limitation on the shape, structure, size, etc., and it is known depending on the use and purpose of the light emitting device. The electrode material can be selected as appropriate.

陰極を構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられる。具体例としてはアルカリ金属(たとえば、Li、Na、K、Cs等)、アルカリ土類金属(たとえばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、イッテルビウム等の希土類金属、などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。   Examples of the material constituting the cathode include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Specific examples include alkali metals (eg, Li, Na, K, Cs, etc.), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium alloys, lithium-aluminum alloys, magnesium. -Rare earth metals such as silver alloys, indium, ytterbium, and the like. These may be used alone, but two or more can be suitably used in combination from the viewpoint of achieving both stability and electron injection.

これらの中でも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。
Among these, as a material constituting the cathode, an alkali metal or an alkaline earth metal is preferable from the viewpoint of electron injecting property, and a material mainly composed of aluminum is preferable from the viewpoint of excellent storage stability.
The material mainly composed of aluminum is aluminum alone, an alloy of aluminum and 0.01 to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy, magnesium-aluminum alloy, etc.) Say.

なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの公報に記載の材料は、本発明においても適用することができる。   The cathode materials are described in detail in JP-A-2-15595 and JP-A-5-121172, and the materials described in these publications can also be applied in the present invention.

陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。   There is no restriction | limiting in particular about the formation method of a cathode, According to a well-known method, it can carry out. For example, the cathode described above is configured from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method. It can be formed according to a method appropriately selected in consideration of suitability with the material. For example, when a metal or the like is selected as the cathode material, one or more of them can be simultaneously or sequentially performed according to a sputtering method or the like.

陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。   Patterning when forming the cathode may be performed by chemical etching such as photolithography, physical etching by laser, or the like, or by vacuum deposition or sputtering with the mask overlaid. It may be performed by a lift-off method or a printing method.

本発明において、陰極形成位置は特に制限はなく、有機層上の全部に形成されていてもよく、その一部に形成されていてもよい。
また、陰極と前記有機層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により形成することができる。
In the present invention, the cathode forming position is not particularly limited, and may be formed on the entire organic layer or a part thereof.
Further, a dielectric layer made of an alkali metal or alkaline earth metal fluoride or oxide may be inserted between the cathode and the organic layer with a thickness of 0.1 to 5 nm. This dielectric layer can also be regarded as a kind of electron injection layer. The dielectric layer can be formed by, for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like.

陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。
また、陰極は、透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1〜10nmの厚さに薄く成膜し、更にITOやIZO等の透明な導電性材料を積層することにより形成することができる。
The thickness of the cathode can be appropriately selected depending on the material constituting the cathode and cannot be generally defined, but is usually about 10 nm to 5 μm, and preferably 50 nm to 1 μm.
Further, the cathode may be transparent or opaque. The transparent cathode can be formed by depositing a thin cathode material to a thickness of 1 to 10 nm and further laminating a transparent conductive material such as ITO or IZO.

<封止容器>
本発明の素子は、封止容器を用いて素子全体を封止してもよい。封止容器と素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、シリコーンオイル類が挙げられる。
<Sealing container>
The element of this invention may seal the whole element using a sealing container. You may enclose a water | moisture-content absorber or an inert liquid in the space between a sealing container and an element. Although it does not specifically limit as a moisture absorber, For example, barium oxide, sodium oxide, potassium oxide, calcium oxide, sodium sulfate, calcium sulfate, magnesium sulfate, phosphorus pentoxide, calcium chloride, magnesium chloride, copper chloride Cesium fluoride, niobium fluoride, calcium bromide, vanadium bromide, molecular sieve, zeolite, magnesium oxide and the like. The inert liquid is not particularly limited, and examples thereof include fluorinated solvents such as paraffins, liquid paraffins, perfluoroalkanes, perfluoroamines, perfluoroethers, chlorinated solvents, and silicone oils. It is done.

本発明の素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。   The element of the present invention can obtain light emission by applying a direct current (which may include an alternating current component if necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. it can.

<駆動方法>
本発明の素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。
<Driving method>
Regarding the driving method of the element of the present invention, JP-A-2-148687, JP-A-6-301355, JP-A-5-29080, JP-A-7-134558, JP-A-8-234665, and JP-A-8-214447, The driving methods described in Japanese Patent No. 2784615, US Pat. Nos. 5,828,429 and 6023308, etc. can be applied.

<その他>
本発明の発光素子の外部量子効率としては、5%以上が好ましく、7%以上がより好ましい。外部量子効率の数値は20℃で素子を駆動したときの外部量子効率の最大値、若しくは、20℃で素子を駆動したときの100〜300cd/m2付近での外部量子効率の値を用いることができる。
<Others>
The external quantum efficiency of the light emitting device of the present invention is preferably 5% or more, and more preferably 7% or more. The value of the external quantum efficiency should be the maximum value of the external quantum efficiency when the device is driven at 20 ° C., or the value of the external quantum efficiency near 100 to 300 cd / m 2 when the device is driven at 20 ° C. Can do.

本発明の発光素子の内部量子効率は、30%以上であることが好ましく、50%以上が更に好ましく、70%以上が更に好ましい。素子の内部量子効率は、外部量子効率を光取り出し効率で除して算出される。通常の有機EL素子では光取り出し効率は約20%であるが、基板の形状、電極の形状、有機層の膜厚、無機層の膜厚、有機層の屈折率、無機層の屈折率等を工夫することにより、光取り出し効率を20%以上にすることが可能である。   The internal quantum efficiency of the light emitting device of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 70% or more. The internal quantum efficiency of the device is calculated by dividing the external quantum efficiency by the light extraction efficiency. In a normal organic EL element, the light extraction efficiency is about 20%. However, the shape of the substrate, the shape of the electrode, the thickness of the organic layer, the thickness of the inorganic layer, the refractive index of the organic layer, the refractive index of the inorganic layer, etc. By devising it, it is possible to increase the light extraction efficiency to 20% or more.

本発明の発光素子は、350nm〜700nmに発光スペクトルの最大強度波長を有するものが好ましく、より好ましくは350nm〜600nm、更に好ましくは400〜550nm、特に好ましくは430〜500nmである。   The light emitting device of the present invention preferably has a maximum intensity wavelength of an emission spectrum at 350 nm to 700 nm, more preferably 350 nm to 600 nm, still more preferably 400 to 550 nm, and particularly preferably 430 to 500 nm.

