JP2010129991A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2010129991A
JP2010129991A JP2008306899A JP2008306899A JP2010129991A JP 2010129991 A JP2010129991 A JP 2010129991A JP 2008306899 A JP2008306899 A JP 2008306899A JP 2008306899 A JP2008306899 A JP 2008306899A JP 2010129991 A JP2010129991 A JP 2010129991A
Authority
JP
Japan
Prior art keywords
wiring
core material
wiring board
chip
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008306899A
Other languages
Japanese (ja)
Other versions
JP5283492B2 (en
Inventor
Masao Kuroda
正雄 黒田
Yasuhiro Sugimoto
康宏 杉本
Shinji Yuri
伸治 由利
Naoya Nakanishi
直也 中西
Kazuhiro Suzuki
一広 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008306899A priority Critical patent/JP5283492B2/en
Publication of JP2010129991A publication Critical patent/JP2010129991A/en
Application granted granted Critical
Publication of JP5283492B2 publication Critical patent/JP5283492B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board, capable of preventing cracks of a wiring due to deformation caused by heat distortion of a resin filling material, when a chip component is built in the wiring board. <P>SOLUTION: This wiring board 10 includes: a core material 11 placing a semiconductor chip 200 and having a housing hole opened thereon; first and second wiring multilayer portions 12, 13 formed on the top and bottom of the core material 11; a chip capacitor 100 as a chip component housed in the housing hole; and a resin filling material 50 filled in a gap between the housing hole and the side surfaces of the chip capacitor 100. On the upper surface of the core material 11, a filling region of the resin filling material 50 faces a region where the semiconductor chip 200 is placed in a multilayer direction, and on the lower surface side of the core material 11, a wiring is not formed on the region facing the region where the resin-filling material 50 is formed in the multilayer direction, of a conductor layer of a second wiring multilayer portion 13. Accordingly, the disadvantages such as cracks in the wiring portion of the conductor layer of the wiring substrate 10 due to deformation caused by the heat distortion of the resin-filling material 50 can be prevented. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、コア材に開口された収容穴部にチップ部品を収容した配線基板に関するものである。   The present invention relates to a wiring board in which a chip component is accommodated in an accommodation hole opened in a core material.

従来から、コア材を中央に配置し、その上方と下方に導体層及び絶縁層を交互に積層した配線積層部を形成した配線基板が用いられている。このような配線基板に半導体チップを載置してパッケージを構成する場合は、外部基板から半導体チップに対して電源電圧を供給する必要がある。この場合、半導体チップに供給される電源電圧の安定化を図るため、ノイズ除去用のチップコンデンサを配線基板に設けることが望ましい。近年では、チップコンデンサによるノイズ除去の効果を高めるべく、配線基板の内部にチップコンデンサを内蔵する構造が提案されている(例えば、特許文献1参照)。このような構造を採用することにより、半導体チップとチップコンデンサの間の信号配線の長さを短縮可能となり、半導体チップに供給される電源配線のノイズを確実に除去し、電源の安定化を実現することができる。
特開2007−258541号公報
Conventionally, a wiring board is used in which a core material is disposed in the center and a wiring laminated portion is formed by alternately laminating conductor layers and insulating layers above and below the core material. When a semiconductor chip is mounted on such a wiring board to form a package, it is necessary to supply a power supply voltage from the external board to the semiconductor chip. In this case, in order to stabilize the power supply voltage supplied to the semiconductor chip, it is desirable to provide a chip capacitor for noise removal on the wiring board. In recent years, a structure in which a chip capacitor is built in a wiring board has been proposed in order to enhance the effect of removing noise by the chip capacitor (see, for example, Patent Document 1). By adopting such a structure, the length of the signal wiring between the semiconductor chip and the chip capacitor can be shortened, noise in the power wiring supplied to the semiconductor chip is surely removed, and the power supply is stabilized. can do.
JP 2007-258541 A

チップコンデンサを内蔵した配線基板は、例えば、コア材に収容穴部を開口しておき、その収容穴部にチップコンデンサを収容した状態で、収容穴部とチップコンデンサとの間隙に樹脂充填材を充填し、チップコンデンサを固定する手順で製造することができる。このような配線基板の構造は、例えば、上記特許文献1の図1に示されている。しかし、このような構造の配線基板において、チップコンデンサの周囲の樹脂充填材に着目すると、コア材やチップコンデンサに比べると剛性が低くかつ熱膨張係数が大きくなっている。従って、樹脂充填材に熱ひずみが生じたとき、横方向はコア材やチップコンデンサに規制されるので、上下の積層方向に変形するように作用する。このとき、コア材の上下に上述の配線積層部が形成されているので、樹脂充填材の変形による応力が上下の配線積層部の導体層に加わる可能性がある。その結果、導体層のうち樹脂充填材と積層方向で対向する配線に部分的な応力が加わり、配線のクラック等の不具合を生じさせるという問題がある。   For example, a wiring board with a built-in chip capacitor has a housing hole opened in the core material, and the chip capacitor is housed in the housing hole, and a resin filler is placed in the gap between the housing hole and the chip capacitor. It can be manufactured by the procedure of filling and fixing the chip capacitor. The structure of such a wiring board is shown in FIG. However, in the wiring board having such a structure, focusing on the resin filler around the chip capacitor, the rigidity is lower and the thermal expansion coefficient is larger than that of the core material and the chip capacitor. Therefore, when thermal strain occurs in the resin filler, the lateral direction is restricted by the core material and the chip capacitor, and thus acts to deform in the upper and lower lamination directions. At this time, since the above-described wiring laminated portions are formed above and below the core material, there is a possibility that stress due to deformation of the resin filler is applied to the conductor layers of the upper and lower wiring laminated portions. As a result, there is a problem that a partial stress is applied to the wiring in the conductor layer facing the resin filler in the stacking direction, thereby causing defects such as a crack in the wiring.

本発明はこれらの問題を解決するためになされたものであり、半導体チップを載置し、チップ部品を内蔵する配線基板において、コア材の収容穴部にチップコンデンサを収容してその間隙に樹脂充填材を充填する場合、樹脂充填材の熱ひずみによる変形に起因して、積層方向の配線にクラック等の不具合が生じることを確実に防止可能な配線基板を提供することを目的とする。   The present invention has been made to solve these problems. In a wiring board on which a semiconductor chip is placed and a chip component is built in, a chip capacitor is accommodated in an accommodation hole portion of a core material, and a resin is placed in the gap. An object of the present invention is to provide a wiring board that can reliably prevent defects such as cracks in the wiring in the stacking direction due to deformation due to thermal strain of the resin filler when filling the filler.

