JP2010135097A - Organic el element, and manufacturing method thereof - Google Patents

Organic el element, and manufacturing method thereof Download PDF

Info

Publication number
JP2010135097A
JP2010135097A JP2008307367A JP2008307367A JP2010135097A JP 2010135097 A JP2010135097 A JP 2010135097A JP 2008307367 A JP2008307367 A JP 2008307367A JP 2008307367 A JP2008307367 A JP 2008307367A JP 2010135097 A JP2010135097 A JP 2010135097A
Authority
JP
Japan
Prior art keywords
auxiliary electrode
organic
cathode
anode
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008307367A
Other languages
Japanese (ja)
Other versions
JP5173769B2 (en
Inventor
Etsuko Tomita
恵津子 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2008307367A priority Critical patent/JP5173769B2/en
Publication of JP2010135097A publication Critical patent/JP2010135097A/en
Application granted granted Critical
Publication of JP5173769B2 publication Critical patent/JP5173769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element with low contact resistance between a cathode and an auxiliary electrode, and driving at low voltage with high current efficiently, without drastically changing a cathode material, kinds of auxiliary electrode materials or present manufacturing processes, in a manufacturing method of the organic EL element. <P>SOLUTION: The manufacturing method of the organic EL element provided with an anode 4, an organic light-emitting layer 6 and a cathode 7 on a substrate 1 in this order, and further provided with an auxiliary electrode 2 for supplying driving current to the cathode 7, includes a process forming the auxiliary electrode 2 on the substrate 1, a process of irradiating gas plasma inactive to all of an auxiliary electrode material, a cathode material and oxygen, on a surface of the auxiliary electrode 2, a process of forming the anode 4 on the substrate 1 so as not to short circuit with the auxiliary electrode 2, a process of forming the organic light-emitting layer 6 on the anode 4, and a process of forming the cathode 7 on upper surfaces of the organic light-emitting layer 6 and the auxiliary electrode 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有機EL素子の構成に関する。より詳細には、有機EL素子の補助電極表面の処理方法に関する。   The present invention relates to a configuration of an organic EL element. In more detail, it is related with the processing method of the auxiliary electrode surface of an organic EL element.

近年、情報通信の高速化と応用範囲の拡大が急速に進んでいる。この中で、表示デバイスには、携帯性や動画表示の要求に対応可能な低消費電力・高速応答性を有する高精細な表示デバイスの考案が広くなされている。   In recent years, the speed of information communication and the application range have been rapidly increasing. Among these, for display devices, high-definition display devices having low power consumption and high-speed response that can meet the demands of portability and moving image display have been widely devised.

有機エレクトロルミネセンス(以下有機ELという)素子は、Tangらによる印加電圧10Vで100Cd/m以上の高輝度で発光する積層型EL素子の報告(例えば、非特許文献1を参照。)以来、高コントラスト、低電圧駆動、高視野角、高速応答性などの液晶表示素子等に比較して優位な特徴を活かしたフラットパネルディスプレイへの応用が期待され、実用化に向けての研究が活発に行われている。すでに、緑色モノクロ有機ELディスプレイなどが製品化されており、高精細のフルカラーディスプレイの完成が待たれている。 Since organic electroluminescence (hereinafter referred to as organic EL) elements have been reported by Tang et al. As a stacked EL element that emits light with a high luminance of 100 Cd / m 2 or more at an applied voltage of 10 V (see, for example, Non-Patent Document 1). Expected to be applied to flat panel displays that take advantage of superior features compared to liquid crystal display elements such as high contrast, low voltage drive, high viewing angle, and high-speed response, and research for practical application is active Has been done. Green monochrome organic EL displays and the like have already been commercialized, and the completion of high-definition full-color displays is awaited.

一般的に有機EL素子は、電極と電極との間に有機発光層を有している。このうち、光を取り出す側の電極はIZOやITOなどの透明電極を用い、透明電極と逆側の電極(以下背面電極)には、光取り出し効率を高めるためAlなどの反射率が高い金属電極を用いる。さらに、発光層に電力を供給するために、背面電極に補助電極を経由して外部の駆動回路と接続し、発光を制御する方法が広く用いられている。   Generally, an organic EL element has an organic light emitting layer between electrodes. Among these, a transparent electrode such as IZO or ITO is used as the electrode from which light is extracted, and a metal electrode having a high reflectance such as Al is used for the electrode opposite to the transparent electrode (hereinafter referred to as a back electrode) in order to increase the light extraction efficiency. Is used. Furthermore, in order to supply power to the light emitting layer, a method of controlling light emission by connecting the back electrode to an external drive circuit via an auxiliary electrode is widely used.

補助電極材料としては、背面電極に対して電気抵抗が小さい材料であればよく、Mo,Alなどの金属やAl−Mo,Al−Ti,Al−Cr合金を用いることができるが、背面電極は反射率が高く、かつ電気伝導率が良好であることが求められるため、Al系金属を背面電極、Mo系金属を補助電極に用いることが多い。   The auxiliary electrode material may be any material that has a low electrical resistance with respect to the back electrode, and metals such as Mo and Al, and Al—Mo, Al—Ti, and Al—Cr alloys can be used. Since it is required to have high reflectance and good electrical conductivity, Al-based metal is often used for the back electrode and Mo-based metal is used for the auxiliary electrode.

Mo系金属を補助電極に用いた場合、スパッタ製膜時や有機層製膜前処理時にMo表面が酸化されやすいという問題が生じる。これまでの調査で、補助電極、透明電極、シャドーマスク製膜後の有機膜製膜前処理工程(以下、製膜前処理と称す)によりMo系金属補助電極表面が酸化することが分かっている。   When the Mo-based metal is used for the auxiliary electrode, there arises a problem that the Mo surface is easily oxidized at the time of sputtering film formation or organic layer film formation pretreatment. Previous investigations have shown that the surface of the Mo-based metal auxiliary electrode is oxidized by the organic film pre-treatment process (hereinafter referred to as pre-film formation) after forming the auxiliary electrode, transparent electrode, and shadow mask. .