本発明の素子は、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信等に好適に利用できる。   The element of the present invention can be suitably used for display elements, displays, backlights, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signboards, interiors, optical communications, and the like.

以下に本発明を実施例に基づき詳細に説明するが、本発明の実施の態様はこれらに限定されない。   Hereinafter, the present invention will be described in detail based on examples, but the embodiment of the present invention is not limited thereto.

Figure 2010135819
Figure 2010135819

Figure 2010135819
Figure 2010135819

(実施例1−1)
0.5mm厚み、2.5cm角のITO膜を有するガラス基板(ジオマテック社製、表面抵抗10Ω/□)を洗浄容器に入れ、2−プロパノール中で超音波洗浄した後、30分間UV−オゾン処理を行った。この透明陽極(ITO膜)上に真空蒸着法にて以下の有機層(有機化合物層)を順次蒸着した。
本発明の実施例における蒸着速度は、特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。以下に記載の膜厚も水晶振動子を用いて測定したものである。
(Example 1-1)
A glass substrate having an ITO film of 0.5 mm thickness and 2.5 cm square (manufactured by Geomatek Co., Ltd., surface resistance 10 Ω / □) is placed in a cleaning container, ultrasonically cleaned in 2-propanol, and then treated with UV-ozone for 30 minutes. Went. The following organic layers (organic compound layers) were sequentially deposited on the transparent anode (ITO film) by vacuum deposition.
The vapor deposition rate in the examples of the present invention is 0.2 nm / second unless otherwise specified. The deposition rate was measured using a quartz resonator. The film thicknesses described below were also measured using a crystal resonator.

洗浄したITO基板を蒸着装置に入れ、銅フタロシアニンを10nm蒸着し(第1層)、この上に、HT−1を40nm蒸着した(第2層)。この上に、H−1と本発明の化合物(1)を95:5の比率(質量比)で50nm蒸着し(第3層/発光層)、この上に、ET−1を40nm蒸着した(第4層)。この上に、フッ化リチウムを3nm蒸着した後、アルミニウム60nmを蒸着した。これを大気に触れさせること無く、アルゴンガスで置換したグローブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止し、実施例1−1の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(1)に由来する青白色の発光が得られた。   The cleaned ITO substrate was put into a vapor deposition apparatus, copper phthalocyanine was vapor-deposited 10 nm (first layer), and HT-1 was vapor-deposited thereon 40 nm (second layer). On top of this, H-1 and the compound (1) of the present invention were vapor-deposited at a ratio of 95: 5 (mass ratio) of 50 nm (third layer / light-emitting layer), and ET-1 was vapor-deposited thereon at 40 nm ( 4th layer). On top of this, 3 nm of lithium fluoride was deposited, and then 60 nm of aluminum was deposited. Without exposing it to the atmosphere, put it in a glove box substituted with argon gas, and seal it using a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.) The organic EL element of Example 1-1 was produced. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit 2400 type manufactured by Toyo Technica, blue-white light emission derived from the compound (1) of the present invention was obtained.

(実施例1−2)
実施例1−1において、本発明の化合物(1)の代わりに、本発明の化合物(2)を用い、H−1の代わりに、H−4を用いた以外は実施例1−1と同様にして実施例1−2の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(2)に由来する緑色の発光が得られた。
(Example 1-2)
In Example 1-1, Example 1 was used except that Compound (2) of the present invention was used instead of Compound (1) of the present invention, and H-4 was used instead of H-1. Thus, an organic EL device of Example 1-2 was produced. As a result of emitting light by applying a DC constant voltage to the organic EL device using a source measure unit 2400 type manufactured by Toyo Technica, green light emission derived from the compound (2) of the present invention was obtained.

(実施例1−3)
実施例1−1において、本発明の化合物(1)の代わりに、本発明の化合物(3)を用い、H−1の代わりに、H−3を用いた以外は実施例1−1と同様にして実施例1−3の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(3)に由来する緑色の発光が得られた。
(Example 1-3)
In Example 1-1, Example 1 was used except that Compound (3) of the present invention was used instead of Compound (1) of the present invention, and H-3 was used instead of H-1. Thus, an organic EL device of Example 1-3 was produced. As a result of emitting light by applying a DC constant voltage to the organic EL element using a source measure unit 2400 type manufactured by Toyo Technica, green light emission derived from the compound (3) of the present invention was obtained.

(実施例1−4)
実施例1−3において、本発明の化合物(3)の代わりに、本発明の化合物(4)を用い、HT−1の代わりに、HT−2を用いた以外は実施例1−1と同様にして実施例1−4の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(4)に由来する緑色の発光が得られた。
(Example 1-4)
Example 1-3 is the same as Example 1-1 except that compound (4) of the present invention was used instead of compound (3) of the present invention, and HT-2 was used instead of HT-1. Thus, an organic EL device of Example 1-4 was produced. As a result of emitting light by applying a DC constant voltage to the organic EL element using a source measure unit 2400 type manufactured by Toyo Technica, green light emission derived from the compound (4) of the present invention was obtained.

(実施例1−5)
実施例1−1において、本発明の化合物(1)の代わりに、本発明の化合物(5)を用い、H−1の代わりに、H−6を用いた以外は実施例1−1と同様にして実施例1−5の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(5)に由来する赤色の発光が得られた。
(Example 1-5)
Example 1-1 is the same as Example 1-1 except that compound (5) of the present invention was used instead of compound (1) of the present invention, and H-6 was used instead of H-1. Thus, an organic EL device of Example 1-5 was produced. As a result of emitting light by applying a DC constant voltage to the organic EL element using a source measure unit 2400 type manufactured by Toyo Technica, red light emission derived from the compound (5) of the present invention was obtained.

(実施例1−6)
実施例1−5において、H−6の代わりに、H−7を用いた以外は実施例1−5と同様にして実施例1−6の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(5)に由来する赤色の発光が得られた。
(Example 1-6)
In Example 1-5, an organic EL device of Example 1-6 was produced in the same manner as in Example 1-5, except that H-7 was used instead of H-6. As a result of emitting light by applying a DC constant voltage to the organic EL element using a source measure unit 2400 type manufactured by Toyo Technica, red light emission derived from the compound (5) of the present invention was obtained.

