JP2010133247A - Reaction device - Google Patents

Reaction device Download PDF

Info

Publication number
JP2010133247A
JP2010133247A JP2010026822A JP2010026822A JP2010133247A JP 2010133247 A JP2010133247 A JP 2010133247A JP 2010026822 A JP2010026822 A JP 2010026822A JP 2010026822 A JP2010026822 A JP 2010026822A JP 2010133247 A JP2010133247 A JP 2010133247A
Authority
JP
Japan
Prior art keywords
reaction force
excavator
box
caisson
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010026822A
Other languages
Japanese (ja)
Other versions
JP5021049B2 (en
Inventor
Yasuko Hasegawa
靖子 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010026822A priority Critical patent/JP5021049B2/en
Publication of JP2010133247A publication Critical patent/JP2010133247A/en
Application granted granted Critical
Publication of JP5021049B2 publication Critical patent/JP5021049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily recover a guide rail for guiding an excavator for excavating directly under a cutting edge. <P>SOLUTION: A perforated member 71 having a hole 71a is fixed to a caisson box body 1, and a pin 72 is suitable for a bracket 73 provided at a reinforcement member 17. The reinforcement member 17 is suspended, the pin 72 is inserted to the hole 71a of the perforated member 71, and the drop-out of the pin 72 from the hole 71a is prevented by a locking mechanism 19. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、地中に埋設される構造体内で生じた反力を構造体で受けるための反力装置に関するものである。   The present invention relates to a reaction force device for receiving a reaction force generated in a structure embedded in the ground by the structure.

現在施工されているケーソン工事のうち、特にオープンケーソン工法(通常のオープンケーソンの他、圧入ケーソン等も含む)の施工上の問題点として刃口下の掘削が困難なことがある。特に粘性土系の硬質地盤では刃口下の掘削が一段と困難になる。   Among the caisson works currently being constructed, excavation under the blade edge is sometimes difficult as a problem in the construction of the open caisson method (including the open caisson as well as the press-fitting caisson). In particular, excavation under the cutting edge becomes even more difficult on hard soils based on clay soil.

この対策として、例えば特開2000−319897号公報(特許文献1)では、ケーソンの刃口部近傍の内周に周回状にレールガイドを固定し、レールに沿って台車を旋回させると共に、台車に刃口部近傍の地盤を掘削するオーガスクリュ等の回転式掘削機本体を設けた提案がなされている。この場合、掘削に伴う反力は、掘削機、さらにはレールを介してケーソンで受けられることになる。
特開2000−319897号公報
As a countermeasure, for example, in Japanese Patent Application Laid-Open No. 2000-319897 (Patent Document 1), a rail guide is fixed to the inner circumference in the vicinity of the caisson's edge, and the carriage is turned along the rail. Proposals have been made to provide a rotary excavator body such as an auger screw that excavates the ground near the blade opening. In this case, the reaction force accompanying excavation is received by the caisson via the excavator and further the rail.
JP 2000-319897 A

しかしながら、この工法では、レールがケーソンに固定されているため、地中への埋設完了後にこれを回収することができず、不経済である。また、レールがケーソンに固定されるので、刃口直下の掘削を行わない場合でも、レールがケーソン内壁に突出した状態となり、この突出したレールがバケット等と干渉して掘削排土の障害となるおそれもある。さらには、掘削中に突然ケーソンが自然沈下した場合、掘削機が地盤と衝突して破損するおそれがある。   However, in this construction method, since the rail is fixed to the caisson, it cannot be recovered after the underground burying is completed, which is uneconomical. In addition, since the rail is fixed to the caisson, even when excavation is not performed directly under the blade edge, the rail protrudes to the inner wall of the caisson, and this protruding rail interferes with the bucket or the like and becomes an obstacle to excavation and soil removal. There is also a fear. Furthermore, if the caisson suddenly subsides during excavation, the excavator may collide with the ground and break.

一方、オープンケーソン工法においては、ケーソンの沈設後に水中コンクリートを打設して底盤を構築する際、水中下で底盤中の補強材(鉄筋・鉄骨等)をケーソン函体に結合することは困難であるため、通常、底盤は、補強材のない無筋構造とされる場合が多い。この場合、底盤に作用する仰圧力に対抗するために水中コンクリートを大量に打設する必要があり、底盤厚さの増大から、空間容積の減少・掘削深度の増大等を招く不具合がある。   On the other hand, in the open caisson method, it is difficult to bond the reinforcing material (rebar, steel frame, etc.) in the bottom board to the caisson box underwater when placing the underwater concrete after the caisson is set up. For this reason, usually, the bottom plate often has an unreinforced structure without a reinforcing material. In this case, it is necessary to place a large amount of underwater concrete in order to counter the elevation pressure acting on the bottom plate, and there is a problem that the increase in the bottom plate thickness causes a decrease in space volume, an increase in excavation depth, and the like.

本発明では、ケーソン函体等の構造体に予め反力点を確保しておくことにより、これらの課題を解決することを目的とするものである。   An object of the present invention is to solve these problems by securing reaction points in advance in a structure such as a caisson box.

上記目的を達成するため、本発明は、地中に埋設される構造体内で生じた反力を構造体で受けるためのものであって、構造体側および反力発生側のうちの何れか一方に設けられた雌部材と、他方に設けられ、雌部材に対して挿脱可能の雄部材とを備える反力装置を提供するものである。   In order to achieve the above object, the present invention is for receiving a reaction force generated in a structure buried in the ground by the structure, on either the structure side or the reaction force generation side. The present invention provides a reaction force device including a female member provided and a male member provided on the other side and detachable with respect to the female member.