上記課題を解決するために、本発明の配線基板は、半導体チップを載置し、当該半導体チップと外部基板との間を電気的に接続する配線基板であって、上面及び下面を貫通する収容穴部を開口したコア材と、前記コア材の上面側に絶縁層及び導体層を交互に積層形成し、前記半導体チップに接続される複数の接続端子を有する第1配線積層部と、前記コア材の下面側に導体層及び絶縁層を交互に積層形成し、外部接続用の複数の電極パッドを有する第2配線積層部と、前記収容穴部に収容されたチップ部品と、前記収容穴部と前記チップ部品の側面との間隙に充填された樹脂充填材とを備えて構成され、前記コア材の上面側では前記樹脂充填材の充填領域が前記半導体チップの載置領域と積層方向で対向し、前記コア材の下面側では前記第2配線積層部の導体層のうち前記樹脂充填材の充填領域と積層方向で対向する領域に配線が形成されないことを特徴としている。   In order to solve the above-described problems, a wiring board according to the present invention is a wiring board on which a semiconductor chip is placed and electrically connected between the semiconductor chip and an external board, and the housing penetrates through an upper surface and a lower surface. A core material having a hole, a first wiring laminated portion having a plurality of connection terminals connected to the semiconductor chip, the insulating layer and the conductor layer being alternately laminated on the upper surface side of the core material; and the core Conductive layers and insulating layers are alternately laminated on the lower surface side of the material, a second wiring laminated portion having a plurality of electrode pads for external connection, a chip component housed in the housing hole portion, and the housing hole portion And a resin filler filled in a gap between the chip component and the side surface of the chip component, and the filling region of the resin filler is opposed to the mounting region of the semiconductor chip in the stacking direction on the upper surface side of the core material On the lower surface side of the core material, the second It is characterized in that wiring in a region facing a filling region the stacking direction of the resin filler out of the conductor layers of the line laminated portion is not formed.

本発明の配線基板によれば、コア材の収容穴部にチップ部品を収容し、収容穴部とチップ部品の側面との間隙に樹脂充填材を充填した状態で固定し、コア材の上面側の第1配線積層部と下面側の第2配線積層部がそれぞれ形成される。そして、樹脂充填材を充填した充填領域は、積層方向の上部には半導体チップの載置領域が対向配置され、積層方向の下部には、第2配線積層部の配線が形成されない領域が対向配置される。よって、樹脂充填材が熱ひずみにより変形したとき、上層の配線は直上に配置された高剛性の半導体チップにより変形が抑制され、かつ下層には配線が形成されないため、配線のクラック等の不具合を確実に回避することができる。   According to the wiring board of the present invention, the chip component is accommodated in the accommodating hole portion of the core material, and fixed with the resin filler filled in the gap between the accommodating hole portion and the side surface of the chip component, and the upper surface side of the core material The first wiring laminated portion and the second wiring laminated portion on the lower surface side are respectively formed. In the filling region filled with the resin filler, the placement region of the semiconductor chip is opposed to the upper portion in the stacking direction, and the region where the wiring of the second wiring stacking portion is not formed is facing the lower portion in the stacking direction. Is done. Therefore, when the resin filler is deformed due to thermal strain, the upper layer wiring is restrained from being deformed by the high-rigidity semiconductor chip disposed immediately above, and no wiring is formed in the lower layer. It can be avoided reliably.

また、本発明の配線基板は、前記コア材と、前記第1配線積層部と、前記第2配線積層部と、前記チップ部品と、前記樹脂充填材とを備えて構成され、前記コア材の上面側では前記樹脂充填材の充填領域が前記半導体チップの載置領域と積層方向で対向し、前記コア材の下面側では前記第2配線積層部の導体層のうち前記樹脂充填材の充填領域と積層方向で対向する領域に信号配線が形成されないことを特徴としている。例えば、充填領域と対向する領域に電源配線やグランド配線を形成し、全体の配線面積が確保されていれば配線のクラック等の影響は軽微なものである一方、信号配線については確実にクラック等の不具合を防止することができる。   The wiring board of the present invention includes the core material, the first wiring laminated portion, the second wiring laminated portion, the chip component, and the resin filler. On the upper surface side, the filling region of the resin filler is opposed to the mounting region of the semiconductor chip in the stacking direction, and on the lower surface side of the core material, the filling region of the resin filler in the conductor layer of the second wiring laminate portion The signal wiring is not formed in a region facing each other in the stacking direction. For example, if power supply wiring and ground wiring are formed in the area opposite to the filling area and the entire wiring area is secured, the influence of wiring cracks is minor, while signal wiring is reliably cracked, etc. Can be prevented.

本発明において、前記チップ部品は、前記樹脂充填材に比べて熱膨張係数が小さい材料を用いて形成することが望ましい。前記チップ部品としては、セラミック焼結体を用いて構成されたチップコンデンサを用いることができる。この場合、前記チップコンデンサの上面には前記第1配線積層部の導体層に接続される複数の電極を形成し、前記チップコンデンサの下面には前記第2配線積層部の導体層に接続される複数の電極を形成してもよい。   In the present invention, the chip component is preferably formed using a material having a smaller coefficient of thermal expansion than the resin filler. As the chip component, a chip capacitor configured using a ceramic sintered body can be used. In this case, a plurality of electrodes connected to the conductor layer of the first wiring multilayer portion are formed on the upper surface of the chip capacitor, and the lower surface of the chip capacitor is connected to the conductor layer of the second wiring multilayer portion. A plurality of electrodes may be formed.

本発明によれば、半導体チップを載置する配線基板において、コア材の収容穴部にチップ部品を収容し、収容穴部とチップ部品の側面との間隙に樹脂充填材を充填し、その充填領域の積層方向で対向する上部には半導体チップの載置領域が配置され、かつ充填領域の積層方向で対向する下部には配線が形成されない構造となっている。よって、樹脂充填材が熱ひずみにより変形したとき、積層方向の上部の導体層は高剛性の半導体チップにより変形が抑制され、かつ積層方向の下部は配線が形成されないので、上下とも配線のクラック等の不具合を防止することができる。よって、簡単な構造で配線基板における配線接続の信頼性を高めることができる。また、積層方向の下部に信号配線のみを形成しない構造とすることにより、電源配線やグランド配線の配置の自由度を確保しつつ、信号配線の接続信頼性を高めることができる。   According to the present invention, in the wiring board on which the semiconductor chip is placed, the chip component is accommodated in the accommodating hole portion of the core material, the resin filler is filled in the gap between the accommodating hole portion and the side surface of the chip component, and the filling is performed. A semiconductor chip mounting region is arranged in the upper portion of the region facing in the stacking direction, and no wiring is formed in the lower portion of the filling region facing in the stacking direction. Therefore, when the resin filler is deformed by thermal strain, the upper conductor layer in the stacking direction is prevented from being deformed by the highly rigid semiconductor chip, and no wiring is formed in the lower layer in the stacking direction. Can be prevented. Therefore, the reliability of the wiring connection in the wiring board can be improved with a simple structure. Further, by adopting a structure in which only the signal wiring is not formed in the lower part in the stacking direction, it is possible to improve the connection reliability of the signal wiring while ensuring the degree of freedom of arrangement of the power supply wiring and the ground wiring.

以下、本発明を適用した配線基板の好適な実施形態について、図面を参照しながら説明する。   Hereinafter, a preferred embodiment of a wiring board to which the present invention is applied will be described with reference to the drawings.

図1は、本実施形態の配線基板の概略の断面構造を示す図である。図1に示す配線基板10は、コア材11と、コア材11の上面側の第1配線積層部12と、コア材11の下面側の第2配線積層部13とを含む構造を有している。本実施形態の配線基板10は、その内部にチップコンデンサ100が内蔵されているとともに、上部に半導体チップ200が載置されている。   FIG. 1 is a diagram showing a schematic cross-sectional structure of the wiring board of the present embodiment. The wiring board 10 shown in FIG. 1 has a structure including a core material 11, a first wiring laminated portion 12 on the upper surface side of the core material 11, and a second wiring laminated portion 13 on the lower surface side of the core material 11. Yes. The wiring substrate 10 according to the present embodiment has a chip capacitor 100 built therein and a semiconductor chip 200 placed thereon.