(実施例1−7)
実施例1−5において、H−6の代わりに、H−2を用いた以外は実施例1−5と同様にして実施例1−7の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(5)に由来する赤色の発光が得られた。
(Example 1-7)
In Example 1-5, an organic EL device of Example 1-7 was produced in the same manner as in Example 1-5, except that H-2 was used instead of H-6. As a result of emitting light by applying a DC constant voltage to the organic EL element using a source measure unit 2400 type manufactured by Toyo Technica, red light emission derived from the compound (5) of the present invention was obtained.

(実施例1−8)
実施例1−1において、本発明の化合物(1)の代わりに、本発明の化合物(6)を用い、HT−1の代わりに、HT−2を用いた以外は実施例1−1と同様にして実施例1−8の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(6)に由来する緑色の発光が得られた。
(Example 1-8)
Example 1-1 is the same as Example 1-1 except that compound (6) of the present invention was used instead of compound (1) of the present invention, and HT-2 was used instead of HT-1. Thus, an organic EL device of Example 1-8 was produced. As a result of emitting light by applying a DC constant voltage to the organic EL element using a source measure unit 2400 type manufactured by Toyo Technica, green light emission derived from the compound (6) of the present invention was obtained.

(実施例1−9)
実施例1−1において、本発明の化合物(1)の代わりに、本発明の化合物(7)を用い、H−1の代わりに、H−5を用いた以外は実施例1−1と同様にして実施例1−9の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(7)に由来する青白色の発光が得られた。
(Example 1-9)
Example 1-1 is the same as Example 1-1 except that compound (7) of the present invention was used instead of compound (1) of the present invention, and H-5 was used instead of H-1. Thus, an organic EL device of Example 1-9 was produced. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (7) of the present invention was obtained.

(実施例1−10)
実施例1−1において、本発明の化合物(1)の代わりに、本発明の化合物(8)を用いた以外は実施例1−1と同様にして実施例1−10の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(8)に由来する青白色の発光が得られた。
(Example 1-10)
In Example 1-1, an organic EL device of Example 1-10 was produced in the same manner as Example 1-1 except that Compound (8) of the present invention was used instead of Compound (1) of the present invention. did. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (8) of the present invention was obtained.

(実施例1−11)
実施例1−9において、本発明の化合物(7)の代わりに、本発明の化合物(9)を用い、HT−1の代わりに、HT−2を用いた以外は実施例1−9と同様にして実施例1−11の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(9)に由来する青白色の発光が得られた。
(Example 1-11)
Example 1-9 was the same as Example 1-9 except that compound (9) of the present invention was used instead of compound (7) of the present invention, and HT-2 was used instead of HT-1. Thus, an organic EL device of Example 1-11 was produced. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit 2400 type manufactured by Toyo Technica, blue-white light emission derived from the compound (9) of the present invention was obtained.

(実施例1−12)
実施例1−1において、本発明の化合物(1)の代わりに、本発明の化合物(10)を用いた以外は実施例1−1と同様にして実施例1−12の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(10)に由来する青白色の発光が得られた。
(Example 1-12)
In Example 1-1, an organic EL device of Example 1-12 was produced in the same manner as Example 1-1 except that Compound (10) of the present invention was used instead of Compound (1) of the present invention. did. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (10) of the present invention was obtained.

(実施例1−13)
実施例1−1において、本発明の化合物(1)の代わりに、本発明の化合物(11)を用いた以外は実施例1−1と同様にして実施例1−13の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(11)に由来する青白色の発光が得られた。
(Example 1-13)
In Example 1-1, an organic EL device of Example 1-13 was produced in the same manner as Example 1-1 except that Compound (11) of the present invention was used instead of Compound (1) of the present invention. did. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (11) of the present invention was obtained.

(実施例1−14)
実施例1−1において、H−1の代わりに、H−2を用いた以外は実施例1−1と同様にして実施例1−14の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(1)に由来する青白色の発光が得られた。
(Example 1-14)
In Example 1-1, an organic EL device of Example 1-14 was produced in the same manner as in Example 1-1 except that H-2 was used instead of H-1. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit 2400 type manufactured by Toyo Technica, blue-white light emission derived from the compound (1) of the present invention was obtained.

(実施例1−15)
実施例1−9において、H−5の代わりに、H−2を用いた以外は実施例1−9と同様にして実施例1−15の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(7)に由来する青白色の発光が得られた。
(Example 1-15)
In Example 1-9, an organic EL device of Example 1-15 was produced in the same manner as in Example 1-9, except that H-2 was used instead of H-5. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (7) of the present invention was obtained.

(実施例1−16)
実施例1−12において、H−1の代わりに、H−2を用いた以外は実施例1−12と同様にして実施例1−16の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(10)に由来する青白色の発光が得られた。
(Example 1-16)
In Example 1-12, an organic EL device of Example 1-16 was produced in the same manner as in Example 1-12, except that H-2 was used instead of H-1. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (10) of the present invention was obtained.

(実施例1−17)
実施例1−1において、本発明の化合物(1)の代わりに、本発明の化合物(12)を用いた以外は実施例1−1と同様にして実施例1−17の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(12)に由来する青白色の発光が得られた。
(Example 1-17)
In Example 1-1, an organic EL device of Example 1-17 was produced in the same manner as Example 1-1 except that Compound (12) of the present invention was used instead of Compound (1) of the present invention. did. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit 2400 type manufactured by Toyo Technica, blue-white light emission derived from the compound (12) of the present invention was obtained.

(実施例1−18)
実施例1−1において、本発明の化合物(1)の代わりに、本発明の化合物(13)を用い、H−1の代わりに、H−5を用いた以外は実施例1−1と同様にして実施例1−18の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(13)に由来する青白色の発光が得られた。
(Example 1-18)
Example 1-1 is the same as Example 1-1 except that the compound (13) of the present invention was used instead of the compound (1) of the present invention, and H-5 was used instead of H-1. Thus, an organic EL device of Example 1-18 was produced. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (13) of the present invention was obtained.

