JP2010133739A - Observation sample preparation method and observation sample preparation device - Google Patents

Observation sample preparation method and observation sample preparation device Download PDF

Info

Publication number
JP2010133739A
JP2010133739A JP2008307816A JP2008307816A JP2010133739A JP 2010133739 A JP2010133739 A JP 2010133739A JP 2008307816 A JP2008307816 A JP 2008307816A JP 2008307816 A JP2008307816 A JP 2008307816A JP 2010133739 A JP2010133739 A JP 2010133739A
Authority
JP
Japan
Prior art keywords
sample
charged particle
processed
particle beam
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008307816A
Other languages
Japanese (ja)
Other versions
JP5075801B2 (en
Inventor
Mitsuru Konno
充 今野
Takashi Sato
岳志 佐藤
Isao Nagaoki
功 長沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008307816A priority Critical patent/JP5075801B2/en
Publication of JP2010133739A publication Critical patent/JP2010133739A/en
Application granted granted Critical
Publication of JP5075801B2 publication Critical patent/JP5075801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an observation sample preparation method and an observation sample preparation device capable of preparing an observation sample having high uniformity of thickness, and including a vacuum domain at a desired distance from an observation portion. <P>SOLUTION: An FIB (Focused Ion Beam) is irradiated from a non-structure part 72 side of a processing object sample 7 having two parts, namely, a structure part 71 on which at least a pattern is formed and the non-structure part 72 on which the pattern is not formed, and an observation object surface for observing a structure of the processing object sample 7 is formed by processing a side face including an interface between the structure part 71 and the non-structure part 72, and the processing object sample 7 is processed by irradiating the FIB from a direction along the observation object surface. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子線像で観察する観察試料の作成方法及び観察試料の作製装置に関する。   The present invention relates to a method for preparing an observation sample to be observed with an electron beam image and a preparation apparatus for the observation sample.

近年、電場や磁場の観察を得意とする電子線ホログラフィー法が注目されている。例えば、半導体分野においても、従来の電子顕微鏡などで可視化困難なトランジスタ中のソースやドレインの構造を可視化する方法としてこの電子線ホログラフィー法が期待されている。   In recent years, electron holography, which excels at observing electric and magnetic fields, has attracted attention. For example, also in the semiconductor field, this electron beam holography method is expected as a method for visualizing the structure of the source and drain in a transistor that is difficult to visualize with a conventional electron microscope or the like.

電子線ホログラフィー法は、試料中を透過した電子線と真空中を通過した電子線の干渉像を観測し、その僅かな位相ずれなどから試料構造を可視化する方法である。したがって、電子線ホログラフィー法を適用する観察試料においては厚さの均一性が非常に重要であり、かつ、観察部位の近傍に物質の無い領域(真空領域)が必用である。   The electron holography method is a method in which an interference image between an electron beam transmitted through a sample and an electron beam transmitted through a vacuum is observed, and the sample structure is visualized from a slight phase shift. Therefore, in the observation sample to which the electron holography method is applied, the uniformity of the thickness is very important, and a region (vacuum region) having no substance in the vicinity of the observation site is necessary.

このような観察に用いる試料として集積回路チップや半導体ウェーハ内の任意の部分のみを取り出す方法としては、チップやウェーハの観察部位を含む分析部分をプローブで支持し、チップやウェーハの表面に対して角度の異なる2つの方向からイオンビームを照射して当該分析部分を分離する技術が知られている(特許文献1等参照)。   As a method of taking out only an arbitrary part of an integrated circuit chip or a semiconductor wafer as a sample used for such observation, an analysis part including the observation part of the chip or wafer is supported by a probe, and the surface of the chip or wafer is supported. A technique for separating an analysis portion by irradiating an ion beam from two directions having different angles is known (see Patent Document 1 and the like).

特許第2774884号公報Japanese Patent No. 2774884

電子線ホログラフィー法により観察する観察試料においては、上記従来技術により分離した分析部分(一次試料)をさらに加工し、試料厚さの均一性や観察部位と真空領域の位置関係が適当な観察試料(二次試料)を作製する必要がある。   In the observation sample observed by the electron holography method, the analysis part (primary sample) separated by the above-mentioned conventional technique is further processed, and the observation sample (appropriate with the uniformity of the sample thickness and the positional relationship between the observation site and the vacuum region) Secondary sample) must be prepared.

しかしながら、イオンビームにより観察試料を作製する場合、試料に照射したイオンビームにより発生する2次電子を画像として観察しながら試料作製すると、試料の観察部位がイオンビームにより破壊されてしまい試料の観察が困難となってしまう。   However, when an observation sample is prepared using an ion beam, if the sample is prepared while observing secondary electrons generated by the ion beam irradiated to the sample as an image, the observation site of the sample is destroyed by the ion beam, and the sample is not observed. It becomes difficult.

本発明は上記に鑑みてなされたものであり、厚さの均一性が高く、かつ、観察部位から所望の距離に真空領域を有する観察試料を作製することができる観察試料作製方法及び観察試料作製装置を提供することを目的とする。   The present invention has been made in view of the above, and an observation sample preparation method and an observation sample preparation capable of preparing an observation sample having high uniformity in thickness and having a vacuum region at a desired distance from an observation site. An object is to provide an apparatus.

上記目的を達成するために、本発明は、少なくともパターンが形成された構造部とパターンが形成されていない無構造部の2つの部分を有する加工対象試料の無構造部側から荷電粒子線を照射し、前記構造部と前記無構造部との界面を含む側面を加工して前記加工対象試料の構造を観察する観察対象面を形成し、前記観察対象面に沿う方向から該荷電粒子線を照射することにより前記加工対象試料を加工するものとする。   In order to achieve the above object, the present invention irradiates a charged particle beam from the non-structure part side of a sample to be processed having at least two parts of a structure part where a pattern is formed and a non-structure part where a pattern is not formed. Then, a side surface including the interface between the structure portion and the non-structure portion is processed to form an observation target surface for observing the structure of the sample to be processed, and the charged particle beam is irradiated from a direction along the observation target surface. Thus, the sample to be processed is processed.

本発明においては、厚さの均一性が高く、かつ、観察部位から所望の距離に真空領域を有する観察試料を作製することができる。   In the present invention, it is possible to produce an observation sample having high thickness uniformity and having a vacuum region at a desired distance from the observation site.

以下、本発明の実施の形態を図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、本実施の形態に係わる観察試料の観察方法の一例である電子線ホログラフィー法の原理について、その電子線ホログラフィー法を半導体素子(例えば、MOSFET:Metal Oxide Semiconductor Field Effect Transistor)の構造観察に適用した場合を例にとり説明する。   First, regarding the principle of electron beam holography, which is an example of an observation method of an observation sample according to the present embodiment, the electron beam holography method is applied to structure observation of a semiconductor element (for example, MOSFET: Metal Oxide Semiconductor Field Effect Transistor). This will be described as an example.