コア材11は、例えば、ガラス繊維を含んだエポキシ樹脂からなる。コア材11には、中央を矩形状に貫通する収容穴部11aが形成され、この収容穴部11aにチップコンデンサ100が埋め込まれた状態で収容されている。図1に示すように、チップコンデンサ100は、半導体チップ200に比べて、平面方向に小さいサイズを有する。なお、チップコンデンサ100の内部構造については後述する。収容穴部11aとチップコンデンサ100の側面との間隙には、樹脂充填材50が充填されている。図1に示すように、樹脂充填材50は面方向の幅W1の範囲に充填される。この樹脂充填材50は、例えば熱硬化性樹脂からなり、チップコンデンサ100を固定する役割を有する。また、チップコンデンサ100及びコア材11が変形する際に樹脂充填材50が吸収するように作用する。   The core material 11 is made of, for example, an epoxy resin containing glass fiber. The core material 11 is formed with a housing hole 11a penetrating the center in a rectangular shape, and the chip capacitor 100 is housed in the housing hole 11a. As shown in FIG. 1, the chip capacitor 100 has a smaller size in the plane direction than the semiconductor chip 200. The internal structure of the chip capacitor 100 will be described later. A resin filler 50 is filled in the gap between the accommodation hole 11 a and the side surface of the chip capacitor 100. As shown in FIG. 1, the resin filler 50 is filled in the range of the width W1 in the surface direction. The resin filler 50 is made of, for example, a thermosetting resin and has a role of fixing the chip capacitor 100. Further, the resin filler 50 acts to absorb when the chip capacitor 100 and the core material 11 are deformed.

コア材11の上面には導体層21が形成され、コア材11の下面には導体層22が形成されている。また、コア材11には、所定箇所を積層方向に貫通する複数のスルーホール導体30が形成されている。スルーホール導体30の内部は、例えばガラスエポキシ等からなる樹脂31で埋められている。スルーホール導体30により、コア材11の上下の各導体層21、22における任意の配線パターンを積層方向に接続導通することができる。   A conductor layer 21 is formed on the upper surface of the core material 11, and a conductor layer 22 is formed on the lower surface of the core material 11. The core material 11 is formed with a plurality of through-hole conductors 30 penetrating a predetermined portion in the stacking direction. The interior of the through-hole conductor 30 is filled with a resin 31 made of, for example, glass epoxy. The through-hole conductor 30 can connect and conduct any wiring pattern in the upper and lower conductor layers 21 and 22 of the core material 11 in the stacking direction.

第1配線積層部12は、コア材11の上面側に積層形成された樹脂絶縁層14、16と、樹脂絶縁層14の上面に形成された導体層23と、樹脂絶縁層16の上面に形成された複数の端子パッド25と、樹脂絶縁層16の上面を覆うソルダーレジスト層18とからなる構造を有する。樹脂絶縁層14の所定位置には、各導体層21、23を積層方向に接続導通する複数のビア導体32が設けられ、樹脂絶縁層16の所定位置には、導体層23と端子パッド25を積層方向に接続導通する複数のビア導体34が設けられている。ソルダーレジスト層18は、複数箇所が開口されて複数の端子パッド25が露出し、そこに複数の半田バンプ40が形成されている。各々の半田バンプ40は、配線基板10に載置される半導体チップ200の各パッド201に接続される。   The first wiring laminated portion 12 is formed on the resin insulating layers 14 and 16 formed on the upper surface side of the core material 11, the conductor layer 23 formed on the upper surface of the resin insulating layer 14, and the upper surface of the resin insulating layer 16. The plurality of terminal pads 25 and a solder resist layer 18 covering the top surface of the resin insulating layer 16 are provided. A plurality of via conductors 32 are provided at predetermined positions on the resin insulating layer 14 to connect and conduct the conductor layers 21 and 23 in the laminating direction. The conductor layers 23 and the terminal pads 25 are provided at predetermined positions on the resin insulating layer 16. A plurality of via conductors 34 that are conductively connected in the stacking direction are provided. The solder resist layer 18 is opened at a plurality of locations to expose a plurality of terminal pads 25, and a plurality of solder bumps 40 are formed there. Each solder bump 40 is connected to each pad 201 of the semiconductor chip 200 placed on the wiring substrate 10.

第2配線積層部13は、コア材11の下面側に積層形成された樹脂絶縁層15、17と、樹脂絶縁層15の下面に形成された導体層24と、樹脂絶縁層17の下面に形成された複数のBGA用パッド26と、樹脂絶縁層17の下面を覆うソルダーレジスト層19とからなる構造を有する。樹脂絶縁層15の所定位置には、各導体層22、24を積層方向に接続導通する複数のビア導体33が設けられ、樹脂絶縁層17の所定位置には、導体層24とBGA用パッド26を積層方向に接続導通する複数のビア導体35が設けられている。ソルダーレジスト層19は、複数箇所が開口されて複数のBGA用パッド26が露出し、そこに複数の半田ボール41が接続される。配線基板10をBGAパッケージとして用いる場合、複数の半田ボール41を介して、外部基板(不図示)と配線基板10の各部との電気的接続が可能となる。   The second wiring laminated portion 13 is formed on the lower surface of the resin insulating layer 17, the resin insulating layers 15 and 17 formed on the lower surface side of the core material 11, the conductor layer 24 formed on the lower surface of the resin insulating layer 15. The plurality of BGA pads 26 and a solder resist layer 19 covering the lower surface of the resin insulating layer 17 are provided. A plurality of via conductors 33 are provided at predetermined positions of the resin insulating layer 15 to connect and conduct the conductor layers 22 and 24 in the laminating direction. At predetermined positions of the resin insulating layer 17, the conductor layer 24 and the BGA pad 26 are provided. A plurality of via conductors 35 are provided which are connected in the laminating direction. The solder resist layer 19 is opened at a plurality of locations to expose a plurality of BGA pads 26 to which a plurality of solder balls 41 are connected. When the wiring board 10 is used as a BGA package, an external board (not shown) and each part of the wiring board 10 can be electrically connected via a plurality of solder balls 41.

図1のチップコンデンサ100の内部構造について、図2及び図3を参照して説明する。本実施形態のチップコンデンサ100は、いわゆるビアアレイタイプのコンデンサであり、セラミック焼結体101を用いて、複数のセラミック誘電体層102を積層形成した構造を有する。セラミック焼結体101は、例えばチタン酸バリウム等の高誘電率セラミックからなる。各々のセラミック誘電体層102の間には、第1内部電極層110aと第2内部電極層110bが交互に配置されている。第1内部電極層110aは電源用の電極として機能し、第2内部電極層110bはグランド用の電極として機能し、両電極が絶縁体である各セラミック誘電体層102を挟んで対向配置されることで所定の容量が形成される。   The internal structure of the chip capacitor 100 of FIG. 1 will be described with reference to FIGS. The chip capacitor 100 according to the present embodiment is a so-called via array type capacitor, and has a structure in which a plurality of ceramic dielectric layers 102 are laminated using a ceramic sintered body 101. The ceramic sintered body 101 is made of a high dielectric constant ceramic such as barium titanate. Between the ceramic dielectric layers 102, the first internal electrode layers 110a and the second internal electrode layers 110b are alternately arranged. The first internal electrode layer 110a functions as an electrode for power supply, the second internal electrode layer 110b functions as an electrode for ground, and both electrodes are disposed to face each other with each ceramic dielectric layer 102 being an insulator interposed therebetween. Thus, a predetermined capacity is formed.

