JP2010132510A - Method for producing silicon carbide single crystal - Google Patents

Method for producing silicon carbide single crystal Download PDF

Info

Publication number
JP2010132510A
JP2010132510A JP2008311454A JP2008311454A JP2010132510A JP 2010132510 A JP2010132510 A JP 2010132510A JP 2008311454 A JP2008311454 A JP 2008311454A JP 2008311454 A JP2008311454 A JP 2008311454A JP 2010132510 A JP2010132510 A JP 2010132510A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
heat insulating
insulating member
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008311454A
Other languages
Japanese (ja)
Inventor
Takeshi Motoyama
剛 元山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008311454A priority Critical patent/JP2010132510A/en
Publication of JP2010132510A publication Critical patent/JP2010132510A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a silicon carbide single crystal, by which the deterioration of crystallinity and the occurrence of crystal defects such as spiral dislocations in the silicon carbide single crystal can be further suppressed while continuously growing a seed crystal. <P>SOLUTION: In the method for producing a silicon carbide single crystal, a graphite crucible 10 accommodating a seed crystal 70 containing silicon carbide and a raw material 80 for sublimation arranged at a lower part of the seed crystal 70 and used for growing the seed crystal 70; a heating part 30 arranged in the periphery of the side part of the graphite crucible 10 and heating the graphite crucible 10 by using an induction heating coil 30a; and a heat insulating member 12 arranged between the heating part 30 and the graphite crucible 10 are used. The method includes a process for reducing the thickness of the heat insulating member 12 in the side direction of the graphite crucible 10 as the seed crystal 70 accommodated in the graphite crucible 10 grows, in a side view of the graphite crucible 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、種結晶及び昇華用原料を収容する坩堝と、誘導加熱コイルを用いて坩堝を加熱する加熱部とを用いた炭化珪素単結晶の製造方法に関する。   The present invention relates to a method for producing a silicon carbide single crystal using a crucible containing a seed crystal and a sublimation raw material, and a heating unit for heating the crucible using an induction heating coil.

従来、炭化珪素によって形成された種結晶と、昇華用原料とが収容された坩堝を用いて炭化珪素単結晶(以下、単結晶と適宜省略する)を製造する炭化珪素単結晶の製造装置が広く用いられている。このような炭化珪素単結晶の製造装置では、粉体状の昇華用原料が坩堝内の底部に載置されるとともに、坩堝内の上部に単結晶の種結晶が配設される。また、坩堝の外側周囲には、坩堝を加熱する誘導加熱コイルが配設される。   2. Description of the Related Art Conventionally, a silicon carbide single crystal production apparatus for producing a silicon carbide single crystal (hereinafter abbreviated as “single crystal” as appropriate) using a crucible containing a seed crystal formed of silicon carbide and a sublimation raw material has been widely used. It is used. In such a silicon carbide single crystal manufacturing apparatus, a powdery sublimation raw material is placed on the bottom of the crucible, and a single crystal seed crystal is placed on the top of the crucible. An induction heating coil for heating the crucible is disposed around the outer periphery of the crucible.

このような構造を有する炭化珪素単結晶の製造装置において、種結晶上に単結晶を継続して成長させつつ、炭化珪素多結晶や、らせん転位などの結晶欠陥を含む結晶の成長を抑制するため、種結晶の近傍の温度のみを結晶化温度に冷却する方法が知られている(例えば、特許文献1)。なお、らせん転位とは、結晶中の任意の線に対して、平行に結晶面がずれて成る転位のことを示す。   In a silicon carbide single crystal manufacturing apparatus having such a structure, in order to suppress the growth of silicon carbide polycrystals and crystals containing crystal defects such as screw dislocations while continuously growing the single crystal on the seed crystal. A method of cooling only the temperature in the vicinity of the seed crystal to the crystallization temperature is known (for example, Patent Document 1). Note that the screw dislocation indicates a dislocation formed by shifting the crystal plane in parallel to an arbitrary line in the crystal.

具体的には、種結晶の配設位置に対応する坩堝の側部の周囲に誘導加熱コイルを配設する。このような方法によれば、坩堝の上部からの放熱の影響により、種結晶が配設される坩堝内の上部のみを結晶化温度に冷却できる。   Specifically, an induction heating coil is disposed around the side of the crucible corresponding to the position where the seed crystal is disposed. According to such a method, only the upper part in the crucible in which the seed crystal is disposed can be cooled to the crystallization temperature due to the influence of heat radiation from the upper part of the crucible.

従って、このような構造を有する炭化珪素単結晶の製造装置は、種結晶の成長を継続しつつ、炭化珪素多結晶や、らせん転位などの結晶欠陥を含む結晶の成長を抑制できる。
特開2002−255693号公報(第4頁、第2図)
Therefore, the silicon carbide single crystal manufacturing apparatus having such a structure can suppress the growth of silicon carbide polycrystals and crystals containing crystal defects such as screw dislocations while continuing the growth of the seed crystal.
Japanese Patent Laid-Open No. 2002-255893 (page 4, FIG. 2)

しかしながら、上述した従来の炭化珪素単結晶の製造装置には、次のような問題があった。すなわち、種結晶の成長に伴い、坩堝の上部から種結晶が成長した炭化珪素単結晶の下端までの距離は徐々に長くなり、坩堝の上部からの放熱の影響が少なくなるとともに、炭化珪素単結晶は、昇華用原料が載置される坩堝内の底部に近づく。このため、炭化珪素単結晶の下端近傍の温度は、高くなり、昇華用原料近傍の温度との差が小さくなってしまう。従って、種結晶の成長速度が低下し、結晶性の低下や、らせん転位などの結晶欠陥の原因となる問題があった。   However, the conventional silicon carbide single crystal manufacturing apparatus described above has the following problems. That is, as the seed crystal grows, the distance from the upper part of the crucible to the lower end of the silicon carbide single crystal on which the seed crystal has grown gradually increases, and the influence of heat dissipation from the upper part of the crucible decreases, and the silicon carbide single crystal Approaches the bottom of the crucible in which the sublimation raw material is placed. For this reason, the temperature near the lower end of the silicon carbide single crystal becomes high, and the difference from the temperature near the sublimation raw material becomes small. Therefore, the growth rate of the seed crystal is lowered, and there are problems that cause crystal defects such as a decrease in crystallinity and screw dislocation.