このように酸化されたMo金属の上面にAl系金属を積層した場合、AlがMo酸化膜に電子を供与し、AlにMoが還元され、Al系金属層とMo系金属層との間に、電気抵抗が高いAl酸化層が形成される。その結果、背面電極・補助電極間の抵抗が増加し、有機EL素子の電流効率が悪化する問題が発生している。   When an Al-based metal is stacked on the upper surface of the Mo metal thus oxidized, Al donates electrons to the Mo oxide film, Mo is reduced to Al, and between the Al-based metal layer and the Mo-based metal layer. Then, an Al oxide layer having a high electric resistance is formed. As a result, the resistance between the back electrode and the auxiliary electrode increases, and the current efficiency of the organic EL element is deteriorated.

一方で、製膜前処理は、透明電極表面の残渣や塵埃を除去する目的で、有機膜製膜直前に基板の高温乾燥処理(150℃)およびUV処理(室温のち150℃まで加熱)を行っている。透明電極と有機膜との界面に残渣等の汚染が存在した場合、駆動電圧の上昇や界面異常による絶縁破壊が発生することが分かっている。このため、有機EL素子の低電圧化および信頼性向上のためには、製膜前処理は望ましいプロセスとなっている。   On the other hand, the pre-film-forming treatment is performed by performing high-temperature drying (150 ° C.) and UV treatment (heating to 150 ° C. after room temperature) of the substrate immediately before the organic film is formed for the purpose of removing residues and dust on the surface of the transparent electrode. ing. It has been found that when a contamination such as a residue is present at the interface between the transparent electrode and the organic film, a dielectric breakdown occurs due to an increase in driving voltage or an abnormal interface. For this reason, in order to reduce the voltage and improve the reliability of the organic EL element, the film formation pretreatment is a desirable process.

このような状況の中、有機EL素子の背面電極−補助電極間の抵抗を低減させる提案がいくつか上げられている。例えば、補助電極材料上面に貴金属、窒化物、酸化物等の対変質性が良好なバリア層を用いる方法が提案されている(特許文献1および2を参照)。
AppL.Phys.Lett.,51,913(1987) 特開2001−351778号公報 特開2004−158199号公報
Under such circumstances, some proposals for reducing the resistance between the back electrode and the auxiliary electrode of the organic EL element have been raised. For example, a method has been proposed in which a barrier layer having good anti-modification properties such as noble metals, nitrides, and oxides is used on the upper surface of the auxiliary electrode material (see Patent Documents 1 and 2).
AppL. Phys. Lett. , 51, 913 (1987) JP 2001-351778 A JP 2004-158199 A

しかしながら、Auなどの貴金属はAlに比べ非常に高価であることから、有機EL製品のコストアップが問題となる。また、酸窒化膜や窒化膜を作製する場合、膜の作製条件や製造プロセスが煩雑化するため製造工程数が増加し、製造時間の増加が考えられる。   However, since noble metals such as Au are much more expensive than Al, the cost of organic EL products is problematic. Further, when an oxynitride film or a nitride film is manufactured, the manufacturing conditions and manufacturing process of the film are complicated, so that the number of manufacturing steps increases and an increase in manufacturing time can be considered.

本発明の目的は、上記現状に鑑み、有機EL素子の製造において、陰極材料、補助電極材料の種類や、現在の製造工程を大きく変更することなく、陰極と補助電極との間の接触抵抗が低く、高電流効率で低電圧駆動する有機EL素子を提供することにある。   The object of the present invention is to provide a contact resistance between the cathode and the auxiliary electrode without significantly changing the type of the cathode material and the auxiliary electrode material and the current manufacturing process in the manufacture of the organic EL element in view of the above-mentioned present situation. An object of the present invention is to provide an organic EL element which is low and driven at a low voltage with high current efficiency.

背面電極として例えば、反射率が良好で安価なAlを用い、かつ、接触抵抗の増加を防止するためには、背面電極と接触する補助電極表面の酸化を防止する必要がある。そのためには、製膜前処理プロセス中の雰囲気を補助電極表面から遮断すればよい。そこで、補助電極を作製した後、陰極材料・補助電極材料・酸素のいずれに対しても不活性な酸化防止吸着膜、すなわち、フッ素含有膜、フッ素吸着膜で補助電極をコーティングすることを提案する。
さらに、この酸化防止膜は補助電極表面と製膜前処理プロセス中の雰囲気との接触を遮断する役割を有すると同時に、背面電極との接触抵抗を増加させないという条件が必要不可欠であるため、極めて薄い膜であることが求められる。そこで、補助電極のコーティング方法として、陰極材料・補助電極材料・酸素のいずれに対しても不活性なガスプラズマ雰囲気に曝露し、補助電極表面にガス成分を極僅かに付着させることを提案する。この方法であれば、ガス吹き付け条件を調節することで極薄膜を形成することが可能である。
For example, in order to use, for example, Al having good reflectivity and low cost as the back electrode, and to prevent an increase in contact resistance, it is necessary to prevent oxidation of the auxiliary electrode surface in contact with the back electrode. For this purpose, the atmosphere during the film-forming pretreatment process may be blocked from the auxiliary electrode surface. Therefore, after the auxiliary electrode is fabricated, it is proposed to coat the auxiliary electrode with an antioxidant adsorption film that is inert to any of the cathode material, auxiliary electrode material, and oxygen, that is, a fluorine-containing film or a fluorine adsorption film. .
Furthermore, since this antioxidant film has a role of blocking the contact between the auxiliary electrode surface and the atmosphere during the pretreatment process for film formation, it is indispensable that the contact resistance with the back electrode is not increased. A thin film is required. Therefore, as a method for coating the auxiliary electrode, it is proposed to expose the cathode material, the auxiliary electrode material, and oxygen to an inert gas plasma atmosphere so that the gas components adhere to the surface of the auxiliary electrode very slightly. With this method, it is possible to form an ultrathin film by adjusting the gas blowing conditions.

