JP2010133696A - Vapor compression device - Google Patents

Vapor compression device Download PDF

Info

Publication number
JP2010133696A
JP2010133696A JP2009239475A JP2009239475A JP2010133696A JP 2010133696 A JP2010133696 A JP 2010133696A JP 2009239475 A JP2009239475 A JP 2009239475A JP 2009239475 A JP2009239475 A JP 2009239475A JP 2010133696 A JP2010133696 A JP 2010133696A
Authority
JP
Japan
Prior art keywords
compressor
flow rate
liquid
steam
target fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009239475A
Other languages
Japanese (ja)
Inventor
Masaki Matsukuma
正樹 松隈
Hideaki Kuwabara
英明 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009239475A priority Critical patent/JP2010133696A/en
Publication of JP2010133696A publication Critical patent/JP2010133696A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor compression device for preventing excessive temperature rise of a compressor and utilizing output of the compressor in maximum as steam energy. <P>SOLUTION: In this vapor compression device 1 including the positive displacement compressor 7 for compressing steam as a vapor-phase object fluid sucked in an active space and discharging the same to a discharge pipe 8 of a prescribed discharge pressure Pd, a liquid introducing means for introducing the liquid-phase object fluid to the active space or a sucking section of the compressor 7, and a drain separator 9 disposed on the discharge pipe 8, and separating a liquid phase component from the object fluid discharged by the compressor 7, the liquid introducing means consumes heat energy remaining after consuming the energy given to the object fluid by the compressor 7 to rise a pressure of the vapor-phase object fluid sucked by the compressor 7 to the discharge pressure, as latent heat in steam for vaporizing the liquid-phase object fluid, and introduces the liquid-phase object fluid of the amount sufficient for discharging a part of the object fluid from the compressor 7 in a state of wet steam of liquid phase. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は蒸気圧縮装置に関する。   The present invention relates to a vapor compression apparatus.

産業界において、蒸気を使用する設備は多いが、その潜熱まで消費できる設備は非常に少なく、0MPa、100℃の蒸気が多量に廃棄されている。これらの廃棄されていた低圧蒸気を回収して、圧縮機で圧縮することにより、ボイラで新たに水を蒸発させるよりも少ないエネルギーで安価に、利用可能な圧力の蒸気に再生する蒸気圧縮装置が提案されている(例えば特許文献1)。   In the industry, there are many facilities that use steam, but there are very few facilities that can consume the latent heat, and a large amount of steam at 0 MPa and 100 ° C. is discarded. By recovering these discarded low-pressure steam and compressing them with a compressor, there is a steam compressor that regenerates steam at a usable pressure at a lower cost and with less energy than newly evaporating water in a boiler. It has been proposed (for example, Patent Document 1).

このような蒸気圧縮装置では、ボイラの主蒸気配管の設定圧力によって、圧縮機の吐出圧力も決定される。圧縮機は、圧縮する蒸気の量と圧力に対して十分に大きい容量を有するものが使用されるが、過剰な出力は、吐出する蒸気の過剰な温度上昇をもたらす。これらの熱は、有効に利用できないばかりか、圧縮機の温度を上昇させる。スクリュ圧縮機の場合、構造上、耐用温度が250℃程度、高くとも300℃程度であるため、過剰な温度上昇は避けなければならない。   In such a vapor compressor, the discharge pressure of the compressor is also determined by the set pressure of the main steam pipe of the boiler. Although a compressor having a sufficiently large capacity with respect to the amount and pressure of the steam to be compressed is used, excessive output results in excessive temperature rise of the discharged steam. These heats can not only be used effectively, but also increase the temperature of the compressor. In the case of a screw compressor, due to the structure, the service temperature is about 250 ° C., and at most about 300 ° C., so an excessive temperature rise must be avoided.

特公平6−70540号公報Japanese Examined Patent Publication No. 6-70540

前記問題点に鑑みて、本発明は、圧縮機の過剰な温度上昇を防止でき、圧縮機の出力を蒸気エネルギーとして最大限に利用可能な蒸気圧縮装置を提供することを課題とする。   In view of the above problems, it is an object of the present invention to provide a vapor compression apparatus that can prevent an excessive increase in temperature of a compressor and can use the output of the compressor as vapor energy to the maximum extent.

前記課題を解決するために、本発明による蒸気圧縮装置は、作用空間に吸い込んだ気相の対象流体である蒸気を圧縮して、所定の吐出圧力の吐出配管に吐出する容積式の圧縮機と、前記圧縮機の前記作用空間または前記圧縮機の吸い込み部に、液相の前記対象流体を導入する液導入手段と、前記吐出配管に設けられ、前記圧縮機が吐出した前記対象流体から液相分を分離するドレンセパレータとを有し、前記液導入手段は、前記圧縮機が前記対象流体に与えるエネルギーの内、前記圧縮機が吸い込んだ前記気相の対象流体が前記吐出圧力に昇圧するために消費して残る熱エネルギーを、前記液相の対象流体を気化させるための蒸発潜熱として消費してなお、前記対象流体を前記圧縮機から一部が液相である湿り蒸気の状態で吐出させるのに十分な量の前記液相の対象流体を導入するものとする。   In order to solve the above problems, a vapor compression apparatus according to the present invention includes a positive displacement compressor that compresses vapor that is a gas phase target fluid sucked into a working space and discharges the vapor to a discharge pipe having a predetermined discharge pressure. A liquid introducing means for introducing the target fluid in a liquid phase into the working space of the compressor or a suction portion of the compressor; and a liquid phase from the target fluid discharged from the compressor provided in the discharge pipe. A drain separator that separates a component, and the liquid introducing means boosts the gas phase target fluid sucked by the compressor to the discharge pressure out of the energy that the compressor gives to the target fluid. The remaining thermal energy is consumed as latent heat of vaporization for vaporizing the target fluid in the liquid phase, and the target fluid is discharged from the compressor in the state of wet steam that is partially in the liquid phase. Ten We shall introduce an amount of the subject fluid in the liquid phase.