(実施例1−19)
実施例1−1において、本発明の化合物(1)の代わりに、本発明の化合物(14)を用いた以外は実施例1−1と同様にして実施例1−19の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(14)に由来する青白色の発光が得られた。
(Example 1-19)
In Example 1-1, an organic EL device of Example 1-19 was produced in the same manner as Example 1-1 except that Compound (14) of the present invention was used instead of Compound (1) of the present invention. did. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (14) of the present invention was obtained.

(実施例1−20)
実施例1−1において、本発明の化合物(1)の代わりに、本発明の化合物(15)を用いた以外は実施例1−1と同様にして実施例1−20の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(15)に由来する青白色の発光が得られた。
(Example 1-20)
In Example 1-1, an organic EL device of Example 1-20 was produced in the same manner as Example 1-1 except that Compound (15) of the present invention was used instead of Compound (1) of the present invention. did. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (15) of the present invention was obtained.

(実施例1−21)
実施例1−1において、本発明の化合物(1)の代わりに、本発明の化合物(16)を用い、H−1の代わりに、H−5を用いた以外は実施例1−1と同様にして実施例1−21の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(16)に由来する青白色の発光が得られた。
(Example 1-21)
Example 1-1 is the same as Example 1-1 except that compound (16) of the present invention was used instead of compound (1) of the present invention, and H-5 was used instead of H-1. Thus, an organic EL device of Example 1-21 was produced. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (16) of the present invention was obtained.

(実施例1−22)
実施例1−17において、H−1の代わりに、H−2を用いた以外は実施例1−17と同様にして実施例1−22の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(12)に由来する青白色の発光が得られた。
(Example 1-22)
In Example 1-17, the organic EL element of Example 1-22 was produced like Example 1-17 except having used H-2 instead of H-1. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit 2400 type manufactured by Toyo Technica, blue-white light emission derived from the compound (12) of the present invention was obtained.

(実施例1−23)
実施例1−18において、H−5の代わりに、H−2を用いた以外は実施例1−18と同様にして実施例1−23の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(13)に由来する青白色の発光が得られた。
(Example 1-23)
In Example 1-18, an organic EL device of Example 1-23 was produced in the same manner as in Example 1-18, except that H-2 was used instead of H-5. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (13) of the present invention was obtained.

(実施例1−24)
実施例1−19において、H−1の代わりに、H−2を用いた以外は実施例1−19と同様にして実施例1−24の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(14)に由来する青白色の発光が得られた。
(Example 1-24)
In Example 1-19, an organic EL device of Example 1-24 was produced in the same manner as in Example 1-19 except that H-2 was used instead of H-1. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (14) of the present invention was obtained.

(比較例1−1)
実施例1−1において、本発明の化合物(1)の代わりに、特開2006−261623に記載の化合物を用いた以外は実施例1−1と同様にして比較例1−1の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、特開2006−261623に記載の化合物に由来する緑色の発光が得られた。
(Comparative Example 1-1)
In Example 1-1, the organic EL device of Comparative Example 1-1 was used in the same manner as Example 1-1 except that the compound described in JP-A-2006-261623 was used instead of the compound (1) of the present invention. Was made. As a result of applying a direct current constant voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, green light emission derived from the compound described in JP-A-2006-261623 was obtained.

(比較例1−2)
実施例1−1において、本発明の化合物(1)の代わりに、特開2008−37848に記載の化合物を用いた以外は実施例1−1と同様にして比較例1−2の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、特開2008−37848に記載の化合物に由来する緑色の発光が得られた。
(Comparative Example 1-2)
In Example 1-1, the organic EL device of Comparative Example 1-2 was used in the same manner as Example 1-1 except that the compound described in JP-A-2008-37848 was used instead of the compound (1) of the present invention. Was made. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, green light emission derived from the compound described in JP-A-2008-37848 was obtained.

(駆動電圧の測定)
実施例1−1〜1−24、比較例1−1、及び比較例1−2の有機電界発光素子を(株)島津製作所製の発光スペクトル測定システム(ELS1500)にセットし、これらの輝度が100 cd/m2時の印加電圧を測定した。
(Measurement of drive voltage)
The organic electroluminescent elements of Examples 1-1 to 1-24, Comparative Example 1-1, and Comparative Example 1-2 were set in an emission spectrum measurement system (ELS1500) manufactured by Shimadzu Corporation, and their luminance was The applied voltage at 100 cd / m 2 was measured.

(駆動耐久性の評価)
実施例1−1〜1−24、比較例1−1、及び比較例1−2の有機電界発光素子を、東京システム開発(株)製のOLEDテストシステムST−D型にセットし、定電流モードにて初期輝度1000cd/m2の条件で駆動し、輝度半減時間を測定した。
(Driving durability evaluation)
The organic electroluminescent elements of Examples 1-1 to 1-24, Comparative Example 1-1, and Comparative Example 1-2 were set in an OLED test system ST-D type manufactured by Tokyo System Development Co., Ltd. The device was driven under the condition of an initial luminance of 1000 cd / m 2 in the mode, and the luminance half time was measured.

(外部量子効率の評価)
実施例1−1〜1−24、比較例1−1、及び比較例1−2の有機電界発光素子を、東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加して発光させた。100cd/m2時の正面輝度から外部量子効率(%)を算出した。
(Evaluation of external quantum efficiency)
The organic electroluminescent elements of Examples 1-1 to 1-24, Comparative Example 1-1, and Comparative Example 1-2 were applied with a DC constant voltage to the EL element using a source measure unit 2400 type manufactured by Toyo Technica. Was emitted. The external quantum efficiency (%) was calculated from the front luminance at 100 cd / m 2 .

Figure 2010135819
Figure 2010135819

上記実施例1−1〜1−24は、一般式(I)で表される化合物を発光材料として用いることにより、比較例1及び2と比較して輝度半減時間が長く、耐久性の点で優れることがわかる。
また、重水素原子を少なくとも1つ有する材料を用いた実施例1−6〜7、14〜16、22〜24は、輝度半減時間が長く、耐久性の点で更に優れることがわかる。同様に、他の本発明の化合物を用いても、発光性能が優れた発光素子を作製することができる。
In Examples 1-1 to 1-24, by using the compound represented by the general formula (I) as a luminescent material, the luminance half-life is longer than those of Comparative Examples 1 and 2, and the durability is thereby improved. It turns out that it is excellent.
Moreover, it turns out that Examples 1-6-7, 14-16, 22-24 using the material which has at least 1 deuterium atom have a long brightness | luminance half-life, and are further excellent in durability. Similarly, a light-emitting element having excellent light-emitting performance can be manufactured using other compounds of the present invention.