本発明の有機EL素子はまた、基板の上に陽極、有機発光層および陰極をこの順に備え、さらに該陰極に駆動電流を供給するための補助電極を備えた有機EL素子であって、前記補助電極と陰極との間に、陰極材料、補助電極材料または酸素のいずれにも不活性なフッ素含有膜を備えたものである。
本発明の有機EL素子の製造方法は、基板の上に陽極、有機発光層および陰極をこの順に備え、さらに該陰極に駆動電流を供給するための補助電極を備えた有機EL素子の製造方法であって、前記基板上に、前記補助電極を形成する工程と、前記補助電極の表面に、補助電極材料、陰極材料または酸素のいずれにも不活性なガスプラズマを照射する工程と、前記基板上に、補助電極と短絡しないように陽極を形成する工程と、前記陽極上に、有機発光層を形成する工程と、前記有機発光層および補助電極の上面に陰極を形成する工程とをこの順に含むものである。
The organic EL device of the present invention is also an organic EL device comprising an anode, an organic light emitting layer and a cathode on a substrate in this order, and further comprising an auxiliary electrode for supplying a driving current to the cathode. A fluorine-containing film that is inert to any of the cathode material, auxiliary electrode material, and oxygen is provided between the electrode and the cathode.
The method for producing an organic EL device of the present invention is a method for producing an organic EL device comprising an anode, an organic light emitting layer and a cathode on a substrate in this order, and further comprising an auxiliary electrode for supplying a drive current to the cathode. A step of forming the auxiliary electrode on the substrate; a step of irradiating the surface of the auxiliary electrode with gas plasma inert to any of the auxiliary electrode material, the cathode material, and oxygen; In addition, a step of forming an anode so as not to be short-circuited with the auxiliary electrode, a step of forming an organic light emitting layer on the anode, and a step of forming a cathode on the upper surface of the organic light emitting layer and the auxiliary electrode are included in this order. It is a waste.

本発明において、(1)補助電極表面に、酸素に対して不活性なガス成分、すなわち、フッ素ガス成分、フッ素化合物を付着させることにより、補助電極表面が後工程の雰囲気から遮断されるため、表面の酸化が防止でき、接触抵抗の増加を抑制でき、高電流効率で低電圧な有機EL素子の簡便な製造方法を提供することができる。
また(2)現状の陰極材料、補助電極材料、および現在の製造工程を大きく変更することがないので、既存の設備および材料の長所を生かしながら高電流効率で低電圧な有機EL素子の簡便な製造方法を提供することができる。
In the present invention, (1) by attaching a gas component inert to oxygen, that is, a fluorine gas component and a fluorine compound, to the auxiliary electrode surface, the auxiliary electrode surface is shielded from the atmosphere in the subsequent process. Surface oxidation can be prevented, an increase in contact resistance can be suppressed, and a simple method for producing an organic EL element with high current efficiency and low voltage can be provided.
(2) Since the current cathode material, auxiliary electrode material, and current manufacturing process are not significantly changed, it is possible to simplify the organic EL device with high current efficiency and low voltage while taking advantage of existing facilities and materials. A manufacturing method can be provided.

まず、本発明における有機EL素子の1つの実施形態の断面模式図を図1に示す。有機EL素子は、主に、素子を支える基体である基板1、外部から電流を供給する補助電極2、陽極4、絶縁層5、有機発光層6、光を反射させる陰極(背面電極)7を備える。   First, the cross-sectional schematic diagram of one Embodiment of the organic EL element in this invention is shown in FIG. The organic EL element mainly includes a substrate 1 that is a base that supports the element, an auxiliary electrode 2 that supplies current from the outside, an anode 4, an insulating layer 5, an organic light emitting layer 6, and a cathode (back electrode) 7 that reflects light. Prepare.

本発明における有機EL素子製造プロセスの模式図を図2に示す。
まず、基板1に補助電極2をスパッタリングで形成する。
補助電極2は、Al,Cu,Cr,Moなどの導電性が高く、低抵抗な金属を用いることができ、有機EL素子端部にて背面電極6と接触し、外部からの駆動電圧を有機EL素子に供給する。
補助電極2は、例えば、DCスパッタ法を用いてMo膜を堆積したのち、フォトリソグラフによりレジストをパターニングし、エッチングによりパターン形成することができる。
補助電極2の好ましい厚さは、50〜1000nmである。
The schematic diagram of the organic EL element manufacturing process in this invention is shown in FIG.
First, the auxiliary electrode 2 is formed on the substrate 1 by sputtering.
The auxiliary electrode 2 can be made of a metal having high conductivity such as Al, Cu, Cr, and Mo, and can use a low-resistance metal. The auxiliary electrode 2 is in contact with the back electrode 6 at the end of the organic EL element, and an external driving voltage is organic. Supply to EL element.
For example, after depositing a Mo film using a DC sputtering method, the auxiliary electrode 2 can be patterned by photolithography and patterning a resist.
A preferred thickness of the auxiliary electrode 2 is 50 to 1000 nm.

つぎに補助電極2をパターン形成した基板を、真空装置内に入れてガスプラズマ8を照射する。これにより、補助電極2の表面には、ガスプラズマ材料が分子1層ないし数層分吸着する。これが酸化防止吸着膜3となる。ガスプラズマ材料が1層ないし数層分吸着していることは、数nmレベルの解析ができるXPSによる深さ方向分析によって確認することができる。
また、酸化防止吸着膜3の膜厚が増加した場合、この薄膜により接触抵抗が増加する可能性がある。これを防止するため、膜厚は分子1層ないし数層分、厚さ換算で10nm未満、0.1nm以上であることが望ましい。
酸化防止膜は、フッ素含有膜であることが好ましい。フッ素含有膜は、XPSによる表面分析において、フッ素が、母材に対して、例えば、Fの組成比/Moの組成比が0.008以上検出される膜である。
Next, the substrate on which the auxiliary electrode 2 is patterned is placed in a vacuum apparatus and irradiated with gas plasma 8. As a result, the gas plasma material is adsorbed on the surface of the auxiliary electrode 2 by one to several layers of molecules. This is the antioxidant adsorption film 3. It can be confirmed that the gas plasma material is adsorbed by one layer or several layers by depth direction analysis by XPS capable of analyzing several nm level.
Moreover, when the film thickness of the antioxidant adsorption film 3 increases, the contact resistance may increase due to this thin film. In order to prevent this, it is desirable that the film thickness is one molecule to several layers, less than 10 nm and 0.1 nm or more in terms of thickness.
The antioxidant film is preferably a fluorine-containing film. In the surface analysis by XPS, the fluorine-containing film is a film in which, for example, fluorine is detected with respect to the base material at a composition ratio of F / Mo of 0.008 or more.