電子線ホログラフィー法は、TEM(Transmission Electron Microscope)による試料観察の一手法であり、真空中において電子線を観察試料の観察部位に照射し、試料を透過した電子線(以下、物体波と記載する)と試料の無い部分(真空中)を通過した電子線(以下、参照波と記載する)とをバイプリズムなどにより干渉させ、その位相の変化等から試料内部の僅かな電位差(電位の分布)を検出・計算することによって試料内部の構造を干渉縞画像(以下、位相像と記載する)として可視化する方法である。   The electron beam holography method is a technique for observing a sample using a TEM (Transmission Electron Microscope), and irradiates an observation part of the observation sample with an electron beam in a vacuum and transmits the sample through the sample (hereinafter referred to as an object wave). ) And an electron beam (hereinafter referred to as a reference wave) that has passed through a portion without a sample (in a vacuum) is interfered by a biprism or the like, and a slight potential difference (potential distribution) inside the sample due to a change in the phase or the like. Is a method for visualizing the structure inside the sample as an interference fringe image (hereinafter referred to as a phase image).

したがって、電子線ホログラフィー法を適用する観察試料においては、観察部位の近傍に参照波が通過する範囲(真空領域)を設ける必要がある。また、観察試料の試料膜厚(参照波の進行方向の厚さ)の均一さが位相像の精度に関係し、試料膜厚が均一に近いほど、位相像の精度が高くなる。   Therefore, in the observation sample to which the electron holography method is applied, it is necessary to provide a range (vacuum region) through which the reference wave passes in the vicinity of the observation site. In addition, the uniformity of the sample film thickness (thickness in the traveling direction of the reference wave) of the observation sample is related to the accuracy of the phase image, and the closer the sample film thickness is, the higher the accuracy of the phase image.

図1は、電子線ホログラフィー法において、物体波及び参照波の両者が真空中を通過するようにした場合、つまり、観察試料を用いない場合の位相像を示す図である。   FIG. 1 is a diagram showing a phase image when both an object wave and a reference wave pass through a vacuum in an electron beam holography method, that is, when an observation sample is not used.

図1において、電子線ホログラフィー法による位相像(干渉縞画像)は、単調な縞状の画像が示されており、すなわち、物体波と参照波の間に位相差が生じていないことを視覚的に確認することができる。   In FIG. 1, the phase image (interference fringe image) by the electron beam holography method shows a monotonous striped image, that is, it is visually confirmed that there is no phase difference between the object wave and the reference wave. Can be confirmed.

図2は、上記電子線ホログラフィー法を適用する観察試料の一例としてのMOSFETの断面を模式的に示す図である。   FIG. 2 is a diagram schematically showing a cross section of a MOSFET as an example of an observation sample to which the electron beam holography method is applied.

図2において、MOSFET(以下、単にトランジスタと記載する)は、シリコン基板11と、そのシリコン基板11上に形成されたソース12、ドレイン13及びゲート15と、ゲート15とシリコン基板11(ソース12及びドレイン13を含む)との間を電気的に絶縁する絶縁膜14と、金属配線17と、その金属配線17とドレイン13を電気的に接続するコンタクトプラグ16とで概略構成されている。   In FIG. 2, a MOSFET (hereinafter simply referred to as a transistor) includes a silicon substrate 11, a source 12, a drain 13 and a gate 15 formed on the silicon substrate 11, and a gate 15 and a silicon substrate 11 (source 12 and An insulating film 14 that electrically insulates (including the drain 13), a metal wiring 17, and a contact plug 16 that electrically connects the metal wiring 17 and the drain 13.

ソース12及びドレイン13は、シリコン基板11にイオン(例えば、砒素、又はボロン)を注入して形成されている。このシリコン基板11のソース12部分、或いは、ドレイン12部分に注入されるイオン量は僅かであり、例えば、そのイオン量は10^21(個/cm^3)程度である。   The source 12 and the drain 13 are formed by implanting ions (for example, arsenic or boron) into the silicon substrate 11. The amount of ions implanted into the source 12 portion or the drain 12 portion of the silicon substrate 11 is very small. For example, the amount of ions is about 10 ^ 21 (pieces / cm ^ 3).

図3は、図2に示したトランジスタに電子線ホログラフィー法を適用した場合の位相像(干渉縞画像)とトランジスタの構造との関係を模式的に示す図である。なお、図3中の干渉縞18は、位相像(干渉縞画像)における干渉縞を模式的に示すものである。   FIG. 3 is a diagram schematically showing the relationship between the phase image (interference fringe image) and the transistor structure when the electron beam holography method is applied to the transistor shown in FIG. The interference fringes 18 in FIG. 3 schematically show the interference fringes in the phase image (interference fringe image).

図3においては、トランジスタにおける観察部位(例えば、ソース12、ドレイン13の形成部位)が位相像(干渉縞画像)の中央付近に位置する場合を示している。   FIG. 3 shows a case where an observation site (for example, a site where the source 12 and the drain 13 are formed) in the transistor is located near the center of the phase image (interference fringe image).

トランジスタにおける干渉縞18に対応する範囲、つまり、位相像に示される範囲(以下、観察範囲と記載する)は、幅L(例えば、50nm〜200nm)の範囲である。この観察範囲における干渉縞18(位相像)に、トランジスタの構造(電位差、電位の分布)により生じる位相差が現れることにより、トランジスタの構造が可視化される。   A range corresponding to the interference fringes 18 in the transistor, that is, a range shown in the phase image (hereinafter referred to as an observation range) is a range of a width L (for example, 50 nm to 200 nm). A phase difference caused by the structure of the transistor (potential difference, potential distribution) appears in the interference fringes 18 (phase image) in this observation range, whereby the structure of the transistor is visualized.

ここで、上記のように電子線ホログラフィー法においては、トランジスタの観察範囲を通過した電子線(物体波)と、その近傍に設けた真空領域を通過した電子線(参照波)をバイプリズム等を用いて干渉させ、これらの位相の差異から位相像(干渉縞画像)を得るので、観察範囲における観察部位の近傍に真空領域(参照波が通る領域)を設ける。   Here, in the electron beam holography method as described above, an electron beam (object wave) that has passed through the observation range of the transistor and an electron beam (reference wave) that has passed through a vacuum region provided in the vicinity of the electron beam are applied to a biprism or the like. In order to obtain a phase image (interference fringe image) from these phase differences, a vacuum region (region through which a reference wave passes) is provided in the vicinity of the observation region in the observation range.

観察範囲に対する真空領域の位置としては、例えば、トランジスタの干渉縞18に対応する範囲(観察範囲)の上側(ゲート15側)に隣接する範囲、又は、観察範囲の下側(シリコン基板11側)に隣接する範囲に真空領域を設ける。また、真空領域と観察部位の位置関係としては、幅L(例えば、100nm)の観察範囲(干渉縞18)、の中心付近に観察部位が位置するように調整するには、観察部位から約L/2(例えば、50nm)の距離に真空領域を設ける。   As the position of the vacuum region with respect to the observation range, for example, the range adjacent to the upper side (gate 15 side) of the range (observation range) corresponding to the interference fringes 18 of the transistor, or the lower side of the observation range (silicon substrate 11 side) A vacuum region is provided in a range adjacent to the. Further, as the positional relationship between the vacuum region and the observation region, in order to adjust the observation region to be located near the center of the observation range (interference fringe 18) having a width L (for example, 100 nm), it is approximately L from the observation region. A vacuum region is provided at a distance of / 2 (for example, 50 nm).

図4は図2に示したような構造を有するトランジスタにおける電子線ホログラフィー法の位相像を示す図であり、図5はそのトランジスタを通常のTEM法により撮像した画像(透過像など)を示す図である。   4 is a diagram showing a phase image of the electron holography method in the transistor having the structure as shown in FIG. 2, and FIG. 5 is a diagram showing an image (transmission image or the like) obtained by imaging the transistor by a normal TEM method. It is.