(実施例2−1) (Example 2-1)

Figure 2010135819
Figure 2010135819

実施例1−1において、第3層(発光層)の膜の組成比をH−1と本発明の化合物(1)を95:5(質量比)から、H−1とA−1と本発明の化合物(1)を80:15:5(質量比)に変えて蒸着した以外(膜厚:50nm)、実施例1−1と同様にして実施例2−1の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(1)に由来する青白色の発光が得られた。   In Example 1-1, the composition ratio of the film of the third layer (light emitting layer) is H-1 and the compound (1) of the present invention is 95: 5 (mass ratio), and H-1, A-1, An organic EL device of Example 2-1 was produced in the same manner as in Example 1-1, except that the compound (1) of the invention was changed to 80: 15: 5 (mass ratio) and deposited (film thickness: 50 nm). . As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit 2400 type manufactured by Toyo Technica, blue-white light emission derived from the compound (1) of the present invention was obtained.

(実施例2−2)
実施例2−1において、本発明の化合物(1)の代わりに、本発明の化合物(7)を用い、H−1の代わりに、H−5を用い、A−1の代わりに、A−2を用いた以外は実施例2−1と同様にして実施例2−2の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(7)に由来する青白色の発光が得られた。
(Example 2-2)
In Example 2-1, the compound (7) of the present invention was used instead of the compound (1) of the present invention, H-5 was used instead of H-1, and A- An organic EL device of Example 2-2 was produced in the same manner as in Example 2-1, except that 2. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (7) of the present invention was obtained.

(実施例2−3)
実施例2−1において、本発明の化合物(1)の代わりに、本発明の化合物(10)を用い、A−1の代わりに、A−2を用いた以外は実施例2−1と同様にして実施例2−3の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(10)に由来する青白色の発光が得られた。
(Example 2-3)
Example 2-1 was the same as Example 2-1 except that compound (10) of the present invention was used instead of compound (1) of the present invention, and A-2 was used instead of A-1. Thus, an organic EL device of Example 2-3 was produced. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (10) of the present invention was obtained.

(実施例2−4)
実施例2−1において、本発明の化合物(1)の代わりに、本発明の化合物(12)を用い、A−1の代わりに、A−2を用いた以外は実施例2−1と同様にして実施例2−4の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(12)に由来する青白色の発光が得られた。
(Example 2-4)
Example 2-1 was the same as Example 2-1 except that compound (12) of the present invention was used instead of compound (1) of the present invention, and A-2 was used instead of A-1. Thus, an organic EL device of Example 2-4 was produced. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit 2400 type manufactured by Toyo Technica, blue-white light emission derived from the compound (12) of the present invention was obtained.

(実施例2−5)
実施例2−1において、本発明の化合物(1)の代わりに、本発明の化合物(13)を用い、H−1の代わりに、H−5を用いた以外は実施例2−1と同様にして実施例2−5の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(13)に由来する青白色の発光が得られた。
(Example 2-5)
Example 2-1 was the same as Example 2-1 except that compound (13) of the present invention was used instead of compound (1) of the present invention, and H-5 was used instead of H-1. Thus, an organic EL device of Example 2-5 was produced. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (13) of the present invention was obtained.

(実施例2−6)
実施例2−1において、本発明の化合物(1)の代わりに、本発明の化合物(14)を用い、A−1の代わりに、A−2を用いた以外は実施例2−1と同様にして実施例2−6の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(14)に由来する青白色の発光が得られた。
(Example 2-6)
In Example 2-1, the compound (14) of the present invention was used instead of the compound (1) of the present invention, and A-2 was used instead of A-1, as in Example 2-1. Thus, an organic EL device of Example 2-6 was produced. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (14) of the present invention was obtained.

(実施例2−7)
実施例2−1において、H−1の代わりに、H−2を用いた以外は実施例2−1と同様にして実施例2−7の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(1)に由来する青白色の発光が得られた。
(Example 2-7)
In Example 2-1, an organic EL device of Example 2-7 was produced in the same manner as in Example 2-1, except that H-2 was used instead of H-1. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit 2400 type manufactured by Toyo Technica, blue-white light emission derived from the compound (1) of the present invention was obtained.

(実施例2−8)
実施例2−2において、H−5の代わりに、H−2を用いた以外は実施例2−2と同様にして実施例2−8の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(7)に由来する青白色の発光が得られた。
(Example 2-8)
In Example 2-2, an organic EL element of Example 2-8 was produced in the same manner as in Example 2-2 except that H-2 was used instead of H-5. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (7) of the present invention was obtained.

(実施例2−9)
実施例2−3において、H−1の代わりに、H−2を用いた以外は実施例2−3と同様にして実施例2−9の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(10)に由来する青白色の発光が得られた。
(Example 2-9)
In Example 2-3, an organic EL element of Example 2-9 was produced in the same manner as Example 2-3 except that H-2 was used instead of H-1. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (10) of the present invention was obtained.

(実施例2−10)
実施例2−4において、H−1の代わりに、H−2を用いた以外は実施例2−4と同様にして実施例2−10の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(12)に由来する青白色の発光が得られた。
(Example 2-10)
In Example 2-4, an organic EL device of Example 2-10 was produced in the same manner as in Example 2-4 except that H-2 was used instead of H-1. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit 2400 type manufactured by Toyo Technica, blue-white light emission derived from the compound (12) of the present invention was obtained.

(実施例2−11)
実施例2−5において、H−5の代わりに、H−2を用いた以外は実施例2−5と同様にして実施例2−11の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(13)に由来する青白色の発光が得られた。
(Example 2-11)
In Example 2-5, an organic EL device of Example 2-11 was produced in the same manner as in Example 2-5 except that H-2 was used instead of H-5. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (13) of the present invention was obtained.