セラミック焼結体101の上面には、複数の第1端子電極107aと第2端子電極107bが形成されるとともに、セラミック焼結体101の下面には、複数の第1端子電極108aと第2端子電極108bが形成されている。また、セラミック焼結体101には、全てのセラミック誘電体層102を貫通する多数のビアホールにニッケル等を埋め込んだ複数の第1ビア導体109a及び複数の第2ビア導体109bが形成されている。そして、各々の第1ビア導体109aは、上方の第1端子電極107aと下方の第1端子電極108aとを積層方向に接続導通している。また、各々の第2ビア導体109bは、上方の第2端子電極107bと下方の第2端子電極108bとを積層方向に接続導通している。   A plurality of first terminal electrodes 107a and second terminal electrodes 107b are formed on the upper surface of the ceramic sintered body 101, and a plurality of first terminal electrodes 108a and second terminals are formed on the lower surface of the ceramic sintered body 101. An electrode 108b is formed. Further, the ceramic sintered body 101 is formed with a plurality of first via conductors 109 a and a plurality of second via conductors 109 b in which a large number of via holes penetrating all the ceramic dielectric layers 102 are embedded. Each first via conductor 109a connects and connects the upper first terminal electrode 107a and the lower first terminal electrode 108a in the stacking direction. In addition, each second via conductor 109b connects and connects the upper second terminal electrode 107b and the lower second terminal electrode 108b in the stacking direction.

図3のチップコンデンサ100の上面図に示されるように、第1及び第2端子電極107a、107b(108a、108b)と、第1及び第2ビア導体109a、109bは、いずれもアレイ状に配置されている。そして、図1において、半導体チップ200における電源用のパッド201は、半田バンプ40、端子パッド25、ビア導体34、導体層23、ビア導体32、第1端子電極107a、第1ビア導体109aを経由して第1内部電極層110aに接続されるとともに、さらに第1端子電極108a、ビア導体33、導体層24、ビア導体35、BGA用パッド26を経由して、電源用の半田ボール41に接続される。また、半導体チップ200におけるグランド用のパッド201は、上記のような経路を経て、第2端子電極107b、第2ビア導体109b、第2内部電極層110bに接続され、かつグランド用の半田ボール41に接続される。   As shown in the top view of the chip capacitor 100 in FIG. 3, the first and second terminal electrodes 107a and 107b (108a and 108b) and the first and second via conductors 109a and 109b are all arranged in an array. Has been. In FIG. 1, the power supply pad 201 in the semiconductor chip 200 passes through the solder bump 40, the terminal pad 25, the via conductor 34, the conductor layer 23, the via conductor 32, the first terminal electrode 107a, and the first via conductor 109a. In addition to being connected to the first internal electrode layer 110a, it is further connected to the power supply solder ball 41 via the first terminal electrode 108a, the via conductor 33, the conductor layer 24, the via conductor 35, and the BGA pad 26. Is done. The ground pad 201 in the semiconductor chip 200 is connected to the second terminal electrode 107b, the second via conductor 109b, and the second internal electrode layer 110b through the above-described path, and is connected to the ground solder ball 41. Connected to.

次に、本実施形態の配線基板10における配線構造について図4を参照して説明する。図4では、配線基板10の全体に対して、半導体チップ200と、チップコンデンサ100と、樹脂充填材50が充填された充填領域R1のそれぞれの平面方向の位置関係を示している。充填領域R1は、チップコンデンサ100の側面に一致する内周側の矩形と収容穴部11aの側面に一致する外周側の矩形に挟まれた幅W1の領域であり、その領域の全体が半導体チップ200の載置領域と積層方向で対向する関係にある。なお、図4では便宜上、充填領域R1の矩形の4辺側で均等な幅W1を有する場合を示しているが、充填領域R1の位置に応じて幅が異なっていてもよい。   Next, the wiring structure in the wiring board 10 of this embodiment will be described with reference to FIG. FIG. 4 shows the positional relationship in the planar direction of each of the semiconductor chip 200, the chip capacitor 100, and the filling region R1 filled with the resin filler 50 with respect to the entire wiring substrate 10. The filling region R1 is a region having a width W1 sandwiched between an inner side rectangle that matches the side surface of the chip capacitor 100 and an outer side rectangle that matches the side surface of the receiving hole 11a, and the entire region is a semiconductor chip. It is in the relationship which opposes 200 mounting area | regions in a lamination direction. For convenience, FIG. 4 shows a case where the four sides of the filling region R1 have a uniform width W1, but the width may be different depending on the position of the filling region R1.

本実施形態の配線基板10の配線構造においては、充填領域R1に対向する第2配線積層部13の領域に配線が形成されない点に特徴がある。一般に、樹脂充填材50の熱膨張係数は数10ppm/℃程度であり、コア材11やチップコンデンサ100に比べると格段に大きい。そのため、配線基板10に熱が印加された場合、樹脂充填材50が熱ひずみにより変形する。この場合、樹脂充填材50の平面方向は、剛性の高いコア材11及びチップコンデンサ100に囲まれているので、樹脂充填材50が積層方向に変形する。樹脂領域R1の上方の第1配線積層部12については、その上部に剛性の高い半導体チップ200が存在するので、下方から第1配線積層部12に応力が加わったとしても半導体チップ200の高い剛性によって変形が抑制される。   The wiring structure of the wiring board 10 according to the present embodiment is characterized in that no wiring is formed in the region of the second wiring laminated portion 13 that faces the filling region R1. In general, the thermal expansion coefficient of the resin filler 50 is about several tens of ppm / ° C., which is much larger than the core material 11 and the chip capacitor 100. Therefore, when heat is applied to the wiring board 10, the resin filler 50 is deformed due to thermal strain. In this case, since the planar direction of the resin filler 50 is surrounded by the highly rigid core material 11 and the chip capacitor 100, the resin filler 50 is deformed in the stacking direction. Since the highly rigid semiconductor chip 200 exists above the first wiring laminated portion 12 above the resin region R1, even if stress is applied to the first wiring laminated portion 12 from below, the high rigidity of the semiconductor chip 200 is high. Therefore, deformation is suppressed.

ただし、樹脂充填材50と半導体チップ200が十分近い距離で対向する必要があるので、第1配線積層部12の厚さはトータルで数10μm程度に形成することが望ましい。また、半導体チップ200と第1配線積層部12の間に介在する複数のパッド201の数が少ないと、第1配線積層部12の変形を抑制する効果が低減するので、複数のパッド201は高密度に配置されていることが望ましい。   However, since it is necessary for the resin filler 50 and the semiconductor chip 200 to face each other at a sufficiently close distance, it is desirable that the thickness of the first wiring laminated portion 12 is about several tens of μm in total. In addition, if the number of the plurality of pads 201 interposed between the semiconductor chip 200 and the first wiring laminated portion 12 is small, the effect of suppressing the deformation of the first wiring laminated portion 12 is reduced. It is desirable that they are arranged in a density.