そこで、本発明は、このような状況に鑑みてなされたものであり、種結晶を継続して成長させつつ、炭化珪素単結晶の結晶性の低下や、らせん転位などの結晶欠陥をさらに抑制できる炭化珪素単結晶の製造方法の提供を目的とする。   Therefore, the present invention has been made in view of such a situation, and can further suppress crystal defects such as a decrease in crystallinity of a silicon carbide single crystal and screw dislocations while continuously growing a seed crystal. It aims at providing the manufacturing method of a silicon carbide single crystal.

上述した課題を解決するため、本発明は、次のような特徴を有している。まず、本発明の第1の特徴は、炭化珪素を含む種結晶(種結晶70)、及び種結晶の下方に配設され、種結晶の成長に用いられる昇華用原料(昇華用原料80)を収容する坩堝(黒鉛製坩堝10)と、坩堝の側部の周囲に配設され、坩堝を誘導加熱コイル(誘導加熱コイル30a)を用いて加熱する加熱部(加熱部30)と、加熱部と坩堝との間に配設される断熱部材(断熱部材12)とを用いた炭化珪素単結晶の製造方法であって、坩堝の側面視において、坩堝に収容された種結晶の成長につれて、坩堝の側方方向における断熱部材の厚さを減らす工程を備えることを要旨とする。   In order to solve the above-described problems, the present invention has the following features. First, the first feature of the present invention is that a seed crystal containing silicon carbide (seed crystal 70) and a sublimation material (sublimation material 80) disposed under the seed crystal and used for seed crystal growth are provided. A crucible to be accommodated (graphite crucible 10), a heating unit (heating unit 30) which is disposed around the side of the crucible and heats the crucible using an induction heating coil (induction heating coil 30a); A method for manufacturing a silicon carbide single crystal using a heat insulating member (heat insulating member 12) disposed between the crucible and the growth of the seed crystal accommodated in the crucible in a side view of the crucible. The gist is to include a step of reducing the thickness of the heat insulating member in the lateral direction.

このような炭化珪素単結晶の製造方法によれば、種結晶が成長した炭化珪素単結晶の近傍では、断熱部材による保温効果が低減するため、坩堝からの放熱の影響を受けて、炭化珪素単結晶の近傍の温度は、低下する。つまり、炭化珪素単結晶の製造装置は、種結晶の成長に伴って、昇華用原料に近づく場合においても、炭化珪素単結晶近傍と、昇華用原料近傍との温度差を生じさせることができる。   According to such a method for manufacturing a silicon carbide single crystal, in the vicinity of the silicon carbide single crystal on which the seed crystal has grown, the heat insulation effect by the heat insulating member is reduced. Therefore, the silicon carbide single crystal is affected by the heat radiation from the crucible. The temperature in the vicinity of the crystal decreases. That is, the silicon carbide single crystal manufacturing apparatus can cause a temperature difference between the vicinity of the silicon carbide single crystal and the vicinity of the sublimation raw material even when approaching the sublimation raw material as the seed crystal grows.

従って、このような炭化珪素単結晶の製造方法によれば、種結晶を継続して成長させつつ、炭化珪素単結晶の結晶性の低下や、らせん転位などの結晶欠陥をさらに抑制できる。   Therefore, according to such a method for manufacturing a silicon carbide single crystal, it is possible to further suppress crystal defects such as a decrease in crystallinity of the silicon carbide single crystal and screw dislocations while continuously growing the seed crystal.

本発明の第2の特徴は、本発明の第1の特徴に係り、断熱部材は、坩堝の側部に配設される第1断熱部材(第1断熱部材14)と、第1断熱部材よりも前記誘導加熱コイル側に配設される第2断熱部材(第2断熱部材16)とを含み、断熱部材の厚さを減らす工程では、坩堝の側面視において、坩堝に収容されている種結晶が成長した炭化珪素単結晶と対応する位置まで第1断熱部材又は第2断熱部材を抜き出すことを要旨とする。   A second feature of the present invention relates to the first feature of the present invention, wherein the heat insulating member includes a first heat insulating member (first heat insulating member 14) disposed on a side portion of the crucible and the first heat insulating member. And the second heat insulating member (second heat insulating member 16) disposed on the induction heating coil side, and in the step of reducing the thickness of the heat insulating member, the seed crystal accommodated in the crucible in a side view of the crucible The gist is to extract the first heat insulating member or the second heat insulating member up to a position corresponding to the silicon carbide single crystal on which the crystal has grown.

本発明の第3の特徴は、本発明の第2の特徴に係り、断熱部材の厚さを減らす工程では、第2断熱部材を抜き出すことを要旨とする。   The third feature of the present invention relates to the second feature of the present invention, and is summarized in that the second heat insulating member is extracted in the step of reducing the thickness of the heat insulating member.

本発明の第4の特徴は、本発明の第2または3の特徴に係り、断熱部材の厚さを減らす工程では、坩堝及び第1断熱部材を誘導加熱コイルから上方に遠ざけることを要旨とする。   The fourth feature of the present invention relates to the second or third feature of the present invention, and is summarized in that the crucible and the first heat insulation member are moved upward from the induction heating coil in the step of reducing the thickness of the heat insulation member. .

本発明の第5の特徴は、本発明の第2乃至4の何れか一つの特徴に係り、第1断熱部材は、坩堝を覆うことを要旨とする。   The fifth feature of the present invention is related to any one of the second to fourth features of the present invention, and the first heat insulating member covers the crucible.

本発明の特徴によれば、種結晶を継続して成長させつつ、炭化珪素単結晶の結晶性の低下や、らせん転位などの結晶欠陥をさらに抑制できる炭化珪素単結晶の製造方法を提供することができる。   According to the features of the present invention, a method for producing a silicon carbide single crystal that can further suppress crystal defects such as a screw dislocation and a crystallinity degradation of a silicon carbide single crystal while continuously growing a seed crystal is provided. Can do.

次に、本発明に係る第1及び第2実施形態について、図面を参照しながら説明する。なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。   Next, first and second embodiments according to the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and ratios of dimensions are different from actual ones.

したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Accordingly, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

[第1実施形態]
本実施形態においては、(1)炭化珪素単結晶の製造装置の概略構成、(2)炭化珪素単結晶の製造方法、(3)作用・効果について、図1及び図2を用いて説明する。
[First Embodiment]
In the present embodiment, (1) a schematic configuration of a silicon carbide single crystal manufacturing apparatus, (2) a silicon carbide single crystal manufacturing method, and (3) actions and effects will be described with reference to FIGS. 1 and 2.