図4においては、図2及び図3に示したトランジスタ構造における観察部位が撮像されており、これからトランジスタにおけるソース12やドレイン13などの構造(形成状態)が視覚的に確認できる。一方、図5においては、トランジスタにおけるソース12やドレイン13などの構造を視覚的に確認することが困難である。   In FIG. 4, an observation site in the transistor structure shown in FIGS. 2 and 3 is imaged, and from this, the structure (formation state) of the source 12 and the drain 13 in the transistor can be visually confirmed. On the other hand, in FIG. 5, it is difficult to visually confirm the structure of the source 12 and the drain 13 in the transistor.

次に、本実施の形態における試料作製装置について説明する。   Next, the sample preparation apparatus in this embodiment will be described.

図6は、本実施の形態における試料作製装置の全体構成を示す図である。   FIG. 6 is a diagram showing the overall configuration of the sample preparation apparatus in the present embodiment.

図6において、試料作製装置は、真空容器1と、真空容器1内に配置された荷電粒子線(イオンビーム)用カラム2及び荷電粒子線(電子線)用カラム3と、
加工対象試料(不図示、後の図7参照)を載置する試料ステージ4と、加工対象試料への電子線の照射により加工対象試料から放出される2次電子を検出する2次電子検出器5と、試料製作装置全体の動作を制御する制御装置(制御用PC)6とを備えている。
In FIG. 6, the sample preparation apparatus includes a vacuum vessel 1, a charged particle beam (ion beam) column 2 and a charged particle beam (electron beam) column 3 disposed in the vacuum vessel 1,
A sample stage 4 on which a sample to be processed (not shown, see FIG. 7 later) is placed, and a secondary electron detector that detects secondary electrons emitted from the sample to be processed by irradiation of the sample with the electron beam 5 and a control device (control PC) 6 for controlling the operation of the entire sample manufacturing apparatus.

荷電粒子線用カラム2(以下、イオンビーム用カラム2と記載する)は、イオンビーム(例えば、Gaイオンビーム)を発生させるイオン銃21と、イオンビームを集束するレンズ22と、イオンビームを偏向する偏向コイル23とを備えている。なお、図面の煩雑化を抑えるため、イオンビーム用カラム2におけるイオン銃21及びレンズ22と制御装置6との接続関係は図示を省略する。   The charged particle beam column 2 (hereinafter referred to as an ion beam column 2) includes an ion gun 21 that generates an ion beam (for example, a Ga ion beam), a lens 22 that focuses the ion beam, and a deflection of the ion beam. And a deflection coil 23. In addition, in order to suppress complication of drawing, illustration of the connection relationship between the ion gun 21 and the lens 22 and the control device 6 in the ion beam column 2 is omitted.

荷電粒子線用カラム3(以下、電子線用カラム3と記載する)は、電子線を発生させる電子銃31と、電子線を集束するレンズ32と、電子線を偏向する偏向コイル33とを備えている。   The charged particle beam column 3 (hereinafter referred to as an electron beam column 3) includes an electron gun 31 that generates an electron beam, a lens 32 that focuses the electron beam, and a deflection coil 33 that deflects the electron beam. ing.

なお、図面の煩雑化を抑えるため、イオンビーム用カラム2におけるイオン銃21及びレンズ22と制御装置6との接続関係は図示を省略する。また、同様に電子線用カラム3における電子銃31及びレンズ32と制御装置6との接続関係も図示を省略する。   In addition, in order to suppress complication of drawing, illustration of the connection relationship between the ion gun 21 and the lens 22 and the control device 6 in the ion beam column 2 is omitted. Similarly, the connection relationship between the electron gun 31 and the lens 32 and the control device 6 in the electron beam column 3 is not shown.

試料ステージ4は、加工対象試料(不図示、後の図7参照)をその載置面に固定する試料台41と、試料台41を試料固定位置を中心に回転駆動する、すなわち、試料台41に固定された加工対象試料と試料台41とを一体的に回転駆動する第1試料回転機構42及び第2試料回転機構43とを備えている。   The sample stage 4 is a sample stage 41 for fixing a sample to be processed (not shown, see FIG. 7 later) on its mounting surface, and the sample stage 41 is rotationally driven around the sample fixing position. The first sample rotating mechanism 42 and the second sample rotating mechanism 43 that integrally rotate and drive the sample to be processed and the sample stage 41 are provided.

第1試料回転機構42は、試料作製装置の各構成要素(例えば、イオンビーム用カラム21、或いは、電子線用カラム31)に対して試料台41を回転駆動するものである。第1試料回転機構42は、試料台41に載置された加工対象試料を通り、イオンビーム用カラム21から加工対象試料に照射されるイオンビームの光軸に対して垂直であり、試料台41の載置面に沿う方向の回転軸44を中心に、加工対象試料を試料台41及び第2試料回転機構43と共に回転駆動する。   The first sample rotation mechanism 42 rotates the sample stage 41 with respect to each component (for example, the ion beam column 21 or the electron beam column 31) of the sample preparation apparatus. The first sample rotation mechanism 42 passes through the sample to be processed placed on the sample table 41 and is perpendicular to the optical axis of the ion beam irradiated from the ion beam column 21 to the sample to be processed. The sample to be processed is rotationally driven together with the sample stage 41 and the second sample rotation mechanism 43 around the rotation axis 44 in the direction along the mounting surface.

第2試料回転機構43は、第1試料回転機構42に対して試料台41を回転駆動するものである。第2試料回転機構43は、試料台41に載置された加工対象試料を通り、第1試料回転機構42の回転軸44に垂直であり、試料台41の差一面に垂直な回転軸45を中心に、加工対象試料を試料台41と共に回転駆動する。   The second sample rotation mechanism 43 rotates the sample stage 41 with respect to the first sample rotation mechanism 42. The second sample rotation mechanism 43 passes through the sample to be processed placed on the sample stage 41, has a rotation axis 45 perpendicular to the rotation axis 44 of the first sample rotation mechanism 42 and perpendicular to the difference surface of the sample stage 41. The sample to be processed is rotationally driven together with the sample table 41 at the center.

第1試料回転機構42及び第2試料回転機構43によって試料台41を回転駆動することにより、試料台41の載置面に固定された加工対象試料の向きを試料作製装置の各構成要素に対して変更する。   By rotating and driving the sample stage 41 by the first sample rotation mechanism 42 and the second sample rotation mechanism 43, the orientation of the sample to be processed fixed to the mounting surface of the sample stage 41 is changed with respect to each component of the sample preparation apparatus. To change.

制御装置(制御用PC)6は、試料作製装置の全体の動作を制御するものであり、例えば、図示しない入力装置から入力された情報を基に、イオンビーム用カラム2、電子線用カラム3、試料ステージ4の第1及び第2試料回転機構42,43などの動作を制御する。   The control device (control PC) 6 controls the overall operation of the sample preparation device. For example, the ion beam column 2 and the electron beam column 3 are based on information input from an input device (not shown). The operation of the first and second sample rotating mechanisms 42 and 43 of the sample stage 4 is controlled.