これに対し、充填領域R1の下方の第2配線積層部13については、半導体チップ200のように剛性が高い部材が存在しないので、樹脂充填材50が熱ひずみにより変形したとき、その下方の配線に応力が加わってクラック等を発生させる要因となる。従って、本実施形態では、少なくとも第2配線積層部13のうち、充填領域R1と積層方向で対向する領域には配線が形成されないので、上述のクラック等の不具合を防止することができる。なお、第2配線積層部13において、充填領域R1に対向する領域に加えて、その近傍においても応力が加わるため、幅W1よりもある程度広い幅の領域に配線を形成しないことが望ましい。   On the other hand, in the second wiring laminated portion 13 below the filling region R1, there is no highly rigid member like the semiconductor chip 200. Therefore, when the resin filler 50 is deformed by thermal strain, the wiring below the second wiring laminated portion 13 is not provided. Stress is applied to the surface, which causes cracks and the like. Therefore, in the present embodiment, since no wiring is formed in a region facing at least the filling region R1 in the stacking direction in at least the second wiring stacked portion 13, it is possible to prevent the above-described defects such as cracks. In the second wiring stacked portion 13, since stress is applied not only in the region facing the filling region R1, but also in the vicinity thereof, it is desirable not to form the wiring in a region having a width somewhat larger than the width W1.

次に、本実施形態の配線基板10の製造方法について、図5〜図10を参照して説明する。まず、図5に示すように、収容穴部11aを有するコア材11を作製して準備する。コア材11の作製に際しては、例えば、一辺が400mmの正方形の平面形状と厚さ0.80mmを有する基材の両面に銅箔が貼付された銅張積層板を用意し、銅張積層板にドリル機を用いて孔あけ加工を施し、スルーホール導体30の位置に貫通孔を形成する。また、銅張積層板にルータを用いて穴あけ加工を施し、収容穴部11aとなる貫通孔を所定位置にあらかじめ形成しておく。なお、収容穴部11aは、例えば、一辺が14.0mmに形成される。一方、スルーホール導体30となる貫通孔に対し、無電解銅めっき及び電解銅めっきを施した後、エポキシ樹脂からなるペーストを印刷し、硬化することにより樹脂31を形成する。さらに、銅張積層板の両面の銅箔のエッチングを行い、例えば、サブトラクティブ法を用いて、上下に導体層21、22を形成する。具体的には、無電解銅めっきを施し、その部分を共通電極として電解銅めっきを施した後。ドライフィルムをラミネートして露光及び現像を行うことにより、所定パターンのドライフィルムを形成する。この状態で、不要な電解銅めっき層、無電解銅めっき層、銅箔をエッチングでそれぞれ除去した後、ドライフィルムを剥離して、図5に示すコア材11が得られる。なお、図5においては、図1のコア材11の上面を下方に向けた状態を示している。   Next, the manufacturing method of the wiring board 10 of this embodiment is demonstrated with reference to FIGS. First, as shown in FIG. 5, the core material 11 having the accommodation hole 11a is prepared and prepared. In producing the core material 11, for example, a copper-clad laminate in which copper foil is pasted on both sides of a base having a square shape of 400 mm on a side and a thickness of 0.80 mm is prepared. Drilling is performed using a drill to form a through hole at the position of the through hole conductor 30. Moreover, a copper-clad laminated board is drilled using a router, and the through-hole used as the accommodation hole part 11a is previously formed in the predetermined position. In addition, the accommodation hole part 11a is formed in 14.0 mm on one side, for example. On the other hand, the electroless copper plating and the electrolytic copper plating are applied to the through hole to be the through-hole conductor 30, and then a paste made of an epoxy resin is printed and cured to form the resin 31. Furthermore, the copper foils on both sides of the copper-clad laminate are etched, and the conductor layers 21 and 22 are formed on the upper and lower sides by using, for example, a subtractive method. Specifically, after electroless copper plating is performed and electrolytic copper plating is performed using that portion as a common electrode. A dry film having a predetermined pattern is formed by laminating the dry film and performing exposure and development. In this state, unnecessary electrolytic copper plating layers, electroless copper plating layers, and copper foils are removed by etching, and then the dry film is peeled off to obtain the core material 11 shown in FIG. 5 shows a state in which the upper surface of the core material 11 in FIG. 1 is directed downward.

一方、図2の構造を有するチップコンデンサ100を作製して準備する。チップコンデンサ100の作製に際しては、セラミックのグリーンシートにニッケルペーストをスクリーン印刷して乾燥させ、第1内部電極層110a/第2内部電極層110bを形成する。そして、第1内部電極層110aが形成されたグリーンシートと第2内部電極層110bが形成されたグリーンシートとを交互に積層し、積層方向に押圧力を付与して各グリーンシートを一体化し、積層体を形成する。続いて、レーザー加工機を用いて積層体に複数のビアホールを貫通形成し、ニッケルペーストを各ビアホールに充填して第1ビア導体109a及び第2ビア導体109bを形成する。そして、積層体の上面にペーストを印刷し、第1端子電極107a及び第2端子電極107bのメタライズ層を形成する。また、積層体の下面にペーストを印刷し、第1端子電極108a及び第2端子電極108bのメタライズ層を形成する。次いで、積層体を乾燥させた後に脱脂し、積層体を所定温度で所定時間焼成する。その結果、チタン酸バリウム及びペースト中のニッケルが同時焼結し、セラミック焼結体101が得られる。そして、セラミック焼結体101の第1端子電極107a、108a及び第2端子電極107b、108bに対し、例えば、厚さ10μm程度の電解銅めっきを施して銅めっき層を形成し、チップコンデンサ100が完成する。   On the other hand, the chip capacitor 100 having the structure of FIG. 2 is prepared and prepared. When manufacturing the chip capacitor 100, a nickel paste is screen-printed on a ceramic green sheet and dried to form the first internal electrode layer 110a / second internal electrode layer 110b. And the green sheet in which the 1st internal electrode layer 110a was formed, and the green sheet in which the 2nd internal electrode layer 110b were formed are laminated alternately, giving a pressing force in the lamination direction, and integrating each green sheet, A laminate is formed. Subsequently, a plurality of via holes are formed through the stacked body using a laser processing machine, and each via hole is filled with nickel paste to form the first via conductor 109a and the second via conductor 109b. Then, a paste is printed on the upper surface of the stacked body to form a metallized layer of the first terminal electrode 107a and the second terminal electrode 107b. Further, a paste is printed on the lower surface of the stacked body to form a metallized layer of the first terminal electrode 108a and the second terminal electrode 108b. Next, the laminate is dried and degreased, and the laminate is fired at a predetermined temperature for a predetermined time. As a result, barium titanate and nickel in the paste are simultaneously sintered, and a ceramic sintered body 101 is obtained. The first terminal electrodes 107a and 108a and the second terminal electrodes 107b and 108b of the ceramic sintered body 101 are subjected to, for example, electrolytic copper plating with a thickness of about 10 μm to form a copper plating layer. Complete.