図1は、本発明の第1実施形態に係る炭化珪素単結晶の製造装置1の概略を説明する構成図である。図2は、本発明の第1実施形態に係る炭化珪素単結晶の製造装置1の概略を説明する構成図である。   FIG. 1 is a configuration diagram illustrating an outline of a silicon carbide single crystal manufacturing apparatus 1 according to a first embodiment of the present invention. FIG. 2 is a configuration diagram illustrating an outline of the silicon carbide single crystal manufacturing apparatus 1 according to the first embodiment of the present invention.

(1)炭化珪素単結晶の製造装置の概略構成
図1に示すように、炭化珪素単結晶の製造装置1は、黒鉛製坩堝10と、石英管20と、加熱部30と、第2断熱部材16とを有する。
(1) Schematic Configuration of Silicon Carbide Single Crystal Manufacturing Device As shown in FIG. 1, a silicon carbide single crystal manufacturing device 1 includes a graphite crucible 10, a quartz tube 20, a heating unit 30, and a second heat insulating member. 16.

炭化珪素単結晶の製造装置1を構成する各部位について説明する。具体的には、(1.1)黒鉛製坩堝10、(1.2)石英管20、(1.3)加熱部30、(1.4)炭化珪素単結晶100について説明する。   Each part which comprises the manufacturing apparatus 1 of a silicon carbide single crystal is demonstrated. Specifically, (1.1) graphite crucible 10, (1.2) quartz tube 20, (1.3) heating unit 30, and (1.4) silicon carbide single crystal 100 will be described.

(1.1)黒鉛製坩堝10
黒鉛製坩堝10は、炭化珪素を含む種結晶70、及び種結晶70の下方に配設され、種結晶70の成長に用いられる昇華用原料80を収容する。黒鉛製坩堝10は、支持棒40により、石英管20の内部に固定される。黒鉛製坩堝10は、反応容器本体50と、蓋部60とにより構成される。
(1.1) Graphite crucible 10
The graphite crucible 10 is disposed under the seed crystal 70 containing silicon carbide and the seed crystal 70, and accommodates a sublimation raw material 80 used for the growth of the seed crystal 70. The graphite crucible 10 is fixed inside the quartz tube 20 by a support rod 40. The graphite crucible 10 includes a reaction vessel main body 50 and a lid portion 60.

反応容器本体50は、少なくとも内部が円筒状である。反応容器本体50には、種結晶70及び昇華用原料80が収容される。反応容器本体50の内側には、種結晶70が配設される。具体的に、種結晶70は、蓋部60の内側表面61に接着される。   The reaction vessel main body 50 is cylindrical at least inside. A seed crystal 70 and a sublimation raw material 80 are accommodated in the reaction vessel main body 50. A seed crystal 70 is disposed inside the reaction vessel main body 50. Specifically, the seed crystal 70 is bonded to the inner surface 61 of the lid 60.

昇華用原料80は、反応容器本体50の底部51に載置される。   The sublimation raw material 80 is placed on the bottom 51 of the reaction vessel main body 50.

反応容器本体50の内部は、例えば、アルゴン等の不活性ガスが充填されて、不活性雰囲気になっている。反応容器本体50の内部の圧力及び温度は、変更可能である。   The inside of the reaction vessel main body 50 is filled with an inert gas such as argon to form an inert atmosphere. The pressure and temperature inside the reaction vessel main body 50 can be changed.

蓋部60は、反応容器本体50に螺合により着脱自在に設けられる。   The lid 60 is detachably provided on the reaction vessel main body 50 by screwing.

(1.2)石英管20
本実施形態においては、石英管20は、黒鉛製坩堝10の少なくとも側面を覆う。石英管20の内部は、例えば、アルゴン等の不活性ガスが充填されて、不活性雰囲気になっている。
(1.2) Quartz tube 20
In the present embodiment, the quartz tube 20 covers at least the side surface of the graphite crucible 10. The inside of the quartz tube 20 is filled with an inert gas such as argon to form an inert atmosphere.

(1.3)加熱部30
加熱部30は、黒鉛製坩堝10の側部の周囲に配設され、黒鉛製坩堝10を誘導加熱コイル30aを用いて加熱する。また、加熱部30は、石英管20の外周に配置される。
(1.4)炭化珪素単結晶100
昇華用原料80は、炭化珪素を含む炭化珪素原料である。黒鉛製坩堝10の内部が、加熱部30により加熱され所定の温度条件及び圧力条件になると、昇華用原料80は、昇華する。
(1.3) Heating unit 30
The heating unit 30 is disposed around the side of the graphite crucible 10 and heats the graphite crucible 10 using the induction heating coil 30a. The heating unit 30 is disposed on the outer periphery of the quartz tube 20.
(1.4) Silicon carbide single crystal 100
Sublimation raw material 80 is a silicon carbide raw material containing silicon carbide. When the inside of the graphite crucible 10 is heated by the heating unit 30 and becomes a predetermined temperature condition and pressure condition, the sublimation raw material 80 is sublimated.

図2に示すように、昇華した昇華用原料80は、結晶化温度に至るまで冷却されると種結晶70上で再結晶し、炭化珪素単結晶100となる。   As shown in FIG. 2, the sublimation raw material 80 that has been sublimated is recrystallized on the seed crystal 70 when cooled to the crystallization temperature, and becomes a silicon carbide single crystal 100.

炭化珪素単結晶100は、成長が進むにつれて、種結晶70から昇華用原料80に向けて、凸状に形成される。黒鉛製坩堝10の上下方向における、炭化珪素単結晶100の下端を単結晶端部100aとする。   Silicon carbide single crystal 100 is formed in a convex shape from seed crystal 70 toward sublimation raw material 80 as the growth proceeds. The lower end of silicon carbide single crystal 100 in the vertical direction of graphite crucible 10 is defined as single crystal end portion 100a.

(1.5)断熱部材12
断熱部材12は、誘導加熱コイル30aと黒鉛製坩堝10との間に配設される。具体的には、断熱部材12は、黒鉛製坩堝10の側部に配設される第1断熱部材14と、第1断熱部材14よりも誘導加熱コイル30a側に配設される第2断熱部材16とを含む。
(1.5) Thermal insulation member 12
The heat insulating member 12 is disposed between the induction heating coil 30 a and the graphite crucible 10. Specifically, the heat insulating member 12 includes a first heat insulating member 14 disposed on the side of the graphite crucible 10 and a second heat insulating member disposed closer to the induction heating coil 30a than the first heat insulating member 14. 16 and the like.