ガスプラズマ材料であるガス種は、陰極材料、補助電極材料または酸素のいずれに対しても不活性であることが求められる。「陰極材料、補助電極材料または酸素のいずれに対しても不活性」とは、製造中または素子の駆動中に、ガス種が陰極材料などと反応して、例えば、陰極材料自体の構造を変えてしまわないことをいう。
ガス種はまた、補助電極表面に1層ないし数層吸着することができ、かつ、スパッタ中あるいは製膜前処理中の雰囲気から補助電極表面を保護できるものが好ましい。ガス種としては、フッ素(F)、フッ素化合物のガスからなる群より選択される1種類以上のガスを含むものが好ましい。
フッ素化合物としては、例えば、CF、SF等を挙げることができる。
なお、ガスプラズマ発生方式は、特に限定されるものではないが、RF放電、マグネトロン放電、マイクロ波放電などの方法を採用することができる。
ガスの種類およびガスプラズマ照射条件は、補助電極材料に応じて適宜選定することが望ましい。
例えば、補助電極材料としてMoを用いる場合、ガスの種類として、CF、SFあるいはそれらの混合ガスを用いることができ、プラズマ方式を誘導結合プラズマ[ICP]、RFパワーを1000W〜10000W、雰囲気圧を150mTorrとすることができる。
The gas species that is the gas plasma material is required to be inert to any of the cathode material, the auxiliary electrode material, and oxygen. “Inert to any of the cathode material, auxiliary electrode material, or oxygen” means that the gas species reacts with the cathode material or the like during manufacturing or driving of the device, for example, to change the structure of the cathode material itself. It means things that do n’t happen.
The gas species is preferably one that can adsorb one layer or several layers on the surface of the auxiliary electrode and can protect the surface of the auxiliary electrode from the atmosphere during sputtering or pretreatment for film formation. The gas species preferably includes one or more gases selected from the group consisting of fluorine (F 2 ) and fluorine compound gases.
Examples of the fluorine compound include CF 4 and SF 6 .
The gas plasma generation method is not particularly limited, and methods such as RF discharge, magnetron discharge, and microwave discharge can be employed.
The type of gas and the gas plasma irradiation conditions are preferably selected as appropriate according to the auxiliary electrode material.
For example, when Mo is used as the auxiliary electrode material, CF 4 , SF 6 or a mixed gas thereof can be used as the gas type, the plasma system is inductively coupled plasma [ICP], the RF power is 1000 W to 10,000 W, the atmosphere The pressure can be 150 mTorr.

ガスプラズマ照射後の補助電極表面における母材に対するガス元素の比率は0.008以上であることが好ましい。
上記元素組成は、X線光電子分光法[XPS]で測定することにより得られる値である。
The ratio of the gas element to the base material on the auxiliary electrode surface after gas plasma irradiation is preferably 0.008 or more.
The elemental composition is a value obtained by measurement by X-ray photoelectron spectroscopy [XPS].

ガスプラズマを照射した後、補助電極2と陽極4とが短絡しないように陽極4をパターニング形成する。
陽極4は、後述する有機発光層6で発生した光を取り出すために透明導電性材料からなる。より詳細には、可視光領域の波長が80%以上透過する導電性材料であることが望ましく、IZO(In−Zn系酸化物)あるいはITO(In−錫系酸化物)が用いられている。
陽極は、例えば、DCスパッタ、マグネトロンスパッタ等で形成することができる。陽極の好ましい厚さは、30〜1000nmである。
上記陽極4と補助電極2との電気的接触をさける方法としては、例えば、絶縁層5を介して陽極を形成する方法がある。絶縁層5は、無機酸化物や樹脂材料で形成することがこのましく、例えば、SiOを用いることができる。絶縁層は、例えば、蒸着スパッタリング等の方法で形成することができる。絶縁層の好ましい厚さは、50〜1000nmである。
After the gas plasma irradiation, the anode 4 is formed by patterning so that the auxiliary electrode 2 and the anode 4 are not short-circuited.
The anode 4 is made of a transparent conductive material in order to extract light generated in the organic light emitting layer 6 described later. More specifically, the conductive material is preferably a conductive material that transmits 80% or more of the wavelength in the visible light region, and IZO (In—Zn-based oxide) or ITO (In—tin-based oxide) is used.
The anode can be formed by, for example, DC sputtering, magnetron sputtering, or the like. A preferable thickness of the anode is 30 to 1000 nm.
As a method for avoiding electrical contact between the anode 4 and the auxiliary electrode 2, for example, there is a method of forming an anode through an insulating layer 5. The insulating layer 5 is preferably formed of an inorganic oxide or a resin material. For example, SiO 2 can be used. The insulating layer can be formed by a method such as vapor deposition sputtering, for example. A preferable thickness of the insulating layer is 50 to 1000 nm.

陽極4および絶縁層5のパターニングが終了した後、真空雰囲気中にて陽極表面の残渣や塵埃を除去する製膜前処理を行うことができる。
製膜前処理としては、室温UV処理、基板の高温乾燥処理、および/または、加熱UV処理を行うことが望ましい。
室温UV処理は、通常、10℃〜30℃で1分〜10分行う。基板の高温乾燥処理は、通常、100℃〜200℃で30分〜120分行う。加熱UV処理は、通常、100℃〜200℃になるまで加熱して1分〜10分行う。
After the patterning of the anode 4 and the insulating layer 5 is completed, a film formation pretreatment for removing residues and dust on the anode surface in a vacuum atmosphere can be performed.
As the pre-film formation treatment, it is desirable to perform room temperature UV treatment, high temperature drying treatment of the substrate, and / or heating UV treatment.
The room temperature UV treatment is usually performed at 10 to 30 ° C. for 1 to 10 minutes. The high temperature drying treatment of the substrate is usually performed at 100 ° C. to 200 ° C. for 30 minutes to 120 minutes. The heating UV treatment is usually performed for 1 minute to 10 minutes by heating to 100 ° C. to 200 ° C.