制御装置6は、イオンビーム用カラム2から照射されたイオンビームにより試料台41に載置された試料(例えば、加工対象試料)から発生した2次電子を2次電子検出器5により検出し、イオンビーム用カラム2の偏向コイル23の制御情報と2次電子検出器5からの検出情報からSIM(Scanning Ion Microscope)像を演算し、表示装置61に表示する。   The control device 6 uses the secondary electron detector 5 to detect secondary electrons generated from a sample (for example, a sample to be processed) placed on the sample stage 41 by the ion beam irradiated from the ion beam column 2, A SIM (Scanning Ion Microscope) image is calculated from the control information of the deflection coil 23 of the ion beam column 2 and the detection information from the secondary electron detector 5 and displayed on the display device 61.

また、制御装置6は、電子線用カラム3から照射された電子線により試料台41に載置された試料(例えば、加工対象試料)から発生した2次電子を2次電子検出器5により検出し、電子線用カラム3の偏向コイル33の制御情報と2次電子検出器5からの検出情報からSEM(Scanning Electron Microscope)像を演算し、表示装置61に表示する。   Further, the control device 6 uses the secondary electron detector 5 to detect secondary electrons generated from a sample (for example, a sample to be processed) placed on the sample table 41 by the electron beam irradiated from the electron beam column 3. Then, an SEM (Scanning Electron Microscope) image is calculated from the control information of the deflection coil 33 of the electron beam column 3 and the detection information from the secondary electron detector 5 and displayed on the display device 61.

さらに、制御装置6は、イオンビーム用カラム2のレンズ22により集束させたイオンビーム(FIB:Focused Ion Beam)を偏向コイル23により偏向して試料台41に載置された加工対象試料に照射することによりFIB加工を行う。   Further, the control device 6 deflects an ion beam (FIB: Focused Ion Beam) focused by the lens 22 of the ion beam column 2 by the deflection coil 23 and irradiates the sample to be processed placed on the sample stage 41. FIB processing is performed.

以上のように構成した本実施の形態における観察試料の作製手順を説明する。   The preparation procedure of the observation sample in the present embodiment configured as described above will be described.

図7は、本実施の形態の試料作製装置による観察試料作製の手順を示す図である。図7においては、一例として、試料台41に加工対象試料7が載置された様子を示している。なお、図7中においては、上方向がイオンビーム用カラム2の方向に対応している。また、紙面垂直方向は第1試料回転機構42の回転軸44の方向に対応している。   FIG. 7 is a diagram showing a procedure for preparing an observation sample by the sample preparation apparatus of the present embodiment. In FIG. 7, as an example, a state in which the sample 7 to be processed is placed on the sample stage 41 is shown. In FIG. 7, the upward direction corresponds to the direction of the ion beam column 2. Further, the direction perpendicular to the paper surface corresponds to the direction of the rotation axis 44 of the first sample rotation mechanism 42.

図7において、加工対象試料7は、集積回路チップや半導体ウェーハ内の観察部位(例えば、図2のトランジスタにおけるソース12、ドレイン13の形成部位)を含む分析部分であり、加工対象試料7を基に電子線ホログラフィー法による観察に用いる観察試料を作製する。   In FIG. 7, a processing target sample 7 is an analysis portion including an observation portion (for example, a formation portion of the source 12 and the drain 13 in the transistor of FIG. 2) in an integrated circuit chip or a semiconductor wafer. An observation sample used for observation by electron holography is prepared.

加工対象試料7は、例えば、マイクロサンプリング法を用いて作製される。マイクロサンプリング法は、集積回路チップや半導体ウェーハ内の観察部位を含む分析部分をプローブ(図示せず)で支持し、チップやウェーハの表面に対して角度の異なる2つの方向からイオンビームを照射して当該分析部分を分離・摘出する技術である。   The sample 7 to be processed is produced using, for example, a micro sampling method. In the microsampling method, an analysis part including an observation part in an integrated circuit chip or a semiconductor wafer is supported by a probe (not shown), and an ion beam is irradiated from two directions having different angles with respect to the surface of the chip or the wafer. This technique separates and extracts the analysis part.

まず、図7(a)に示すように、加工対象試料7を試料台41に載置(固定)する。マイクロサンプリング法により摘出された加工対象試料7はプローブに固定されており、回路パターンなどが形成された構造部71が上側、回路パターンなどが形成されていないシリコン基板部分などの無構造部72が下側に位置している。マイクロサンプリング法により摘出された加工対象試料7を試料台41に載置(固定)する前に、第1試料回転機構42により試料台41を回転駆動し、その載置面を垂直の状態にする。そして、試料台41の載置面に加工対象試料7を接触させ、適当な方法(例えば、タングステンデポジション法)により試料台41に加工対象試料7を固定する。その後、集束イオンビーム(FIB)などにより加工対象試料7とプローブの結合部(支持部分)を分離する。   First, as shown in FIG. 7A, the processing target sample 7 is placed (fixed) on the sample stage 41. The sample 7 to be processed extracted by the microsampling method is fixed to the probe, and the structure portion 71 on which the circuit pattern or the like is formed is on the upper side, and the non-structure portion 72 such as a silicon substrate portion on which the circuit pattern or the like is not formed. Located on the lower side. Before placing (fixing) the processing target sample 7 extracted by the microsampling method on the sample stage 41, the sample stage 41 is rotationally driven by the first sample rotation mechanism 42 to bring the placement surface into a vertical state. . Then, the sample 7 to be processed is brought into contact with the mounting surface of the sample table 41, and the sample 7 to be processed is fixed to the sample table 41 by an appropriate method (for example, tungsten deposition method). Thereafter, the processing sample 7 and the probe coupling portion (supporting portion) are separated by a focused ion beam (FIB) or the like.

次に、図7(a)に示した状態から、第2試料回転機構43により試料台41を180°回転駆動し、図7(b)に示すように、構造部71を下側、無構造部を72上側に位置させる。この状態で、イオンビーム用カラム2から加工対象試料7に集束イオンビーム(FIB)を照射することにより加工対象試料7を加工する。このように、加工対象試料7の無構造部72側からFIBを照射して、構造部71と無構造部72との界面を含む側面を試料台41の載置面にほぼ垂直な方向に加工して加工対象試料7の構造を観察する観察対象面(図7中紙面に沿う面)を形成する。加工対象試料7の2つの観察対象面間の距離(試料膜厚)は、イオンビーム用カラム2の偏向コイル23を制御して加工対象試料7に対する加工位置を制御することにより任意に設定することができる。   Next, from the state shown in FIG. 7A, the sample stage 41 is driven to rotate 180 ° by the second sample rotating mechanism 43, and as shown in FIG. The part is positioned above 72. In this state, the processing target sample 7 is processed by irradiating the processing target sample 7 with the focused ion beam (FIB) from the ion beam column 2. In this way, the FIB is irradiated from the non-structure part 72 side of the sample 7 to be processed, and the side surface including the interface between the structure part 71 and the non-structure part 72 is processed in a direction substantially perpendicular to the mounting surface of the sample stage 41. Thus, an observation target surface (surface along the paper surface in FIG. 7) for observing the structure of the sample 7 to be processed is formed. The distance (sample film thickness) between the two observation target surfaces of the processing target sample 7 is arbitrarily set by controlling the processing position with respect to the processing target sample 7 by controlling the deflection coil 23 of the ion beam column 2. Can do.