(実施例2−12)
実施例2−6において、H−1の代わりに、H−2を用いた以外は実施例2−6と同様にして実施例2−12の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、本発明の化合物(14)に由来する青白色の発光が得られた。
(Example 2-12)
In Example 2-6, an organic EL element of Example 2-12 was produced in the same manner as in Example 2-6, except that H-2 was used instead of H-1. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, blue-white light emission derived from the compound (14) of the present invention was obtained.

(比較例2−1)
実施例2−1において、本発明の化合物(1)の代わりに、特開2006−261623に記載の化合物を用いた以外は実施例2−1と同様にして比較例2−1の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、特開2006−261623に記載の化合物に由来する緑色の発光が得られた。
(Comparative Example 2-1)
In Example 2-1, the organic EL device of Comparative Example 2-1 was used in the same manner as in Example 2-1, except that the compound described in JP-A-2006-261623 was used instead of the compound (1) of the present invention. Was made. As a result of applying a direct current constant voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, green light emission derived from the compound described in JP-A-2006-261623 was obtained.

(比較例2−2)
実施例2−1において、本発明の化合物(1)の代わりに、特開2008−37848に記載の化合物を用い、A−1の代わりに、A−2を用いた以外は実施例2−1と同様にして比較例2−2の有機EL素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、特開2008−37848に記載の化合物に由来する緑色の発光が得られた。
(Comparative Example 2-2)
In Example 2-1, Example 2-1 was used except that the compound described in JP-A-2008-37848 was used instead of compound (1) of the present invention, and A-2 was used instead of A-1. In the same manner, an organic EL device of Comparative Example 2-2 was produced. As a result of applying a DC constant voltage to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica, green light emission derived from the compound described in JP-A-2008-37848 was obtained.

(駆動電圧の測定)
実施例2−1〜2−12、比較例2−1、及び比較例2−2の有機電界発光素子を(株)島津製作所製の発光スペクトル測定システム(ELS1500)にセットし、これらの輝度が100 cd/m2時の印加電圧を測定した。
(Measurement of drive voltage)
The organic electroluminescent elements of Examples 2-1 to 2-12, Comparative Example 2-1 and Comparative Example 2-2 were set in an emission spectrum measurement system (ELS1500) manufactured by Shimadzu Corporation, and their luminance was The applied voltage at 100 cd / m 2 was measured.

(駆動耐久性の評価)
実施例2−1〜2−12、比較例2−1、及び比較例2−2の有機電界発光素子を、東京システム開発(株)製のOLEDテストシステムST−D型にセットし、定電流モードにて初期輝度1000cd/m2の条件で駆動し、輝度半減時間を測定した。
(Driving durability evaluation)
The organic electroluminescent elements of Examples 2-1 to 2-12, Comparative Example 2-1 and Comparative Example 2-2 were set in an OLED test system ST-D type manufactured by Tokyo System Development Co., Ltd. The device was driven under the condition of an initial luminance of 1000 cd / m 2 in the mode, and the luminance half time was measured.

(外部量子効率の評価)
実施例2−1〜2−12、比較例2−1、及び比較例2−2の有機電界発光素子を、東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加して発光させた。100cd/m2時の正面輝度から外部量子効率(%)を算出した。
(Evaluation of external quantum efficiency)
The organic electroluminescent elements of Examples 2-1 to 2-12, Comparative Example 2-1 and Comparative Example 2-2 were applied with a constant DC voltage to the EL element using a source measure unit 2400 type manufactured by Toyo Technica. Was emitted. The external quantum efficiency (%) was calculated from the front luminance at 100 cd / m 2 .

Figure 2010135819
Figure 2010135819

上記実施例2−1〜2−12を実施例1−1、実施例1−9、実施例1−12、実施例1−17〜1−19、実施例1−22〜実施例1−24、比較例2−1及び2−2と比較すると、一般式(I)で表される化合物と、一般式(a)で表される化合物を組み合わせた素子は輝度半減時間が長く、耐久性の点で優れることがわかる。同様に、他の本発明の化合物を用いても、発光性能が優れた発光素子を作製することができる。   The above Examples 2-1 to 2-12 are replaced with Example 1-1, Example 1-9, Example 1-12, Example 1-17 to 1-19, Example 1-22 to Example 1-24. In comparison with Comparative Examples 2-1 and 2-2, the device in which the compound represented by the general formula (I) and the compound represented by the general formula (a) are combined has a long luminance half-life and is durable. It turns out that it is excellent in terms. Similarly, a light-emitting element having excellent light-emitting performance can be manufactured using other compounds of the present invention.

Claims (9)