この構成によれば、圧縮機において、液導入手段により供給された液相の対象流体が蒸発することで過剰な熱を奪うので、吐出する蒸気温度が吐出圧力における飽和蒸気温度より高くなることがない。このため、圧縮機の温度が過剰に上昇することがない。また、圧縮機において液導入手段により導入された液相の対象流体を蒸発させるので、吐出する蒸気量を吸い込んだ蒸気量よりも増量することができる。このため、圧縮機の出力エネルギーを利用可能な蒸気エネルギーに余すことなく変換できる。このため、ボイラ設備を含めたプラント全体のエネルギー効率を高められる。   According to this configuration, in the compressor, the liquid phase target fluid supplied by the liquid introduction means evaporates, and thus excessive heat is taken away. Therefore, the discharged steam temperature may be higher than the saturated steam temperature at the discharge pressure. Absent. For this reason, the temperature of the compressor does not rise excessively. Further, since the liquid phase target fluid introduced by the liquid introduction means in the compressor is evaporated, the amount of steam to be discharged can be increased from the amount of sucked steam. For this reason, the output energy of the compressor can be converted into the available steam energy. For this reason, the energy efficiency of the whole plant including boiler equipment can be improved.

また、本発明の蒸気圧縮装置において、前記液導入手段は、前記圧縮機を駆動するモータの出力から算出される前記圧縮機の有効出力エネルギーを、前記対象流体の前記吐出圧力における単位量当たりの蒸発潜熱で除した値よりも多量の液相の前記対象流体を導入してもよい。   Further, in the vapor compression apparatus of the present invention, the liquid introducing means converts the effective output energy of the compressor calculated from the output of the motor driving the compressor per unit amount at the discharge pressure of the target fluid. You may introduce | transduce the said target fluid of a liquid phase much larger than the value remove | divided with the latent heat of vaporization.

この構成によれば、圧縮機の作用空間または吸い込み部に導入すべき液相の対象流体の量の算出が容易であり、制御が簡単である。対象流体の顕熱負荷は、潜熱負荷に比べて小さいので、吐出を湿り蒸気とするのに必要な液量との誤差もそれほど大きくない。また、顕熱負荷を無視しているので、導入量が多めに算出され、吐出を湿り蒸気に保つためには安全サイドの誤差である。   According to this configuration, it is easy to calculate the amount of the target fluid in the liquid phase to be introduced into the working space or the suction portion of the compressor, and the control is simple. Since the sensible heat load of the target fluid is smaller than the latent heat load, the error from the amount of liquid required to make the discharge wet steam is not so large. In addition, since the sensible heat load is ignored, the introduction amount is calculated to be large, and it is a safety-side error in order to keep the discharge in the wet steam.

また、本発明の蒸気圧縮装置において、前記ドレンセパレータで分離された液相の前記対象流体を前記作用空間または前記吸い込み部に導入し、不足する液相の前記対象流体を外部の流体供給源から導入してもよい。   In the vapor compression apparatus of the present invention, the target fluid in the liquid phase separated by the drain separator is introduced into the working space or the suction portion, and the target fluid in the insufficient liquid phase is supplied from an external fluid supply source. It may be introduced.

この構成によれば、ドレンセパレータで分離された液相の対象流体は、温度が吐出圧力における飽和蒸気温度であるため、圧縮機内で温度を上昇させるためのエネルギーが不要であり、吐出する蒸気の増量効果が高い。   According to this configuration, the target fluid in the liquid phase separated by the drain separator does not require energy for increasing the temperature in the compressor because the temperature is the saturated steam temperature at the discharge pressure. Increase effect is high.

また、本発明の蒸気圧縮装置において、前記液導入手段は、前記流体供給源からの前記対象流体の供給を遮断できる供給バルブと、前記ドレンセパレータで分離された液の流量を検出する流量検出器とを備え、前記流量検出器の検出流量が、前記圧縮機の吐出する対象流体が飽和蒸気となるために必要な供給量以上の所定の下限流量となったとき、前記供給バルブを開き、前記下限流量より大きい所定の上限流量となったとき、前記供給バルブを閉じてもよい。   Further, in the vapor compression apparatus of the present invention, the liquid introducing means includes a supply valve capable of interrupting the supply of the target fluid from the fluid supply source, and a flow rate detector for detecting a flow rate of the liquid separated by the drain separator. When the detected flow rate of the flow rate detector is a predetermined lower limit flow rate that is higher than the supply amount necessary for the target fluid discharged from the compressor to be saturated steam, the supply valve is opened, The supply valve may be closed when a predetermined upper limit flow rate greater than the lower limit flow rate is reached.

この構成によれば、ドレンセパレータで分離された液相の対象流体の流量が、湿り蒸気を吐出させるのに十分であるときは、他の供給源から液を導入しない。ドレンセパレータで分離された液の流量は、比較的正確に測定できるため、圧縮機の吐出を常に湿り蒸気となるように維持することが容易である。   According to this configuration, when the flow rate of the liquid phase target fluid separated by the drain separator is sufficient to discharge wet steam, no liquid is introduced from another supply source. Since the flow rate of the liquid separated by the drain separator can be measured relatively accurately, it is easy to maintain the discharge of the compressor to be always wet steam.

本発明によれば、圧縮機の吐出が湿り蒸気となるように、作用空間または吸い込み部に液相の対象流体を導入するので、圧縮機の出力の内、供給される蒸気を所定圧力まで圧縮して余るエネルギーによって、新たな蒸気を生成するので、エネルギーを有効に利用でき、圧縮機の温度が過剰に上昇しない。   According to the present invention, the liquid phase target fluid is introduced into the working space or the suction section so that the discharge of the compressor becomes wet steam, so that the supplied steam is compressed to a predetermined pressure in the output of the compressor. Since the surplus energy generates new steam, the energy can be used effectively, and the compressor temperature does not rise excessively.