次に、図7(b)に示した状態から、第1試料回転機構42により試料台41を90°回転駆動して試料台41の載置面をイオンビームの光軸に垂直になるように配置し、図7(c)に示すように、加工対象試料7の観察対象面、及び構造部71と無構造部72の界面がイオンビームの光軸に沿う方向に向ける。この状態で、イオンビームを照射してTEM像を取得し、構造部71と無構造部72の界面の位置を確認する。また、加工対象試料7の観察対象面側から電子線用カラム3の電子線を照射してSIM像を取得し、このSIM像から加工対象試料7の構造部71と無構造部72の界面の方向とイオンビームの光軸の方向のずれ(角度情報)を測定し、その角度情報に基づいてイオンビーム用カラム2の偏向コイル23を制御して、構造部71と無構造部72の界面がイオンビームの光軸に沿う方向に向くように制御する(図7(d)参照)。この状態で、イオンビーム用カラム2から加工対象試料7に集束イオンビーム(FIB)を照射することにより加工対象試料7を加工する。観察部位が図2に示したトランジスタにおけるソース12及びドレイン13の形成部分である場合は、構造部71と無構造部72の境界面付近が観察部位となる。加工対象試料7の観察面に沿う方向からFIBを照射して、構造部71と無構造部72の界面(観察部位)にほぼ平行な方向に加工して、観察部位の近傍に真空領域を形成し、電子線ホログラフィー法による観察に用いる観察試料を作製する。観察部位(構造部71と無構造部72の界面)から真空領域までの距離は、イオンビーム用カラム2の偏向コイル23を制御して加工対象試料7に対する加工位置を制御することにより任意に設定することができる。   Next, from the state shown in FIG. 7B, the sample stage 41 is rotated 90 ° by the first sample rotation mechanism 42 so that the mounting surface of the sample stage 41 is perpendicular to the optical axis of the ion beam. As shown in FIG. 7C, the observation target surface of the sample 7 to be processed and the interface between the structure portion 71 and the non-structure portion 72 are directed in the direction along the optical axis of the ion beam. In this state, a TEM image is acquired by irradiating with an ion beam, and the position of the interface between the structure portion 71 and the non-structure portion 72 is confirmed. Further, the SIM image is obtained by irradiating the electron beam of the electron beam column 3 from the observation target surface side of the processing target sample 7, and the interface between the structure portion 71 and the non-structure portion 72 of the processing target sample 7 is obtained from this SIM image. The deviation between the direction and the direction of the optical axis of the ion beam (angle information) is measured, and the deflection coil 23 of the ion beam column 2 is controlled based on the angle information, so that the interface between the structural portion 71 and the non-structural portion 72 Control is made so as to be directed along the optical axis of the ion beam (see FIG. 7D). In this state, the processing target sample 7 is processed by irradiating the processing target sample 7 with the focused ion beam (FIB) from the ion beam column 2. When the observation site is a portion where the source 12 and the drain 13 are formed in the transistor shown in FIG. 2, the vicinity of the boundary surface between the structure portion 71 and the non-structure portion 72 is the observation site. The FIB is irradiated from the direction along the observation surface of the sample 7 to be processed, and processed in a direction substantially parallel to the interface (observation part) between the structure part 71 and the non-structure part 72 to form a vacuum region near the observation part. Then, an observation sample used for observation by electron beam holography is prepared. The distance from the observation site (the interface between the structure portion 71 and the non-structure portion 72) to the vacuum region is arbitrarily set by controlling the deflection coil 23 of the ion beam column 2 and controlling the processing position with respect to the processing target sample 7. can do.

以上のように構成した本実施の形態における効果を従来技術と比較しつつ説明する。   The effects of the present embodiment configured as described above will be described in comparison with the prior art.

半導体分野において、例えば、トランジスタ中のソースやドレインの構造は、僅か10^21/cm^3以下の量のイオンがシリコンに注入されているだけであるため、通常の電子顕微鏡像や、電子顕微鏡を用いたEDX(Energy dispersive X-ray spectroscopy)やEESL(Electron energy loss spectroscopy)などの元素分析手法では、可視化困難である。これに対し、電子線ホログラフィー法は、試料中を透過した電子線と真空中を通過した電子線の干渉像を観測し、その僅かな位相ずれなどを演算することにより試料構造を可視化することができる。このような電子線ホログラフィー法を適用する観察試料においては厚さの均一性が非常に重要であり、かつ、観察部位の近傍に物質の無い領域(真空領域)が必用である。   In the semiconductor field, for example, the structure of the source and drain in a transistor is such that only an amount of ions of 10 ^ 21 / cm ^ 3 or less is implanted into silicon. Visualization is difficult with elemental analysis techniques such as EDX (Energy dispersive X-ray spectroscopy) and EESL (Electron Energy Loss Spectroscopy). On the other hand, the electron beam holography method makes it possible to visualize the sample structure by observing the interference image between the electron beam that has passed through the sample and the electron beam that has passed through the vacuum, and calculating the slight phase shift. it can. In an observation sample to which such an electron beam holography method is applied, thickness uniformity is very important, and a region without a substance (vacuum region) in the vicinity of the observation site is necessary.

図8は、従来技術における観察試料の作製の様子を示す図である。なお、図8中においては、図7と同様に上方向がイオンビーム用カラム2の方向に対応している。   FIG. 8 is a diagram showing how an observation sample is produced in the prior art. In FIG. 8, the upward direction corresponds to the direction of the ion beam column 2 as in FIG.

図8においては、試料台410は、その試料載置面をイオンビームの光軸に対して垂直に配置され、加工対象試料7は、その無構造部71側を試料台410の載置面に固定されている。この状態で、イオンビーム用カラム2から加工対象試料7に集束イオンビーム(FIB)を照射することにより構造部71と無構造部72との界面を含む側面を加工し、加工対象試料7の構造を観察する観察対象面を形成する。   In FIG. 8, the sample stage 410 has its sample placement surface arranged perpendicular to the optical axis of the ion beam, and the sample 7 to be processed has its non-structured part 71 side on the placement surface of the sample stage 410. It is fixed. In this state, a focused ion beam (FIB) is irradiated from the ion beam column 2 to the sample 7 to be processed, thereby processing the side surface including the interface between the structure portion 71 and the non-structure portion 72, and the structure of the sample 7 to be processed. An observation target surface for observing the image is formed.

このような上記従来技術においては、イオンビームに対する加工対象試料7の方向を変える機構を有しておらず、加工対象試料7の構造部71側からのイオンビームの照射により観察対象面を形成するので、試料構造に起因した試料厚さ斑(試料厚さのばらつき)が発生する恐れがある。また、加工対象試料7の方向を変える機構を有していないので、構造部71と無構造部72との界面に沿う方向からイオンビームを照射することが困難であり、観察部位から所望の距離に真空領域を形成することが困難である。   Such a conventional technique does not have a mechanism for changing the direction of the sample 7 to be processed with respect to the ion beam, and forms the observation target surface by irradiation of the ion beam from the structure portion 71 side of the sample 7 to be processed. Therefore, there is a possibility that sample thickness unevenness (sample thickness variation) due to the sample structure may occur. Further, since there is no mechanism for changing the direction of the sample 7 to be processed, it is difficult to irradiate the ion beam from the direction along the interface between the structural part 71 and the non-structural part 72, and a desired distance from the observation site. It is difficult to form a vacuum region.