この構造であれば、反力発生側となる掘削機等で生じた反力の作用方向が雌部材および雄部材相互間の挿脱方向と平行である場合を除き、当該反力を簡易な構造により構造体で受けることが可能となる。また、雄部材が雌部材に対して挿脱可能であるから、挿脱方向を上下方向とすれば、掘削機を吊り下しあるいは吊り上げるだけで、掘削機と構造体の結合および分離を行うことができる。従って、掘削機の据付および回収が簡単に行え、さらに構造体が自然沈下した場合でも、掘削機を上方に牽引しあるいは定位置に保持するだけで、雄部材を雌部材から脱出させて掘削機を構造体から分離することができ、掘削機の地盤への衝突等を回避することが可能となる。   With this structure, the reaction force is a simple structure except when the direction of the reaction force generated by the excavator on the reaction force generation side is parallel to the insertion / removal direction between the female member and the male member. Can be received by the structure. In addition, since the male member can be inserted into and removed from the female member, if the insertion / removal direction is the vertical direction, the excavator and the structure can be coupled and separated only by hanging or lifting the excavator. Can do. Therefore, the excavator can be easily installed and recovered, and even if the structure naturally subsides, the excavator can be pulled out of the female member by simply pulling the excavator upward or holding it in place. Can be separated from the structure, and the excavator can be prevented from colliding with the ground.

また、上記目的を達成するため、本発明は、地中に埋設される構造体内で生じた反力を構造体で受けるものであって、構造体側および反力発生側のうちの何れか一方に設けられた雌部材と、他方に設けられ、雌部材に対して挿入可能の雄部材と、雌部材に挿入した雄部材の抜けを規制する抜け止め機構とを備える反力装置を提供するものである。   In order to achieve the above object, the present invention receives a reaction force generated in a structure buried in the ground by the structure, and is applied to either the structure side or the reaction force generation side. Provided is a reaction force device provided with a provided female member, a male member provided on the other side and insertable into the female member, and a retaining mechanism for restricting the male member inserted into the female member from coming off. is there.

この構造であれば、上記の場合と同様に、反力発生側で生じる反力を簡易な構造により構造体で受けることが可能となる。また、雄部材が雌部材に対して挿入可能であるから、挿入方向を上下方向にすれば、反力発生側の部材や機器を吊り下すだけで、これらの部材や機器を規定位置に設置することができる。さらに、雌部材に挿入した雄部材の抜けを規制する抜け止め機構を有するから、雄部材の雌部材への挿入後は、反力の作用方向を問わず、雄部材が雌部材から抜けることもない。従って、反力発生側に例えば構造体の底盤の補強材を配する場合、補強材を吊り下すだけでこれを所定位置にセットして構造体に結合することができる。しかもセット後は、抜け止め機構により補強材の上方への抜けが規制されるから、底盤に作用する仰圧力に対して高い対抗力を得ることができ、これにより底盤の有筋化を図ることが可能となる。   With this structure, the reaction force generated on the reaction force generation side can be received by the structure with a simple structure, as in the case described above. In addition, since the male member can be inserted into the female member, if the insertion direction is set to the vertical direction, the members and devices on the reaction force generation side are simply suspended, and these members and devices are installed at the specified positions. be able to. Furthermore, since the male member inserted into the female member has a retaining mechanism for restricting the male member from being pulled out, the male member may come out of the female member after the male member is inserted into the female member regardless of the direction of reaction force. Absent. Therefore, for example, when a reinforcing material for the bottom of the structure is disposed on the reaction force generating side, the reinforcing material can be set at a predetermined position and coupled to the structure simply by hanging the reinforcing material. In addition, after the set, the stopper prevents the reinforcement from being pulled upward, so that a high resistance can be obtained against the elevation pressure acting on the bottom plate, thereby making the bottom plate reinforced. Is possible.

また、反力発生側にジャッキを配置する場合、ジャッキ反力を簡単に構造体で受けることができ、施工コストの抑制を図ることが可能となる。   Further, when the jack is arranged on the reaction force generation side, the jack reaction force can be easily received by the structure, and the construction cost can be suppressed.

以上のように本発明によれば、反力発生側で生じる反力を簡易な構造により構造体で受けることが可能となるので、何らかの理由で反力を構造体で受ける必要がある場合、施工コストの抑制を図ることができる。   As described above, according to the present invention, the reaction force generated on the reaction force generation side can be received by the structure with a simple structure, so if it is necessary to receive the reaction force by the structure for some reason, Cost can be reduced.

反力発生側に掘削機を配した場合、雌部材に対して雄部材を挿脱させることにより、掘削機やこれを案内するガイドレールの据付、回収を容易に行うことができ、経済性を高めることができる。また、構造体が自然沈下した際にも掘削機やガイドレールを容易に脱出させることができ、これらの破損を防止することができる。   When an excavator is arranged on the reaction force generating side, the excavator and guide rails for guiding the excavator and the guide rail can be easily installed and recovered by inserting and removing the male member with respect to the female member. Can be increased. Further, even when the structure naturally subsides, the excavator and the guide rail can be easily escaped, and breakage of these can be prevented.

また、雌部材に対して挿入可能の雄部材に加え、凹凸係合により、雌部材に挿入した雄部材の抜けを規制する抜け止め機構を設けることにより、反力発生側で生じるあらゆる方向の反力(雄部材の挿入方向と平行である場合も含む)を構造体で受けることが可能となる。従って、例えば反力発生側に底盤の補強材を配置する場合でも、高い底盤強度を確保することができる。また、反力発生側にジャッキを配置する場合にも、ジャッキの反力を構造体で受けることが可能となり、別途ジャッキ反力を受けるための底スラブ等が不要となって、施工コストを抑制することができる。   Further, in addition to the male member that can be inserted into the female member, a relief mechanism that restricts the male member inserted into the female member from being pulled out by concave-convex engagement is provided to prevent the reaction in all directions from occurring on the reaction force generation side. It is possible to receive force (including a case where the force is parallel to the insertion direction of the male member) by the structure. Therefore, for example, even when a bottom plate reinforcement is disposed on the reaction force generation side, a high bottom plate strength can be ensured. In addition, even when a jack is placed on the reaction force generation side, it is possible to receive the reaction force of the jack with the structure, and there is no need for a bottom slab to receive the jack reaction force separately, reducing construction costs can do.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1(A)は、本発明にかかる反力装置をオープンケーソン工法に適用した例を示す断面図、同図(B)は(A)図中のX部の拡大断面図である。   1A is a cross-sectional view showing an example in which the reaction force device according to the present invention is applied to an open caisson method, and FIG. 1B is an enlarged cross-sectional view of a portion X in FIG.