次に、図6に示すように、収容穴部11aの底部に、剥離可能な粘着テープ60を密着配置する。この粘着テープ60は支持台61により支持される。そして、マウント装置を用いて、収容穴部11a内にチップコンデンサ100を収容し、粘着テープ60でチップコンデンサ100を貼り付けて仮固定する。なお、粘着テープ60に固定されたチップコンデンサ100は、コア材11と同様、上面を下方に向けた状態になっている。次いで、図7に示すように、収容穴部11aとチップコンデンサ100の側面との間隙に、ディスペンサ装置を用いて熱硬化性樹脂からなる樹脂充填材50を充填する。樹脂充填材50は、加熱処理により硬化し、収容穴部11aの内部でチップコンデンサ100が固定される。このとき、コア材11の導体層21と、チップコンデンサ100の第1端子電極107a及び第2端子電極107bのそれぞれは、粘着テープ60と接するので、積層方向で位置が揃ったフラットな面に形成される。   Next, as shown in FIG. 6, a peelable adhesive tape 60 is placed in close contact with the bottom of the accommodation hole 11 a. The adhesive tape 60 is supported by a support base 61. Then, using the mounting device, the chip capacitor 100 is accommodated in the accommodation hole 11 a, and the chip capacitor 100 is pasted and temporarily fixed with the adhesive tape 60. In addition, the chip capacitor 100 fixed to the adhesive tape 60 is in a state where the upper surface is directed downward like the core material 11. Next, as shown in FIG. 7, a resin filler 50 made of a thermosetting resin is filled into the gap between the accommodation hole 11 a and the side surface of the chip capacitor 100 using a dispenser device. The resin filler 50 is cured by heat treatment, and the chip capacitor 100 is fixed inside the accommodation hole 11a. At this time, each of the conductor layer 21 of the core material 11 and the first terminal electrode 107a and the second terminal electrode 107b of the chip capacitor 100 is in contact with the adhesive tape 60, so that it is formed on a flat surface whose position is aligned in the stacking direction. Is done.

次に、図8に示すように、チップコンデンサ100の固定後に、粘着テープ60を剥離する。その後、コア材11の上面とチップコンデンサ100の上面に対し酸性脱脂で溶剤洗浄を施してから研磨することにより、剥離した粘着テープ60の残存する粘着材を除去する。続いて、第1端子電極107a及び第2端子電極107bの上部の銅めっき層の表面を粗化するとともに、コア材11の上部の導体層21の表面を粗化する。粗化の終了後には、コア材11及びチップコンデンサ100を洗浄する。   Next, as shown in FIG. 8, after the chip capacitor 100 is fixed, the adhesive tape 60 is peeled off. Thereafter, the adhesive material remaining on the peeled adhesive tape 60 is removed by subjecting the upper surface of the core material 11 and the upper surface of the chip capacitor 100 to solvent cleaning by acid degreasing and polishing. Subsequently, the surface of the copper plating layer above the first terminal electrode 107 a and the second terminal electrode 107 b is roughened, and the surface of the conductor layer 21 above the core material 11 is roughened. After finishing the roughening, the core material 11 and the chip capacitor 100 are washed.

次に、コア材11及びチップコンデンサ100の上下の各面に、それぞれエポキシ樹脂を主成分とするフィルム状絶縁樹脂材料を積層する。そして、真空下にて加圧加熱することにより絶縁樹脂材料を硬化させ、図9に示すように、上面側の樹脂絶縁層14と下面側の樹脂絶縁層15とを形成する。続いて、図10に示すように、樹脂絶縁層14には複数のビア導体32を形成するとともに、樹脂絶縁層15には複数のビア導体33を形成する。このとき、レーザー加工により樹脂絶縁層14、15に複数のビアホールを形成し、その中のスミアを除去するデスミア処理を施した後、各ビアホール内にビア導体32、33を形成する。   Next, film-like insulating resin materials mainly composed of epoxy resin are laminated on the upper and lower surfaces of the core material 11 and the chip capacitor 100, respectively. Then, the insulating resin material is cured by pressurizing and heating under vacuum to form an upper surface side resin insulating layer 14 and a lower surface side resin insulating layer 15 as shown in FIG. Subsequently, as shown in FIG. 10, a plurality of via conductors 32 are formed in the resin insulating layer 14, and a plurality of via conductors 33 are formed in the resin insulating layer 15. At this time, a plurality of via holes are formed in the resin insulating layers 14 and 15 by laser processing, and after desmear processing for removing smears therein, via conductors 32 and 33 are formed in the via holes.

その後、図1に示すように、樹脂絶縁層14、15の表面にパターニングを施し、導体層23、24をそれぞれ形成する。次いで、樹脂絶縁層14の上面と樹脂絶縁層15の下面に、それぞれ感光性エポキシ樹脂を被着して露光及び現像を行い、樹脂絶縁層16、17を形成する。そして、樹脂絶縁層16、17に予め形成された盲孔の内部にビア導体34、35を形成する。続いて、樹脂絶縁層16の上部に複数の端子パッド25を形成し、樹脂絶縁層17の下部に複数のBGA用パッド26を形成する。次に、樹脂絶縁層16の上面と樹脂絶縁層17の下面に、それぞれ感光性エポキシ樹脂を塗布して硬化させることにより、ソルダーレジスト層18、19を形成する。その後、ソルダーレジスト層18に開口部をパターニングし、複数の端子パッド25に接続される複数の半田バンプ40を形成する。また、ソルダーレジスト層19に開口部をパターニングし、複数のBGA用パッド26に接続される複数の半田ボール41を形成する。以上の手順により、本実施形態の配線基板10が完成する。   Thereafter, as shown in FIG. 1, the surfaces of the resin insulating layers 14 and 15 are patterned to form conductor layers 23 and 24, respectively. Next, a photosensitive epoxy resin is applied to the upper surface of the resin insulating layer 14 and the lower surface of the resin insulating layer 15, respectively, and exposed and developed to form the resin insulating layers 16 and 17. Then, via conductors 34 and 35 are formed inside blind holes previously formed in the resin insulating layers 16 and 17. Subsequently, a plurality of terminal pads 25 are formed on the top of the resin insulating layer 16, and a plurality of BGA pads 26 are formed on the bottom of the resin insulating layer 17. Next, solder resist layers 18 and 19 are formed by applying and curing a photosensitive epoxy resin on the upper surface of the resin insulating layer 16 and the lower surface of the resin insulating layer 17, respectively. Thereafter, openings are patterned in the solder resist layer 18 to form a plurality of solder bumps 40 connected to the plurality of terminal pads 25. Also, openings are patterned in the solder resist layer 19 to form a plurality of solder balls 41 connected to the plurality of BGA pads 26. The wiring board 10 of this embodiment is completed by the above procedure.

以上、本実施形態に基づき本発明の内容を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更を施すことができる。図11は、本実施形態の変形例として、第2配線積層部13における配線の配置を変更した場合の配線基板10の概略の断面構造を示している。図11に示す配線基板10は、第2配線積層部13のうちの導体層24の配線パターンが図1と異なっている。すなわち、第2配線積層部13の導体層24には、充填領域R1と積層方向で対向する領域にグランド配線24aが形成されている。図11では、導体層24の信号配線については図1と同様であるが、信号配線が形成されない領域にベタ状のグランド配線24aを形成したものである。なお、図11の配線基板10において、グランド配線24a以外の構造は図1と同様である。   The contents of the present invention have been specifically described above based on the present embodiment, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. FIG. 11 shows a schematic cross-sectional structure of the wiring board 10 when the arrangement of the wirings in the second wiring laminated portion 13 is changed as a modification of the present embodiment. The wiring board 10 shown in FIG. 11 is different from the wiring pattern of the conductor layer 24 in the second wiring laminated portion 13 in FIG. That is, the ground wiring 24a is formed in the conductor layer 24 of the second wiring stacked portion 13 in a region facing the filling region R1 in the stacking direction. In FIG. 11, the signal wiring of the conductor layer 24 is the same as that of FIG. 1, but a solid ground wiring 24a is formed in a region where the signal wiring is not formed. In the wiring substrate 10 of FIG. 11, the structure other than the ground wiring 24a is the same as that of FIG.