一対の電極間に発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、下記一般式(I)で表される化合物の少なくとも一種を少なくとも一層の有機層に含有する有機電界発光素子。
Figure 2010135819
一般式(I)中、X1、X2、X3、X4、X5、X6、X7、X8、X11、X12、X13、X14、及びX15は、各々独立に炭素又は窒素から選択される原子を表し、X1、X2、X3、X4、X5、X6、X7、及びX8のいずれか1つは窒素原子を表す。X1、X2、X3、X4、X5、X6、X7、X8、X11、X12、X13、X14、及びX15が更に置換可能な場合は各々独立に置換基を有していてもよい。Mは2価の金属イオンを表す。L1は二価の連結基を表す。金属と窒素原子の結合を表す破線は配位結合を表し、金属と炭素原子の結合を表す実線は共有結合を表す。
An organic electroluminescent element having at least one organic layer including a light emitting layer between a pair of electrodes, wherein the organic electroluminescent element contains at least one compound represented by the following general formula (I) in at least one organic layer element.
Figure 2010135819
In the general formula (I), X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 11 , X 12 , X 13 , X 14 , and X 15 are each independently Represents an atom selected from carbon or nitrogen, and any one of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , and X 8 represents a nitrogen atom. X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 11 , X 12 , X 13 , X 14 , and X 15 are each independently substituted if further replaceable It may have a group. M represents a divalent metal ion. L 1 represents a divalent linking group. A broken line representing a bond between a metal and a nitrogen atom represents a coordination bond, and a solid line representing a bond between the metal and a carbon atom represents a covalent bond.
前記一般式(I)が下記一般式(II)で表されることを特徴とする請求項1に記載の有機電界発光素子。
Figure 2010135819
一般式(II)中、X21、X22、X23、X24、X25、X26、X27、X28、X31、X32、X33、X34、及びX35は、各々独立に炭素又は窒素から選択される原子を表し、X21、X22、X23、X24、X25、X26、X27、及びX28のいずれか1つは窒素原子を表す。X21、X22、X23、X24、X25、X26、X27、X28、X31、X32、X33、X34、及びX35が更に置換可能な場合は各々独立に置換基を有していてもよい。L2は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。
The organic electroluminescent element according to claim 1, wherein the general formula (I) is represented by the following general formula (II).
Figure 2010135819
In the general formula (II), X 21 , X 22 , X 23 , X 24 , X 25 , X 26 , X 27 , X 28 , X 31 , X 32 , X 33 , X 34 , and X 35 are each independently Represents an atom selected from carbon or nitrogen, and any one of X 21 , X 22 , X 23 , X 24 , X 25 , X 26 , X 27 , and X 28 represents a nitrogen atom. X 21 , X 22 , X 23 , X 24 , X 25 , X 26 , X 27 , X 28 , X 31 , X 32 , X 33 , X 34 , and X 35 are each independently substituted if further replaceable It may have a group. L 2 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.
前記一般式(II)が下記一般式(III)で表されることを特徴とする請求項2に記載の有機電界発光素子。
Figure 2010135819
一般式(III)中、X41、X42、X43、X44、X45、X46、X47、X48、X51、X52、X53、X54、及びX55は、各々独立に炭素又は窒素から選択される原子を表し、X41、X42、X43、及びX44のいずれか1つは窒素原子を表す。X41、X42、X43、X44、X45、X46、X47、X48、X51、X52、X53、X54、及びX55が更に置換可能な場合は各々独立に置換基を有していてもよい。L3は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。
The organic electroluminescent element according to claim 2, wherein the general formula (II) is represented by the following general formula (III).
Figure 2010135819
In the general formula (III), X 41 , X 42 , X 43 , X 44 , X 45 , X 46 , X 47 , X 48 , X 51 , X 52 , X 53 , X 54 , and X 55 are each independently Represents an atom selected from carbon or nitrogen, and any one of X 41 , X 42 , X 43 , and X 44 represents a nitrogen atom. X 41 , X 42 , X 43 , X 44 , X 45 , X 46 , X 47 , X 48 , X 51 , X 52 , X 53 , X 54 , and X 55 are each independently substituted if further replaceable It may have a group. L 3 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.
前記一般式(III)が下記一般式(IV)で表されることを特徴とする請求項3に記載の有機電界発光素子。
Figure 2010135819
一般式(IV)中、X61、X62、X63、X64、X65、X66、X67、及びX68は、各々独立に炭素又は窒素から選択される原子を表し、X61、X62、X63、及びX64のいずれか1つは窒素原子を表す。X61、X62、X63、X64、X65、X66、X67、及びX68が更に置換可能な場合は各々独立に置換基を有していてもよい。R61、R62、R63、R64、及びR65は各々独立に水素原子又は置換基を表す。L4は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。
The organic electroluminescence device according to claim 3, wherein the general formula (III) is represented by the following general formula (IV).
Figure 2010135819
In the general formula (IV), X 61, X 62, X 63, X 64, X 65, X 66, X 67, and X 68 represents an atom selected from carbon or nitrogen independently, X 61, Any one of X 62 , X 63 and X 64 represents a nitrogen atom. When X 61 , X 62 , X 63 , X 64 , X 65 , X 66 , X 67 , and X 68 can be further substituted, each may independently have a substituent. R 61 , R 62 , R 63 , R 64 , and R 65 each independently represent a hydrogen atom or a substituent. L 4 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.
前記一般式(IV)が下記一般式(V)で表されることを特徴とする請求項4に記載の有機電界発光素子。
Figure 2010135819
一般式(V)中、X71、X73、X74、X75、X76、X77、及びX78は、各々独立に炭素又は窒素から選択される原子を表す。X71、X73、X74、X75、X76、X77、及びX78が更に置換可能な場合は各々独立に置換基を有していてもよい。R71、R72、R73、R74、及びR75は各々独立に水素原子又は置換基を表す。L5は二価の連結基を表す。白金原子と窒素原子の結合を表す破線は配位結合を表し、白金原子と炭素原子の結合を表す実線は共有結合を表す。
The organic electroluminescent element according to claim 4, wherein the general formula (IV) is represented by the following general formula (V).
Figure 2010135819
In the general formula (V), X 71 , X 73 , X 74 , X 75 , X 76 , X 77 , and X 78 each independently represent an atom selected from carbon or nitrogen. When X 71 , X 73 , X 74 , X 75 , X 76 , X 77 , and X 78 can be further substituted, each may independently have a substituent. R 71 , R 72 , R 73 , R 74 , and R 75 each independently represent a hydrogen atom or a substituent. L 5 represents a divalent linking group. A broken line representing a bond between a platinum atom and a nitrogen atom represents a coordination bond, and a solid line representing a bond between a platinum atom and a carbon atom represents a covalent bond.
更に、重水素原子を少なくとも1つ有する材料を有機層のいずれかに含有することを特徴とする請求項1〜5のいずれかに記載の有機電界発光素子。   Furthermore, the organic electroluminescent element in any one of the Claims 1-5 which contain the material which has at least 1 deuterium atom in either of an organic layer. 更に、重水素原子を少なくとも1つ有する材料を発光層に含有することを特徴とする請求項1〜5のいずれかに記載の有機電界発光素子。   Furthermore, the light emitting layer contains the material which has at least 1 deuterium atom, The organic electroluminescent element in any one of Claims 1-5 characterized by the above-mentioned. 重水素原子を少なくとも1つ有する材料が、重水素原子を少なくとも1つ有するカルバゾール骨格又はインドール骨格を含む材料であることを特徴とする請求項1〜7のいずれかに記載の有機電界発光素子。   The organic electroluminescent device according to claim 1, wherein the material having at least one deuterium atom is a material including a carbazole skeleton or an indole skeleton having at least one deuterium atom. 更に、下記一般式(a)で表される化合物を発光層に含むことを特徴とする請求項1〜8のいずれかに記載の有機電界発光素子。
Figure 2010135819
一般式(a)において、R1〜R4は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アシル基、アシロキシ基、アミノ基、ニトロ基、シアノ基、エステル基、アミド基、ハロゲン基、パーフルオロアルキル基、シリル基を表し、該R1〜R4の少なくとも1つは、二重結合、あるいは三重結合を有する基である。X1〜X12は、それぞれ独立に、水素原子、アルキル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アシル基、アシロキシ基、アミノ基、ニトロ基、シアノ基、エステル基、アミド基、ハロゲン基、パーフルオロアルキル基、シリル基を表す。
Furthermore, the compound represented by the following general formula (a) is included in a light emitting layer, The organic electroluminescent element in any one of Claims 1-8 characterized by the above-mentioned.
Figure 2010135819
In the general formula (a), R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, an acyl group, an acyloxy group, an amino group, a nitro group, Represents a group, a cyano group, an ester group, an amide group, a halogen group, a perfluoroalkyl group, or a silyl group, and at least one of R 1 to R 4 is a group having a double bond or a triple bond. X 1 to X 12 are each independently a hydrogen atom, alkyl group, alkynyl group, aryl group, heteroaryl group, alkoxy group, acyl group, acyloxy group, amino group, nitro group, cyano group, ester group, amide group Represents a halogen group, a perfluoroalkyl group, or a silyl group.
JP2010007525A 2008-04-24 2010-01-15 Platinum complex Active JP4562805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010007525A JP4562805B2 (en) 2008-04-24 2010-01-15 Platinum complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008114442 2008-04-24
JP2010007525A JP4562805B2 (en) 2008-04-24 2010-01-15 Platinum complex