構造体としてのケーソン函体1は、両端を開口させた任意形状の筒型をなし、図1(A)に示すように刃口にはテーパ面1aが形成されている。このケーソン函体1は、内部地盤の掘削と地中にアンカーをとったジャッキ3の圧入力との併用で地中に沈設される。内部地盤の掘削は、クラムシェルバケット等の種々の掘削手段(図示せず)で中央部を掘削すると共に、ケーソン函体1の壁面に設置した掘削機5で刃口直下を掘削することにより行われる。   The caisson box 1 as a structure has an arbitrarily-shaped cylindrical shape with both ends opened, and a tapered surface 1a is formed at the blade edge as shown in FIG. The caisson box 1 is submerged in the ground by a combination of excavation of the internal ground and the pressure input of the jack 3 anchored in the ground. The internal ground is excavated by excavating the central portion with various excavating means (not shown) such as clamshell buckets and excavating directly below the blade edge with an excavator 5 installed on the wall surface of the caisson box 1. Is called.

ケーソン函体1の刃口内周には、後述する反力装置7を介してガイドレール9が周回状に設置される。ガイドレール9上では掘削機5の台車5aのローラ5a1が転動し、これにより台車5aがガイドレール9に支持されつつ移動可能となる。台車5aは、図示しないモータ等の出力で自走させることにより、あるいは図示しないワイヤ等を介して地上側から牽引することにより、ガイドレール9に案内されて函体1の内壁を周回移動する。もちろんガイドレール9の形状は図示例には限られず、種々の形状を選択することができる。   On the inner periphery of the blade edge of the caisson box 1, a guide rail 9 is installed in a circular shape via a reaction force device 7 described later. On the guide rail 9, the roller 5 a 1 of the cart 5 a of the excavator 5 rolls, so that the cart 5 a is movable while being supported by the guide rail 9. The cart 5a is guided by the guide rail 9 and moves around the inner wall of the box 1 by being driven by the output of a motor (not shown) or by being pulled from the ground side via a wire (not shown). Of course, the shape of the guide rail 9 is not limited to the illustrated example, and various shapes can be selected.

台車5aには、オーガカッター等の掘削部5b1を揺動可能に有する掘削機本体5bが装着される。掘削機本体5bとしては、オーガカッター以外にも種々の構成の掘削装置を使用することができ、例えばバックホウ、ウオータージェット等も使用することができる。なお、この掘削機5による掘削は通常水中で行われるので、掘削機5には十分な耐水圧性を持たせる必要がある。   An excavator main body 5b having an excavating part 5b1 such as an auger cutter so as to be swingable is attached to the carriage 5a. As the excavator body 5b, excavators having various configurations can be used in addition to the auger cutter, and for example, backhoes, water jets, and the like can also be used. Since excavation by the excavator 5 is normally performed in water, the excavator 5 needs to have sufficient water pressure resistance.

図1(B)に示すように、本発明の反力装置7は、雌部材71と、雌部材71に対して上下方向に挿入かつ抜脱可能の雄部材72とを具備する。本実施形態では、雌部材71として複数の孔71aを有する有孔部材を例示し、雄部材71として孔71aに挿脱可能のピンを例示している。有孔部材71はケーソン函体1にその一部を埋め込んで固定され、ピン72は適当なブラケット73を介してガイドレール9の背面に固定される。   As shown in FIG. 1B, the reaction force device 7 of the present invention includes a female member 71 and a male member 72 that can be inserted into and removed from the female member 71 in the vertical direction. In the present embodiment, a perforated member having a plurality of holes 71 a is illustrated as the female member 71, and a pin that can be inserted into and removed from the hole 71 a is illustrated as the male member 71. A part of the perforated member 71 is fixed by being embedded in the caisson box 1, and the pin 72 is fixed to the back surface of the guide rail 9 via an appropriate bracket 73.

有孔部材71は、ケーソン函体1に確実に固定でき、かつ函体1の内部に軸心を上下方向に向けた孔71aが形成される限りその形状は特に問わない。図2(A)では、その一例として、アンカー付き板状部材の複数個所(図面では2箇所)に孔71aを穿設し、そのアンカー部分を函体1中に埋め込むと共に、板状部分を函体1の内側に突出させた構造を例示している。   The shape of the perforated member 71 is not particularly limited as long as the perforated member 71 can be securely fixed to the caisson box 1 and the hole 71 a with the axis oriented in the vertical direction is formed inside the box 1. In FIG. 2 (A), as an example, holes 71a are formed in a plurality of locations (two locations in the drawing) of the plate member with anchors, and the anchor portions are embedded in the box 1 and the plate portions are boxed. The structure protruded inside the body 1 is illustrated.