本実施形態において、第1断熱部材14は、黒鉛製坩堝10の側部だけでなく、黒鉛製坩堝10の全体を覆う。具体的には、第1断熱部材14は、黒鉛製坩堝10を構成する反応容器本体50の側部、底部51及び、蓋部60に密着する。   In the present embodiment, the first heat insulating member 14 covers not only the side portion of the graphite crucible 10 but also the entire graphite crucible 10. Specifically, the first heat insulating member 14 is in close contact with the side portion, the bottom portion 51, and the lid portion 60 of the reaction vessel main body 50 constituting the graphite crucible 10.

第2断熱部材16は、円筒状に形成される。第2断熱部材16は、黒鉛製坩堝10と加熱部30との間に挿入される。具体的には、第2断熱部材16は、黒鉛製坩堝10を構成する反応容器本体50と、石英管20との間に挿入される。   The second heat insulating member 16 is formed in a cylindrical shape. The second heat insulating member 16 is inserted between the graphite crucible 10 and the heating unit 30. Specifically, the second heat insulating member 16 is inserted between the reaction vessel main body 50 constituting the graphite crucible 10 and the quartz tube 20.

図2に示すように、第2断熱部材16は、種結晶70が成長した炭化珪素単結晶100と対応する位置まで抜き出される。   As shown in FIG. 2, the 2nd heat insulation member 16 is extracted to the position corresponding to the silicon carbide single crystal 100 with which the seed crystal 70 grew.

第1断熱部材14及び第2断熱部材16は、黒鉛製坩堝10よりも熱伝導率が低い。具体的には、第1断熱部材14及び第2断熱部材16の熱伝導率は、0.06W/m・k以下であることが好ましい。   The first heat insulating member 14 and the second heat insulating member 16 have a lower thermal conductivity than the graphite crucible 10. Specifically, the thermal conductivity of the first heat insulating member 14 and the second heat insulating member 16 is preferably 0.06 W / m · k or less.

第1断熱部材14及び第2断熱部材16は、例えば、複数の孔が形成された多孔質のカーボンまたはカーボンフェルトにより形成される。第1断熱部材14の厚さd14及び第2断熱部材16の厚さd16は、それぞれ15ミリメートル以上である。   The first heat insulating member 14 and the second heat insulating member 16 are formed of, for example, porous carbon or carbon felt in which a plurality of holes are formed. The thickness d14 of the first heat insulating member 14 and the thickness d16 of the second heat insulating member 16 are each 15 millimeters or more.

(2)炭化珪素単結晶の製造方法
次に本実施形態に係る炭化珪素単結晶の製造方法について、図2及び図3を用いて説明する。図3は、本実施形態に係る炭化珪素単結晶の製造方法を示すフローチャートである。
(2) Manufacturing method of silicon carbide single crystal Next, the manufacturing method of the silicon carbide single crystal which concerns on this embodiment is demonstrated using FIG.2 and FIG.3. FIG. 3 is a flowchart showing a method for manufacturing a silicon carbide single crystal according to the present embodiment.

具体的には、炭化珪素単結晶の製造方法は、(2.1)原料準備工程、(2.2)配置工程、(2.3)坩堝加熱工程、(2.4)単結晶成長工程、(2.5)断熱部材削減工程、(2.6)外周研削工程、(2.7)スライス工程を含む。   Specifically, the method for producing a silicon carbide single crystal includes (2.1) a raw material preparation step, (2.2) an arrangement step, (2.3) a crucible heating step, (2.4) a single crystal growth step, (2.5) Insulating member reduction step, (2.6) Peripheral grinding step, (2.7) Slicing step.

(2.1)原料準備工程
ステップS1の原料準備工程では、昇華用原料80を準備する。
(2.1) Raw material preparation process In the raw material preparation process of step S1, the sublimation raw material 80 is prepared.

(2.2)配置工程
ステップS2の配置工程では、昇華用原料80、種結晶70等を炭化珪素単結晶の製造装置1に配置する。
(2.2) Arrangement Step In the arrangement step of Step S2, the sublimation raw material 80, the seed crystal 70, etc. are arranged in the silicon carbide single crystal manufacturing apparatus 1.

ステップS2の配置工程において、第2断熱部材16は、反応容器本体50と、石英管20との間に挿入されていない状態である。具体的には、第2断熱部材16は、反応容器本体50の底部51よりも支持棒40側に配設される。   In the arrangement process of step S <b> 2, the second heat insulating member 16 is not inserted between the reaction vessel main body 50 and the quartz tube 20. Specifically, the second heat insulating member 16 is disposed closer to the support rod 40 than the bottom 51 of the reaction vessel main body 50.

(2.3)坩堝加熱工程
ステップS3の坩堝加熱工程では、加熱部30を用いて黒鉛製坩堝10を加熱する。具体的には、加熱部30は、誘導加熱コイル30aに電流を通電させて、黒鉛製坩堝10を略一定の出力で加熱する。加熱部30は、黒鉛製坩堝10を加熱し、昇華用原料80を昇華させる。
(2.3) Crucible Heating Step In the crucible heating step of step S3, the graphite crucible 10 is heated using the heating unit 30. Specifically, the heating unit 30 energizes the induction heating coil 30a to heat the graphite crucible 10 with a substantially constant output. The heating unit 30 heats the graphite crucible 10 and sublimates the sublimation raw material 80.

(2.4)単結晶成長工程
ステップS4の単結晶成長工程では、種結晶70上に炭化珪素単結晶100を成長させる。
(2.4) Single Crystal Growth Step In the single crystal growth step of step S4, silicon carbide single crystal 100 is grown on seed crystal 70.

具体的には、ステップS4の単結晶成長工程では、昇華した昇華用原料80は、結晶化温度に至るまで冷却されると蓋部60の内側表面61に配置された種結晶70上で再結晶する。   Specifically, in the single crystal growth step of step S4, the sublimated raw material 80 is recrystallized on the seed crystal 70 disposed on the inner surface 61 of the lid 60 when cooled to the crystallization temperature. To do.

すなわち、昇華用原料80から昇華した原料ガスは、種結晶70上に炭化珪素単結晶100を成長させる。   That is, the raw material gas sublimated from the sublimation raw material 80 grows the silicon carbide single crystal 100 on the seed crystal 70.

(2.5)断熱部材削減工程
ステップS5の断熱部材削減工程では、ステップS4の単結晶成長工程における種結晶70の成長につれて、黒鉛製坩堝10の側方方向における断熱部材12の厚さを減らす。具体的には、黒鉛製坩堝10の側面視において、黒鉛製坩堝10に収容された種結晶70の成長につれて、加熱部30と黒鉛製坩堝10との間の断熱部材12の厚さを減らす。
(2.5) Thermal insulation member reduction process In the thermal insulation member reduction process of step S5, the thickness of the thermal insulation member 12 in the lateral direction of the graphite crucible 10 is reduced as the seed crystal 70 grows in the single crystal growth process of step S4. . Specifically, in the side view of the graphite crucible 10, the thickness of the heat insulating member 12 between the heating unit 30 and the graphite crucible 10 is reduced as the seed crystal 70 accommodated in the graphite crucible 10 grows.

ステップS5の断熱部材削減工程では、黒鉛製坩堝10の側面視において、黒鉛製坩堝10に収容されている種結晶70が成長した炭化珪素単結晶100と対応する位置まで第1断熱部材14又は第2断熱部材16を抜き出すことにより、断熱部材の厚さを減らす。   In the heat insulating member reduction process of step S5, in the side view of the graphite crucible 10, the first heat insulating member 14 or the first heat insulating member 14 or the first heat insulating member 14 is moved to a position corresponding to the silicon carbide single crystal 100 on which the seed crystal 70 accommodated in the graphite crucible 10 has grown. 2 The thickness of the heat insulating member is reduced by extracting the heat insulating member 16.

図2に示すように、本実施形態におけるステップS5の断熱部材削減工程では、黒鉛製坩堝10の側面視において、炭化珪素単結晶100の単結晶端部100aに対応する単結晶端部線Sに対応する位置まで第2断熱部材16を炭化珪素単結晶の製造装置1の下方へ適宜抜き出す。   As shown in FIG. 2, in the heat insulating member reduction process of step S <b> 5 in the present embodiment, in the side view of the graphite crucible 10, the single crystal end line S corresponding to the single crystal end 100 a of the silicon carbide single crystal 100 is formed. The 2nd heat insulation member 16 is suitably extracted below the manufacturing apparatus 1 of a silicon carbide single crystal to the corresponding position.

これにより、炭化珪素単結晶(以下、単結晶インゴットという)が時間とともに、黒鉛製坩堝10の上下方向に成長する。   Thereby, a silicon carbide single crystal (hereinafter referred to as a single crystal ingot) grows in the vertical direction of the graphite crucible 10 with time.

上述のステップS1〜S5を行うことにより、単結晶インゴットを得る。   A single crystal ingot is obtained by performing steps S1 to S5 described above.

(2.6)外周研削工程
ステップS6の外周研削工程では、所望とするサイズに成長した単結晶インゴットに外周研削加工等を施す。例えば、単結晶インゴットに、結晶方位(Si面やC面等)を示すオリエンテーションフラット(オリフラ)を形成するオリフラ形成加工を行ってもよい。
(2.6) Outer peripheral grinding step In the outer peripheral grinding step of step S6, outer peripheral grinding or the like is performed on the single crystal ingot grown to a desired size. For example, orientation flat forming processing may be performed in which an orientation flat (orientation flat) indicating a crystal orientation (Si plane, C plane, etc.) is formed on a single crystal ingot.

(2.7)スライス工程
ステップS7のスライス工程では、単結晶インゴットから半導体ウェハを切り出す。
(2.7) Slicing Step In the slicing step of step S7, a semiconductor wafer is cut out from the single crystal ingot.

なお、上述のステップS1〜S7を行うことにより、半導体ウェハを製造できる。   In addition, a semiconductor wafer can be manufactured by performing the above-mentioned steps S1-S7.

以上、図3に示す製造方法によれば、加熱された昇華用原料80の加熱位置から原料ガスが昇華し、種結晶70上に再結晶化され、種結晶70上に炭化珪素単結晶100が成長する。   As described above, according to the manufacturing method shown in FIG. 3, the raw material gas is sublimated from the heating position of the heated sublimation raw material 80, recrystallized on seed crystal 70, and silicon carbide single crystal 100 is formed on seed crystal 70. grow up.

(3)作用・効果
以上説明したように、本実施形態によれば、ステップS5の断熱部材削減工程において、加熱部30と、黒鉛製坩堝10との間の断熱部材12は、種結晶70の成長につれて、減らされる。このため、種結晶70が成長した炭化珪素単結晶100の近傍では、断熱部材12による保温効果が低減するため、黒鉛製坩堝10からの放熱の影響を受けて、炭化珪素単結晶100の近傍の温度は、低下する。つまり、炭化珪素単結晶の製造装置1は、種結晶70の成長に伴って、昇華用原料80に近づく場合においても、炭化珪素単結晶100近傍と、昇華用原料80近傍との温度差を生じさせることができる。
(3) Action / Effect As described above, according to the present embodiment, in the heat insulating member reduction process in step S5, the heat insulating member 12 between the heating unit 30 and the graphite crucible 10 is formed of the seed crystal 70. Reduced as it grows. For this reason, in the vicinity of the silicon carbide single crystal 100 on which the seed crystal 70 is grown, the heat retaining effect by the heat insulating member 12 is reduced. The temperature drops. In other words, the silicon carbide single crystal manufacturing apparatus 1 causes a temperature difference between the vicinity of the silicon carbide single crystal 100 and the vicinity of the sublimation raw material 80 even when the seed crystal 70 grows and approaches the sublimation raw material 80. Can be made.

従って、このような炭化珪素単結晶の製造方法によれば、炭化珪素単結晶の製造装置1は、種結晶70を継続して成長させつつ、炭化珪素単結晶100の結晶性の低下や、らせん転位などの結晶欠陥をさらに抑制できる。   Therefore, according to such a method for manufacturing a silicon carbide single crystal, the silicon carbide single crystal manufacturing apparatus 1 continuously reduces the crystallinity of the silicon carbide single crystal 100 while the seed crystal 70 is continuously grown. Crystal defects such as dislocations can be further suppressed.

本実施形態の炭化珪素単結晶の製造方法によれば、ステップS5の断熱部材削減工程では、黒鉛製坩堝10の側面視において、黒鉛製坩堝10の側方方向における断熱部材12の厚さを減らすため、炭化珪素単結晶100の近傍では、断熱部材12による保温効果が更に低減するため、黒鉛製坩堝10からの放熱の影響を更に受けやすくなる。従って、炭化珪素単結晶100の近傍の温度は、更に低下しやすくなる。   According to the method for manufacturing a silicon carbide single crystal of the present embodiment, in the heat insulating member reducing step in step S5, the thickness of the heat insulating member 12 in the lateral direction of the graphite crucible 10 is reduced in the side view of the graphite crucible 10. Therefore, in the vicinity of the silicon carbide single crystal 100, the heat retention effect by the heat insulating member 12 is further reduced, so that it is more easily affected by heat radiation from the graphite crucible 10. Therefore, the temperature in the vicinity of silicon carbide single crystal 100 is more likely to decrease.