図11に示す変形例では、充填領域R1の直下のグランド配線24aの部分は、樹脂充填材50からの部分的な応力によりクラック等が発生したとしても、広い面積を有するグランド配線24aの一部に限定されるものであり、配線基板10の全体的な接続信頼性の劣化にはつながらない。このように、本実施形態の配線基板10においては、コア材11の下面側で充填領域R1と積層方向で対向する領域に、少なくとも信号配線を形成しない構造を採用することができ、これにより信号配線のクラック等を防止して信頼性の向上を図ることができる。この場合、充填領域R1と対向する領域には、図11に示すように、グランド配線24aを形成する場合に加え、所定の電源電圧を供給する電源配線を形成するようにしてもよい。   In the modification shown in FIG. 11, the portion of the ground wiring 24 a immediately below the filling region R <b> 1 is a part of the ground wiring 24 a having a large area even if a crack or the like is generated due to partial stress from the resin filler 50. However, the overall connection reliability of the wiring board 10 is not deteriorated. As described above, in the wiring substrate 10 of the present embodiment, a structure in which at least the signal wiring is not formed in the region facing the filling region R1 on the lower surface side of the core material 11 in the stacking direction can be adopted. It is possible to improve reliability by preventing cracks in the wiring. In this case, in a region facing the filling region R1, as shown in FIG. 11, in addition to the formation of the ground wiring 24a, a power supply wiring for supplying a predetermined power supply voltage may be formed.

また、図12は、本実施形態の他の変形例として、図1のスルーホール導体30及び樹脂31の形成方法を変更した場合の配線基板10の概略の断面構造を示している。図12に示す配線基板10は、図1のスルーホール導体30及び樹脂31と比べると、積層方向に延伸されて上下の樹脂絶縁層14、15を貫くスルーホール導体30a及び樹脂31aを形成した点で相違する。よって、配線基板10を製造する際、コア材11の上下に樹脂絶縁層14、15を形成した後に、スルーホール導体30a及び樹脂31aを形成する必要がある。なお、図12の配線基板10において、スルーホール導体30a及び樹脂31a以外の構造は図1と同様である。   FIG. 12 shows a schematic cross-sectional structure of the wiring board 10 when the method for forming the through-hole conductor 30 and the resin 31 in FIG. 1 is changed as another modification of the present embodiment. The wiring board 10 shown in FIG. 12 is different from the through-hole conductor 30 and the resin 31 shown in FIG. 1 in that the through-hole conductor 30a and the resin 31a that extend in the stacking direction and penetrate the upper and lower resin insulating layers 14 and 15 are formed. Is different. Therefore, when manufacturing the wiring substrate 10, it is necessary to form the through-hole conductor 30 a and the resin 31 a after forming the resin insulating layers 14 and 15 on and under the core material 11. In the wiring substrate 10 of FIG. 12, the structure other than the through-hole conductor 30a and the resin 31a is the same as that of FIG.

本実施形態の配線基板の概略の断面構造を示す図である。It is a figure which shows the general | schematic cross-section of the wiring board of this embodiment. 図1のチップコンデンサの断面図である。It is sectional drawing of the chip capacitor of FIG. 図1のチップコンデンサの上面図である。It is a top view of the chip capacitor of FIG. 本実施形態の配線基板における配線構造を説明する図である。It is a figure explaining the wiring structure in the wiring board of this embodiment. 本実施形態の配線基板の製造方法を説明する第1の図である。It is a 1st figure explaining the manufacturing method of the wiring board of this embodiment. 本実施形態の配線基板の製造方法を説明する第2の図である。It is a 2nd figure explaining the manufacturing method of the wiring board of this embodiment. 本実施形態の配線基板の製造方法を説明する第3の図である。It is a 3rd figure explaining the manufacturing method of the wiring board of this embodiment. 本実施形態の配線基板の製造方法を説明する第4の図である。It is a 4th figure explaining the manufacturing method of the wiring board of this embodiment. 本実施形態の配線基板の製造方法を説明する第5の図である。It is a 5th figure explaining the manufacturing method of the wiring board of this embodiment. 本実施形態の配線基板の製造方法を説明する第6の図である。It is a 6th figure explaining the manufacturing method of the wiring board of this embodiment. 本実施形態の変形例として、第2配線積層部における配線の配置を変更した場合の配線基板の概略の断面構造を示す図である。As a modified example of the present embodiment, it is a diagram showing a schematic cross-sectional structure of a wiring board when the arrangement of wirings in a second wiring laminated portion is changed. 本実施形態の他の変形例として、スルーホール導体及び樹脂の形成方法を変更した場合の配線基板の概略の断面構造を示す図である。It is a figure which shows the general | schematic cross-section of a wiring board at the time of changing the formation method of a through-hole conductor and resin as another modification of this embodiment.

符号の説明Explanation of symbols

10…配線基板
11…コア材
11a…収容穴部
12…第1配線積層部
13…第2配線積層部
14、15、16、17…樹脂絶縁層
18、19…ソルダーレジスト層
21、22、23、24…導体層
25…端子パッド
26…BGA用パッド
30…スルーホール導体
31…樹脂
32、33、34、35…ビア導体
40…半田バンプ
41…半田ボール
50…樹脂充填材
100…チップコンデンサ
200…半導体チップ
201…パッド
R1…充填領域
DESCRIPTION OF SYMBOLS 10 ... Wiring board 11 ... Core material 11a ... Accommodating hole part 12 ... 1st wiring laminated part 13 ... 2nd wiring laminated part 14, 15, 16, 17 ... Resin insulation layers 18, 19 ... Solder resist layers 21, 22, 23 , 24 ... conductor layer 25 ... terminal pad 26 ... BGA pad 30 ... through-hole conductor 31 ... resin 32, 33, 34, 35 ... via conductor 40 ... solder bump 41 ... solder ball 50 ... resin filler 100 ... chip capacitor 200 ... Semiconductor chip 201 ... Pad R1 ... Filling area

Claims (5)