この有孔部材71は、函体1の内壁の複数箇所にほぼその全周にわたって設置され、これにより函体1の内壁全周に沿って複数の孔71aが配列される。函体1の周方向だけでなく、函体1の高さ方向に有孔部材17を配列することにより、高さ方向に複数段の孔71aを形成してもよい。図2(A)では、隣接する有孔部材71間に隙間を設けることなく、連続設置した有孔部材71を例示しているが、隣接する有孔部材71間に隙間を設けてもよい。   The perforated member 71 is installed at a plurality of locations on the inner wall of the box 1 over substantially the entire circumference, whereby a plurality of holes 71 a are arranged along the entire inner wall of the box 1. By arranging the perforated members 17 not only in the circumferential direction of the box 1 but also in the height direction of the box 1, a plurality of holes 71 a may be formed in the height direction. In FIG. 2A, the perforated member 71 that is continuously installed is illustrated without providing a gap between the adjacent perforated members 71, but a gap may be provided between the adjacent perforated members 71.

ピン72は、孔71aへの挿入性を高めるべく先端をテーパ状に形成した円柱状をなし、その中心軸を上下方向に向けてブラケット73に固定される。ピン72の外径寸法は有孔部材71の孔71aにスムーズに挿脱可能な寸法とする。図2(A)に示すように、レール9は複数のセグメント9aに分割され、各レールセグメント9aにブラケット73を介してピン72が取り付けられる。各レールセグメント9aに取り付けるピン72の数は二本以上とするのが望ましい。   The pin 72 has a cylindrical shape with a tip formed in a tapered shape so as to enhance the insertability into the hole 71a, and is fixed to the bracket 73 with its central axis directed in the vertical direction. The outer diameter dimension of the pin 72 is a dimension that can be smoothly inserted into and removed from the hole 71 a of the perforated member 71. As shown in FIG. 2A, the rail 9 is divided into a plurality of segments 9a, and a pin 72 is attached to each rail segment 9a via a bracket 73. The number of pins 72 attached to each rail segment 9a is preferably two or more.

図2(B)に有孔部材71の他の実施形態を示す。この有孔部材71は、棒鋼の一端をリング状に折り曲げて孔71aを形成すると共に、他端に函体1に埋め込むアンカーを形成したものである。この有孔部材71も同様にケーソン函体1の周方向の複数箇所、さらに必要に応じて高さ方向の複数箇所に設置される。図2(B)に示す有孔部材71を、図2(A)に示す有孔部材71と併用することもできる。   FIG. 2B shows another embodiment of the perforated member 71. The perforated member 71 is formed by bending one end of a steel bar into a ring shape to form a hole 71a and forming the anchor embedded in the box 1 at the other end. Similarly, the perforated members 71 are also installed at a plurality of locations in the circumferential direction of the caisson box 1 and further at a plurality of locations in the height direction as necessary. The perforated member 71 shown in FIG. 2B can be used in combination with the perforated member 71 shown in FIG.

ケーソン函体1は、予め地上で内壁に有孔部材71を取り付けた上で、ジャッキ3の圧入力を利用して掘削沈設される。ケーソン函体1の刃口が硬質地盤に突き当たる等して刃口直下の掘削が必要となる場合、掘削機5の据付が行われる。この据付に際しては、図1(A)(B)に示すように、先ずワイヤ8でレールセグメント9aを吊り下ろし、各セグメント9aのピン72を有孔部材71の孔71aに挿入する。この時、ピン72がスムーズに孔71aに挿入されるよう、予め孔71aに図示しないワイヤ(ガイドワイヤ)を挿入してその両端を地上に引き出し、ガイドワイヤの一端をピン72の先端に取り付けた状態でガイドワイヤの他端を牽引してセグメント9aを降下させるのが望ましい。このようにして各セグメント9aを順次吊り下し、有孔部材71の孔71aにピン72を挿入することにより、函体1の内壁に沿って連続したレール9が形成される。その後、ワイヤ6で台車5aおよび本体5bからなる掘削機5を吊り下してレール9上にセットし、レール9上で移動させながら刃口直下の掘削を行う。なお、据付後は、図1(A)(B)に示すように、ワイヤ6で掘削機5を、ワイヤ8で各レールセグメント9aを高さ方向の定位置に吊り下げておく。   The caisson box 1 is excavated and sunk using the pressure input of the jack 3 after the perforated member 71 is previously attached to the inner wall on the ground. When the cutting edge of the caisson box 1 hits the hard ground and excavation directly below the cutting edge is required, the excavator 5 is installed. In this installation, as shown in FIGS. 1A and 1B, first, the rail segment 9a is suspended by the wire 8, and the pin 72 of each segment 9a is inserted into the hole 71a of the perforated member 71. At this time, in order to smoothly insert the pin 72 into the hole 71a, a wire (guide wire) (not shown) is inserted into the hole 71a in advance and both ends thereof are pulled out to the ground, and one end of the guide wire is attached to the tip of the pin 72. In this state, it is desirable to lower the segment 9a by pulling the other end of the guide wire. In this manner, each segment 9a is suspended in sequence, and the pin 72 is inserted into the hole 71a of the perforated member 71, whereby the rail 9 continuous along the inner wall of the box 1 is formed. Thereafter, the excavator 5 including the carriage 5 a and the main body 5 b is suspended by the wire 6 and set on the rail 9, and excavation immediately below the blade edge is performed while moving on the rail 9. After installation, as shown in FIGS. 1A and 1B, the excavator 5 is suspended by the wire 6 and the rail segments 9a are suspended by the wire 8 at fixed positions in the height direction.

掘削機5による刃口直下の掘削中は、掘削機本体5bに、図1(A)中の矢印で示すように掘削部5b1の傾斜角度に応じて斜め方向の反力Pが作用する。この斜め方向の反力Pによりピン72が孔71aの内周に強く押し付けられるため、反力Pによってピン72が孔71aから抜けることはなく、反力発生源である掘削機5、さらにはレール9が高さ方向で定位置に保持される。掘削終了後には、ワイヤ6を地上に設置したクレーン等で上方に牽引することにより掘削機5を回収することができ、さらにワイヤ8を同じくクレーン等で上方に牽引することにより、ピン72を孔71aから脱出させてレール9を回収することができる。このように刃口直下の掘削が不要の時には、掘削機5のみならず、レール9も撤去できるので、従来工法のように内壁に固定されたレールによって掘削障害を招くことはない。   During excavation immediately below the blade edge by the excavator 5, an oblique reaction force P acts on the excavator main body 5b according to the inclination angle of the excavation part 5b1 as shown by the arrow in FIG. Since the pin 72 is strongly pressed against the inner periphery of the hole 71a by the reaction force P in the oblique direction, the pin 72 does not come out of the hole 71a by the reaction force P, and the excavator 5 that is the reaction force generation source, and further the rail 9 is held in place in the height direction. After the excavation, the excavator 5 can be recovered by pulling the wire 6 upward with a crane or the like installed on the ground, and the pin 72 is opened by pulling the wire 8 upward with the crane or the like. The rail 9 can be recovered by escaping from 71a. In this way, when excavation directly below the blade edge is not necessary, not only the excavator 5 but also the rail 9 can be removed, so that no excavation failure is caused by the rail fixed to the inner wall as in the conventional construction method.

掘削機5による掘削中にケーソン函体1が自然沈下しても、ワイヤ6で吊り下げた掘削機5およびワイヤ8で吊り下げたガイドレール9の高さ位置は変わらない。従って、ケーソン函体1の自然沈下に伴って、ピン72を孔71aから自然に脱出させ、これによりガイドレール9および掘削機5をケーソン函体1と分離することができる。そのため、地盤との衝突等によるガイドレール9や掘削機5の破損を防止することができる。自然沈下を検知すると同時に、ワイヤ6、8を巻き上げてガイドレール8や掘削機5を上方に牽引するようにしてもよい。   Even if the caisson box 1 naturally sinks during excavation by the excavator 5, the height positions of the excavator 5 suspended by the wire 6 and the guide rail 9 suspended by the wire 8 do not change. Therefore, as the caisson box 1 naturally subsides, the pin 72 is allowed to naturally escape from the hole 71a, whereby the guide rail 9 and the excavator 5 can be separated from the caisson box 1. Therefore, damage to the guide rail 9 and the excavator 5 due to collision with the ground can be prevented. At the same time that the natural settlement is detected, the wires 6 and 8 may be wound up to pull the guide rail 8 and the excavator 5 upward.

図3は、反力装置7の他の実施形態を示すものである。この実施形態は、雌部材71および雄部材72を内壁に沿って延ばし、雌部材71の函体1内側に突出する部分に、内壁に沿う溝71bを形成すると共に、雄部材72に、雌部材71の溝71bに対して挿脱可能の突条72bを形成したものである。   FIG. 3 shows another embodiment of the reaction force device 7. In this embodiment, the female member 71 and the male member 72 are extended along the inner wall, and a groove 71b along the inner wall is formed in a portion of the female member 71 protruding inside the box 1. A protrusion 72b that can be inserted into and removed from the groove 71b of 71 is formed.

なお、この実施形態では、雄部材72に枠体11を固定し、この枠体11内に設けたガイドレール(図示せず)で案内して掘削機5を周回移動させる場合を例示している。枠体11を、その内側に順次枠体を配置した多重枠体として構成し、各枠体を異なる方向に移動可能とする(例えば外枠を周方向に移動可能とし、内枠を外枠に対して上下方向に移動可能とする)ことにより、最も内側の枠に配した掘削機5を3次元方向に移動させることが可能となる。この他、枠体11を用いることなく、図1(A)(B)に示す実施形態と同様に、雄部材72にガイドレール9を固定してもよい。   In this embodiment, the case where the frame body 11 is fixed to the male member 72 and guided by a guide rail (not shown) provided in the frame body 11 to move the excavator 5 around is illustrated. . The frame body 11 is configured as a multiple frame body in which the frame bodies are sequentially arranged on the inside thereof, and each frame body can be moved in different directions (for example, the outer frame can be moved in the circumferential direction, and the inner frame can be moved to the outer frame). In contrast, the excavator 5 arranged in the innermost frame can be moved in the three-dimensional direction. In addition, the guide rail 9 may be fixed to the male member 72 similarly to the embodiment shown in FIGS. 1A and 1B without using the frame body 11.

図4(A)(B)は、ケーソン函体1の一方の対向内壁間に枠体11を配置し、その両端と他方の対向内壁との間にそれぞれ上記反力装置7を介在させることにより枠体11を函体1に取り付けた例である。枠体11内には、図示しないガイドレールが配置され、このガイドレールに案内されて掘削機5が函体内壁に沿う周方向に移動可能になっている。上記と同様に枠体11を多重枠体で構成することにより、掘削機5を三次元方向に移動可能としてもよい。   4 (A) and 4 (B), the frame 11 is arranged between one opposing inner wall of the caisson box 1, and the reaction force device 7 is interposed between both ends and the other opposing inner wall. This is an example in which the frame 11 is attached to the box 1. A guide rail (not shown) is disposed in the frame body 11, and the excavator 5 is movable in the circumferential direction along the box body wall by being guided by the guide rail. Similarly to the above, the excavator 5 may be movable in the three-dimensional direction by configuring the frame 11 with a multiple frame.

図4(A)(B)に示す実施形態において、反力装置7に代えて、あるいは反力装置7と併用して、枠体11の両端とこれに対向する函体内壁間にジャッキ等の支圧手段を配置すれば、枠体11はさらに高い支持反力を保持することができ、従って、例えば刃口直下に岩石等が出現した場合にも掘削機5でこれを掘削することが可能となる。   In the embodiment shown in FIGS. 4 (A) and 4 (B), instead of the reaction force device 7 or in combination with the reaction force device 7, a jack or the like is provided between both ends of the frame body 11 and the box wall facing the frame body 11. If the pressure bearing means is arranged, the frame body 11 can hold a higher support reaction force. Therefore, even when a rock or the like appears just below the blade edge, it can be excavated by the excavator 5. It becomes.