製膜前処理の後、真空を破らずに有機発光層6を蒸着する。
有機発光層6は、陽極および陰極に電圧が印加されることによって生じる正孔および電子が再結合することで発光する有機発光体層を少なくとも含み、陽極/有機発光体層/陰極の構成を基本として、これに正孔注入輸送層や電子注入輸送層を設けたもの、具体的には、下記のような層構成からなるものが採用される。
(1)陽極/有機発光体層/陰極
(2)陽極/正孔注入層/有機発光体層/陰極
(3)陽極/有機発光体層/電子注入層/陰極
(4)陽極/正孔注入層/正孔輸送層/有機発光体層/陰極
(5)陽極/正孔注入層/正孔輸送層/有機発光体層/電子輸送層/陰極
(6)陽極/正孔注入層/正孔輸送層/有機発光体層/電子輸送層/電子注入層/陰極
After the film formation pretreatment, the organic light emitting layer 6 is deposited without breaking the vacuum.
The organic light emitting layer 6 includes at least an organic light emitting layer that emits light by recombination of holes and electrons generated when a voltage is applied to the anode and the cathode, and has a basic structure of anode / organic light emitting layer / cathode. As described above, those provided with a hole injecting and transporting layer and an electron injecting and transporting layer, specifically, those having the following layer structure are employed.
(1) Anode / organic light emitter layer / cathode (2) Anode / hole injection layer / organic light emitter layer / cathode (3) Anode / organic light emitter layer / electron injection layer / cathode (4) Anode / hole injection Layer / hole transport layer / organic light emitter layer / cathode (5) anode / hole injection layer / hole transport layer / organic light emitter layer / electron transport layer / cathode (6) anode / hole injection layer / hole Transport layer / organic phosphor layer / electron transport layer / electron injection layer / cathode

有機発光層における各層の材料としては、特に限定されるものではなく公知のものを使用することが可能である。有機発光体層の材料は、所望する色調に応じて選択することが可能であり、例えば青色から青緑色の発光を得るためには、ベンゾチアゾール系、ベンゾイミダゾール系、ベンゾオキサゾール系等の蛍光増白剤、金属キレート化オキソニウム化合物、スチリルベンゼン系化合物、芳香族ジメチリディン系化合物等を使用することが可能である。
電子注入層の材料としては、Li、Na、K、またはCs等のアルカリ金属;Ba、SI等のアルカリ土類金属;希士類金属;あるいはそれらのフッ化物、アルミキレート(Alq)等を使用することが可能であるが、これらに限定するものではない。さらに、電子輸送層の材料としては、Alq3、ベンズアズールを使用することが可能であるが、これらに限定するものではない。
正孔注入層としては、銅フタロシアニンを使用することが可能であるが、これに限定するものではない。正孔輸送層としては、4,4’−ビス[N−(l−ナフチル)−N−フェニルアミノ]ビフェニル(α−NPD)、トリフェニルジアミン(TPD)等を使用することが可能であるが、これに限定するものではない。
有機発光層における各層の成膜方法としては、材料が高分子系か低分子系かにもよるが、例えば、真空蒸着法、イオン化蒸着法、MBE法、インクジェット法等を採用することができる。
有機発光層の好ましい厚さは、30nm〜300nmである。
The material of each layer in the organic light emitting layer is not particularly limited, and known materials can be used. The material of the organic light-emitting layer can be selected according to the desired color tone. For example, in order to obtain light emission from blue to blue-green, fluorescence enhancement such as benzothiazole, benzimidazole, and benzoxazole is possible. Whitening agents, metal chelated oxonium compounds, styrylbenzene compounds, aromatic dimethylidin compounds, and the like can be used.
Materials for the electron injection layer include alkali metals such as Li, Na, K, or Cs; alkaline earth metals such as Ba and SI; rare metals; or their fluorides, aluminum chelates (Alq), etc. However, the present invention is not limited to these. Furthermore, Alq3 and benzazul can be used as the material for the electron transport layer, but the material is not limited to these.
As the hole injection layer, copper phthalocyanine can be used, but is not limited thereto. As the hole transporting layer, 4,4′-bis [N- (l-naphthyl) -N-phenylamino] biphenyl (α-NPD), triphenyldiamine (TPD), or the like can be used. However, the present invention is not limited to this.
A method for forming each layer in the organic light emitting layer depends on whether the material is a polymer or a low molecular material. For example, a vacuum deposition method, an ionization deposition method, an MBE method, an inkjet method, or the like can be employed.
A preferable thickness of the organic light emitting layer is 30 nm to 300 nm.

最後に、有機発光層6および補助電極2の上面に陰極である背面電極6を蒸着する。これにより、上述の補助電極2と背面電極6とが接続される。
背面電極6は、仕事関数4.8eV未満で良好な反射率を有する金属あるいは合金が望ましく、Al,Ag,Mg,Mn、あるいはそれらの金属を含有するAl−Li合金やMg−Ag合金、あるいはLiF/Alなど、それらの金属の積層電極を用いることもできる。
背面電極6の形成方法としては、マスク法、陰極隔壁法、レーザーアブレーション法等を採用することができる。
背面電極6の好ましい厚さは、30nm〜300nmである。
Finally, the back electrode 6 that is a cathode is deposited on the top surfaces of the organic light emitting layer 6 and the auxiliary electrode 2. Thereby, the above-mentioned auxiliary electrode 2 and the back electrode 6 are connected.
The back electrode 6 is preferably a metal or alloy having a work function of less than 4.8 eV and good reflectivity, and Al, Ag, Mg, Mn, or an Al—Li alloy or Mg—Ag alloy containing these metals, or A laminated electrode of these metals such as LiF / Al can also be used.
As a method for forming the back electrode 6, a mask method, a cathode partition wall method, a laser ablation method, or the like can be employed.
A preferable thickness of the back electrode 6 is 30 nm to 300 nm.