本実施形態の炭化珪素単結晶の製造方法によれば、断熱部材12は、第1断熱部材14と第2断熱部材16とを含み、ステップS5の断熱部材削減工程では、黒鉛製坩堝10の側面視において、黒鉛製坩堝10に収容されている種結晶70が成長した炭化珪素単結晶100と対応する位置まで第2断熱部材16を炭化珪素単結晶の製造装置1の下方へ抜き出すことにより断熱部材12の厚さを減らす。   According to the method for manufacturing a silicon carbide single crystal of the present embodiment, the heat insulating member 12 includes the first heat insulating member 14 and the second heat insulating member 16, and in the heat insulating member reducing step of Step S <b> 5, the side surface of the graphite crucible 10. In view, the second heat insulating member 16 is extracted below the silicon carbide single crystal manufacturing apparatus 1 to a position corresponding to the silicon carbide single crystal 100 on which the seed crystal 70 accommodated in the graphite crucible 10 has grown. Decrease the thickness of 12.

このため、黒鉛製坩堝10の側面視において、昇華用原料80から炭化珪素単結晶100までの黒鉛製坩堝10は、断熱部材12に覆われるため、引き続き高温に保たれる。また、第2断熱部材16を抜き出した領域の黒鉛製坩堝10は、第2断熱部材16による保温効果が確実に低減する。つまり、このような炭化珪素単結晶の製造方法によれば、炭化珪素単結晶100近傍と、昇華用原料80近傍との温度差を確実に生じさせることができる。   For this reason, in the side view of the graphite crucible 10, the graphite crucible 10 from the sublimation raw material 80 to the silicon carbide single crystal 100 is covered with the heat insulating member 12, and is therefore kept at a high temperature. Further, in the graphite crucible 10 in the region where the second heat insulating member 16 is extracted, the heat retaining effect by the second heat insulating member 16 is reliably reduced. That is, according to such a method for manufacturing a silicon carbide single crystal, a temperature difference between the vicinity of silicon carbide single crystal 100 and the vicinity of sublimation raw material 80 can be reliably generated.

従って、このような炭化珪素単結晶の製造方法によれば、種結晶70を確実に継続して成長させつつ、炭化珪素単結晶100の結晶性の低下や、らせん転位などの結晶欠陥をさらに抑制できる。   Therefore, according to such a method for manufacturing a silicon carbide single crystal, while the seed crystal 70 is reliably and continuously grown, crystallinity deterioration of the silicon carbide single crystal 100 and crystal defects such as screw dislocations are further suppressed. it can.

[第2実施形態]
上述した第1実施形態では、ステップS5の断熱部材削減工程では、炭化珪素単結晶の製造装置1において、黒鉛製坩堝10と、加熱部30との間の第2断熱部材16を炭化珪素単結晶100と対応する位置まで抜き出すことにより、断熱部材12の厚さを減らしている。これに対して、第2実施形態では、断熱部材削減工程における製造方法が、第1実施形態と異なる。
[Second Embodiment]
In 1st Embodiment mentioned above, in the heat insulation member reduction process of step S5, in the silicon carbide single crystal manufacturing apparatus 1, the 2nd heat insulation member 16 between the graphite crucible 10 and the heating part 30 is silicon carbide single crystal. By extracting to a position corresponding to 100, the thickness of the heat insulating member 12 is reduced. On the other hand, in 2nd Embodiment, the manufacturing method in a heat insulation member reduction process differs from 1st Embodiment.

第2実施形態では、黒鉛製坩堝10と、第1断熱部材14とを抜き出す構成について、図4を用いて説明する。   In the second embodiment, a configuration for extracting the graphite crucible 10 and the first heat insulating member 14 will be described with reference to FIG.

図4は、本発明の第2実施形態に係る炭化珪素単結晶の製造装置1の概略を説明する構成図である。   FIG. 4 is a configuration diagram for explaining the outline of the silicon carbide single crystal manufacturing apparatus 1 according to the second embodiment of the present invention.

なお、以下の第2実施形態においては、第1実施形態と異なる点を主に説明し、重複する説明を省略する。   Note that, in the following second embodiment, differences from the first embodiment will be mainly described, and overlapping descriptions will be omitted.

本実施形態においては、(1)炭化珪素単結晶の製造方法、(2)作用・効果、(3)変形例について説明する。   In the present embodiment, (1) a method for producing a silicon carbide single crystal, (2) actions and effects, and (3) a modification will be described.

(1)炭化珪素単結晶の製造方法
図4に示すように、炭化珪素単結晶の製造装置1の構成は、第1実施形態と同様である。
(1) Manufacturing method of silicon carbide single crystal As shown in FIG. 4, the structure of the manufacturing apparatus 1 of a silicon carbide single crystal is the same as that of 1st Embodiment.

第2実施形態に係る炭化珪素単結晶の製造方法のステップS5Aの断熱部材削減工程では、黒鉛製坩堝10及び第1断熱部材14を誘導加熱コイル30aから上方に遠ざける点で、第1実施形態の炭化珪素単結晶の製造方法と異なる。   In the heat insulating member reduction process of step S5A of the method for manufacturing a silicon carbide single crystal according to the second embodiment, the graphite crucible 10 and the first heat insulating member 14 are moved upward from the induction heating coil 30a in the first embodiment. Different from the method for producing a silicon carbide single crystal.

具体的には、ステップS5Aの断熱部材削減工程では、黒鉛製坩堝10の側面視において、炭化珪素単結晶100の単結晶端部100aに対応する単結晶端部線Sに対応する位置まで黒鉛製坩堝10と、第1断熱部材14とを炭化珪素単結晶の製造装置1の上方へ適宜抜き出す。   Specifically, in the heat insulating member reduction step in step S5A, the graphite crucible 10 is made of graphite up to a position corresponding to the single crystal end line S corresponding to the single crystal end 100a of the silicon carbide single crystal 100 in a side view. The crucible 10 and the first heat insulating member 14 are appropriately extracted above the silicon carbide single crystal manufacturing apparatus 1.