図5(A)(B)は、本発明にかかる反力装置の他の構成を示すもので、同図(B)は同図(A)中のY部の拡大断面図である。   5A and 5B show another structure of the reaction force device according to the present invention, and FIG. 5B is an enlarged cross-sectional view of a Y portion in FIG.

この反力装置7’は、図5(B)に示すように、有孔部材71の孔71aに対してピン72の挿入のみが可能で、その脱出が抜け止め機構19によって規制される点が図1(A)(B)に示す反力装置7と異なる。抜け止め機構19は、有孔部材71とピン72の何れか一方に設けた部材を他方の部材に係合させてピンの抜け止めを行う機構であり、図示例では、ピン72に段部72aを形成すると共に、この段部72aに上から係合する係合部材19aを有孔部材71に取付けた構造を例示している。係合部材19aは破線位置と実線位置との間で揺動可能であり、かつ図示しない弾性部材により閉じ方向(実線位置)に常時付勢されている。従って、ピン72を有孔部材71の孔71aに上から挿入すると、ピン72先端のテーパ面によって係合部材19aが破線位置まで押し広げられ、段部72aが係合部材19aを通過すると同時に係合部材19aが弾性的に閉じて段部72aと上下方向で係合する。そのため、ピン72に作用する上方向の反力をケーソン函体1で受けることが可能となる。   As shown in FIG. 5 (B), the reaction force device 7 ′ can only insert the pin 72 into the hole 71 a of the perforated member 71, and its escape is restricted by the retaining mechanism 19. Different from the reaction force device 7 shown in FIGS. The retaining mechanism 19 is a mechanism for retaining the pin by engaging a member provided on one of the perforated member 71 and the pin 72 with the other member. In the illustrated example, the step 72 a is provided on the pin 72. And a structure in which the engaging member 19a engaged with the stepped portion 72a from above is attached to the perforated member 71 is illustrated. The engaging member 19a can swing between a broken line position and a solid line position, and is always urged in a closing direction (solid line position) by an elastic member (not shown). Accordingly, when the pin 72 is inserted into the hole 71a of the perforated member 71 from above, the engaging member 19a is pushed and expanded to the position of the broken line by the tapered surface of the tip of the pin 72, and at the same time the stepped portion 72a passes through the engaging member 19a. The joint member 19a closes elastically and engages with the stepped portion 72a in the vertical direction. Therefore, an upward reaction force acting on the pin 72 can be received by the caisson box 1.

このように係合部材19aを有孔部材71側に設置してピン72と係合させる他、係合部材19aと同等の機能を有する部材をピン72側に設置し、これを有孔部材71とピン72の抜け方向で係合させることもできる。   In this way, the engaging member 19a is installed on the perforated member 71 side and engaged with the pin 72, and a member having the same function as the engaging member 19a is installed on the pin 72 side. And the pin 72 can be engaged with each other in the pulling direction.

この反力装置7’は、図5(A)に示すように、ケーソン函体1の底盤1dを構築する際、底盤1d中の補強材17の反力受けとして使用することができる。補強材17は、同図(B)に示すように多数の鉄筋17b(鉄骨でもよい)を組み立てたユニットで、その両端の端板17aにブラケット73を介してピン72が取り付けられている。この補強材17を上記と同様の手順でケーソン函体1の内部に吊り下ろし、ピン72を孔71aに挿入し、さらに抜け止め機構19によってピン72をロックしてから、水中コンクリートを打設して底盤1dを構築する。なお、補強材17は、高さ方向に複数段積み上げることもできる。   As shown in FIG. 5A, the reaction force device 7 'can be used as a reaction force receiver for the reinforcing member 17 in the bottom plate 1d when the bottom plate 1d of the caisson box 1 is constructed. The reinforcing member 17 is a unit in which a large number of reinforcing bars 17b (which may be steel frames) are assembled as shown in FIG. 4B, and pins 72 are attached to end plates 17a at both ends via brackets 73. The reinforcing member 17 is suspended inside the caisson box 1 in the same manner as described above, the pin 72 is inserted into the hole 71a, and the pin 72 is locked by the retaining mechanism 19, and then the underwater concrete is placed. The bottom board 1d is constructed. Note that the reinforcing material 17 can be stacked in a plurality of stages in the height direction.

底盤1cの構築後は、補強材17が仰圧力を受けて反力の発生側となるが、この上方向の反力は反力装置7’を介して函体1で受けられる。従って、補強材17に仰圧力に対する対抗力を付与することができ、これにより少ないコンクリート量でも十分な強度を有する底盤1cの構築が可能となる。そのため、水中コンクリートの打設量を大幅に減じることができ、掘削深度の削減と相俟ってオープンケーソン工法の施工コストを大幅に削減することが可能となる。   After the construction of the bottom plate 1c, the reinforcing member 17 receives the back pressure and becomes the reaction force generating side, but this upward reaction force is received by the box 1 through the reaction force device 7 '. Accordingly, it is possible to apply a countering force against the elevation pressure to the reinforcing member 17, and thereby it is possible to construct the bottom board 1 c having a sufficient strength even with a small amount of concrete. Therefore, the amount of underwater concrete can be greatly reduced, and the construction cost of the open caisson method can be greatly reduced in combination with the reduction of the excavation depth.

なお、大スパンのケーソン函体1に上記補強材17を使用する場合には、図6に示すように、補強材17の中間部分に、地中にアンカーをとったジャッキ21を設置するのが望ましい。   When the reinforcing member 17 is used for the long-span caisson box 1, as shown in FIG. 6, a jack 21 having an anchor in the ground is installed at an intermediate portion of the reinforcing member 17. desirable.

図7は、ケーソン函体1の初期自然沈下を抑止するための工法を示すもので、特に超軟弱地盤での沈設作業に適合する。この工法でのケーソン函体1は、内側函体1bと外側函体1cからなる二重構造をなし、内側函体1bの内側空間は蓋体23で閉鎖されている。蓋体23上には、ジャッキ25が設置され、そのアンカーは図5(B)に示す反力装置7’を介して函体1にとられている。   FIG. 7 shows a construction method for preventing the initial natural settlement of the caisson box 1 and is particularly suitable for the setting work on the super soft ground. The caisson box 1 in this construction method has a double structure comprising an inner box 1b and an outer box 1c, and the inner space of the inner box 1b is closed by a lid 23. A jack 25 is installed on the lid 23, and its anchor is attached to the box 1 via a reaction force device 7 'shown in FIG.

この工法では、内側函体1bと外側函体1cの間の空間で地盤を掘削しつつ、ジャッキ25の駆動により蓋体23を昇降させて過沈下制御が行われる。ジャッキ25のアンカー25a先端に図5(B)に示すピン72を装着し、このピン72を内側函体1bに装着した有孔部材71の孔71aに挿入すると共に、抜け止め機構19でピン72の抜けを規制することにより、ジャッキ25の支持反力を反力装置7’を介してケーソン函体1で受けることができる。   In this method, oversinking control is performed by moving the lid 23 up and down by driving the jack 25 while excavating the ground in the space between the inner box 1b and the outer box 1c. A pin 72 shown in FIG. 5B is attached to the tip of the anchor 25a of the jack 25. The pin 72 is inserted into the hole 71a of the perforated member 71 attached to the inner box 1b, and the pin 72 is removed by the retaining mechanism 19. By restricting the slipping off, the support reaction force of the jack 25 can be received by the caisson box 1 via the reaction force device 7 '.

この場合、ケーソン函体1が所定深度まで沈降した後、蓋体23およびジャッキ25を撤去して底盤コンクリート工が行われるが、その場合でも、図5(A)に示す場合と同様に、内側函体1bに残った反力装置7’を補強材17の反力受けとして再利用することができる。これにより、底盤1dの有筋化が可能となり、水中コンクリートの使用量削減等を通じて施工コストの抑制を図ることができる。   In this case, after the caisson box 1 sinks to a predetermined depth, the lid body 23 and the jack 25 are removed and the bottom base concrete work is performed, but even in that case, as in the case shown in FIG. The reaction force device 7 ′ remaining in the box 1 b can be reused as a reaction force receiver for the reinforcing member 17. Thereby, reinforcement of bottom board 1d is attained and construction cost can be controlled through reduction of the amount of underwater concrete used.

なお、本発明は、以上に述べたオープンケーソンに限らず、地中に埋設するあらゆる構造物の反力装置として適用することが可能である。   The present invention is not limited to the open caisson described above, but can be applied as a reaction force device for any structure embedded in the ground.

また、以上に述べた反力装置7、7’は、掘削機5、補強材17、およびジャッキ25で生じる反力のみならず、函体1内に配置した他の部材や機器で生じる反力を受けることもできる。例えば図5(B)に示す反力装置7’で地質調査機の反力を受けることもでき、この場合、地質調査機は、より掘削地盤に近接した形で設置されるので、これをケーソン函体の地上側開口部に設置する場合に比べ、より一層正確な測定値が得られる。   In addition, the reaction force devices 7 and 7 ′ described above are not only the reaction force generated by the excavator 5, the reinforcing material 17, and the jack 25, but also the reaction force generated by other members and devices arranged in the box 1. You can also receive. For example, the reaction force device 7 ′ shown in FIG. 5B can receive the reaction force of the geological surveying machine. In this case, since the geological surveying machine is installed closer to the excavated ground, this is connected to the caisson. Compared to the case where the box is installed on the ground side opening, a more accurate measurement value can be obtained.

(A)図は、本発明にかかる反力装置を使用したケーソンの沈設工程を示す断面図であり、(B)図は(A)図中のX部を拡大した断面図である。(A) The figure is sectional drawing which shows the caisson setting process using the reaction force apparatus concerning this invention, (B) figure is sectional drawing which expanded the X section in (A) figure. (A)図は、図1(B)を上から見た平面図であり、(B)図は、雌部材71の他の実施形態を示す平面図である。(A) The figure is the top view which looked at FIG.1 (B) from the top, (B) figure is a top view which shows other embodiment of the female member 71. FIG. (A)図は、反力装置の他の実施形態を示す斜視図、(B)図は当該反力装置を使用した沈設工程を示す縦断面図、(C)図は(B)図中のc−c線断面図である。(A) is a perspective view showing another embodiment of the reaction force device, (B) is a longitudinal sectional view showing a setting step using the reaction force device, and (C) is a view in FIG. It is a cc line sectional view. (A)図は、刃口直下の掘削工程の他例を示す縦断面図、(B)図はその平面図である。(A) The figure is a longitudinal cross-sectional view which shows the other example of the excavation process just under a blade edge, (B) The figure is the top view. (A)図は、本発明の反力装置を使用して沈設されたケーソンの縦断面図、(B)図は(A)図中のY部の拡大断面図である。(A) The figure is a longitudinal cross-sectional view of the caisson laid by using the reaction force device of the present invention, and (B) is an enlarged cross-sectional view of the Y part in (A). (A)図は、本発明の反力装置を使用して沈設されたケーソンの縦断面図である。(A) A figure is a longitudinal cross-sectional view of the caisson sunk using the reaction force apparatus of this invention. (A)図は、本発明の反力装置を使用した沈設工程の他例を示す縦断面図である。(A) is a longitudinal cross-sectional view which shows the other example of the setting process using the reaction force apparatus of this invention.