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009077628A Division JP4531842B2 (en) 2008-04-24 2009-03-26 Organic electroluminescence device

Publications (3)

Publication Number Publication Date
JP2010135819A true JP2010135819A (en) 2010-06-17
JP2010135819A5 JP2010135819A5 (en) 2010-07-29
JP4562805B2 JP4562805B2 (en) 2010-10-13

Family

ID=42346711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010007525A Active JP4562805B2 (en) 2008-04-24 2010-01-15 Platinum complex

Country Status (1)

Country Link
JP (1) JP4562805B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130012568A (en) * 2011-07-25 2013-02-04 유니버셜 디스플레이 코포레이션 Tetradentate platinum complexes
US10214551B2 (en) 2011-07-25 2019-02-26 Universal Display Corporation Organic electroluminescent materials and devices
US11719748B2 (en) 2019-10-17 2023-08-08 Yangtze Memory Technologies Co., Ltd. Method of testing memory device employing limited number of test pins and memory device utilizing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042444A2 (en) * 2003-11-04 2005-05-12 Takasago Perfumery Co Ltd Platinum complex and luminescent element
JP2007096255A (en) * 2005-03-14 2007-04-12 Fujifilm Corp Organic electroluminescent element
JP2008037848A (en) * 2006-08-10 2008-02-21 Takasago Internatl Corp Platinum complex and light-emitting element
JP2008143826A (en) * 2006-12-08 2008-06-26 Idemitsu Kosan Co Ltd Luminescent platinum complex and organic electroluminescent light-emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042444A2 (en) * 2003-11-04 2005-05-12 Takasago Perfumery Co Ltd Platinum complex and luminescent element
JP2007096255A (en) * 2005-03-14 2007-04-12 Fujifilm Corp Organic electroluminescent element
JP2008037848A (en) * 2006-08-10 2008-02-21 Takasago Internatl Corp Platinum complex and light-emitting element
JP2008143826A (en) * 2006-12-08 2008-06-26 Idemitsu Kosan Co Ltd Luminescent platinum complex and organic electroluminescent light-emitting element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130012568A (en) * 2011-07-25 2013-02-04 유니버셜 디스플레이 코포레이션 Tetradentate platinum complexes
JP2013023500A (en) * 2011-07-25 2013-02-04 Universal Display Corp Tetradentate-coordinated platinum complex
JP2018048126A (en) * 2011-07-25 2018-03-29 ユニバーサル ディスプレイ コーポレイション Tetradentate platinum complexes
KR101950039B1 (en) * 2011-07-25 2019-02-19 유니버셜 디스플레이 코포레이션 Tetradentate platinum complexes
US10214551B2 (en) 2011-07-25 2019-02-26 Universal Display Corporation Organic electroluminescent materials and devices
US11719748B2 (en) 2019-10-17 2023-08-08 Yangtze Memory Technologies Co., Ltd. Method of testing memory device employing limited number of test pins and memory device utilizing same

Also Published As

Publication number Publication date
JP4562805B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP4531842B2 (en) Organic electroluminescence device
KR102205721B1 (en) Organic electroluminescent device
JP4727262B2 (en) Organic electroluminescence device
JP5144034B2 (en) Organic electroluminescence device
JP5438941B2 (en) Organic electroluminescence device
JP4531836B2 (en) Organic electroluminescent device, novel platinum complex compound and novel compound that can be a ligand
JP5438955B2 (en) Platinum complex compound and organic electroluminescence device using the same
JP4399382B2 (en) Organic electroluminescence device
JP4796802B2 (en) Organic electroluminescence device
JP2009267171A (en) Organic electric field light emitting element
JP2010161356A (en) Organic electroluminescence element and light-emitting device
JP2009267176A (en) Organic electroluminescent element
JP5441634B2 (en) Organic electroluminescence device
JP4558061B2 (en) Organic electroluminescence device
JP4562805B2 (en) Platinum complex
JP2009231801A (en) Organic electroluminescent element
JP4613249B2 (en) Organic electroluminescent device, novel platinum complex compound and novel compound that can be a ligand
JP5551370B2 (en) Organic electroluminescence device
JP4909695B2 (en) Organic electroluminescence device
JP2009231265A (en) Manufacturing method of organic electroluminescent element, and organic electroluminescent element manufactured by the same
JP2006269836A (en) Organic electroluminescent element
JP2007081050A (en) Organic electroluminescence element
JP2006148012A (en) Organic electric field light emitting element
JP2008239797A (en) Organic electroluminescent device
JP4682264B2 (en) Organic electroluminescence device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100528

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4562805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250