(2)作用・効果
以上説明したように、第2実施形態の炭化珪素単結晶の製造方法によれば、第1実施形態の炭化珪素単結晶の製造方法と同様に、黒鉛製坩堝10の側面視において、昇華用原料80から炭化珪素単結晶100までの黒鉛製坩堝10は、断熱部材12に覆われるため、引き続き高温に保たれる。
(2) Action / Effect As described above, according to the method for manufacturing a silicon carbide single crystal of the second embodiment, the side surface of the graphite crucible 10 is the same as the method for manufacturing the silicon carbide single crystal of the first embodiment. In view, the graphite crucible 10 from the sublimation raw material 80 to the silicon carbide single crystal 100 is covered with the heat insulating member 12, and thus is kept at a high temperature.

また、上方へ抜き出された黒鉛製坩堝10は、第2断熱部材16による保温効果が確実に低減するとともに、誘導加熱コイル30aから遠ざかるため、迅速に冷却される。   Further, the graphite crucible 10 extracted upward is reliably cooled because the heat insulation effect by the second heat insulating member 16 is reliably reduced and is moved away from the induction heating coil 30a.

従って、このような炭化珪素単結晶の製造方法によれば、炭化珪素単結晶100近傍と、昇華用原料80近傍との温度差を確実に生じさせることができるため、第1実施形態の炭化珪素単結晶の製造方法と同様の効果を得るとともに、炭化珪素単結晶100の単結晶端部100aには、炭化珪素単結晶が、迅速に形成される。   Therefore, according to such a method for manufacturing a silicon carbide single crystal, a temperature difference between the vicinity of the silicon carbide single crystal 100 and the vicinity of the sublimation raw material 80 can be reliably generated. The effect similar to that of the method for producing the single crystal is obtained, and the silicon carbide single crystal is rapidly formed at the single crystal end portion 100 a of the silicon carbide single crystal 100.

(3)変形例
第2実施形態においては、黒鉛製坩堝10及び第1断熱部材14を上方に抜き出して、誘導加熱コイル30aから上方に遠ざけているが、これに限られず、例えば、黒鉛製坩堝10、第1断熱部材14及び誘導加熱コイル30aを上方に移動させてもよい。
(3) Modification In the second embodiment, the graphite crucible 10 and the first heat insulating member 14 are extracted upward and away from the induction heating coil 30a. However, the present invention is not limited to this. For example, a graphite crucible 10, the first heat insulating member 14 and the induction heating coil 30a may be moved upward.

これによれば、第1実施形態と同様に、第2断熱部材16が、炭化珪素単結晶100の単結晶端部100aに対応する単結晶端部線Sに対応する位置まで抜き出されることと同様の効果を得ることができる。   According to this, as in the first embodiment, the second heat insulating member 16 is extracted to a position corresponding to the single crystal end line S corresponding to the single crystal end 100a of the silicon carbide single crystal 100. Similar effects can be obtained.

[その他の実施形態]
上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
[Other Embodiments]
Although the contents of the present invention have been disclosed through the embodiments of the present invention as described above, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、本発明の実施形態は、次のように変更することができる。上述した実施形態では、第2断熱部材16は、炭化珪素単結晶100に対応する位置まで抜き出されるとした。しかし、第2断熱部材16の抜き出し長さは、種結晶70の成長に応じて、調整されてもよい。   For example, the embodiment of the present invention can be modified as follows. In the embodiment described above, the second heat insulating member 16 is extracted to a position corresponding to the silicon carbide single crystal 100. However, the extraction length of the second heat insulating member 16 may be adjusted according to the growth of the seed crystal 70.

具体的には、種結晶70の近傍の温度が、第2断熱部材16に応じて低下しやすい場合、抜き出される第2断熱部材16の長さを短くして、種結晶70の近傍の温度を結晶化温度にする。一方、種結晶70の近傍の温度が、第2断熱部材16に応じて低下しにくい場合、抜き出される第2断熱部材16の長さを長くして、種結晶70の近傍の温度を結晶化温度にすることができる。   Specifically, when the temperature in the vicinity of the seed crystal 70 is likely to decrease according to the second heat insulating member 16, the length of the second heat insulating member 16 to be extracted is shortened, and the temperature in the vicinity of the seed crystal 70. Is brought to the crystallization temperature. On the other hand, when the temperature in the vicinity of the seed crystal 70 is unlikely to decrease according to the second heat insulating member 16, the length of the second heat insulating member 16 to be extracted is lengthened, and the temperature in the vicinity of the seed crystal 70 is crystallized. Can be temperature.

第2断熱部材16は、複数の孔が形成された多孔質のカーボンフェルトであるとして説明したが、黒鉛製坩堝10よりも熱伝導率が低い材料であればよい。また、第2断熱部材16の厚さは、少なくとも15ミリメートルであるとした。しかし、カーボンフェルトとは異なる断熱部材を使用する場合には、下限値は、必ずしも15ミリでなくてもよい。厚さは、材料のもつ断熱効果に応じて適宜変更することができる。   The second heat insulating member 16 has been described as a porous carbon felt in which a plurality of holes are formed, but any material having a lower thermal conductivity than the graphite crucible 10 may be used. The thickness of the second heat insulating member 16 is at least 15 millimeters. However, when a heat insulating member different from carbon felt is used, the lower limit value is not necessarily 15 mm. The thickness can be appropriately changed according to the heat insulating effect of the material.

このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments that are not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の第1実施形態に係る炭化珪素単結晶の製造装置1の概略を説明する構成図である。It is a lineblock diagram explaining the outline of silicon carbide single crystal manufacturing device 1 concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る炭化珪素単結晶の製造装置1の概略を説明する構成図である。It is a lineblock diagram explaining the outline of silicon carbide single crystal manufacturing device 1 concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る炭化珪素単結晶の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the silicon carbide single crystal which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る炭化珪素単結晶の製造装置1の概略を説明する構成図である。It is a block diagram explaining the outline of the manufacturing apparatus 1 of the silicon carbide single crystal which concerns on 2nd Embodiment of this invention.