初めに、上記発明の実施の形態に基づき、Mo表面酸化に対するガスプラズマ効果の検証を行った。
まず、補助電極となるMoパターンを形成した。具体的にはDCスパッタ法を用いて室温でMo膜を300nm堆積後、フォトリソグラフによりレジストをパターニングし、エッチングにより配線幅7μmのMoパターンaを形成した。
次に、以下の条件でMoパターンaの表面にガスプラズマを曝露し、Moパターンbを得た。ガス種はCFとArの混合ガスとし、ガス流量比はCF/Ar=300sccm/200sccmとした。また、プラズマ方式は誘導結合プラズマ[ICP]、RFパワーは3000W、雰囲気圧は1.33Paとした。
その後、Moパターンaおよびbを有するガラス基板上に、陽極としてIZO、絶縁層としてSiOをスパッタリングとフォトリソグラフにより、それぞれ220nm,400nm形成し、それぞれ製膜前処理として、室温UV処理(6分)、基板の高温乾燥処理(150℃、1時間)、加熱UV処理(150℃まで加熱して6分)を行い、Moパターンdおよびcを有する基板を得た。
このようにして作製した各Moパターンの表面について、表面状態の分析を行った。Mo表面状態は、X線光電子分光法(XPS、アルバックファイ社製Quantum2000)を用いて炭素(Cls)、酸素(O1s)、Mo(Mo3d)、フッ素(Fls)組成比を算出して評価した。表1に、組成比一覧を示す。
First, the gas plasma effect on Mo surface oxidation was verified based on the embodiment of the invention.
First, a Mo pattern serving as an auxiliary electrode was formed. Specifically, after depositing a 300 nm Mo film at room temperature using DC sputtering, the resist was patterned by photolithography, and a Mo pattern a having a wiring width of 7 μm was formed by etching.
Next, gas plasma was exposed to the surface of the Mo pattern a under the following conditions to obtain a Mo pattern b. The gas type was a mixed gas of CF 4 and Ar, and the gas flow rate ratio was CF 4 / Ar = 300 sccm / 200 sccm. The plasma method was inductively coupled plasma [ICP], the RF power was 3000 W, and the atmospheric pressure was 1.33 Pa.
Thereafter, on the glass substrate having Mo patterns a and b, IZO as an anode and SiO 2 as an insulating layer were formed by sputtering and photolithography, respectively, at 220 nm and 400 nm, respectively. ), High-temperature drying treatment (150 ° C., 1 hour) of the substrate, and heating UV treatment (heating to 150 ° C. for 6 minutes) were performed to obtain a substrate having Mo patterns d and c.
The surface state of each Mo pattern thus produced was analyzed. The Mo surface state was evaluated by calculating the composition ratio of carbon (Cls), oxygen (O1s), Mo (Mo3d), and fluorine (Fls) using X-ray photoelectron spectroscopy (XPS, Quantum 2000 manufactured by ULVAC-PHI). Table 1 shows a list of composition ratios.

Figure 2010135097
Figure 2010135097

表1より、パターニング直後のMoパターンaにはフッ素は存在しないが、ガスプラズマ曝露工程を経たMoパターンbにはMo表面にフッ素が0.9at%存在していた。またガスプラズマ曝露工程および製膜前処理を経たMoパターンcは、製膜前処理を行う前の状態、すなわちMoパターンbと組成比に顕著な差異は見られなかったが、ガスプラズマ曝露を実施しなかったMoパターンdは、製膜前処理を行う前の状態、すなわちMoパターンaに比べて酸素組成比が明らかに増加してMo組成比が減少していた。この結果は、Moパターンdの表面の酸化進行が著しいことを示唆していた。
次に、Moの酸化程度の調査を行った。図3に、Mo(Mo3d)のXPSスペクトルを示す。図中横軸が結合エネルギ[eV]、縦軸が光電子強度[a.u.]である。結合エネルギの低い右側のピークが金属Mo由来のピーク(228eV付近)、結合エネルギの高い左側のピークがMo酸化物由来のピーク(231〜238eV)である。
図3より、パターニング直後のMoパターンa、ガスプラズマ曝露工程を経たMoパターンb,cは、金属Moのピークの方が酸化Moのピークより大きい傾向が見られた。一方、ガスプラズマ曝露工程を経なかったMoパターンdは、酸化Moのピークが金属Moのピークより明らかに大きく、表1と同様、酸化進行が著しいことを示唆していた。
そこで、Moパターン表面の酸化程度を定量的に評価するため金属Moと酸化Moの比率を数値化した。具体的には、Mo3dピークを、金属MoとMo酸化物由来のピークに分離し、ピーク面積全体を100[%}としたときの各々のピーク面積比率を算出して評価した。
表2に、金属Moと酸化Moとの比率を示す。
From Table 1, although there is no fluorine in the Mo pattern a immediately after patterning, 0.9 at% fluorine was present on the Mo surface in the Mo pattern b after the gas plasma exposure process. In addition, the Mo pattern c that has undergone the gas plasma exposure step and the pre-film formation treatment was not significantly different from the Mo pattern b in the state before the film pre-treatment, that is, the Mo pattern b, but the gas plasma exposure was performed. In the Mo pattern d that was not performed, the oxygen composition ratio clearly increased and the Mo composition ratio decreased compared to the state before the film formation pretreatment, that is, the Mo pattern a. This result suggested that the progress of oxidation on the surface of the Mo pattern d was remarkable.
Next, the degree of oxidation of Mo was investigated. FIG. 3 shows the XPS spectrum of Mo (Mo3d). In the figure, the horizontal axis represents binding energy [eV], and the vertical axis represents photoelectron intensity [a. u. ]. The right peak with a low binding energy is a peak derived from metal Mo (near 228 eV), and the left peak with a high binding energy is a peak derived from Mo oxide (231 to 238 eV).
From FIG. 3, the Mo pattern a immediately after patterning and the Mo patterns b and c after the gas plasma exposure process showed a tendency that the peak of metal Mo was larger than the peak of oxidized Mo. On the other hand, in the Mo pattern d that did not go through the gas plasma exposure step, the peak of oxidized Mo was clearly larger than the peak of metal Mo, suggesting that the oxidation progress was remarkable as in Table 1.
Therefore, in order to quantitatively evaluate the degree of oxidation of the Mo pattern surface, the ratio of metal Mo to oxidized Mo was quantified. Specifically, the Mo3d peak was separated into peaks derived from metal Mo and Mo oxide, and each peak area ratio was calculated and evaluated when the entire peak area was 100 [%}.
Table 2 shows the ratio of metal Mo to oxidized Mo.

Figure 2010135097
Figure 2010135097

表2より、金属Moと酸化Moとの比率については、ガスプラズマ曝露工程を経たMoパターンcは、製膜前処理前のMoパターンbや、パターニング直後のMoパターンaに近く、ガスプラズマ曝露工程がMo表面を酸化から防護していることを支持する結果となった。一方、ガスプラズマ曝露工程を経なかったMoパターンdは、酸化Moの比率が顕著に増加しており、Mo表面の酸化の進行が著しいことが分かった。
以上より、ガスプラズマ曝露は、Mo表面酸化防止に効果があることが分かった。
From Table 2, regarding the ratio of metal Mo to oxidized Mo, the Mo pattern c that has undergone the gas plasma exposure step is close to the Mo pattern b before the film formation pretreatment or the Mo pattern a immediately after patterning, and the gas plasma exposure step. This supported the protection of the Mo surface from oxidation. On the other hand, it was found that the Mo pattern d that did not go through the gas plasma exposure step had a significantly increased ratio of oxidized Mo, and the progress of oxidation on the Mo surface was remarkable.
From the above, it was found that gas plasma exposure is effective in preventing Mo surface oxidation.

以下、上記発明の実施の形態に基づき、Mo表面にガスプラズマを曝露した有機EL素子Aと、Mo表面にガスプラズマを曝露しなかった有機EL素子Bを作製した。
まず補助電極としてMoパターンを形成した。DCスパッタ法を用いて室温でMo膜を300nm堆積後、フォトリソグラフによりレジストをパターニングし、エッチングにより配線幅7μmのパターンを形成した。
次に、有機EL素子Aには、Mo表面にガスプラズマを曝露した。ガス種はCFとArの混合ガスとし、ガス流量比はCF/Ar=300sccm/200sccmとした。また、プラズマ方式はICP、RFパワーは3000W、雰囲気圧は1.33Paとした。一方、有機EL素子Bはこの工程を行わなかった。
次に、真空スパッタ装置においてガラス基板上にIZOをDCスパッタリング法によって作製し、パターニングすることにより陽極を作製した。このとき、IZOの膜厚は220nmとした。
次いでIZO表面の塵埃除去のための製膜前処理として、製膜前処理として、室温UV処理(6分)、基板の高温乾燥処理(150℃、1時間)、加熱UV処理(150℃まで加熱して6分)を行った。
その後、有機発光層を製膜した。正孔注入層は、銅フタロシアニン(CuPc)を100nm積層した。正孔輸送層は、4,4’−ビス[N(1−ナフチル)−N−フェニルアミノ]ビフェニル(α−NPD)を20nm積層した。有機発光体層は、4,4’−ビス(2,2’−ジフェニルビニル)ビフェニル(DPVBi)を30nm積層した。電子注入層は、アルミキレート(Alq)を20nm積層した。各層の蒸着レートは0.2〜0.4nm/秒とした。その後、アルミ蒸着装置にて陰極としてアルミ(Al)を作製した。このときAlの膜厚は100nmとし、蒸着レートは約1nm/秒とした。
その後、グローブボックスに素子を搬送し、封止ガラスを用いて素子の封止を行った。封止ガラスと基板とは接着剤を介して固着し密閉した。
このようにして作製した有機EL素子A、Bに対し、陰極と補助電極の引き出し部に端子を当てて4端子法により陰極と補助電極との間の接触抵抗を測定した。
接触抵抗測定結果を表3に示す。
Hereinafter, based on the embodiment of the invention, an organic EL element A in which gas plasma was exposed to the Mo surface and an organic EL element B in which gas plasma was not exposed to the Mo surface were produced.
First, an Mo pattern was formed as an auxiliary electrode. After depositing a 300 nm Mo film at room temperature using DC sputtering, the resist was patterned by photolithography, and a pattern with a wiring width of 7 μm was formed by etching.
Next, the organic EL element A was exposed to gas plasma on the Mo surface. The gas type was a mixed gas of CF 4 and Ar, and the gas flow rate ratio was CF 4 / Ar = 300 sccm / 200 sccm. The plasma method was ICP, the RF power was 3000 W, and the atmospheric pressure was 1.33 Pa. On the other hand, the organic EL element B did not perform this step.
Next, IZO was produced on a glass substrate by a DC sputtering method in a vacuum sputtering apparatus, and an anode was produced by patterning. At this time, the film thickness of IZO was 220 nm.
Next, as film formation pretreatment for removing dust on the IZO surface, room temperature UV treatment (6 minutes), substrate high temperature drying treatment (150 ° C., 1 hour), heating UV treatment (heating to 150 ° C.) 6 minutes).
Thereafter, an organic light emitting layer was formed. As the hole injection layer, 100 nm of copper phthalocyanine (CuPc) was laminated. As the hole transport layer, 4,4′-bis [N (1-naphthyl) -N-phenylamino] biphenyl (α-NPD) was laminated to 20 nm. The organic light emitting layer was formed by laminating 30 nm of 4,4′-bis (2,2′-diphenylvinyl) biphenyl (DPVBi). The electron injection layer was formed by laminating 20 nm of aluminum chelate (Alq). The deposition rate of each layer was 0.2 to 0.4 nm / second. Then, aluminum (Al) was produced as a cathode with an aluminum vapor deposition apparatus. At this time, the film thickness of Al was 100 nm, and the deposition rate was about 1 nm / second.
Then, the element was conveyed to the glove box and the element was sealed using sealing glass. The sealing glass and the substrate were fixed and sealed through an adhesive.
With respect to the organic EL elements A and B produced as described above, the contact resistance between the cathode and the auxiliary electrode was measured by a four-terminal method by applying a terminal to the lead portion of the cathode and the auxiliary electrode.
Table 3 shows the results of contact resistance measurement.

Figure 2010135097
Figure 2010135097

表3より、Mo表面にガスプラズマを曝露した有機EL素子Aは、ガスプラズマを曝露しなかった有機EL素子Bに比べて、明らかに接触抵抗が下がっていることが分かった。   From Table 3, it was found that the contact resistance of the organic EL element A exposed to the gas plasma on the Mo surface was clearly lower than that of the organic EL element B not exposed to the gas plasma.

本発明の有機EL素子の一態様の模式的断面図である。It is typical sectional drawing of the one aspect | mode of the organic EL element of this invention. 本発明の有機EL素子の製造工程を示す模式的断面図である。It is typical sectional drawing which shows the manufacturing process of the organic EL element of this invention. 各工程を経たあとの補助電極表面のXPSスペクトルである。It is an XPS spectrum of the auxiliary electrode surface after passing through each process.

符号の説明Explanation of symbols

1 基板
2 補助電極
3 極薄膜
4 陽極(透明電極)
5 絶縁層
6 有機発光層
7 陰極(背面電極)
10 有機EL素子A
20 有機EL素子B
1 Substrate 2 Auxiliary electrode 3 Ultrathin film 4 Anode (transparent electrode)
5 Insulating layer 6 Organic light emitting layer 7 Cathode (back electrode)
10 Organic EL device A
20 Organic EL element B

Claims (3)

基板の上に陽極、有機発光層および陰極をこの順に備え、さらに該陰極に駆動電流を供給するための補助電極を備えた有機EL素子であって、
前記補助電極と陰極との間に、陰極材料、補助電極材料または酸素のいずれにも不活性なフッ素含有膜を備えた有機EL素子。
An organic EL device comprising an anode, an organic light emitting layer and a cathode on a substrate in this order, and further comprising an auxiliary electrode for supplying a driving current to the cathode,
An organic EL device comprising a fluorine-containing film that is inert to any of a cathode material, an auxiliary electrode material, and oxygen between the auxiliary electrode and the cathode.
基板の上に陽極、有機発光層および陰極をこの順に備え、さらに該陰極に駆動電流を供給するための補助電極を備えた有機EL素子の製造方法であって、
前記基板上に、前記補助電極を形成する工程と、
前記補助電極の表面に、補助電極材料、陰極材料または酸素のいずれにも不活性なガスプラズマを照射する工程と、
前記基板上に、前記補助電極と短絡しないように陽極を形成する工程と、
前記陽極上に、有機発光層を形成する工程と、
前記有機発光層および補助電極の上面に陰極を形成する工程とをこの順に含む有機EL素子の製造方法。
A method for producing an organic EL device comprising an anode, an organic light emitting layer and a cathode on a substrate in this order, and further comprising an auxiliary electrode for supplying a driving current to the cathode,
Forming the auxiliary electrode on the substrate;
Irradiating the surface of the auxiliary electrode with gas plasma inert to any of the auxiliary electrode material, the cathode material or oxygen;
Forming an anode on the substrate so as not to short-circuit the auxiliary electrode;
Forming an organic light emitting layer on the anode;
And a step of forming a cathode on the upper surface of the organic light emitting layer and the auxiliary electrode in this order.
前記ガスプラズマは、フッ素(F)またはフッ素化合物のガスを材料として発生させることを特徴とする請求項2に記載の有機EL素子の製造方法。 The method of manufacturing an organic EL element according to claim 2, wherein the gas plasma is generated using fluorine (F 2 ) or a fluorine compound gas as a material.
JP2008307367A 2008-12-02 2008-12-02 Manufacturing method of organic EL element Active JP5173769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008307367A JP5173769B2 (en) 2008-12-02 2008-12-02 Manufacturing method of organic EL element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008307367A JP5173769B2 (en) 2008-12-02 2008-12-02 Manufacturing method of organic EL element

Publications (2)

Publication Number Publication Date
JP2010135097A true JP2010135097A (en) 2010-06-17
JP5173769B2 JP5173769B2 (en) 2013-04-03

Family

ID=42346199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008307367A Active JP5173769B2 (en) 2008-12-02 2008-12-02 Manufacturing method of organic EL element

Country Status (1)

Country Link
JP (1) JP5173769B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197298A (en) * 2012-03-19 2013-09-30 Panasonic Corp Organic electroluminescent element
KR20170012706A (en) * 2015-07-22 2017-02-03 삼성디스플레이 주식회사 Organic light-emitting display apparatus and the method for manufacturing of the organic light-emitting display apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066220A (en) * 2006-09-11 2008-03-21 Fuji Electric Holdings Co Ltd Organic el element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066220A (en) * 2006-09-11 2008-03-21 Fuji Electric Holdings Co Ltd Organic el element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197298A (en) * 2012-03-19 2013-09-30 Panasonic Corp Organic electroluminescent element
KR20170012706A (en) * 2015-07-22 2017-02-03 삼성디스플레이 주식회사 Organic light-emitting display apparatus and the method for manufacturing of the organic light-emitting display apparatus
US9768384B2 (en) 2015-07-22 2017-09-19 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10050199B2 (en) 2015-07-22 2018-08-14 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10468598B2 (en) 2015-07-22 2019-11-05 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10862034B2 (en) 2015-07-22 2020-12-08 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US11227998B2 (en) 2015-07-22 2022-01-18 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
KR102360093B1 (en) 2015-07-22 2022-02-09 삼성디스플레이 주식회사 Organic light-emitting display apparatus and the method for manufacturing of the organic light-emitting display apparatus

Also Published As

Publication number Publication date
JP5173769B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
TWI485898B (en) Organic light emitting diode device
JP5720006B2 (en) ORGANIC EL ELEMENT, DISPLAY DEVICE AND LIGHT EMITTING DEVICE
US20050249974A1 (en) Organic electroluminescent element
WO2012114403A1 (en) Organic electroluminescence display panel and organic electroluminescence display device
TWI599030B (en) Organic light-emitting element
JPH0414794A (en) Manufacture of organic electroluminescence element
JP2004014511A (en) Organic light-emitting diode device
JP2004139746A (en) Method for manufacturing organic el element
TWI330896B (en)
JPH04255692A (en) Patterning method for organic electroluminescence element
WO2007004563A1 (en) Organic electroluminescent device
KR20020093646A (en) Organic el device and method of manufacturing organic el device
JP2006196861A (en) Organic electroluminescent element
JP2004171951A (en) Anode for organic semiconductor device
JP5173769B2 (en) Manufacturing method of organic EL element
US7628669B2 (en) Organic light emitting devices with conductive layers having adjustable work function and fabrication methods thereof
JP2002246173A (en) Organic el device and manufacturing method for the same
JP2004139780A (en) Electrode substrate for organic electroluminescent device, organic electroluminescent device, and manufacturing method of its device
JP2011223001A (en) Organic light-emitting device and manufacturing method thereof
JP3891430B2 (en) Organic EL light emitting device and method
JP2004146136A (en) Electrode substrate for organic electroluminescent (el) element, and its manufacturing method and organic el device
JP4241003B2 (en) Electrode substrate for organic electroluminescence device and organic EL light emitting device
JP4930128B2 (en) Organic EL device and method for manufacturing the same
JP2007299828A (en) Organic light emitting element
JP4268161B2 (en) Electrode substrate for organic electroluminescence device and organic EL light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5173769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150