これに対し、本実施の形態においては、試料回転機構42,43によりイオンビームに対する加工対象試料7の方向を変えることができるので、加工対象試料7の無構造部72側からのイオンビームの照射により観察対象面を形成して、試料構造に起因した試料厚さ斑を抑制し、かつ、観察部位から所望の距離に真空領域を形成することができるので、厚さの均一性が高く、かつ、観察部位から所望の距離に真空領域を有する観察試料を作製することができる。   On the other hand, in the present embodiment, the direction of the sample 7 to be processed with respect to the ion beam can be changed by the sample rotating mechanisms 42 and 43, so that the ion beam irradiation from the non-structure part 72 side of the sample 7 to be processed is performed. By forming an observation target surface, it is possible to suppress sample thickness unevenness due to the sample structure, and to form a vacuum region at a desired distance from the observation site, so that the thickness uniformity is high, and An observation sample having a vacuum region at a desired distance from the observation site can be produced.

なお、図7(a)、及び図7(b)に示した手順においては、第2試料回転機構43により試料台41を180°回転したが、これに限られず、(a)から第1試料回転機構42により180°回転し、構造部71を下側、無構造部を72上側に位置させても良い。   In the procedure shown in FIG. 7A and FIG. 7B, the sample stage 41 is rotated by 180 ° by the second sample rotation mechanism 43. However, the present invention is not limited to this. The structure may be rotated 180 ° by the rotation mechanism 42 so that the structure portion 71 is positioned on the lower side and the non-structure portion is positioned on the upper side of 72.

また、図7(d)に示した手順においては、偏向コイル22を制御して加工対象試料7に対するFIBの照射角度を調整したが、これに限られず、試料台41を第1試料回転機構42により回転駆動し、加工対象試料7に対するFIBの照射角度を調整しても良い。   In the procedure shown in FIG. 7D, the FIB irradiation angle with respect to the sample 7 to be processed is adjusted by controlling the deflection coil 22, but the present invention is not limited to this, and the sample stage 41 is moved to the first sample rotating mechanism 42. May be rotated to adjust the irradiation angle of the FIB with respect to the sample 7 to be processed.

さらに、マイクロサンプリング法においては分析部分をプローブにより支持したが、これに限られず、マイクロフォーク又はマイクロピンセットにより分析部分を支持しても良い。   Furthermore, in the microsampling method, the analysis part is supported by the probe, but the present invention is not limited to this, and the analysis part may be supported by a microfork or microtweezers.

また、電子線により加工対象試料から発生した2次電子を2次電子検出器5により検出し、偏向コイル33の制御情報と2次電子検出器5からの検出情報からSEM像を取得し、表示する構成としたが、これに限られず、加工対象試料7を挟んで電子線用カラム3と反対側に透過電子検出器を設け、TEM(Transmission Electron Microscope)像、又はSTEM(Scanning Transmission Electron Microscope)像を取得する構成としても良い。   Further, secondary electrons generated from the sample to be processed by the electron beam are detected by the secondary electron detector 5, and an SEM image is obtained from the control information of the deflection coil 33 and the detection information from the secondary electron detector 5, and displayed. However, the present invention is not limited to this. A transmission electron detector is provided on the opposite side of the electron beam column 3 across the sample 7 to be processed, and a TEM (Transmission Electron Microscope) image or STEM (Scanning Transmission Electron Microscope) is provided. It is good also as a structure which acquires an image.

電子線ホログラフィー法において、観察試料を用いない場合の位相像を示す図である。It is a figure which shows the phase image when not using an observation sample in an electron beam holography method. 電子線ホログラフィー法を適用する観察試料の断面を模式的に示す図である。It is a figure which shows typically the cross section of the observation sample to which an electron beam holography method is applied. 観察試料に電子線ホログラフィー法を適用した場合の位相像と観察試料の構造との関係を模式的に示す図である。It is a figure which shows typically the relationship between the phase image at the time of applying an electron beam holography method to an observation sample, and the structure of an observation sample. 観察試料における電子線ホログラフィー法の位相像を示す図である。It is a figure which shows the phase image of the electron holography method in an observation sample. 観察試料における通常のTEM法により取得した画像を示す図である。It is a figure which shows the image acquired by the normal TEM method in an observation sample. 本実施の形態における試料作製装置の全体構成を示す図である。It is a figure which shows the whole structure of the sample preparation apparatus in this Embodiment. 本実施の形態の試料作製装置による観察試料作製の手順を示す図である。It is a figure which shows the procedure of observation sample preparation by the sample preparation apparatus of this Embodiment. 従来技術における観察試料作製を示す図である。It is a figure which shows observation sample preparation in a prior art.

符号の説明Explanation of symbols

1 真空容器
2 荷電粒子線用カラム
3 荷電粒子線用カラム
4 試料ステージ
5 2次電子検出器
6 制御装置
11 シリコン基板
12 ソース
13 ドレイン
14 絶縁膜
15 ゲート
16 コンタクトプラグ
17 シリコン配線
18 干渉縞
21 イオン銃
22 レンズ
23 偏向コイル
31 電子銃
32 レンズ
33 偏向コイル
41 試料台
42 第1試料回転機構
43 第2試料回転機構
61 表示装置
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Charged particle beam column 3 Charged particle beam column 4 Sample stage 5 Secondary electron detector 6 Controller 11 Silicon substrate 12 Source 13 Drain 14 Insulating film 15 Gate 16 Contact plug 17 Silicon wiring 18 Interference fringe 21 Ion Gun 22 Lens 23 Deflection coil 31 Electron gun 32 Lens 33 Deflection coil 41 Sample stage 42 First sample rotation mechanism 43 Second sample rotation mechanism 61 Display device

Claims (7)

少なくともパターンが形成された構造部とパターンが形成されていない無構造部の2つの部分を有する加工対象試料を荷電粒子線により加工して観察試料を作製する観察試料作製方法であって、
前記加工対象試料の無構造部側から荷電粒子線を照射し、前記構造部と前記無構造部との界面を含む側面を加工して前記加工対象試料の構造を観察する観察対象面を形成する工程と、
前記観察対象面に沿う方向から該荷電粒子線を照射することにより前記加工対象試料を加工する工程と
を有することを特徴とする観察試料作製方法。
An observation sample preparation method in which an observation sample is prepared by processing a sample to be processed having at least two parts of a structure part in which a pattern is formed and a non-structure part in which a pattern is not formed with a charged particle beam,
A charged particle beam is irradiated from the unstructured part side of the sample to be processed, and a side surface including an interface between the structure part and the non-structured part is processed to form an observation target surface for observing the structure of the sample to be processed. Process,
And a step of processing the sample to be processed by irradiating the charged particle beam from a direction along the surface to be observed.
少なくともパターンが形成された構造部とパターンが形成されていない無構造部の2つの部分を有する加工対象試料を荷電粒子銃からの荷電粒子線により加工して観察試料を作製する観察試料作製方法であって、
前記加工対象試料を前記荷電粒子線の光軸に対して垂直な第1の回転軸を中心に回転駆動し、前記加工対象試料の無構造部側を前記荷電粒子銃側に向け、前記荷電粒子線により前記構造部と前記無構造部との界面を含む側面を加工して前記加工対象試料の構造を観察する観察対象面を形成する工程と、
前記加工対象試料を前記第1の回転軸に対して垂直な第2の回転軸を中心に回転駆動し、前記観察対象面が前記荷電粒子線に沿う方向に向け、前記荷電粒子線により前記加工対象試料を加工する工程と
を有することを特徴とする観察試料作製方法。
An observation sample preparation method in which an observation sample is prepared by processing a sample to be processed having at least two parts of a structure part where a pattern is formed and a non-structure part where a pattern is not formed with a charged particle beam from a charged particle gun. There,
The charged sample is driven by rotating the sample to be processed around a first rotation axis perpendicular to the optical axis of the charged particle beam, with the non-structure portion side of the sample to be processed facing the charged particle gun side. Processing a side surface including an interface between the structure portion and the non-structure portion by a line to form an observation target surface for observing the structure of the processing target sample;
The sample to be processed is rotationally driven around a second rotation axis perpendicular to the first rotation axis, and the observation target surface is directed in a direction along the charged particle beam, and the processing is performed by the charged particle beam. And a step of processing the target sample.
少なくともパターンが形成された構造部とパターンが形成されていない無構造部の2つの部分を有する加工対象試料を荷電粒子線により加工して観察試料を作製する観察試料作製方法であって、
前記加工対象試料の無構造部側から荷電粒子線を照射し、前記構造部と前記無構造部との界面を含む側面を加工して前記加工対象試料の構造を観察する観察対象面を形成する工程と、
前記観察対象面に沿う方向から荷電粒子線を照射することにより前記加工対象試料から生じる2次電子を検出し、その検出情報に基づいて前記加工対象試料の荷電粒子線像を取得する工程と、
前記観察対象面に沿う方向から該荷電粒子線を照射することにより前記加工対象試料を加工する工程と
を有することを特徴とする観察試料作製方法。
An observation sample preparation method in which an observation sample is prepared by processing a sample to be processed having at least two parts of a structure part in which a pattern is formed and a non-structure part in which a pattern is not formed with a charged particle beam,
A charged particle beam is irradiated from the unstructured part side of the sample to be processed, and a side surface including an interface between the structure part and the non-structured part is processed to form an observation target surface for observing the structure of the sample to be processed. Process,
Irradiating a charged particle beam from a direction along the observation target surface to detect secondary electrons generated from the processing target sample, and obtaining a charged particle beam image of the processing target sample based on the detection information;
And a step of processing the sample to be processed by irradiating the charged particle beam from a direction along the surface to be observed.
少なくともパターンが形成された構造部とパターンが形成されていない無構造部の2つの部分を有する加工対象試料を荷電粒子銃からの荷電粒子線により加工して観察試料を作製する観察試料作製方法であって、
前記加工対象試料を前記荷電粒子線の光軸に対して垂直な第1の回転軸を中心に回転駆動し、前記加工対象試料の無構造部側を前記荷電粒子銃側に向け、前記荷電粒子線により前記構造部と前記無構造部との界面を含む側面を加工して前記加工対象試料の構造を観察する観察対象面を形成する工程と、
前記観察対象面に沿う方向から荷電粒子線を照射することにより前記加工対象試料から生じる2次電子を検出し、その検出情報に基づいて前記加工対象試料の荷電粒子線像を取得する工程と、
前記加工対象試料を前記第1の回転軸に対して垂直な第2の回転軸を中心に回転駆動し、前記荷電粒子線に沿う方向に前記観察対象面を向け、前記荷電粒子線により前記加工対象試料を加工する工程と
を有することを特徴とする観察試料作製方法。
An observation sample preparation method in which an observation sample is prepared by processing a sample to be processed having at least two parts of a structure part where a pattern is formed and a non-structure part where a pattern is not formed with a charged particle beam from a charged particle gun. There,
The charged sample is driven by rotating the sample to be processed around a first rotation axis perpendicular to the optical axis of the charged particle beam, with the non-structure portion side of the sample to be processed facing the charged particle gun side. Processing a side surface including an interface between the structure portion and the non-structure portion by a line to form an observation target surface for observing the structure of the processing target sample;
Irradiating a charged particle beam from a direction along the observation target surface to detect secondary electrons generated from the processing target sample, and obtaining a charged particle beam image of the processing target sample based on the detection information;
The sample to be processed is rotationally driven around a second rotation axis perpendicular to the first rotation axis, the observation target surface is directed in a direction along the charged particle beam, and the processing is performed by the charged particle beam. And a step of processing the target sample.
少なくともパターンが形成された構造部とパターンが形成されていない無構造部の2つの部分を有する加工対象試料を第1の荷電粒子銃からの荷電粒子線により加工して観察試料を作製する観察試料作製方法であって、
前記加工対象試料を前記荷電粒子線の光軸に対して垂直な第1の回転軸を中心に回転駆動し、前記加工対象試料の無構造部側を前記第1の荷電粒子銃側に向け、前記荷電粒子線により前記構造部と前記無構造部との界面を含む側面を加工して前記加工対象試料の構造を観察する観察対象面を形成する工程と、
前記加工対象試料に第2の荷電粒子銃からの荷電粒子線を照射することにより前記加工対象試料から生じる2次電子を検出し、その検出情報に基づいて前記加工対象試料の荷電粒子線像を取得する工程と、
前記荷電粒子線像から前記加工対象試料の方向を検出し、その方向に基づいて前記第1の荷電粒子線銃の偏向コイルを制御し、偏向角度を調整する工程と、
前記加工対象試料を前記第1の回転軸に対して垂直な第2の回転軸を中心に回転駆動し、前記荷電粒子線に沿う方向に前記観察対象面を向け、前記荷電粒子線により前記加工対象試料を加工する工程と
を有することを特徴とする観察試料作製方法。
An observation sample for producing an observation sample by processing a sample to be processed having at least two parts of a structure part where a pattern is formed and a non-structure part where a pattern is not formed with a charged particle beam from a first charged particle gun A production method comprising:
The sample to be processed is rotationally driven around a first rotation axis perpendicular to the optical axis of the charged particle beam, the non-structure part side of the sample to be processed is directed to the first charged particle gun side, Forming an observation target surface for observing the structure of the sample to be processed by processing a side surface including an interface between the structure portion and the non-structure portion with the charged particle beam;
By irradiating the sample to be processed with a charged particle beam from a second charged particle gun, secondary electrons generated from the sample to be processed are detected, and based on the detection information, a charged particle beam image of the sample to be processed is obtained. A process of acquiring;
Detecting a direction of the sample to be processed from the charged particle beam image, controlling a deflection coil of the first charged particle beam gun based on the direction, and adjusting a deflection angle;
The sample to be processed is rotationally driven around a second rotation axis perpendicular to the first rotation axis, the observation target surface is directed in a direction along the charged particle beam, and the processing is performed by the charged particle beam. And a step of processing the target sample.
少なくともパターンが形成された構造部とパターンが形成されていない無構造部の2つの部分を有する加工対象試料を荷電粒子銃からの荷電粒子線により加工して観察試料を作製する観察試料作製方法であって、
前記加工対象試料の前記構造部と無構造部との界面を含む面を前記加工対象試料を載置するための試料台に固定する工程と、
前記加工対象試料を前記荷電粒子線の光軸に対して垂直な第1の回転軸を中心に回転駆動し、前記加工対象試料の無構造部側を前記荷電粒子銃側に向け、前記荷電粒子線により前記構造部と前記無構造部との界面を含む側面を加工して前記加工対象試料の構造を観察する観察対象面を形成する工程と、
前記加工対象試料を前記第1の回転軸に対して垂直な第2の回転軸を中心に回転駆動し、前記荷電粒子線に沿う方向に前記観察対象面を向け、前記荷電粒子線により前記加工対象試料を加工する工程と
を有することを特徴とする観察試料作製方法。
An observation sample preparation method in which an observation sample is prepared by processing a sample to be processed having at least two parts of a structure part where a pattern is formed and a non-structure part where a pattern is not formed with a charged particle beam from a charged particle gun. There,
Fixing a surface including an interface between the structure part and the non-structure part of the sample to be processed to a sample table for placing the sample to be processed;
The charged sample is driven by rotating the sample to be processed around a first rotation axis perpendicular to the optical axis of the charged particle beam, with the non-structure portion side of the sample to be processed facing the charged particle gun side. Processing a side surface including an interface between the structure portion and the non-structure portion by a line to form an observation target surface for observing the structure of the processing target sample;
The sample to be processed is rotationally driven around a second rotation axis perpendicular to the first rotation axis, the observation target surface is directed in a direction along the charged particle beam, and the processing is performed by the charged particle beam. And a step of processing the target sample.
加工対象試料を加工する荷電粒子線を照射する第1の荷電粒子線照射手段と、
前記加工対象試料を前記荷電粒子線の光軸に対して垂直な第1の回転軸を中心に回転駆動する第1の試料回転手段と、
前記加工対象試料を前記第1の回転軸に対して垂直な第2の回転軸を中心に回転駆動する第2の試料回転手段と、
前記加工対象試料の荷電粒子線像を取得するための第2の荷電粒子線照射手段と、
前記荷電粒子線像から検出された前記加工対象試料の方向に基づいて、前記第1の荷電粒子線照射手段の偏向コイルを制御し、偏向角度を調整する偏向角度調整手段と
を備えたことを特徴とする観察試料作製装置。
First charged particle beam irradiation means for irradiating a charged particle beam for processing a sample to be processed;
First sample rotating means for rotating the sample to be processed around a first rotation axis perpendicular to the optical axis of the charged particle beam;
Second sample rotating means for rotating the sample to be processed around a second rotation axis perpendicular to the first rotation axis;
A second charged particle beam irradiation means for acquiring a charged particle beam image of the sample to be processed;
Deflection angle adjusting means for controlling a deflection coil of the first charged particle beam irradiation means based on the direction of the sample to be processed detected from the charged particle beam image and adjusting a deflection angle. A featured observation sample preparation device.
JP2008307816A 2008-12-02 2008-12-02 Observation sample preparation method Active JP5075801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008307816A JP5075801B2 (en) 2008-12-02 2008-12-02 Observation sample preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008307816A JP5075801B2 (en) 2008-12-02 2008-12-02 Observation sample preparation method

Publications (2)

Publication Number Publication Date
JP2010133739A true JP2010133739A (en) 2010-06-17
JP5075801B2 JP5075801B2 (en) 2012-11-21

Family

ID=42345180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008307816A Active JP5075801B2 (en) 2008-12-02 2008-12-02 Observation sample preparation method

Country Status (1)

Country Link
JP (1) JP5075801B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132813A (en) * 2010-12-22 2012-07-12 Renesas Electronics Corp Transmission electron microscope specimen and method for preparing the same
KR101604055B1 (en) * 2014-12-12 2016-03-17 한국기초과학지원연구원 Electron Microscope Stage With 6-Axis Movement Using SEM Stage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0887972A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Sample holder
JP2003007242A (en) * 2001-06-20 2003-01-10 Samsung Electronics Co Ltd Sample holder, auxiliary device for fixing sample in the sample holder, and sample fixing method using them
JP2006164861A (en) * 2004-12-10 2006-06-22 Hitachi High-Technologies Corp Scanning interference electron microscope
JP2007108105A (en) * 2005-10-17 2007-04-26 Renesas Technology Corp Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
JP2007188905A (en) * 2007-04-23 2007-07-26 Hitachi High-Technologies Corp Sample holder for charged particle beam device
JP2008146958A (en) * 2006-12-08 2008-06-26 Denso Corp Electron beam hologram, method of producing transmission electron microscope image, and transmission electron microscope
JP2008181893A (en) * 2008-03-26 2008-08-07 Hitachi Ltd Method and device for processing and observing microscopic sample

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0887972A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Sample holder
JP2003007242A (en) * 2001-06-20 2003-01-10 Samsung Electronics Co Ltd Sample holder, auxiliary device for fixing sample in the sample holder, and sample fixing method using them
JP2006164861A (en) * 2004-12-10 2006-06-22 Hitachi High-Technologies Corp Scanning interference electron microscope
JP2007108105A (en) * 2005-10-17 2007-04-26 Renesas Technology Corp Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
JP2008146958A (en) * 2006-12-08 2008-06-26 Denso Corp Electron beam hologram, method of producing transmission electron microscope image, and transmission electron microscope
JP2007188905A (en) * 2007-04-23 2007-07-26 Hitachi High-Technologies Corp Sample holder for charged particle beam device
JP2008181893A (en) * 2008-03-26 2008-08-07 Hitachi Ltd Method and device for processing and observing microscopic sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132813A (en) * 2010-12-22 2012-07-12 Renesas Electronics Corp Transmission electron microscope specimen and method for preparing the same
KR101604055B1 (en) * 2014-12-12 2016-03-17 한국기초과학지원연구원 Electron Microscope Stage With 6-Axis Movement Using SEM Stage

Also Published As

Publication number Publication date
JP5075801B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP6188792B2 (en) Preparation of slices for TEM observation
JP5873227B2 (en) Slice and view with decoration
JP6598684B2 (en) Reference mark design for tilt or glancing angle milling operations using charged particle beams
JP6224612B2 (en) High-throughput TEM preparation process and hardware for backside thinning of cross-section observation slices
KR101967853B1 (en) Glancing angle mill
KR102579329B1 (en) CAD-assisted TEM prep recipe creation
CN103674635B (en) The endpoint based on dosage for low kV FIB millings in TEM sample preparation determines
EP1238405B1 (en) Method and system for the examination of specimen using a charged particle beam
TW200826144A (en) Focused ion beam apparatus and sample section forming and thin-piece sample preparing methods
JP2013257317A5 (en)
JP2009152120A (en) Electron beam tomography method, and electron beam tomography device
US10539489B2 (en) Methods for acquiring planar view STEM images of device structures
JP5075801B2 (en) Observation sample preparation method
US10410829B1 (en) Methods for acquiring planar view stem images of device structures
US20050116164A1 (en) Method and system for the examination of specimen
CN103824798A (en) Automated sample oreintation
JP3684943B2 (en) Beam scanning inspection system
WO2020100179A1 (en) Imaging method and imaging system
JP2014146426A (en) Alignment measuring device and alignment measurement method
JP2007134531A (en) Stress measurement device for semiconductor device
Park et al. FIB overview
JP2007212202A (en) Sample evaluation device and method
Simon-Najasek et al. Local metal segregation as root cause for electrical shorts in highly doped pressure sensor devices
JP2011179959A (en) Method for preparing electric characteristic measuring sample, measuring method, and sample processing and measuring device
JP2006128146A (en) Device and column for test piece inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent or registration of utility model

Ref document number: 5075801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350