1 ケーソン函体(構造体)
3 ジャッキ
5 掘削機
7 反力装置
9 レール
9a レールセグメント
11 枠体
17 補強材
19 抜け止め機構
21 ジャッキ
23 蓋体
25 ジャッキ
71 有孔部材(雌部材)
71a 孔
72 ピン(雄部材)
73 ブラケット
1 Caisson box (structure)
DESCRIPTION OF SYMBOLS 3 Jack 5 Excavator 7 Reaction force apparatus 9 Rail 9a Rail segment 11 Frame 17 Reinforcing material 19 Retaining mechanism 21 Jack 23 Lid 25 Jack 71 Perforated member (female member)
71a hole 72 pin (male member)
73 Bracket

Claims (3)

地中に埋設される構造体内で生じた反力を構造体で受けるための反力装置であって、
構造体側および反力発生側のうちの何れか一方に設けられた雌部材と、他方に設けられ、雌部材に対して挿入可能の雄部材と、雌部材に挿入した雄部材の抜けを規制する抜け止め機構とを備えることを特徴とする反力装置。
A reaction force device for receiving a reaction force generated in a structure buried in the ground by the structure,
A female member provided on one of the structure side and the reaction force generation side, a male member provided on the other side that can be inserted into the female member, and removal of the male member inserted into the female member are restricted. A reaction force device comprising a retaining mechanism.
反力発生側に、底盤の補強材を配した請求項記載の反力装置。 The reaction force generation side, a reaction force apparatus according to claim 1, wherein the decor reinforcement of the bottom plate. 反力発生側に、ジャッキを配した請求項記載の反力装置。 The reaction force generation side, a reaction force apparatus according to claim 1, wherein the decor jack.
JP2010026822A 2010-02-09 2010-02-09 Reaction device for bottom plate and method for constructing bottom plate Active JP5021049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026822A JP5021049B2 (en) 2010-02-09 2010-02-09 Reaction device for bottom plate and method for constructing bottom plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026822A JP5021049B2 (en) 2010-02-09 2010-02-09 Reaction device for bottom plate and method for constructing bottom plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004336246A Division JP4504166B2 (en) 2004-11-19 2004-11-19 Reaction force device

Publications (2)

Publication Number Publication Date
JP2010133247A true JP2010133247A (en) 2010-06-17
JP5021049B2 JP5021049B2 (en) 2012-09-05

Family

ID=42344766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026822A Active JP5021049B2 (en) 2010-02-09 2010-02-09 Reaction device for bottom plate and method for constructing bottom plate

Country Status (1)

Country Link
JP (1) JP5021049B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218841A (en) * 2016-06-09 2017-12-14 鹿島建設株式会社 Submerging installation method for cylindrical body, and submerging installation support system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137326A (en) * 1985-12-11 1987-06-20 Kyushu Koatsu Concrete Kogyo Kk Installation of manhole
JPH0316322U (en) * 1989-06-29 1991-02-19
JPH04140320A (en) * 1990-09-28 1992-05-14 Shimizu Corp Construction of bottom slab of open caisson
JPH04221124A (en) * 1990-12-20 1992-08-11 Komatsu Ltd Digging apparatus for caisson internal ground
JPH04343913A (en) * 1991-05-21 1992-11-30 Taisei Corp Open caisson structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137326A (en) * 1985-12-11 1987-06-20 Kyushu Koatsu Concrete Kogyo Kk Installation of manhole
JPH0316322U (en) * 1989-06-29 1991-02-19
JPH04140320A (en) * 1990-09-28 1992-05-14 Shimizu Corp Construction of bottom slab of open caisson
JPH04221124A (en) * 1990-12-20 1992-08-11 Komatsu Ltd Digging apparatus for caisson internal ground
JPH04343913A (en) * 1991-05-21 1992-11-30 Taisei Corp Open caisson structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218841A (en) * 2016-06-09 2017-12-14 鹿島建設株式会社 Submerging installation method for cylindrical body, and submerging installation support system

Also Published As

Publication number Publication date
JP5021049B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5199166B2 (en) Foundation pile structure by site construction and construction method of foundation pile
CN111851484B (en) Method for cutting off semi-invasive prestressed anchor cable in supporting pile by rotary drilling rig
JP2010126996A (en) Method for preventing lining body from floating up
KR101506880B1 (en) Shoring apparatus
CN106759378B (en) Level is to the construction method for drawing anchor cable
KR101672359B1 (en) Method for constructing Anchor pile for foundation reinforcement
JP2012092601A (en) Open shield machine start method of open shield method
JP5021049B2 (en) Reaction device for bottom plate and method for constructing bottom plate
JP4504166B2 (en) Reaction force device
JP2012215338A (en) Method of burying pipe in pile hole
JP6735138B2 (en) Construction method of retaining wall structure and retaining wall structure
JP5745663B1 (en) Slant pile withdrawal assist device
JP6586213B2 (en) Construction method of jacket structure
JP4911242B2 (en) Reinforcement structure of existing gravity quay
JP2006022551A (en) Continuous underground wall and earth retaining method
JP2011157719A (en) Earth retaining method
JP2008013999A (en) Construction method of cast-in-place concrete pile
JP3681746B1 (en) Iron sheet pile and its insertion method
JP6470648B2 (en) Structure of composite underground continuous wall and construction method of composite underground continuous wall
JP5729712B1 (en) Earth retaining method and earth retaining unit
JP6403300B1 (en) How to embed sheet pile
JP6665326B1 (en) How to bury a sheet pile
KR102149709B1 (en) Deformation prevention method of files for retaining wall of underground
JP4670625B2 (en) Reinforcement method of existing gravity quay
JP6337396B2 (en) Reinforcement structure and reinforcement method for existing shore structures

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120613

R150 Certificate of patent or registration of utility model

Ref document number: 5021049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250