符号の説明Explanation of symbols

S…単結晶端部線、 1…製造装置、 10…黒鉛製坩堝、 12…断熱部材、
14…第1断熱部材、 16…第2断熱部材、 20…石英管、 30…加熱部、
30a…誘導加熱コイル、 40…支持棒、 50…反応容器本体、 51…底部、
60…蓋部、 61…内側表面、 70…種結晶、 80…昇華用原料、
100…炭化珪素単結晶、 100a…単結晶端部
S ... single crystal end wire, 1 ... manufacturing apparatus, 10 ... graphite crucible, 12 ... heat insulation member,
14 ... 1st heat insulation member, 16 ... 2nd heat insulation member, 20 ... Quartz tube, 30 ... Heating part,
30a ... induction heating coil, 40 ... support rod, 50 ... reaction vessel body, 51 ... bottom,
60 ... Lid, 61 ... Inner surface, 70 ... Seed crystal, 80 ... Raw material for sublimation,
100 ... Silicon carbide single crystal, 100a ... Single crystal edge

Claims (5)

炭化珪素を含む種結晶、及び前記種結晶の下方に配設され、前記種結晶の成長に用いられる昇華用原料を収容する坩堝と、
前記坩堝の側部の周囲に配設され、前記坩堝を誘導加熱コイルを用いて加熱する加熱部と
前記加熱部と前記坩堝との間に配設される断熱部材と、
を用いた炭化珪素単結晶の製造方法であって、
前記坩堝の側面視において、前記坩堝に収容された前記種結晶の成長につれて、前記坩堝の側方方向における前記断熱部材の厚さを減らす工程
を備える炭化珪素単結晶の製造方法。
A crucible containing a seed crystal containing silicon carbide, and a sublimation raw material disposed under the seed crystal and used for growing the seed crystal;
A heating unit disposed around a side portion of the crucible and heating the crucible using an induction heating coil; a heat insulating member disposed between the heating unit and the crucible;
A method for producing a silicon carbide single crystal using
A method for producing a silicon carbide single crystal, comprising a step of reducing the thickness of the heat insulating member in a lateral direction of the crucible as the seed crystal accommodated in the crucible grows in a side view of the crucible.
前記断熱部材は、
前記坩堝の側部に配設される第1断熱部材と、
前記第1断熱部材よりも前記誘導加熱コイル側に配設される第2断熱部材と
を含み、
前記断熱部材の厚さを減らす工程では、前記坩堝の側面視において、前記坩堝に収容されている前記種結晶が成長した炭化珪素単結晶と対応する位置まで前記第1断熱部材又は前記第2断熱部材を抜き出す請求項1に記載の炭化珪素単結晶の製造方法。
The heat insulating member is
A first heat insulating member disposed on a side of the crucible;
A second heat insulating member disposed closer to the induction heating coil than the first heat insulating member,
In the step of reducing the thickness of the heat insulating member, in the side view of the crucible, the first heat insulating member or the second heat insulating member reaches a position corresponding to the silicon carbide single crystal on which the seed crystal grown in the crucible is grown. The method for producing a silicon carbide single crystal according to claim 1, wherein the member is extracted.
前記断熱部材の厚さを減らす工程では、前記第2断熱部材を抜き出す請求項2に記載の炭化珪素単結晶の製造方法。
The method for producing a silicon carbide single crystal according to claim 2, wherein in the step of reducing the thickness of the heat insulating member, the second heat insulating member is extracted.
前記断熱部材の厚さを減らす工程では、前記坩堝及び前記第1断熱部材を前記誘導加熱コイルから上方に遠ざける請求項2または3に記載の炭化珪素単結晶の製造方法。
The method for producing a silicon carbide single crystal according to claim 2 or 3, wherein, in the step of reducing the thickness of the heat insulating member, the crucible and the first heat insulating member are moved upward from the induction heating coil.
前記第1断熱部材は、前記坩堝を覆う請求項2乃至4の何れか一項に記載の炭化珪素単結晶の製造方法。   The said 1st heat insulation member is a manufacturing method of the silicon carbide single crystal as described in any one of Claims 2 thru | or 4 which covers the said crucible.
JP2008311454A 2008-12-05 2008-12-05 Method for producing silicon carbide single crystal Pending JP2010132510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008311454A JP2010132510A (en) 2008-12-05 2008-12-05 Method for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008311454A JP2010132510A (en) 2008-12-05 2008-12-05 Method for producing silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JP2010132510A true JP2010132510A (en) 2010-06-17

Family

ID=42344208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008311454A Pending JP2010132510A (en) 2008-12-05 2008-12-05 Method for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2010132510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234800A (en) * 2018-11-02 2019-01-18 山东天岳先进材料科技有限公司 A kind of adjustable thermal field structure being used to prepare single-crystal silicon carbide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234800A (en) * 2018-11-02 2019-01-18 山东天岳先进材料科技有限公司 A kind of adjustable thermal field structure being used to prepare single-crystal silicon carbide
CN109234800B (en) * 2018-11-02 2021-12-17 山东天岳先进科技股份有限公司 Adjustable thermal field structure for preparing silicon carbide single crystal

Similar Documents

Publication Publication Date Title
JP6584428B2 (en) Method for producing silicon carbide single crystal and silicon carbide single crystal substrate
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
CN107208311B (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP4585359B2 (en) Method for producing silicon carbide single crystal
WO2009139447A1 (en) Single crystal manufacturing device and manufacturing method
EP1862570B1 (en) Crystal growing crucible
JP2013103864A (en) METHOD FOR GROWING β-Ga2O3-BASED SINGLE CRYSTAL
JP5012655B2 (en) Single crystal growth equipment
KR20180101586A (en) Manufacturing method of silicon single crystal
JP5069657B2 (en) Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
CN113789573A (en) Method for preparing AlN crystal by spontaneous nucleation through PVT method
JP2010076990A (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
JP6990383B2 (en) High-performance Fe-Ga-based alloy single crystal manufacturing method
JP2010132510A (en) Method for producing silicon carbide single crystal
JP2007022865A (en) Method for manufacturing silicon single crystal
JP2019218245A (en) MANUFACTURING METHOD OF Si INGOT CRYSTAL, AND MANUFACTURING APPARATUS THEREFOR
JP2018095490A (en) Method for manufacturing silicon single crystal, silicon single crystal and silicon single crystal wafer
JP2006232570A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
JP2010138006A (en) Production method of silicon carbide single crystal
JP6628557B2 (en) Method for producing silicon carbide single crystal
KR101629445B1 (en) growing apparatus for large diameter single crystal
US20230243063A1 (en) SiC CRYSTAL MANUFACTURING METHOD
WO2022249614A1 (en) Monocrystal production device
JP2010163335A (en) Manufacturing apparatus of silicon carbide single crystal, and manufacturing method of silicon carbide single crystal
JP2010248028A (en) Apparatus for manufacturing silicon carbide single crystal