本発明の第1実施形態の蒸気圧縮装置を有するプラントの構成図である。It is a block diagram of the plant which has the vapor compression apparatus of 1st Embodiment of this invention. 本発明の第2実施形態の蒸気圧縮装置を有するプラントの構成図である。It is a block diagram of the plant which has the vapor compression apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態の蒸気圧縮装置を有するプラントの構成図である。It is a block diagram of the plant which has the vapor compression apparatus of 3rd Embodiment of this invention. 本発明の第4実施形態の蒸気圧縮装置を有するプラントの構成図である。It is a block diagram of the plant which has the vapor compression apparatus of 4th Embodiment of this invention.

これより、本発明の実施形態について、図面を参照しながら説明する。図1に、本発明の1つの実施形態の蒸気圧縮装置1を含む製造プラントの構成を示す。   Embodiments of the present invention will now be described with reference to the drawings. In FIG. 1, the structure of the manufacturing plant containing the vapor compression apparatus 1 of one Embodiment of this invention is shown.

蒸気圧縮装置1は、ボイラ2から需要設備(製造設備)3に主配管4を介して所定の供給圧力Ph(例えば0.8MPaG)の蒸気(気相の対象流体)を供給するプラントにおいて、需要設備3のスチームトラップ5で分離された高温水をフラッシュタンク6で、大気圧近くの吸込圧力Ps(例えば0.06MPaG)まで減圧して得られる吸込温度Ts(例えば110℃)、質量流量Gc(例えば1000kg/h)の低圧蒸気を、スクリュ圧縮機7の作用空間(互いに噛合する雌雄一対のスクリュロータと、これらを収容するケーシングとの間に形成され、スクリュ圧縮機7の吸い込み部および吐出口からは隔離された空間)に吸い込んで供給圧力Phと等しい吐出圧力Pdまで昇圧して吐出し、吐出配管8を介して主配管4に環流させることで、ボイラ2の発生蒸気量を低減するもの、ひいてはボイラ2の燃料消費を低減するものである。   The vapor compression apparatus 1 is used in a plant that supplies steam (gas target fluid) having a predetermined supply pressure Ph (for example, 0.8 MPaG) from a boiler 2 to a demand facility (manufacturing facility) 3 via a main pipe 4. The high-temperature water separated by the steam trap 5 of the equipment 3 is reduced to a suction pressure Ps (for example, 0.06 MPaG) near the atmospheric pressure by the flash tank 6, and a suction temperature Ts (for example, 110 ° C.), a mass flow rate Gc ( For example, 1000 kg / h) of low-pressure steam is formed between the working space of the screw compressor 7 (a pair of male and female screw rotors that mesh with each other and a casing that accommodates them, and a suction portion and a discharge port of the screw compressor 7. Is discharged to the main pipe 4 via the discharge pipe 8 and discharged to the discharge pressure Pd equal to the supply pressure Ph. It is, as to reduce the generation amount of steam boiler 2, is intended to reduce the eventual fuel consumption of the boiler 2.

なお、主配管4には、供給圧力Phの検出のための圧力検出手段、および、その供給圧力Phの蒸気の温度Thの検出のための温度検出手段が設けられ、また、吐出配管8には、吐出圧Pdの検出のための圧力検出手段、および、吐出温度Tdの検出のための温度検出手段が設けられている。各温度検出手段にて検出された供給圧力Phおよび吐出圧力Pdを表す信号は、図示しない制御手段に入力される。そして、その制御手段は、供給圧力Phに吐出圧力Pdが等しくなるように、スクリュ圧縮機7を駆動するモータ14の回転数を適宜調整する。   The main pipe 4 is provided with a pressure detecting means for detecting the supply pressure Ph and a temperature detecting means for detecting the temperature Th of the steam at the supply pressure Ph. There are provided pressure detection means for detecting the discharge pressure Pd and temperature detection means for detecting the discharge temperature Td. Signals representing the supply pressure Ph and the discharge pressure Pd detected by each temperature detection means are input to a control means (not shown). The control means appropriately adjusts the rotational speed of the motor 14 that drives the screw compressor 7 so that the discharge pressure Pd becomes equal to the supply pressure Ph.

蒸気圧縮装置1では、吐出配管8に、スクリュ圧縮機7が吐出した蒸気から水(液相分)を分離するドレンセパレータ9が設けられ、分離された水(液相の対象流体)は、減圧のためのオリフィス10および流量計11を介してスクリュ圧縮機7の作用空間に導入される。また、スクリュ圧縮機7の作用空間には、フラッシュタンク6で低圧蒸気と分離された大気圧100℃の温水(外部の流体供給源)もまた、ポンプ12によって供給バルブ13を介して導入されるようになっている(液導入手段)。なお、ドレンセパレータ9で分離された温水、および、フラッシュタンク6で分離された温水のスクリュ圧縮機7の作用空間への導入口は、そのスクリュ圧縮機7の吸い込み部の近傍(内部の圧力が略吸い込み圧力Phと同等である位置)に設けられている。   In the vapor compression apparatus 1, the discharge pipe 8 is provided with a drain separator 9 that separates water (liquid phase component) from the vapor discharged by the screw compressor 7, and the separated water (liquid phase target fluid) is decompressed. Is introduced into the working space of the screw compressor 7 via the orifice 10 and the flow meter 11. Further, hot water (external fluid supply source) having an atmospheric pressure of 100 ° C. separated from the low-pressure steam by the flash tank 6 is also introduced into the working space of the screw compressor 7 by the pump 12 through the supply valve 13. (Liquid introduction means). The inlet of the hot water separated by the drain separator 9 and the hot water separated by the flash tank 6 to the working space of the screw compressor 7 is located near the suction portion of the screw compressor 7 (the internal pressure is At a position substantially equal to the suction pressure Ph).

供給バルブ13は、流量計11が検出したスクリュ圧縮機7の吐出配管8から作用空間に環流される水の質量流量である環流流量Grが、所定の下限流量Grmin以下となったときに開放される。供給バルブ13が開放されると、フラッシュタンク6からスクリュ圧縮機7の作用空間に、温水が補給流量Gpで供給される。また、供給バルブ13は、環流流量Grが所定の上限流量Grmax以上になると閉鎖される。   The supply valve 13 is opened when the recirculation flow rate Gr, which is the mass flow rate of water circulated from the discharge pipe 8 of the screw compressor 7 detected by the flow meter 11 to the working space, becomes equal to or less than a predetermined lower limit flow rate Grmin. The When the supply valve 13 is opened, warm water is supplied from the flash tank 6 to the working space of the screw compressor 7 at a replenishment flow rate Gp. The supply valve 13 is closed when the circulating flow rate Gr becomes equal to or higher than a predetermined upper limit flow rate Grmax.

下限流量Grminは、スクリュ圧縮機7の吐出が、継続して湿り蒸気となるような値に設定される。つまり、スクリュ圧縮機7のモータ14の出力Nc(例えば160kW)にスクリュ圧縮機7の機械効率η(例えば95%)を乗じた有効出力エネルギー(Nc・η)と、吸込蒸気を吐出圧力Pdまでポリトロープ圧縮するためのエネルギーとの差に比べて、流量Grの高温水が全て吐出圧力Pdの水蒸気に気化するのに必要な熱エネルギーが十分に大きくなるように、つまり、有効出力エネルギーのうちの余剰分が水の蒸発潜熱として消費してなお、液相の水が残るように、下限流量Grminが設定される。   The lower limit flow rate Grmin is set to a value such that the discharge of the screw compressor 7 continues to become wet steam. That is, the effective output energy (Nc · η) obtained by multiplying the output Nc (for example, 160 kW) of the motor 14 of the screw compressor 7 by the mechanical efficiency η (for example, 95%) of the screw compressor 7 and the suction steam to the discharge pressure Pd. Compared with the difference from the energy for compressing the polytrope, the thermal energy required for vaporizing all the high-temperature water at the flow rate Gr into water vapor at the discharge pressure Pd is sufficiently large, that is, out of the effective output energy. The lower limit flow rate Grmin is set so that the excess is consumed as the latent heat of vaporization of the water and the liquid water remains.

一方、上限流量Grmaxは、制御上、安定を得られる程度に下限流量Grminより大きな値を選択すればよい。供給バルブ13を介して供給される補給流量Gpは、スクリュ圧縮機7が液圧縮状態となるほどに多量であってはならない。マクロ的に見ると、環流流量Grは、系内に環流流量Grを維持できる水量が存在する限り、下限流量Grminと上限流量Grmaxとの間の一定の流量に維持されるので、吐出配管8から主配管4に導入される蒸気の流量は、吸気流量Gcに気化流量Geの平均値を加算した流量になる。なお、気化流量Geは、スクリュ圧縮機7の吸気から圧縮行程で発生する気化蒸気の流量である。   On the other hand, as the upper limit flow rate Grmax, a value larger than the lower limit flow rate Grmin may be selected to the extent that stability is obtained in terms of control. The replenishment flow rate Gp supplied through the supply valve 13 should not be so large that the screw compressor 7 is in the liquid compression state. When viewed macroscopically, the recirculation flow rate Gr is maintained at a constant flow rate between the lower limit flow rate Grmin and the upper limit flow rate Grmax as long as there is a water amount that can maintain the recirculation flow rate Gr in the system. The flow rate of the steam introduced into the main pipe 4 is a flow rate obtained by adding the average value of the vaporization flow rate Ge to the intake flow rate Gc. The vaporization flow rate Ge is a flow rate of vaporized steam generated in the compression stroke from the intake air of the screw compressor 7.

簡易的には、モータ14の時間当たりの有効出力Nc・η(例えば152kW×3600=547200J/h)を吐出圧力Pdにおける蒸発潜熱(例えば2030kJ/kg)で除した理論気化流量Gi(例えば270kg/h)を基にして、下限流量Grminを決定することができる。例えば、下限流量Grminは、理論流量の例えば1.1倍程度にすればよい。また、上限流量Grmaxは理論流量Giの例えば1.5倍程度にすればよい。なお、理論気化流量Giは、次式で表される。
Gi=3600×Nc・η/rd(単位:kg/h)
但し、rdは、吐出圧力Pdにおける気化潜熱(単位:kJ/kg)である
Briefly, the theoretical vaporization flow rate Gi (for example, 270 kg / kg) obtained by dividing the effective output Nc · η (for example, 152 kW × 3600 = 547200 J / h) of the motor 14 by the latent heat of vaporization (for example, 2030 kJ / kg) at the discharge pressure Pd. h), the lower limit flow rate Grmin can be determined. For example, the lower limit flow rate Grmin may be about 1.1 times the theoretical flow rate, for example. The upper limit flow rate Grmax may be about 1.5 times the theoretical flow rate Gi. The theoretical vaporization flow rate Gi is expressed by the following equation.
Gi = 3600 × Nc · η / rd (unit: kg / h)
However, rd is the latent heat of vaporization at the discharge pressure Pd (unit: kJ / kg).

このように、理論気化流量Gi以上の環流流量Grを確保することで、スクリュ圧縮機7は、作用空間に導入された水を全て蒸発させることができず、吐出される蒸気は、吐出配管8に吐出される瞬間に、吐出圧力Pdにおける飽和蒸気温度の湿り蒸気になる。このため、スクリュ圧縮機7に導入された蒸気および水に加えられた熱エネルギーが吐出蒸気やスクリュ圧縮機7自体を吐出圧力Pdの飽和蒸気温度を超えて過剰に上昇させることがなく、エネルギーロスが少なく、スクリュ圧縮機7の熱による変形などで発生するトラブルも防止できる。   Thus, by ensuring the reflux flow rate Gr equal to or higher than the theoretical vaporization flow rate Gi, the screw compressor 7 cannot evaporate all the water introduced into the working space, and the discharged steam is discharged from the discharge pipe 8. At the moment of discharge, the steam becomes wet steam at the saturated steam temperature at the discharge pressure Pd. For this reason, the heat energy added to the steam and water introduced into the screw compressor 7 does not excessively raise the discharge steam or the screw compressor 7 itself beyond the saturated steam temperature of the discharge pressure Pd, resulting in energy loss. Therefore, troubles caused by deformation of the screw compressor 7 due to heat can be prevented.

また、本実施形態では、主配管4に供給できる蒸気量は、需要設備3から回収できる蒸気量より、気化流量Geの平均値(瞬間的補給流量Gpに供給バルブ13の開放時間比を乗じた流量)だけ多くなる。実際の気化流量Geの平均値は、吸い込んだ低圧蒸気のポリトロープ圧縮の熱負荷や、供給バルブ13を介して供給された水を昇温させるための顕熱負荷があるため、理論気化流量Giよりも小さくなるが、それでも、蒸気圧縮装置1は、吸い込んだ低圧蒸気を加圧するとともに、最大20%程度増量して吐出することができる。   In the present embodiment, the amount of steam that can be supplied to the main pipe 4 is obtained by multiplying the average amount of the vaporization flow rate Ge (the instantaneous replenishment flow rate Gp by the opening time ratio of the supply valve 13) from the amount of steam that can be recovered from the demand facility 3. (Flow rate) increases. The average value of the actual vaporization flow rate Ge has a heat load for polytropic compression of the sucked low-pressure steam and a sensible heat load for raising the temperature of the water supplied via the supply valve 13, and therefore, from the theoretical vaporization flow rate Gi. However, the vapor compression apparatus 1 can still pressurize the sucked low-pressure steam and increase the amount by about 20% at maximum.

なお、環流流量Grの循環水は、作用空間へ導入されると、吐出圧力Pdに加圧された状態から、略吸い込み圧力Psの状態へ減圧されるため、エンタルピーが低下する。そしてエンタルピーの差分(吐出圧力Pd下の飽和温度水の持つエンタルピーhd(kJ/kg)と、吸い込み圧力Ps下の飽和温度水の持つエンタルピーhs(kJ/kg)との差分)に環流流量Grを乗じた熱量Q1を、吸い込み圧力Psの状態の蒸気の気化潜熱rsで除した蒸気量Ge1の蒸気が、いわゆる「フラッシュ蒸気」として発生する。そして、スクリュ圧縮機7の作用空間に吸い込まれる質量流量Gcの蒸気と、蒸気量Ge1の「フラッシュ蒸気」と、作用空間の水量(Gr−Ge1)の水が合わせて作用空間へ流入する。蒸気(Gc+Ge1)は、圧縮され、Nc・ηの一部の熱量Q1は、作用空間の水量(Gr−Ge1)の水に、顕熱の上昇の分として吸収される。吸収しきれない熱量Q2が存在するときには、この熱量Q2によって、さらに気化蒸気Ge2が発生する。そして、吐出される蒸気量は、Gc+Ge1+Ge2となる。   When the circulating water having the reflux flow rate Gr is introduced into the working space, the enthalpy is reduced because the circulating water is decompressed from the state pressurized to the discharge pressure Pd to the state of the suction pressure Ps. Then, the recirculation flow rate Gr is added to the difference between the enthalpies (the difference between the enthalpy hd (kJ / kg) of the saturated temperature water under the discharge pressure Pd and the enthalpy hs (kJ / kg) of the saturated temperature water under the suction pressure Ps). Steam with a steam amount Ge1 obtained by dividing the multiplied heat amount Q1 by the vaporization latent heat rs of the steam at the suction pressure Ps is generated as so-called “flash steam”. Then, the steam with the mass flow rate Gc sucked into the working space of the screw compressor 7, the “flash steam” with the steam amount Ge <b> 1, and the water with the water amount (Gr−Ge <b> 1) in the working space flow into the working space. The steam (Gc + Ge1) is compressed, and a part of the heat quantity Q1 of Nc · η is absorbed by the water of the working space water quantity (Gr-Ge1) as the increase in sensible heat. When there is a heat quantity Q2 that cannot be absorbed, vaporized vapor Ge2 is further generated by this heat quantity Q2. And the amount of vapor | steam discharged becomes Gc + Ge1 + Ge2.

ここで、以上の関係を整理すると、以下の式に表される。
Nc/η=Q1+Q2
Q1=Gr×(hd−hs)
Ge1=Q1/rs
Ge2=Q2/rd
Ge=Ge1+Ge2
Here, when the above relation is arranged, it is expressed by the following formula.
Nc / η = Q1 + Q2
Q1 = Gr × (hd−hs)
Ge1 = Q1 / rs
Ge2 = Q2 / rd
Ge = Ge1 + Ge2

また、本実施形態では、モータ14の出力および環流流量Grに基づいて供給バルブ13を制御するが、モータ14の消費電力や液相の水の流量は測定精度が高いので、制御が確実である。   In this embodiment, the supply valve 13 is controlled based on the output of the motor 14 and the recirculation flow rate Gr. However, since the power consumption of the motor 14 and the flow rate of liquid phase water have high measurement accuracy, the control is reliable. .

また、本実施形態の蒸気圧縮装置1において、供給バルブ13を開度調節可能なコントロールバルブとすることで、常時、供給バルブ13を介してフラッシュタンク6から水を供給するようにすれば、循環流量Grを、補給流量Gpの平均値または理論流量Giよりも小さくしても、作用空間に噴射される水量の合計が、理論気化流量Giを上回っていれば、スクリュ圧縮機7の吐出蒸気を湿り蒸気に維持することが可能である。   Further, in the vapor compression apparatus 1 of the present embodiment, if the supply valve 13 is a control valve whose opening degree can be adjusted, if water is always supplied from the flash tank 6 via the supply valve 13, circulation is possible. Even if the flow rate Gr is smaller than the average value of the replenishment flow rate Gp or the theoretical flow rate Gi, if the total amount of water injected into the working space exceeds the theoretical vaporization flow rate Gi, the discharge steam of the screw compressor 7 is reduced. It is possible to maintain a wet steam.

また、本実施形態の蒸気圧縮装置1において、流量計11によらず、吐出配管8の吐出温度Tdに応じて、供給バルブ13を制御してもよい。スクリュ圧縮機7の作用空間に供給する水の量が少なすぎると、スクリュ圧縮機7の吐出蒸気が、乾き蒸気となり、スクリュ圧縮機によって過剰に供給されるエネルギーにより、吐出圧力Pdにおける飽和蒸発温度より高い温度に加熱される。このため、吐出配管8において、スクリュ圧縮機7が吐出した蒸気の温度を検出し、蒸気温度が、所定の設定温度に達したとき、乾き蒸気(加熱蒸気)になっていると判断し、例えば、循環流量Grが十分に大きくなるような所定時間だけ供給バルブ13を開放してもよい。   Further, in the vapor compression apparatus 1 of the present embodiment, the supply valve 13 may be controlled according to the discharge temperature Td of the discharge pipe 8 without depending on the flow meter 11. If the amount of water supplied to the working space of the screw compressor 7 is too small, the discharge steam of the screw compressor 7 becomes dry steam, and the saturated evaporation temperature at the discharge pressure Pd is caused by the energy supplied excessively by the screw compressor. Heated to a higher temperature. For this reason, in the discharge pipe 8, the temperature of the steam discharged by the screw compressor 7 is detected, and when the steam temperature reaches a predetermined set temperature, it is determined that the steam is dry steam (heated steam). The supply valve 13 may be opened for a predetermined time such that the circulation flow rate Gr becomes sufficiently large.

さらに、図2に、本発明の第2実施形態の蒸気圧縮装置1aを含む製造プラントの構成を示す。なお、以下の実施形態に関して、先に説明した実施形態と同じ構成要素には同じ符号を付して、重複する説明を省略する。   Furthermore, in FIG. 2, the structure of the manufacturing plant containing the vapor compression apparatus 1a of 2nd Embodiment of this invention is shown. In addition, regarding the following embodiment, the same code | symbol is attached | subjected to the same component as embodiment demonstrated previously, and the overlapping description is abbreviate | omitted.

本実施形態の蒸気圧縮装置1aでは、ドレンセパレータ9で分離されてオリフィス10および流量計11を介して供給される環流流量Grの循環水と、フラッシュタンク6で低圧蒸気から分離されてポンプ12および供給バルブ13を介して供給され補給流量Gpの温水とを、合わせてスクリュ圧縮機7の吸い込み部に導入している。   In the vapor compression apparatus 1a of the present embodiment, circulating water having a circulating flow rate Gr separated by a drain separator 9 and supplied via an orifice 10 and a flow meter 11 and separated from low-pressure steam by a flash tank 6 and pumps 12 and The hot water supplied through the supply valve 13 and having the replenishment flow rate Gp is combined and introduced into the suction portion of the screw compressor 7.

本実施形態が示すように、本発明によれば、第1実施形態の蒸気圧縮装置1aのように環流流量Grの循環水をスクリュ圧縮機7の作用空間に導入するのではなく、スクリュ圧縮機7の吸い込み部に導入するように構成してもよい。   As shown in the present embodiment, according to the present invention, the circulating water having the circulating flow rate Gr is not introduced into the working space of the screw compressor 7 as in the vapor compressor 1a of the first embodiment, but the screw compressor. You may comprise so that it may introduce into 7 suction parts.

また、図3に、本発明の第3実施形態の蒸気圧縮装置1bを含む製造プラントの構成を示す。本実施形態の蒸気圧縮装置1bでは、ドレンセパレータ9で分離された液相の水が環流流量Grの循環水としてスクリュ圧縮機7の作用空間に導入され、フラッシュタンク6で低圧蒸気から分離された補給流量Gpの温水が、スクリュ圧縮機7の吸い込み部に導入されるようになっている。   Moreover, in FIG. 3, the structure of the manufacturing plant containing the vapor compression apparatus 1b of 3rd Embodiment of this invention is shown. In the vapor compression apparatus 1b of the present embodiment, liquid-phase water separated by the drain separator 9 is introduced into the working space of the screw compressor 7 as circulating water having a recirculation flow rate Gr and separated from low-pressure steam by the flash tank 6. Hot water with a replenishment flow rate Gp is introduced into the suction portion of the screw compressor 7.

さらに詳しく説明すると、循環水は、スクリュ圧縮機7の作用空間の中段部分および吐出口に近い位置に供給されており、供給先の圧力が異なるので、それぞれの水量を最適化するために、オリフィス10がそれぞれの作用空間に接続された分岐路に個別に設けられている。   More specifically, the circulating water is supplied to the middle portion of the working space of the screw compressor 7 and a position close to the discharge port, and the pressure at the supply destination is different. Therefore, in order to optimize the amount of water, 10 are individually provided in the branch paths connected to the respective working spaces.

なお、フラッシュタンク6で分離された補給流量Gpの温水が、配管の熱損失によって、フラッシュタンク6で分離された低圧蒸気よりも低温になっていると、スクリュ圧縮機7の吸い込み部において低圧蒸気を凝縮させることになるので、その場合は、ドレンセパレータ9で分離された高温の循環水の一部と混合して、供給することが好ましい。   If the hot water of the replenishment flow rate Gp separated in the flash tank 6 is lower in temperature than the low-pressure steam separated in the flash tank 6 due to heat loss of the piping, the low-pressure steam in the suction portion of the screw compressor 7 In that case, it is preferable to mix and supply with a part of the high-temperature circulating water separated by the drain separator 9.

また、本発明によれば、図4に示す第4実施形態の蒸気圧縮装置1cのように、ドレンセパレータ9で分離した液相の水を環流流量Grの循環水としてスクリュ圧縮機7の中段および後段の作用空間に導入し、フラッシュタンク6で低圧蒸気から分離された補給流量Gpの温水を、吸い込み部に近い低圧の作用空間に導入してもよい。   Further, according to the present invention, as in the vapor compression apparatus 1c of the fourth embodiment shown in FIG. 4, the liquid phase water separated by the drain separator 9 is used as circulating water of the recirculation flow rate Gr, and the middle stage of the screw compressor 7 and The hot water having the replenishment flow rate Gp introduced into the downstream working space and separated from the low pressure steam by the flash tank 6 may be introduced into the low pressure working space close to the suction portion.

なお、上述の蒸気圧縮装置1,1a,1b,1cに関し、供給圧力Phに吐出圧力Pdが等しくなるように、スクリュ圧縮機7を駆動するモータ14の回転数を適宜調整する制御について説明した。しかしながら、ボイラ2からの蒸気供給量が大きく、蒸気圧縮装置1の運転状態に拘わらず、主配管4の供給圧力Ph、ひいては、スクリュ圧縮機7の吐出圧力Pdが一定に保たれるようなプラントでは、吸込圧力Ps、つまり、フラッシュタンク6の圧力を一定に保つように、スクリュ圧縮機7の回転数を制御してもよい。   In addition, regarding the above-described vapor compression apparatuses 1, 1a, 1b, and 1c, the control for appropriately adjusting the rotation speed of the motor 14 that drives the screw compressor 7 so as to make the discharge pressure Pd equal to the supply pressure Ph has been described. However, a plant in which the amount of steam supplied from the boiler 2 is large and the supply pressure Ph of the main pipe 4 and thus the discharge pressure Pd of the screw compressor 7 is kept constant regardless of the operating state of the steam compressor 1. Then, you may control the rotation speed of the screw compressor 7 so that the suction pressure Ps, ie, the pressure of the flash tank 6, may be kept constant.

以上の実施形態は、水蒸気を圧縮する蒸気圧縮装置1,1a,1b,1cについて説明したが、本発明は、天然ガスの圧縮装置など、他の種類の対象流体の蒸気を圧縮する蒸気圧縮装置にも適用できる。   Although the above embodiment demonstrated vapor compression apparatus 1,1a, 1b, 1c which compresses water vapor | steam, this invention is a vapor compression apparatus which compresses the vapor | steam of other types of object fluids, such as a natural gas compression apparatus. It can also be applied to.

1,1a,1b,1c…蒸気圧縮装置
2…ボイラ
3…需要設備
4…主配管
5…スチームトラップ
6…フラッシュタンク
7…スクリュ圧縮機
8…吐出配管
9…ドレンセパレータ
10…オリフィス
11…流量計
12…ポンプ
13…供給バルブ
14…モータ
DESCRIPTION OF SYMBOLS 1, 1a, 1b, 1c ... Steam compression apparatus 2 ... Boiler 3 ... Demand equipment 4 ... Main piping 5 ... Steam trap 6 ... Flash tank 7 ... Screw compressor 8 ... Discharge piping 9 ... Drain separator 10 ... Orifice 11 ... Flow meter 12 ... Pump 13 ... Supply valve 14 ... Motor

Claims (4)

作用空間に吸い込んだ気相の対象流体である蒸気を圧縮して、所定の吐出圧力の吐出配管に吐出する容積式の圧縮機と、
前記圧縮機の前記作用空間または前記圧縮機の吸い込み部に、液相の前記対象流体を導入する液導入手段と、
前記吐出配管に設けられ、前記圧縮機が吐出した前記対象流体から液相分を分離するドレンセパレータとを有し、
前記液導入手段は、前記圧縮機が前記対象流体に与えるエネルギーの内、前記圧縮機が吸い込んだ前記気相の対象流体が前記吐出圧力に昇圧するために消費して残る熱エネルギーを、前記液相の対象流体を気化させるための蒸発潜熱として消費してなお、前記対象流体を前記圧縮機から一部が液相である湿り蒸気の状態で吐出させるのに十分な量の前記液相の対象流体を導入することを特徴とする蒸気圧縮装置。
A positive displacement compressor that compresses vapor, which is a target fluid in a gas phase, sucked into the working space, and discharges the vapor into a discharge pipe having a predetermined discharge pressure;
A liquid introducing means for introducing the target fluid in a liquid phase into the working space of the compressor or a suction portion of the compressor;
A drain separator that is provided in the discharge pipe and separates a liquid phase from the target fluid discharged by the compressor;
The liquid introduction means uses the thermal energy remaining in the liquid to be consumed because the gas-phase target fluid sucked by the compressor is boosted to the discharge pressure among the energy given to the target fluid by the compressor. A target of the liquid phase in an amount sufficient to be consumed as latent heat of vaporization for vaporizing the target fluid of the phase, and to discharge the target fluid from the compressor in the state of wet steam partially in the liquid phase A vapor compression apparatus characterized by introducing a fluid.
前記液導入手段は、前記圧縮機を駆動するモータの出力から算出される前記圧縮機の有効出力エネルギーを、前記対象流体の前記吐出圧力における単位量当たりの蒸発潜熱で除した値よりも多量の液相の前記対象流体を導入することを特徴とする請求項1に記載の蒸気圧縮装置。   The liquid introducing means has a larger amount than the value obtained by dividing the effective output energy of the compressor calculated from the output of the motor driving the compressor by the latent heat of vaporization per unit amount at the discharge pressure of the target fluid. The vapor compression apparatus according to claim 1, wherein the target fluid in a liquid phase is introduced. 前記液導入手段は、前記ドレンセパレータで分離された液相の前記対象流体を前記作用空間または前記吸い込み部に導入し、不足する液相の前記対象流体を外部の流体供給源から導入することを特徴とする請求項1または2に記載の蒸気圧縮装置。   The liquid introduction means introduces the target fluid in the liquid phase separated by the drain separator into the working space or the suction portion, and introduces the target fluid in the insufficient liquid phase from an external fluid supply source. The vapor compression apparatus according to claim 1 or 2, characterized in that 前記液導入手段は、前記流体供給源からの前記対象流体の供給を遮断できる供給バルブと、前記ドレンセパレータで分離された液の流量を検出する流量検出器とを備え、前記流量検出器の検出流量が、前記圧縮機の吐出する対象流体が飽和蒸気となるために必要な供給量以上の所定の下限流量となったとき、前記供給バルブを開き、前記下限流量より大きい所定の上限流量となったとき、前記供給バルブを閉じることを特徴とする請求項3に記載の蒸気圧縮装置。   The liquid introduction means includes a supply valve capable of interrupting the supply of the target fluid from the fluid supply source, and a flow rate detector for detecting a flow rate of the liquid separated by the drain separator, and the detection of the flow rate detector When the flow rate becomes a predetermined lower limit flow rate that is equal to or higher than the supply amount necessary for the target fluid discharged from the compressor to become saturated steam, the supply valve is opened and becomes a predetermined upper limit flow rate that is larger than the lower limit flow rate. The vapor compression apparatus according to claim 3, wherein the supply valve is closed.
JP2009239475A 2008-11-06 2009-10-16 Vapor compression device Pending JP2010133696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009239475A JP2010133696A (en) 2008-11-06 2009-10-16 Vapor compression device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008285431 2008-11-06
JP2009239475A JP2010133696A (en) 2008-11-06 2009-10-16 Vapor compression device

Publications (1)

Publication Number Publication Date
JP2010133696A true JP2010133696A (en) 2010-06-17

Family

ID=42345146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239475A Pending JP2010133696A (en) 2008-11-06 2009-10-16 Vapor compression device

Country Status (2)

Country Link
JP (1) JP2010133696A (en)
CN (1) CN101737332B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002472A (en) * 2010-06-21 2012-01-05 Kobe Steel Ltd Vapor compression system
JP2012017924A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
JP2012017700A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
JP2012072984A (en) * 2010-09-29 2012-04-12 Miura Co Ltd Steam hot water generation system
JP2012251757A (en) * 2011-06-07 2012-12-20 Kobe Steel Ltd Water injection type steam compressor
JP2015190726A (en) * 2014-03-28 2015-11-02 三浦工業株式会社 Flash steam generating device and boiler system
CN109798696A (en) * 2019-01-23 2019-05-24 江苏科技大学 A kind of recycling of industrial wastewater waste heat is the high temperature heat pump system and its control method of working medium to water

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457052A (en) * 2013-09-17 2015-03-25 上海振世能源科技有限公司 Flash steam pressurizer
CN105157144B (en) * 2015-08-21 2017-09-22 深圳智慧能源技术有限公司 Air-conditioning power generation all-in-one machine
CN108730190B (en) * 2018-05-24 2020-04-03 荣成惠德环保科技有限公司 Pressure buffering and separating device of vapor compressor
CN108661913B (en) * 2018-05-24 2020-04-03 荣成惠德环保科技有限公司 Roots vapor compressor with buffer chamber
CN108661914B (en) * 2018-05-24 2020-09-08 荣成惠德环保科技有限公司 Pulsation pressure reducing device of steam compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130850A (en) * 2000-10-26 2002-05-09 Hitachi Ltd Refrigerating plant
JP2004278961A (en) * 2003-03-18 2004-10-07 Mitsubishi Electric Corp Refrigerating machine
JP4738219B2 (en) * 2006-03-23 2011-08-03 三洋電機株式会社 Refrigeration equipment
JP2007101177A (en) * 2007-01-15 2007-04-19 Hitachi Ltd Air conditioner or refrigerating cycle device
US9373867B2 (en) * 2011-03-28 2016-06-21 Nec Corporation Secondary battery and electrolyte liquid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002472A (en) * 2010-06-21 2012-01-05 Kobe Steel Ltd Vapor compression system
JP2012017924A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
JP2012017700A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
JP2012072984A (en) * 2010-09-29 2012-04-12 Miura Co Ltd Steam hot water generation system
JP2012251757A (en) * 2011-06-07 2012-12-20 Kobe Steel Ltd Water injection type steam compressor
JP2015190726A (en) * 2014-03-28 2015-11-02 三浦工業株式会社 Flash steam generating device and boiler system
CN109798696A (en) * 2019-01-23 2019-05-24 江苏科技大学 A kind of recycling of industrial wastewater waste heat is the high temperature heat pump system and its control method of working medium to water

Also Published As

Publication number Publication date
CN101737332A (en) 2010-06-16
CN101737332B (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP2010133696A (en) Vapor compression device
JP5605991B2 (en) Steam generator
JP4676284B2 (en) Waste heat recovery equipment for steam turbine plant
JP5151014B2 (en) HEAT PUMP DEVICE AND HEAT PUMP OPERATION METHOD
CA2863530C (en) Method and apparatus of producing and utilizing thermal energy in a combined heat and power plant
JP5981693B2 (en) Method and system for determining safe drum water level in combined cycle operation
US8739537B2 (en) Power generation apparatus
CN104975894B (en) Waste heat recovery system and waste heat recovery method
JP5593902B2 (en) Heat pump steam generator
EP1985946B1 (en) Heat pump system and method for operating a heat pump system
KR101442425B1 (en) System combining power generation apparatus and desalination apparatus
JP5788235B2 (en) Steam generator
CN105386803B (en) Low-grade waste heat power generation system capable of achieving gas-liquid hybrid recycling and control method
JP2012007762A (en) Drain recovery facility
WO2015064347A1 (en) Vapor generation device and vapor generation heat pump
JP2008045807A (en) Steam generating system
JP5019773B2 (en) Cooling method and cooling mechanism for oil-free screw compressor
JP2009097498A (en) Exhaust heat recovery apparatus
JP5560515B2 (en) Steam production system and startup control method for steam production system
US10132542B2 (en) Pressure control for refrigerant system
JP5929464B2 (en) Heat pump and heat pump activation method
CN113994167A (en) Thermal energy battery
CN221005540U (en) Variable-frequency overlapping type air source heat pump water heater
KR102042316B1 (en) Apparatus and Method for Supplying Working Fluid of Waste Heat Power Generation
JP2010127495A (en) Heat pump device