半導体チップを載置し、当該半導体チップと外部基板との間を電気的に接続する配線基板であって、
上面及び下面を貫通する収容穴部を開口したコア材と、
前記コア材の上面側に絶縁層及び導体層を交互に積層形成し、前記半導体チップに接続される複数の接続端子を有する第1配線積層部と、
前記コア材の下面側に導体層及び絶縁層を交互に積層形成し、外部接続用の複数の電極パッドを有する第2配線積層部と、
前記収容穴部に収容されたチップ部品と、
前記収容穴部と前記チップ部品の側面との間隙に充填された樹脂充填材と、
を備え、前記コア材の上面側では前記樹脂充填材の充填領域が前記半導体チップの載置領域と積層方向で対向し、前記コア材の下面側では前記第2配線積層部の導体層のうち前記樹脂充填材の充填領域と積層方向で対向する領域に配線が形成されないことを特徴とする配線基板。
A wiring substrate on which a semiconductor chip is placed and electrically connected between the semiconductor chip and an external substrate,
A core material having an accommodation hole that penetrates the upper and lower surfaces; and
Insulating layers and conductor layers are alternately laminated on the upper surface side of the core material, and a first wiring laminated portion having a plurality of connection terminals connected to the semiconductor chip;
A second wiring laminated portion having a plurality of electrode pads for external connection, wherein conductor layers and insulating layers are alternately laminated on the lower surface side of the core material;
A chip component housed in the housing hole;
A resin filler filled in a gap between the accommodation hole and the side surface of the chip component;
A filling region of the resin filler is opposed to the mounting region of the semiconductor chip in the stacking direction on the upper surface side of the core material, and of the conductor layer of the second wiring stacked portion on the lower surface side of the core material A wiring board, wherein no wiring is formed in a region facing the filling region of the resin filler in the stacking direction.
半導体チップを載置し、当該半導体チップと外部基板との間を電気的に接続する配線基板であって、
上面と下面を貫通する収容穴部を開口したコア材と、
前記コア材の上面側に絶縁層及び導体層を交互に積層形成し、前記半導体チップに接続される複数の接続端子を有する第1配線積層部と、
前記コア材の下面側に導体層及び絶縁層を交互に積層形成し、外部接続用の複数の電極パッドを有する第2配線積層部と、
前記収容穴部に収容されたチップ部品と、
前記収容穴部と前記チップ部品の側面との間隙に充填された樹脂充填材と、
を備え、前記コア材の上面側では前記樹脂充填材の充填領域が前記半導体チップの載置領域と積層方向で対向し、前記コア材の下面側では前記第2配線積層部の導体層のうち前記樹脂充填材の充填領域と積層方向で対向する領域に信号配線が形成されないことを特徴とする配線基板。
A wiring substrate on which a semiconductor chip is placed and electrically connected between the semiconductor chip and an external substrate,
A core material having an opening that penetrates the upper surface and the lower surface;
Insulating layers and conductor layers are alternately laminated on the upper surface side of the core material, and a first wiring laminated portion having a plurality of connection terminals connected to the semiconductor chip;
A second wiring laminated portion having a plurality of electrode pads for external connection, wherein conductor layers and insulating layers are alternately laminated on the lower surface side of the core material;
A chip component housed in the housing hole;
A resin filler filled in a gap between the accommodation hole and the side surface of the chip component;
A filling region of the resin filler is opposed to the mounting region of the semiconductor chip in the stacking direction on the upper surface side of the core material, and of the conductor layer of the second wiring stacked portion on the lower surface side of the core material A wiring board, wherein a signal wiring is not formed in a region facing the filling region of the resin filler in the stacking direction.
前記チップ部品は、前記樹脂充填材に比べて熱膨張係数が小さい材料を用いて形成されていることを特徴とする請求項1又は2に記載の配線基板。   The wiring board according to claim 1, wherein the chip component is formed using a material having a smaller thermal expansion coefficient than the resin filler. 前記チップ部品は、セラミック焼結体を用いて構成されたチップコンデンサであることを特徴とする請求項3に記載の配線基板。   The wiring board according to claim 3, wherein the chip component is a chip capacitor configured using a ceramic sintered body. 前記チップコンデンサの上面には前記第1配線積層部の導体層に接続される複数の電極が形成され、前記チップコンデンサの下面には前記第2配線積層部の導体層に接続される複数の電極が形成されることを特徴とする請求項4に記載の配線基板。
A plurality of electrodes connected to the conductor layer of the first wiring multilayer portion are formed on the upper surface of the chip capacitor, and a plurality of electrodes connected to the conductor layer of the second wiring multilayer portion are formed on the lower surface of the chip capacitor. The wiring board according to claim 4, wherein the wiring board is formed.
JP2008306899A 2008-12-01 2008-12-01 Wiring board Expired - Fee Related JP5283492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008306899A JP5283492B2 (en) 2008-12-01 2008-12-01 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008306899A JP5283492B2 (en) 2008-12-01 2008-12-01 Wiring board

Publications (2)

Publication Number Publication Date
JP2010129991A true JP2010129991A (en) 2010-06-10
JP5283492B2 JP5283492B2 (en) 2013-09-04

Family

ID=42330143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008306899A Expired - Fee Related JP5283492B2 (en) 2008-12-01 2008-12-01 Wiring board

Country Status (1)

Country Link
JP (1) JP5283492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376662A (en) * 2010-08-12 2012-03-14 环旭电子股份有限公司 System packaging module provided with ball grid array and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096291A (en) * 2005-09-01 2007-04-12 Ngk Spark Plug Co Ltd Wiring board
JP2007318089A (en) * 2006-04-25 2007-12-06 Ngk Spark Plug Co Ltd Wiring board
JP2008211202A (en) * 2007-02-01 2008-09-11 Ngk Spark Plug Co Ltd Wiring board and semiconductor package

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096291A (en) * 2005-09-01 2007-04-12 Ngk Spark Plug Co Ltd Wiring board
JP2007318089A (en) * 2006-04-25 2007-12-06 Ngk Spark Plug Co Ltd Wiring board
JP2008211202A (en) * 2007-02-01 2008-09-11 Ngk Spark Plug Co Ltd Wiring board and semiconductor package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376662A (en) * 2010-08-12 2012-03-14 环旭电子股份有限公司 System packaging module provided with ball grid array and production method thereof

Also Published As

Publication number Publication date
JP5283492B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5111342B2 (en) Wiring board
US7704548B2 (en) Method for manufacturing wiring board
US7889509B2 (en) Ceramic capacitor
US7808799B2 (en) Wiring board
JP5456060B2 (en) Capacitor built-in wiring board and component built-in wiring board
TWI423745B (en) Wiring board with built-in component and method for manufacturing the same
US8324513B2 (en) Wiring substrate and semiconductor apparatus including the wiring substrate
EP1761117A1 (en) Wiring board with embedded ceramic capacitors
US20070030628A1 (en) Capacitor for incorporation in wiring board, wiring board, method of manufacturing wiring board, and ceramic chip for embedment
KR102032171B1 (en) Electronic component built-in substrate and method of manufacturing the same
TW201427510A (en) Printed circuit board having buried component and method for manufacturing same
WO2012098616A1 (en) Wiring substrate having built-in component
JP2007103789A (en) Wiring board and manufacturing method therefor
JP5179856B2 (en) Wiring board built-in component and manufacturing method thereof, wiring board
JP2009038241A (en) Component accommodating wiring board, capacitor for accommodating wiring board
JP2013110329A (en) Capacitor module built-in wiring board
JP5286072B2 (en) Wiring board and manufacturing method thereof
US20150041053A1 (en) Method of Manufacturing Wiring Substrate
JP2008270778A (en) Method of manufacturing wiring board with built-in component
US9433108B2 (en) Method of fabricating a circuit board structure having an embedded electronic element
TWI477214B (en) Printed circuit board having buried component and method for manufacturing same
JP5283492B2 (en) Wiring board
JP6512366B2 (en) Circuit board, method of manufacturing circuit board and electronic device
JP5171664B2 (en) Wiring board and multilayer ceramic capacitor
JP2008244029A (en) Wiring board with built-in component, and component used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130528

R150 Certificate of patent or registration of utility model

Ref document number: 5283492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees